Supporting info

for

LiTMP-LiBr Complex-Induced Lateral Lithiation and Cross Ester Condensation: Direct Access to Isocoumarins from 2methoxy o-Toluate Esters

Mintu Rehman, Sajib Daimary, Rasajna Madhusudhana, Rajendar Goreti*

Table of Contents:

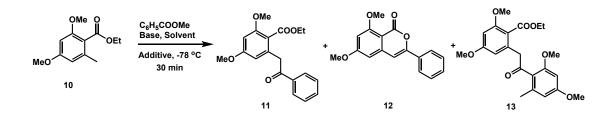
X-ray data

References

1.

2.

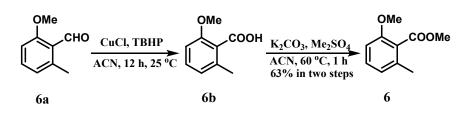
3.


4.

5

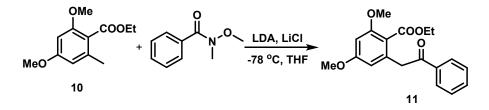
Page number **General Techniques S2 Optimization table S3 Experimental Procedures S3 – S19** S20 - S23S24

6. NMR data S25 - S57 **General Techniques:** All the reactions utilizing air- or moisture sensitive reagents were performed under an atmosphere of argon and nitrogen in flame dried glassware. Tetrahydrofuran (THF) was double distilled from LAH, Dichloromethane (DCM) was distilled from CaH₂ before use. Commercially available reagents were used as received. Silicon oil bath was used for reactions that required heating. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel glass plates ($60-F_{254}$) that were analyzed by fluorescence upon 254 nm irradiation or by staining with p-anisaldeyde/AcOH/H₂SO₄/EtOH or by staining with KMnO₄ solution. The products were purified by column chromatography on silica gel (spherical, neutral, $100-230 \mu$ m) with an eluent of Pet-ether/EtOAc. NMR spectra were recorded with Avance III-500 (Bruker) (¹H: 500 MHz, ¹³C: 125 MHz) spectrometer and referenced to the solvent peak at 7.26 ppm (¹H), 77.00 ppm (¹³C) for CDCl₃ and 96.16 ppm (¹³C) for CCl₄. Infrared spectra were recorded with a Bruker-Alpha (ATR-ZnSe) spectrometer and reported as wavenumber (cm⁻¹). A Q-Exactive benchtop HRMS was used for the high-resolution analysis.


Optimization of reaction conditions:

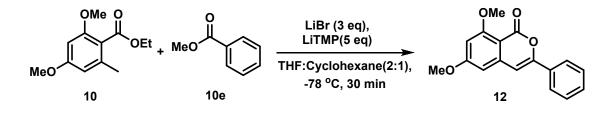
Entry	Base(eq)	Additive (eq)			Yield	ld (%) ^c		
		(eq)	condition		11	12	13	10
1	LDA	LiI (10)	Condition B	THF	-	-	-	_a
	(1.5)		Condition A	THF	-	-	-	
2	LDA (3)	LiClO ₄ (10)	Condition B	THF	-	-	-	_a
3 ^b	LDA (5)	LiI (10)	Condition B	THF	-	-	-	_a
			Condition A	THF	-	-	-	
4 ^b	LDA	LiCl (10)	Condition B	THF	18	24	12	40
	(1.5)		Condition A	THF	-	-	-	-
5	LHMDS (5)	LiBr (3)	Condition A	THF	-	-	-	100
6 ^b	Li(NCy) ₂ (5)	LiBr (3)	Condition A	THF:Hexane (2:1)	_	28	_	-
7	LiTMP (5)	LiBr (3)	Condition A	THF:Toluene (2:1)	-	33	-	-

Table 1: ^a decomposed starting material. ^b The reactions were conducted for a duration of 2 h, but the results were same as 30 min. Condition A: Base was added to the solution of **10**, methyl benzoate and LiBr mixture in THF at -78 °C. Conditions B: Methyl benzoate was added to the preprepared enolate of **10** at -78 °C. ^cisolated yields.


Experimental Procedures:

Preparation of methyl 2-methoxy-6-methylbenzoate (6): To a stirred suspension of aldehyde **6a** (1.5 g, 9.99 mmol) and CuCl (0.5 g, 0.5 mmol) in acetonitrile (20 mL), was added TBHP (70% in H_2O , 1.42 mL, 9.99 mmol) dropwise. The reaction mixture was

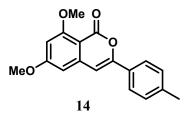
allowed to stir at room temperature for 12 hr. The reaction mixture was basified using sat. $NaHCO_3$ until pH 8.0-8.5 and extracted with EtOAc. The aqueous layer was acidified to pH2 using 2N HCl and extracted with EtOAc (3 x 20 mL). The combined organic layer was washed with water, brine solution, dried over Na_2SO_4 and the crude **6b** was used directly for next step.⁴


To a stirred suspension of crude acid **6b** (1.2 g) and K₂CO₃ (6 g, 45 mmol) in acetonitrile (30 mL), was added Me₂SO₄ (4.2 mL, 45 mmol). The reaction mixture was heated at 60 °C for 1 hr. The completion of the reaction was confirmed by TLC analysis. After cooling, the reaction mixture was added water (50 mL), extracted with EtOAc (25 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated under vacuum and purified by column chromatography (silica gel, petroleum ether:EtOAc = 7:1) to obtain the corresponding ester **6** (1.13 g, 63% in overall two steps) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.18-7.15 (t, *J* = 16, 8 Hz, 1H), 6.73-6.72 (d, *J* = 7.5 Hz, 1H), 6.69-6.68 (d, *J* = 8.5 Hz, 1H), 3.84 (s, 3H), 3.74 (s, 3H), 2.21 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 168.8, 156.3, 136.4, 130.3, 123.6, 122.3, 108.4, 55.8, 52.2, 19.2. IR (neat, cm⁻¹) 2970, 1735, 1609, 1463, 1324, 1252, 1210, 1145. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₀H₁₂O₃ 181.0870; Found 181.0878.

Ethyl 2,4-dimethoxy-6-(2-oxo-2-phenylethyl)benzoate, (11):¹ To a stirred solution LDA (2 M in THF, 0.645 mL, 1.2 mmol) and LiCl (0.97 g, 23 mmol) in dry THF (10 mL) at -78 °C under nitrogen atmosphere was added solution of ester **10** (0.515 g, 2.3 mmol) in THF (5 mL) dropwise over 5 minutes. After 45 min, to the deep red colour solution was added Wienreb's amide (0.56 mg, 2.76 mmol) in THF (5 mL), stirred for 12 hours at the same temperature. Completion of the reaction was confirmed by TLC analysis. The reaction mixture was treated with 1N HCl (5 mL) at -78 °C, warmed to room temperature, and the aqueous solution was extracted with ether (3 x10 mL). The combined organic layer was washed with water, brine solution, dried over anhydrous Na₂SO₄, filtered and concentrated

under reduced pressure. The crude product was purified by column chromatography (silica gel,10% EtOAc/Pet ether) to obtain compound **11** (0.398 g, 71%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.01-8.00 (d, *J* = 8 Hz, 2H), 7.57-7.54 (t, *J* = 14.5, 7 Hz, 1H), 7.47-7.44 (t, *J* = 15, 7.5 Hz, 2H), 6.41 (s, 1H), 6.35 (s, 1H), 4.33 (s, 2H), 4.24-4.20 (q, *J* = 14.5, 7 Hz, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 1.20-1.17 (t, *J* = 14.5, 7 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 196.6, 167.7, 161.7, 159.1, 136.7, 135.7, 133.2, 128.7, 128.4, 116.5, 107.4, 97.8, 61.0, 56.0, 55.4, 43.8, 14.1. IR (neat, cm⁻¹) 2924, 1740, 1607, 1462, 1377, 1277, 1163. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₉H₂₀O₅ 329.1383; Found 32 9.1384.

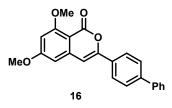
Preparation of 3-substituted isocoumarin: General procedure: -

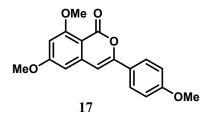


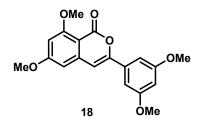
Conditions A: To a stirred solution of LiBr (0.230 g, 2.67 mmol) in THF:Cyclohexane (15 mL, 2:1) was added ortho-tolyl ester **10** (0.200 g, 0.89 mmol) and methyl benzoate (0.121 g, 0.89 mmol). The reaction mixture was allowed to stir at rt for 15 min. The reaction mixture was then brought to -78 °C and freshly prepared LiTMP (4.9 mmol, in THF) was added dropwise at -78 °C, until red coloured solution persisting, indicating the generation of orcillinate anion. After stirring for 30 min, the completion of the reaction was confirmed by TLC analysis. The reaction mixture was then treated with saturated aqueous NH₄Cl (10 ml), the organic layer was separated. The aqueous layer was extracted with EtOAc (20 mL x 2), the combined organic layers were washed with water, brine, dried over NaSO₄, filtered and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (silica gel, 50% EtOAc/Pet ether) to obtain the desired isocoumarin **12** (0.231 g, 92%) as yellow oil.

Scale up reaction: Compound 10 on 1.2 g provided product 12 in 1.35 g, 90% yield.

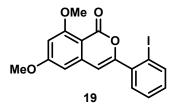
¹H NMR (500 MHz, CDCl₃) δ 7.73-7.71 (dd, J = 8, 1.5 Hz, 2H), 7.33-7.27 (m, 3 H), 6.61 (s, 1H), 6.29-6.27 (dd, J = 9.5,2 Hz, 2H), 3.85 (s, 3H), 3.78 (s, 3H); ¹³C{¹H} NMR (125


MHz, CDCl₃) δ 165.2, 163.1, 158.2, 154.1, 142.0, 131.8, 129.8, 128.6, 125.2, 103.3, 101.6, 100.3, 98.6, 56.0, 55.4; IR (neat, cm⁻¹) 2953, 1730, 1605, 1463, 1373, 1223. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₇H₁₄O₄ 283.0965; Found 283.0956. Melting point 163-164 °C.

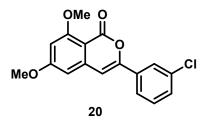

6,8-dimethoxy-3-(p-tolyl)-1H-isochromen-1-one, (14):⁸ Conditions A was followed for the synthesis of the isocoumarin **14**. The product **14** was obtained as white solid (0.128 g, 91%).¹H NMR (500 MHz, CDCl₃) δ 7.76-7.74 (d, *J* = 8.5 Hz, 2H), 7.23-7.22 (d, *J* = 8 Hz, 2H), 6.71 (s, 1H), 6.41 (s, 2H), 3.98 (s, 3H), 3.91 (s, 3H), 2.40 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.2, 163.3, 158.5, 154.6, 142.4, 140.0, 129.4, 125.3, 103.4, 101.0, 100.1, 98.6, 56.2, 55.5, 21.5. IR (neat, cm⁻¹) 2941, 1724, 1605, 1463, 1373, 1221, 1166, 1060. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₈H₁₆O₄ 359.1278; Found 359.1272. Melting point 163-165 °C.


3-(4-(tert-butyl)phenyl)-6,8-dimethoxy-1H-isochromen-1-one, (15): Conditions A was followed for the synthesis of the isocoumarin **15**. The product **15** was obtained as pale-yellow liquid (0.138 g, 86%). ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.63 (d, *J* = 8.5 Hz, 2H), 7.31-7.29 (d, *J* = 8.5 Hz, 2H), 6.56 (s, 1H), 6.26 (s, 1H), 6.23 (s, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 1.24 (s, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.0, 163.0, 158.2, 154.1, 152.9, 142.1, 128.9, 125.4, 124.9, 103.0, 100.9, 100.0, 98.3, 55.8, 55.3, 34.6, 31.1. IR (neat, cm⁻¹) 2978, 1727, 1604, 1572, 1370, 1222, 1166, 1132. HRMS (ESI-quadrupole) m/z: [M+H]⁺ calc. for C₂₁H₂₂O₄ 339.1591; found 339.1590.

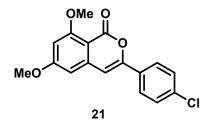
3-([1,1'-biphenyl]-4-yl)-6,8-dimethoxy-1H-isochromen-1-one, (16): Conditions A was followed for the synthesis of the isocoumarin **16**. The product **16** was obtained as white solid (0.155 g, 91%). ¹H NMR (500 MHz, CDCl₃) δ 7.89-7.88 (d, *J* = 8.5 Hz, 2H), 7.63-7.58 (m, 4H), 7.44-7.41 (t, *J* = 15,7 Hz, 2H), 7.36-7.33 (t, *J* = 14.5,7 Hz, 1H), 6.76 (s, 1H), 6.41-6.39 (dd, *J* = 11.5,2 Hz, 2H), 3.95 (s, 3H), 3.89 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.3, 163.3, 154.0, 142.6, 142.2, 140.1, 130.7, 128.9, 127.8, 127.3, 127.0, 125.7, 103.4, 101.7, 100.3, 98.7, 56.1, 55.5. IR (neat, cm⁻¹) 2943, 1731, 1605, 1466, 1223, 1134, 1001. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₂₃H₁₈O₄ 359.1278; Found 359.1272. Melting point 162-164 °C.

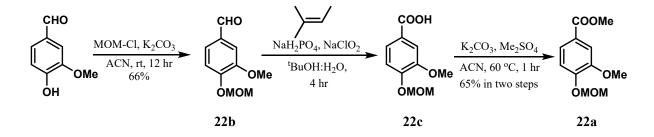


6,8-dimethoxy-3-(4-methoxyphenyl)-1H-isochromen-1-one, (17):⁹ Conditions A was followed for the synthesis of the isocoumarin **17**. The product **17** was obtained as white solid (0.139 g, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.77-7.75 (d, *J* = 9 Hz, 2H), 6.90-6.89 (d, *J* = 9 Hz, 2H), 6.59 (s, 1H), 6.36 (s, 2H), 3.95 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) 165.2, 163.3, 161.1, 158.4, 154.4, 142.6, 126.9, 124.5, 114.1, 103.2, 100.1, 99.9, 98.3, 56.1, 55.4, 55.2. IR (neat, cm⁻¹) 2948, 1732, 1605, 1521, 1468, 1262, 1167. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₈H₁₆O₅ 313.1071; Found 313.1066. Melting point 146-148 °C.

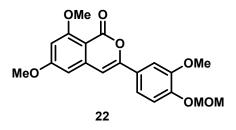


3-(3,5-dimethoxyphenyl)-6,8-dimethoxy-1H-isochromen-1-one, (18): Conditions A was followed for the synthesis of the isocoumarin **18**. The product **18** was obtained as pale yellow solid (0.136 g, 84%) ¹H NMR (500 MHz, CDCl₃) δ 6.97-6.96 (d, J = 2 Hz, 2H), 6.73 (s, 1H), 6.49-6.48 (t, J = 4.5, 2 Hz, 1H), 6.43 (s, 2H), 3.97 (s, 3H), 3.91 (s, 3H), 3.85 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.4, 163.3, 161.0, 158.6, 154.2, 142.1, 133.9, 103.4, 102.5, 102.3, 100.4, 56.3, 55.6; IR (neat, cm⁻¹) 2946, 1734, 1605, 1467, 1371, 1214, 912. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₉H₁₈O₆ 343.1176; Found 343.1161. Melting point 218-220 °C.

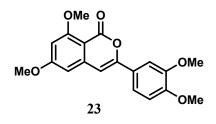

Preparation of 3-(2-iodophenyl)-6,8-dimethoxy-1H-isochromen-1-one, (19): Conditions B: To a stirred solution of LiBr (0.232 g, 2.67 mmol) and ortho-tolyl ester 10 (0.89 mmol) in THF:Cyclohexane (2:1) was added freshly generated LiTMP (4.45 mmol, in THF) dropwise at -78 °C. To the red coloured solution (orcillinate anion), immediately, was added methyl 2-iodo benzoate (0.233 g, 0.89 mmol) in THF (1 M solution) in one shot. After 30 min, completion of the reaction was confirmed by TLC analysis. The reaction mixture was then treated with saturated aqueous NH₄Cl (10 ml), the organic layer was separated. The aqueous layer was extracted with EtOAc (20 mL x 2), the combined organic layers were washed with water, brine, dried over NaSO₄, filtered and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (silica gel, 50% EtOAc/ Pet ether) to obtain the desired isocoumarin **12** (0.294 g, 81%) as white solid.


¹H NMR (500 MHz, CDCl₃) δ 7.96-7.94 (d, J = 8 Hz, 1H), 7.43-7.40 (t, J = 15, 7.5 Hz, 1H), 7.12-7.09 (t, J = 15.5, 7.5 Hz, 1H), 6.55 (s, 1H), 6.50-6.49 (d, J = 2Hz, 1H), 6.44-6.43 (d, J = 2.5 Hz, 1H), 4.00 (s, 3H), 3.92 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.5, 163.4, 156.3, 141.6, 140.1, 137.9, 131.0, 130.4, 128.1, 125.4, 107.0, 103.4, 100.6, 99.1, 96.3, 56.3, 55.7. IR (neat, cm⁻¹) 2966, 1737, 1607, 1577, 1370, 1223, 1131, 995. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₇H₁₃IO₄ 408.9931; Found 408.9921. Melting point 161-163 °C.

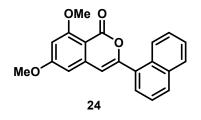
3-(3-chlorophenyl)-6,8-dimethoxy-1H-isochromen-1-one, (20): Conditions B was followed for the synthesis of the isocoumarin **20**. The product **20** was obtained as white solid (0.126 g, 84%). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.76-7.72 (m, 1H), 7.37-7.36 (m, 2H), 6.74 (s, 1H), 6.43-6.42 (q, *J* = 4, 2 Hz, 2H), 3.97 (s, 3H), 3.91(s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.4, 163.4, 157.9, 152.9, 141.8, 135.1, 133.8, 130.0, 129.9, 125.4, 123.4, 103.6, 102.6, 100.6, 99.1, 56.2, 55.6. IR (neat, cm⁻¹) 2934, 1735, 1606, 1577, 1478, 1372, 1225, 1169. 1063. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₇H₁₃ClO₄ 317.0575; Found 317.0571. Melting point 164-166 °C.


3-(4-chlorophenyl)-6,8-dimethoxy-1H-isochromen-1-one, (21): Conditions B was followed for the synthesis of the isocoumarin **21**. The product **21** was obtained as pale-yellow liquid (0.125 g, 83%). ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.80 (d, *J* = 8.5 Hz, 2H), 7.43-7.41 (s, *J* = 8.5 Hz, 2H), 6.77 (s, 1H), 6.48-6.47 (d, *J* = 4 Hz, 2H), 3.99 (s, 3H), 3.92 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.5, 163.4, 158.6, 153.3, 142.0, 136.0, 130.4, 129.0, 126.7, 103.4, 102.2, 100.6, 99.0, 56.4, 55.7. IR (neat, cm⁻¹) 2949, 1736, 1607, 1467, 1373, 1225, 1168. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₇H₁₃ClO₄ 317.0575; Found 317.0567.

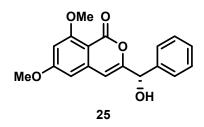
Preparation of methyl 3-methoxy-4-(methoxymethoxy)benzoate, (22a): To a stirred suspension of vanillin (1 g, 6.57 mmol) and K₂CO₃ (1.816g, 13.14 mmol) in acetonitrile (10 mL), MOM chloride (0.75 mL, 9.9 mmol) was added dropwise. The reaction mixture was stirred overnight at room temperature and the completion was confirmed by TLC analysis. The reaction mixture was washed with water (50 mL), extracted with EtOAc (25 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated under vacuum and purified by column chromatography (silica gel, petroleum ether:EtOAc = 7:1) to obtain the corresponding MOM protected aldehyde **22b** (0.85 g, 66 % yield). The aldehyde was used directly for next step without further purification.

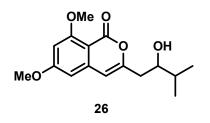

To a stirred solution of aldehyde **22b** (0.85 g, 4.33 mmol) and NaH₂PO₄ (1.82 g, 15.17 mmol) in *t*-BuOH (15 mL) and H₂O (5 mL), NaClO₂ (2.349 g, 25.98 mmol) was slowly added in H₂O (5 mL). After stirring at 25 °C for 12 h, the reaction mixture was treated with brine (30 mL), the aqueous layer was washed with ether (2 x 30 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product obtained was directly used for the next step.

To a stirred suspension of crude acid **22c** (0.8 g) and K₂CO₃ (6 g, 45 mmol) in acetonitrile (30 mL), was added Me₂SO₄ (4.2 mL, 45 mmol). The reaction mixture was heated at 60 °C for 1 hr. The completion of the reaction was confirmed by TLC analysis. After cooling, the reaction mixture was washed with water (20 mL), extracted with EtOAc (25 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated under vacuum and purified by column chromatography (silica gel, petroleum ether:EtOAc = 7:1) to obtain the corresponding ester **22a** (2.1 g, 65% in overall two steps) as pale-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.62-7.60 (dd, *J* = 8.5, 2 Hz, 1H), 7.55 (s, 1H), 7.16-7.14 (d, *J* = 8.5 Hz, 1H), 5.28 (s, 2H), 3.94 (s, 3H), 3.90 (s, 3H), 3.51 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 166.5, 152.9, 148.6, 123.5, 122.7, 112.0, 110.2, 94.9, 56.3, 55.8, 51.9. IR (neat, cm⁻¹) 2987, 1721, 1606, 1520, 1442, 1277, 1224, 1141, 912, 736. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₁H₁₄O₅ 226.0841; Found 226.0842.

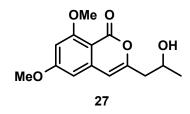


6,8-dimethoxy-3-(3-methoxy-4-(methoxymethoxy)phenyl)-1H-isochromen-1-one,

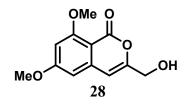

(19): Conditions A was followed for the synthesis of the isocoumarin 22. The product 22 was obtained as pale-yellow liquid (0.147 g, 83%). ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.39 (d, *J* = 6.5 Hz, 2H), 7.21-7.19 (d, *J* = 9 Hz, 1H), 6.71 (s, 1H), 6.46 (s, 1H), 5.28 (s, 2H), 3.98 (s, 6H), 3.92 (s, 3H), 3.53 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.5, 163.4, 159.0, 154.3, 149.8, 148.2, 142.5, 126.3, 118.5, 115.9, 108.9, 103.2, 101.1, 100.2, 98.6, 95.3, 56.4, 56.3, 55.7. IR (neat, cm⁻¹) 2936, 1736, 1608, 1525, 1474, 1254, 1171, 1002. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₂₀H₂₀O₇ 373.1282; Found 373.1284.


3-(3,4-dimethoxyphenyl)-6,8-dimethoxy-1H-isochromen-1-one, (23): Conditions A was followed for the synthesis of the isocoumarin **23**. The product **23** was obtained as paleyellow liquid (0.15 g, 92%).¹H NMR (500 MHz, CDCl₃) δ 7.47-7.46 (d, *J* = 5 Hz, 1H), 7.36 (s, 1H), 6.93-6.91 (d, *J* = 8.15 Hz, 1H), 6.69 (s, 1H), 6.45 (s, 1H), 3.98 (s, 6H), 3.94 (s, 3H), 3.92 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.4, 163.4, 159.0, 154.4, 150.7, 149.2, 142.6, 124.8, 118.7, 111.1, 100.8, 100.2, 98.5, 56.4, 56.2, 56.0, 55.7. IR (neat, cm⁻¹) 2952, 1733, 1605, 1524, 1473, 1262, 1004. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₉H₁₈O₆ 343.1172; Found 343.1176.

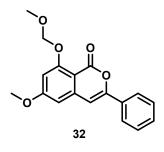
6,8-dimethoxy-3-(naphthalen-1-yl)-1H-isochromen-1-one, (24): Conditions A was followed for the synthesis of the isocoumarin **24**. The product **24** was obtained as white solid (0.143 g, 91%).¹H NMR (500 MHz, CDCl₃) δ 8.24-8.22 (d, *J* = 8 Hz, 1H), 7.90-7.85 (m, 2H), 7.72-7.71 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.53-7.47 (m, 3H), 6.59 (s, 1H), 6.48-6.47 (d, *J* = 2 Hz, 1H), 6.43-6.42 (d, *J* = 2.5 Hz, 1H), 3.99 (s, 3H), 3.90 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.4, 163.4, 158.8, 155.6, 142.1, 133.8, 130.8, 130.7, 130.4, 128.5, 127.5, 127.0, 126.2, 125.3, 125.0, 107.1, 103.4, 100.3, 98.9, 56.2, 55.6. IR (neat, cm⁻¹) 2952, 1732, 1605, 1464, 1371, 1223, 1135, 995. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₂₁H₁₆O₄ 333.1115; Found 333.1121. Melting point 148-150 °C.

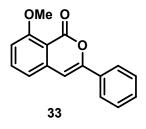


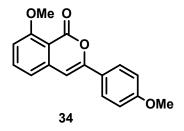
(S)-3-(hydroxy(phenyl)methyl)-6,8-dimethoxy-1H-isochromen-1-one, (25): Conditions A was followed for the synthesis of the isocoumarin 25. The product 25 was obtained as pale-yellow liquid (0.093 g, 63%). ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.46 (d, *J* = 7.5 Hz, 2H), 7.40-7.34 (m, 3H), 6.45 (s, 1H), 6.36 (s, 1H), 6.32 (s, 1H), 5.52 (s, 1H), 3.95 (s, 3H), 3.87 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.5, 163.4, 158.2, 141.6, 139.2, 128.7, 128.6, 127.0, 103.0, 100.6, 100.0, 99.0, 72.9, 56.3, 55.7. IR (neat, cm⁻¹) 3367, 2941, 1721, 1607, 1465, 1216, 1167, 1067. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₈H₁₆O₅ 313.1071; Found 313.1068. $[\alpha]_{25}^{D} = +2.5$ (0.2 M in CH₂Cl₂).

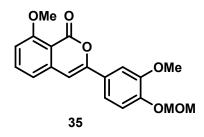


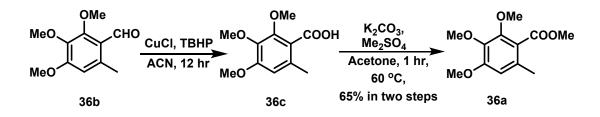
3-(2-hydroxy-3-methylbutyl)-6,8-dimethoxy-1H-isochromen-1-one, (26): Conditions A was followed for the synthesis of the isocoumarin **26**. The product **26** was obtained as pale-yellow liquid (48%).¹H NMR (500 MHz, CDCl₃) δ 6.29-6.28 (d, J = 2 Hz, 1H), 6.194-6.190 (d, J = 2 Hz, 1H), 6.09 (s, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 2.60-2.57 (dd, J = 14.5, 2.5 Hz, 1H), 2.40-2.35 (dd, J = 14.5, 9.5 Hz, 1H), 1.73-1.60 (m, 1H), 0.93-0.91 (dd, J = 7, 2.5


Hz, 6H). ${}^{13}C{}^{1}H}$ NMR (125 MHz, CDCl₃) 165.3, 163.3, 159.0, 156.6, 142.1, 105.0, 103.1, 99.5, 98.2, 73.3, 56.1, 55.4, 38.7, 33.7, 18.8, 17.3. IR (neat, cm⁻¹) 3386, 2978, 1727, 1608, 1470, 1218, 912. HRMS (ESI-quadrupole) m/z: [M+H]⁺Calculated for C₁₆H₂₀O₅ 265.1071; Found 265.1069.

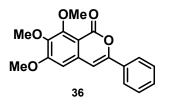

3-(2-hydroxypropyl)-6,8-dimethoxy-1H-isochromen-1-one, (27):¹⁰ Conditions A was followed for the synthesis of the isocoumarin **27**. The product **27** was obtained as yellow liquid (0.054 g, 43%).¹H NMR (500 MHz, CDCl₃) δ 6.44 (s, 3H), 6.33 (s, 3H), 6.20 (s, 3H), 4.32-4.24 (m, 2H), 3.96 (s, 3H), 3.89 (s, 3H), 2.65-2.53 (m, 2H), 2.10-2.01 (m, 2H), 1.29-1.28 (d, *J* = 5 Hz, 6H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.2, 163.1, 159.3, 156.0, 142.1, 105.1, 102.8, 99.5, 98.1, 65.1, 55.9, 55.4, 43.2, 23.1. IR (neat, cm⁻¹) 3352, 2945, 1734, 1610, 1469, 1381, 1249, 1172. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₄H₁₆O₅ 265.1071; Found 265.1069.


3-(hydroxymethyl)-6,8-dimethoxy-1H-isochromen-1-one, (28): Conditions A was followed for the synthesis of the isocoumarin **28**. The product **28** was obtained as pale-yellow liquid (0.050 g, 45%). ¹H NMR (500 MHz, CDCl₃) δ 6.48-6.47 (d, *J* = 2.5 Hz, 1H), 6.393-6.388 (d, *J* = 2.5 Hz, 1H), 6.380 (s, 1H), 4.43 (s, 2H), 3.97 (s, 3H), 3.90 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 165.6, 163.4, 156.4, 141.7, 103.3, 102.9, 100.4, 98.8, 61.4, 56.3, 55.7. IR (neat, cm⁻¹) 3388, 2940, 1740, 1602, 1265, 1111. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₈H₁₆O₅ 267.0863; Found 267.0860.

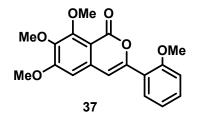

6-methoxy-8-(methoxymethoxy)-3-phenyl-1H-isochromen-1-one, (32): Conditions A was followed for the synthesis of the isocoumarin **32**. The product **32**was obtained as paleyellow liquid (0.070 g, 54%). ¹H NMR (500 MHz, CDCl₃) δ 7.88-7.87 (d, *J* = 7 Hz, 2H), 7.47-7.40 (m, 3H), 6.79 (s, 1H), 6.77-6.76 (d, *J* = 2 Hz, 1H), 6.54-6.53 (d, *J* = 2 Hz, 1H), 5.38 (s, 2H), 3.91 (s, 3H), 3.57 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) 167.5, 165.1, 161.1, 154.3, 141.9, 130.9, 130.0, 128.9, 128.8, 125.4, 104.3, 102.6, 102.3, 101.8, 95.1, 56.6, 55.6; IR (neat, cm⁻¹) 2945, 1740, 1609, 1372, 1167. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₈H₁₆O₅ 313.1071; Found 313.1065.


8-methoxy-3-phenyl-1H-isochromen-1-one, (33):⁷ Conditions A was followed for the synthesis of the isocoumarin **33**. The product **33** was obtained as yellow liquid (0.107 g, 89%). ¹H NMR (500 MHz, CDCl₃) δ 7.82-7.80 (d, *J* = 7.5 Hz, 2H), 7.57-7.54 (t, *J* = 16, 8 Hz, 1H), 7.40-7.35 (m, 3H), 7.04-7.03 (d, *J* = 8 Hz, 1H), 6.95-6.94(d, *J* = 8 Hz, 1H), 6.86 (s, 1H), 4.02 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 161.7, 159.1, 154.0, 140.5, 135.8, 131.9, 130.0, 128.8, 125.3, 118.1, 109.9, 109.3, 101.8, 56.4. IR (neat, cm⁻¹) 2938, 1743, 1652, 1606, 1576, 1484, 1284, 1116. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₆H₁₂O₃ 253.0859; Found 253.0857.

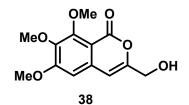
8-methoxy-3-(4-methoxyphenyl)-1H-isochromen-1-one, (34):¹¹ Conditions A was followed for the synthesis of the isocoumarin **34**. The product **34** was obtained as yellow liquid (0.114 g, 85%). ¹H NMR (500 MHz, CDCl₃) δ 7.82-7.80 (d, J = 9 Hz, 2H), 7.60-7.57 (t, J = 16,8 Hz, 1H), 7.00-6.88 (m, 4H), 6.72 (s, 1H), 4.01 (s, 3H), 3.85 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) 161.7, 161.1, 159.2, 154.0, 140.9, 135.7, 126.9, 124.4, 117.9, 114.2, 109.4, 108.9, 100.2, 56.3, 55.4. IR (neat, cm⁻¹) 2951, 1726, 1610, 1467, 1219, 1169, 1061. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₇H₁₄O₄ 283.0964; Found 283.0968.

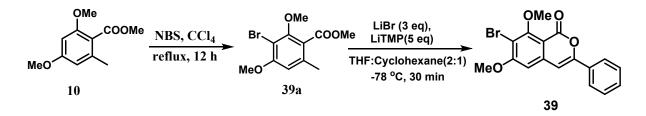


8-methoxy-3-(3-methoxy-4-(methoxymethoxy)phenyl)-1H-isochromen-1-one, (35): Conditions A was followed for the synthesis of the isocoumarin **35**. The product **35** was obtained as yellow solid (0.130 g, 80%). ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.57 (t, *J* = 16, 8 Hz, 1H), 7.41 (s, 1H), 7.19-7.18 (d, *J* = 9Hz, 1H), 7.01-6.99 (d, *J* = 7.5 Hz, 1H), 6.92-6.90 (d, *J* = 8.5 Hz, 1H), 6.74 (s, 1H), 5.27 (s, 2H), 4.03 (s, 3H), 3.99 (s, 3H), 3.53 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 161.7, 159.2, 153.8, 149.8, 148.1, 140.7, 135.8, 126.2, 122.9, 122.6, 118.4, 117.9, 115.9, 109.6, 108.8, 100.9, 95.3, 56.32, 56.28, 56.21. IR (neat, cm⁻¹) 2951, 1726, 1610, 1467, 1219, 1169, 1061. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₉H₁₈O₆ 343.1176; Found 343.1172.

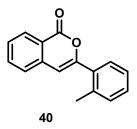


Preparation of methyl 2,3,4-trimethoxy-6-methylbenzoate, (36a): A similar procedure to that used for the preparation of 6 was followed to obtain the ester 36a (2.1 g, 65% in overall two steps) as yellow oil, starting from aldehyde 36b. ¹H NMR (500 MHz, CDCl₃) δ 6.45 (s, 1H), 3.87(s, 6H), 3.84(s, 3H), 3.81(s, 3H), 2.25(s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 168.0, 154.3, 151.3, 140.0, 131.5, 121.4, 109.2, 61.6, 60.8, 55.9, 51.9, 19.6. IR

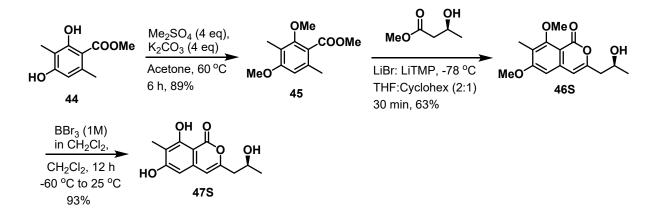

(neat, cm⁻¹) 2977, 1730, 1610, 1472, 1355, 1265, 1211, 1150. HRMS (ESI-quadrupole) m/z: $[M+H]^+$ Calculated for $C_{12}H_{16}O_5$ 241.1071; Found 241.1072.


6,7,8-trimethoxy-3-phenyl-1H-isochromen-1-one, (36):¹² Conditions A was followed for the synthesis of the isocoumarin **36**. The product **36** was obtained as yellow liquid (0.136 g, 93%). ¹H NMR (500 MHz, CDCl₃) δ 7.85-7.84 (d, *J* = 7.5 Hz, 2H), 7.45-7.40 (m, 3H), 6.81 (s, 1H), 6.69 (s, 1H), 4.01 (s, 3H), 3.98 (s, 3H), 3.92 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 159.1, 158.6, 155.7, 153.3, 142.8, 136.2, 131.8, 129.8, 128.7, 125.1, 108.0, 103.3, 101.5, 61.9, 61.4, 56.2. IR (neat, cm⁻¹) 2952, 1734, 1600, 1498, 1345, 1261, 1117, 1002. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₈H₁₆O₅ 313.1071; Found 313.1068.

6,7,8-trimethoxy-3-(2-methoxyphenyl)-1H-isochromen-1-one, (37): Conditions A was followed for the synthesis of the isocoumarin **37**. The product **37** was obtained as yellow liquid (0.143 g, 88%). ¹H NMR (500 MHz, CDCl₃) δ 8.00-7.98 (dd, *J* = 7.5,1.5 Hz, 1H), 7.38-7.34 (t, *J* = 14, 7 Hz, 1H), 7.24 (s, 1H), 7.08-7.05 (t, *J* = 15, 7.5 Hz, 1H), 7.00-6.98 (d, *J* = 8.5 Hz, 1H), 6.67 (s, 1H), 4.02 (s, 3H), 3.99 (s, 3H), 3.97 (s, 3H), 3.93 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) 158.9, 158.6, 157.2, 155.7, 150.2, 142.8, 136.8, 130.6, 128.9, 121.0, 120.7, 111.3, 108.4, 106.7, 103.6, 61.9, 61.4, 56.1, 55.6. IR (neat, cm⁻¹) 2946, 1732, 1598, 1499, 1375, 1261, 1116, 912. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₉H₁₈O₆ 343.1176; Found 343.1172.



3-(hydroxymethyl)-6,7,8-trimethoxy-1H-isochromen-1-one, (38): Conditions A was followed for the synthesis of the isocoumarin **38**. The product **38** was obtained as yellow liquid (0.062 g, 49%). ¹H NMR (500 MHz, CDCl₃) δ 6.57 (s, 1H), 6.36 (s, 1H), 4.43 (s, 2H), 3.98 (s, 3H), 3.96 (s, 3H), 3.90 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 167.4, 159.3, 158.3, 156.0, 155.7, 143.0, 135.7, 108.2, 103.1, 102.4, 61.9, 61.3, 56.1. IR (neat, cm⁻¹) 3296, 2945, 1736, 1655, 1452, 1404, 1293, 1117. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₃H₁₄O₆ 267.0863; Found 267.0860.


Preparation of methyl-3-bromo-2,4-dimethoxy-6-methylbenzoate, (**39a**):² To a stirred solution of ester **10**¹ (0.11 g, 0.52 mmol) in CCl₄ (2 mL), was added NBS (0.103 g, 0.58 mmol). The reaction mixture was refluxed for 12 hr. The completion of the reaction was confirmed by TLC. The reaction mixture was washed with H₂O (20 mL), extracted with EtOAc (30 mL x 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, concentrated under vacuum and purified by column chromatography (silica gel, petroleum ether:EtOAc = 7:1) to obtain the corresponding ester **39a** (0.086 g, 57%) as yellow oil. ¹H NMR (500 MHz, CDCl₃+ CCl₄) δ 6.35 (s, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.82 (s, 3H), 2.32 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃+CCl₄) δ 168.1, 157.3, 156.5, 137.0, 117.7, 105.7, 93.9, 56.3, 56.1, 52.3, 20.5. IR (neat cm⁻¹) 2968, 1733, 1604, 1443, 1285, 1118, 1021. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₁H₁₃BrO₄ 289.0070, 291.0050; Found 289.0065, 291.0047.

7-bromo-6,8-dimethoxy-3-phenyl-1H-isochromen-1-one, (39): Conditions A was followed for the synthesis of the isocoumarin **39**. The product **39** was obtained as white solid (0.152 g, 89%). ¹H NMR (500 MHz, CDCl₃) δ 7.93-7.92 (d, *J* = 6.5 Hz, 2H), 7.48-7.43 (m, 3H), 7.31 (s, 1H), 6.50 (s, 1H), 4.04 (s, 3H), 4.01 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 163.1, 161.4, 158.0, 155.1, 140.0, 131.9, 130.3, 128.8, 125.7, 104.0, 100.6, 99.4, 94.8, 56.4. IR (neat, cm⁻¹) 2964, 1730, 1650, 1591, 1457, 1338, 1227,1011. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₇H₁₃BrO₄ 361.0070, 363.0050; Found 361.0067, 363.0045. Melting point 195-197 °C.

3-(o-tolyl)-1H-isochromen-1-one, (40):⁶ Conditions A was followed for the synthesis of the isocoumarin **40**. The product **40** was obtained as pale-yellow liquid (0.073 g, 65%). ¹H NMR (500 MHz, CDCl₃) δ 8.39-8.37 (d, *J* = 7.5 Hz, 1H), 7.80-7.77 (t, *J* = 14, 7 Hz, 1H), 7.59-7.52 (m, 3H), 7.41-7.39 (t, *J* = 13, 6.5 Hz, 1H), 7.34-7.32 (d, *J* = 7.5 Hz, 2H), 6.66 (s, 1H), 2.56 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 162.6, 155.6, 137.5, 136.8, 134.9, 132.8, 131.1, 129.8, 129.7, 129.2, 128.3, 126.0, 125.8, 120.4, 105.9, 20.8. IR (neat, cm⁻¹) 2964, 1728, 1611, 1469, 1284, 1161, 1102. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₆H₁₂O₂ 237.0921; Found 237.0916.

Preparation of (*S***)-lunatinin:**

Preparation of methyl 2,4-dimethoxy-3,6-dimethylbenzoate, **(45)**:⁵ To a stirred suspension of methyl 2,4-dihydroxy-3,6-dimethylbenzoate **44** (2 g, 11 mmol) and K₂CO₃ (6 g, 44 mmol) in acetone (30 mL), was added Me₂SO₄ (4.0 mL, 44 mmol). The reaction mixture was heated at 60 °C for 1 hr. The completion of the reaction was confirmed by TLC analysis. After cooling, the reaction mixture was washed with water (20 mL), extracted with EtOAc (25 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated under vacuum and purified by column chromatography (silica gel, petroleum ether:EtOAc = 7:1) to obtain the corresponding ester **45** (1.85 g, 81% yield). ¹H NMR (500 MHz, CDCl₃) δ 6.42 (s, 1H), 3.89 (s, 3H), 3.82 (s, 3H), 3.74 (s, 3H), 2.29 (s,

3H), 2.09 (s, 3H).¹³C{¹H} NMR (125 MHz, CDCl₃) δ 168.7, 159.3, 156.8, 134.6, 120.8, 117.2, 107.7, 61.7, 55.5, 51.9, 19.9, 8.8. IR (neat, cm⁻¹) 2964, 1732, 1587, 1464, 1327, 1156, 1011, 913. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₂H₁₆O₄224.1048; Found 224.1045.

(*S*)-3-(2-hydroxypropyl)-6,8-dimethoxy-7-methyl-1H-isochromen-1-one (46S): Conditions A was followed for the synthesis of the isocoumarin 46S. The product 46S was obtained as light-yellow solid (0.072 g, 63%, recrystallized with EtOAc). $[\alpha]_{25}^{D} = +27.0$; ¹H NMR (500 MHz, CDCl₃) δ 6.42 (s, 1H), 6.17 (s, 1H), 4.31-4.25(m, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 2.62-2.50 (m, 2H), 2.15 (s, 3H), 1.29-1.28 (d, *J* = 6 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) 163.6, 160.8, 159.0, 155.1, 139.0, 121.3, 107.0, 105.0, 101.2, 65.3, 61.3, 55.7, 43.3, 23.3, 8.8. IR (neat, cm⁻¹) 3364, 2946, 1727, 1606, 1465, 1245, 1120, 999. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calculated for C₁₅H₁₈O₅ 279.1227; Found 279.1229.

(*S*)-lunatinin, (47S):¹³ To a stirred solution of compound 47S (0.07 mg, 0.062 mmol) in CH₂Cl₂ (2 mL) was added BBr₃ (1 mL, 1M in CH₂Cl₂) at -60 °C dropwise manner. The reaction mixture was slowly warmed to room temperature and stirred for 12 h. The completion of the reaction was monitored by TLC analysis. The reaction mixture was poured quickly into pre cooled saturated solution (10 mL) of sodium bicarbonate. The compound was extracted with EtOAc (3 x 15 mL) until there is no product in aqueous layer. Combined organic phase is dried with sodium sulphate and the solvents removed in vacuo. The crude product is purified by a short pad of silica gel column chromatography (30% EtOAc/Pet ether) to obtain lunatinin 47S (0.058 g, 93%) as white solid. Melting point = 167-168 °C; $[\alpha]_{25}^{D} = -19.3$ (c 0.3 MeOH); ¹H NMR (500 MHz, CDCl₃) δ 11.27 (s, 1H), 6.30 (s, 1H), 6.21 (s, 1H), 4.48-4.43 (m, 1H), 3.00-2.90 (m, 2H), 2.17 (s, 3H), 1.81-1.79 (d, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) 166.2, 161.49, 161.46, 152.9, 136.0, 110.8, 106.2, 102.0, 99.9, 45.2, 44.9, 26.2, 7.8. IR (neat, cm⁻¹) 3384, 2944, 1730, 1690, 1446, 1271, 1120. HRMS (APCI) m/z: [M+H]⁺ Calculated for C₁₃H₁₄O₅ 251.0914; Found 251.0912.

XRD Data of (S)-3-(2-hydroxypropyl)-6,8-dimethoxy-7-methyl-1H-isochromen-1-one, 45S:

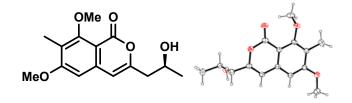
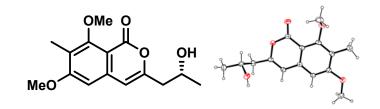


Table 1. Crystal data and structure refinement for (S)-3-(2-hydroxypropyl)-6,8-dimethoxy-7methyl-1H-isochromen-1-one, 3.

a= 90°.
b= 90°.
g = 90°.
3
22<=1<=22


Independent reflections	2464 [R(int) = 0.0894]
Completeness to theta = 24.995°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.997 and 0.994
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2464 / 0 / 187
Goodness-of-fit on F ²	1.098
Final R indices [I>2sigma(I)]	R1 = 0.0429, wR2 = 0.0961
R indices (all data)	R1 = 0.0519, wR2 = 0.0978
Absolute structure parameter	0.4(4)
Extinction coefficient	0.047(6)
Largest diff. peak and hole	0.220 and -0.234 e.Å ⁻³
Table 2. Atomic coordinates ($x \ 10^4$) and e	equivalent isotropic displacement parameters ($Å^2x$

10³)

for lunatinin_s. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.
--

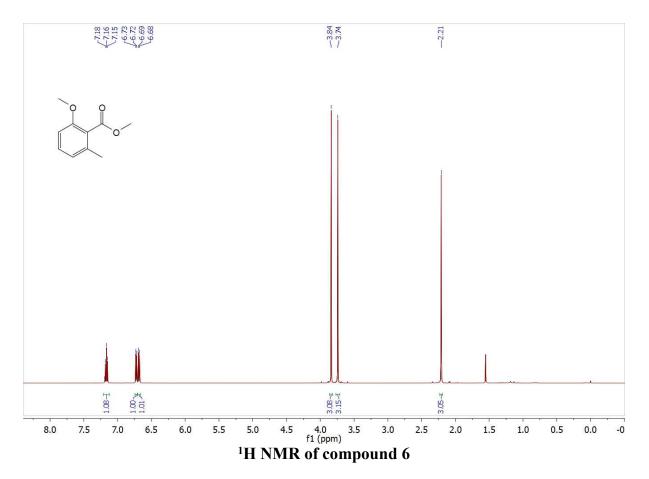
	Х	У	Ζ	U(eq)	
C(1)	7541(3)	5321(3)	5429(1)	47(1)	
C(2)	5762(3)	5412(3)	5167(1)	48(1)	
C(3)	5257(3)	4619(3)	4599(2)	47(1)	
C(4)	6500(3)	3767(3)	4257(1)	43(1)	
C(5)	8281(3)	3733(2)	4521(1)	41(1)	
C(6)	8779(3)	4501(3)	5111(1)	45(1)	
C(7)	9580(3)	2914(3)	4152(1)	47(1)	
C(8)	9113(3)	2208(3)	3585(1)	46(1)	
C(9)	6007(3)	2954(3)	3642(2)	51(1)	
C(10)	10285(4)	1385(3)	3126(2)	54(1)	
C(11)	10688(3)	1967(3)	2389(1)	51(1)	
C(12)	11863(4)	1072(3)	1951(2)	70(1)	
C(13)	9588(4)	5954(4)	6366(2)	78(1)	
C(14)	4436(4)	6340(3)	5516(2)	73(1)	
C(15)	3018(4)	5461(3)	3807(2)	74(1)	
O(1)	7893(2)	6085(2)	6009(1)	62(1)	
O(2)	3468(2)	4617(2)	4395(1)	61(1)	
O(3)	4549(2)	2841(2)	3363(1)	76(1)	
O(4)	7351(2)	2220(2)	3338(1)	56(1)	
O(5)	11462(2)	3240(2)	2445(1)	62(1)	

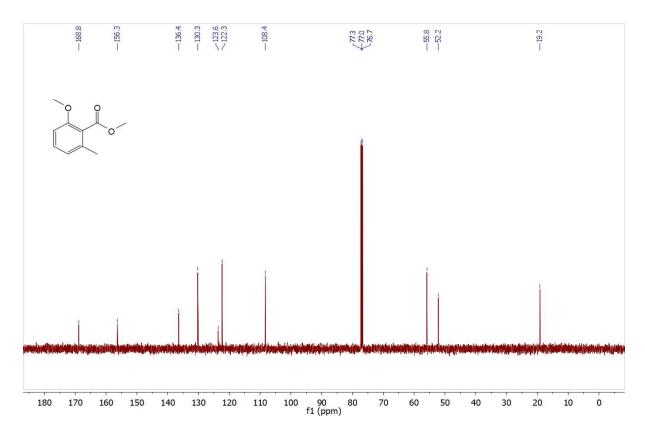
XRD Data of (*R*)-3-(2-hydroxypropyl)-6,8-dimethoxy-7-methyl-1H-isochromen-1-one, 43R:

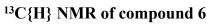
Table 1. Crystal data and structure refinement for (R)-3-(2-hydroxypropyl)-6,8-
dimethoxy-7-methyl-1H-isochromen-1-one, 4.

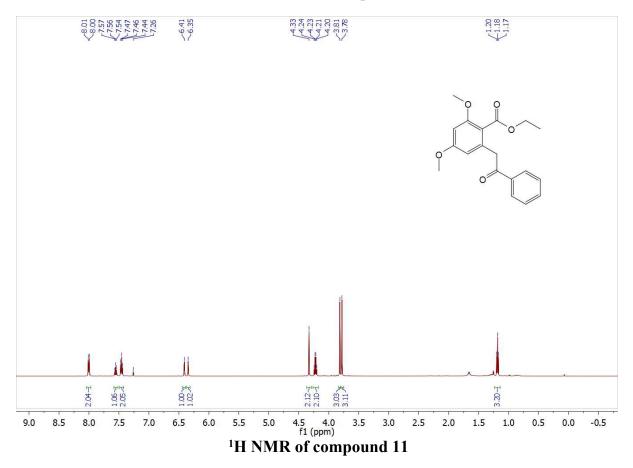
Identification code	shelx	
Empirical formula	C15 H18 O5	
Formula weight	278.29	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 7.3959(5) Å a=	= 90°.
	b = 10.1952(7) Å b=	= 90°.
	c = 18.4363(13) Å g	= 90°.
Volume	1390.15(17) Å ³	
Z	4	
Density (calculated)	1.330 Mg/m ³	
Absorption coefficient	0.100 mm ⁻¹	
F(000)	592	
Crystal size	0.095 x 0.085 x 0.075 mm ³	
Theta range for data collection	2.283 to 25.000°.	
Index ranges	-8<=h<=8, -12<=k<=12, -2	0<=l<=21
Reflections collected	15831	
Independent reflections	2441 [R(int) = 0.0365]	
Completeness to theta = 25.000°	99.9 %	
Absorption correction	Semi-empirical from equiva	alents
Max. and min. transmission	0.993 and 0.991	
Refinement method	Full-matrix least-squares or	1 F ²
Data / restraints / parameters	2441 / 0 / 182	
Goodness-of-fit on F ²	1.057	
Final R indices [I>2sigma(I)]	R1 = 0.0373, wR2 = 0.0991	l

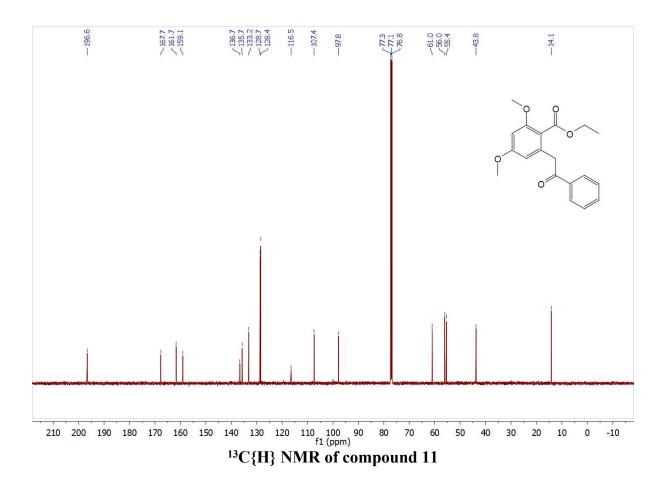
R indices (all data)	R1 = 0.0472, wR2 = 0.1061
Absolute structure parameter	0.2(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.229 and -0.136 e.Å ⁻³
	l equivalent isotropic displacement parameters
$(Å^2 x \ 10^3)$	

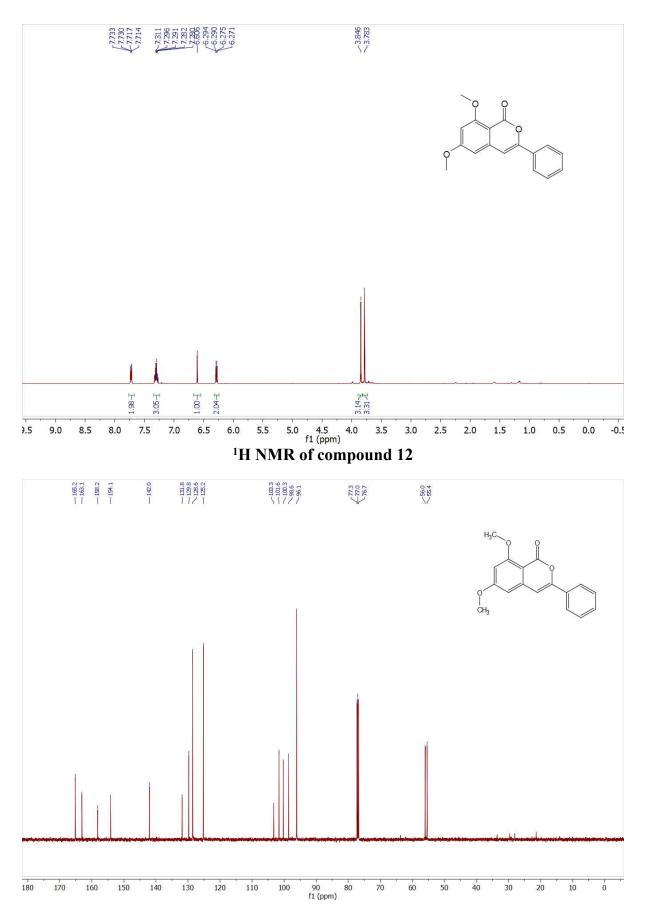

for lunatinin. U(eq) is defined as one third of the trace of the orthogonalized U ¹ tensor	•
---	---

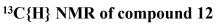

	Х	У	Z	U(eq)	
C(1)	4244(4)	5416(3)	5167(2)	41(1)	
C(2)	4749(4)	4617(3)	4601(2)	39(1)	
C(3)	3500(4)	3764(3)	4261(2)	35(1)	
C(4)	1720(4)	3726(3)	4520(1)	34(1)	
C(5)	1218(4)	4502(3)	5107(2)	39(1)	
C(6)	2461(4)	5323(3)	5424(2)	41(1)	
C(7)	4001(4)	2950(3)	3645(2)	42(1)	
C(8)	889(4)	2198(3)	3585(2)	40(1)	
C(9)	423(4)	2909(3)	4156(2)	38(1)	
C(10)	412(5)	5966(4)	6362(2)	66(1)	
C(11)	5562(5)	6335(4)	5518(2)	62(1)	
C(12)	6980(5)	5460(4)	3814(2)	65(1)	
C(13)	-285(4)	1378(3)	3123(2)	45(1)	
C(14)	-681(4)	1965(3)	2383(2)	43(1)	
C(15)	-1868(5)	1061(3)	1946(2)	59(1)	
O(1)	2107(3)	6094(2)	6012(1)	53(1)	
O(2)	6536(3)	4610(2)	4399(1)	51(1)	
O(3)	5460(3)	2834(3)	3366(1)	68(1)	
O(4)	2655(3)	2205(2)	3338(1)	47(1)	
O(5)	-1458(3)	3236(2)	2444(1)	54(1)	

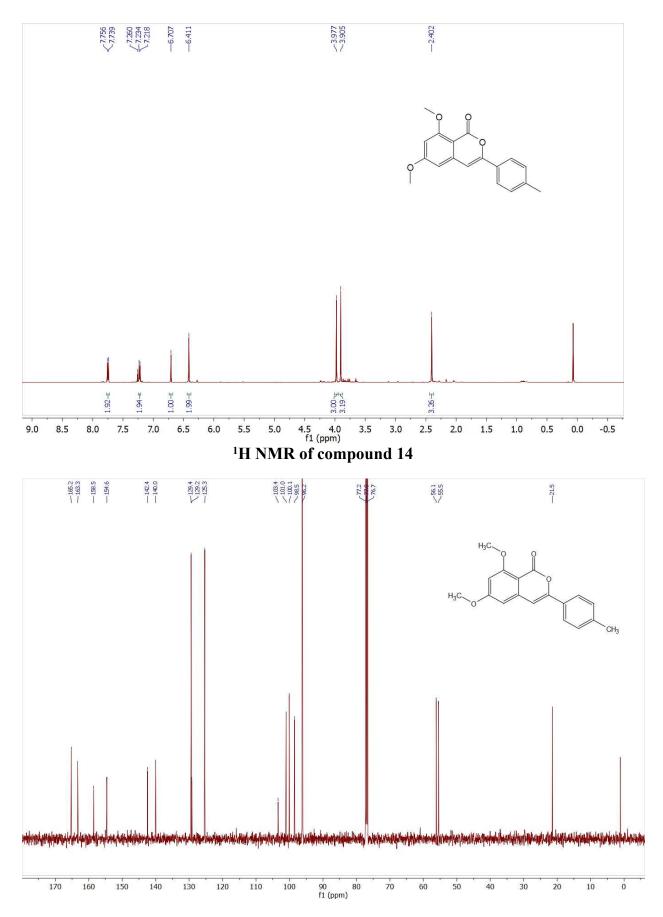

References:

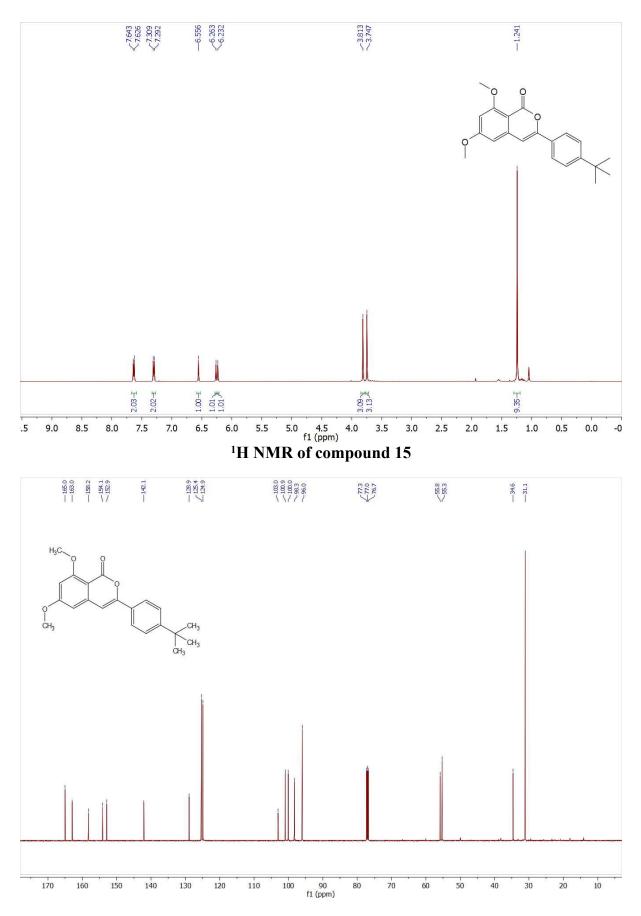

- Ranganayukulu, S.; Shyam, A.; Goreti, R. Asian J. Org. Chem. 2022, 11, e202100668.
- Assignee: Resverlogix Corp. World Intellectual Property Organization, WO2008092231 A1 2008-08-07.
- 3. Gadakh, S.K.; Sudalai, A. RSC Advances 2014, 4(101), 57658-57661.
- 4. Senthilmurugan, A.; Aidhen, I. S. European Journal Org. Chem. 2010, 3, 555-564.
- 5. Assignee: Guizhou College of Traditional Chinese Medicine China, CN116640062 A 2023-08-25.
- Hauser, F.M.; Rhee, R.P.; Prasanna, S.; Weinreb, S. M.; Dodd, J. H. Synthesis, 1980, 72.
- 7. Lewis, C. N.; Spargo, P. L.; Staunton, J. Synthesis. 1986, 944.
- Finnie, Alistair A.; Hill, Robert A. Journal of Chemical Research, Synopses 1987, 3, 78.
- 9. Saeed, A. J. Asian Nat. Prod. Res. 2006, 8, 417-423.
- Ichihara, A.; Hashimoto, M.; Hirai, T.; Takeda, I.; Sasamura, Y.; Sakamura, S.; Sato, R.; Tajimi, A. *Chemistry Letters* 1989, *8*, 1495-8.
- 11. Nozawa, K.; Yamada, M.; Tsuda, Y.; Kawai, K.; Nakajima, S. *Chem. Pharm. Bull.*, **1981**, *29*, 2491-2495.
- 12. Saeed, A. J. Asian Nat. Prod. Res. 2010, 12, 88-93.
- Promsuk, G.; Chuawong, P.; Songjanthuek, P.; Thaisri, S.; Yongsmith, B.; Wattana-Amorn, P. Nat. Prod. Research 2023, 37(13), 2181-2188.

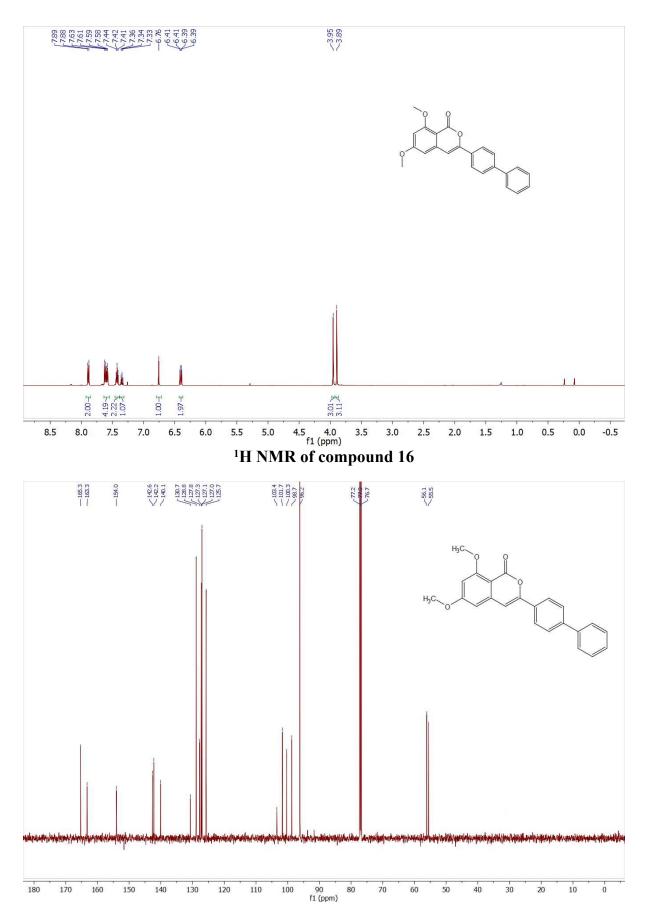

Spectral Data:

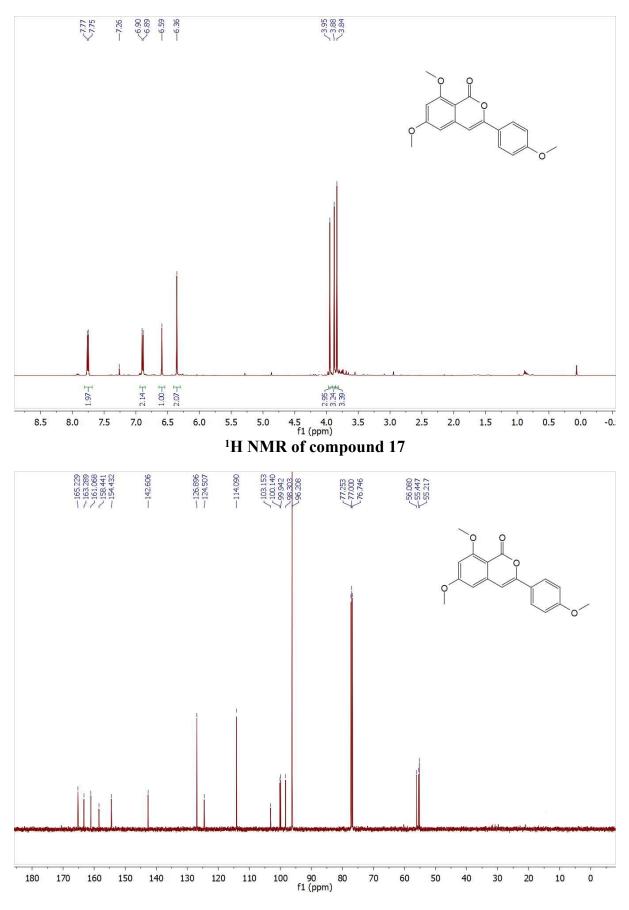


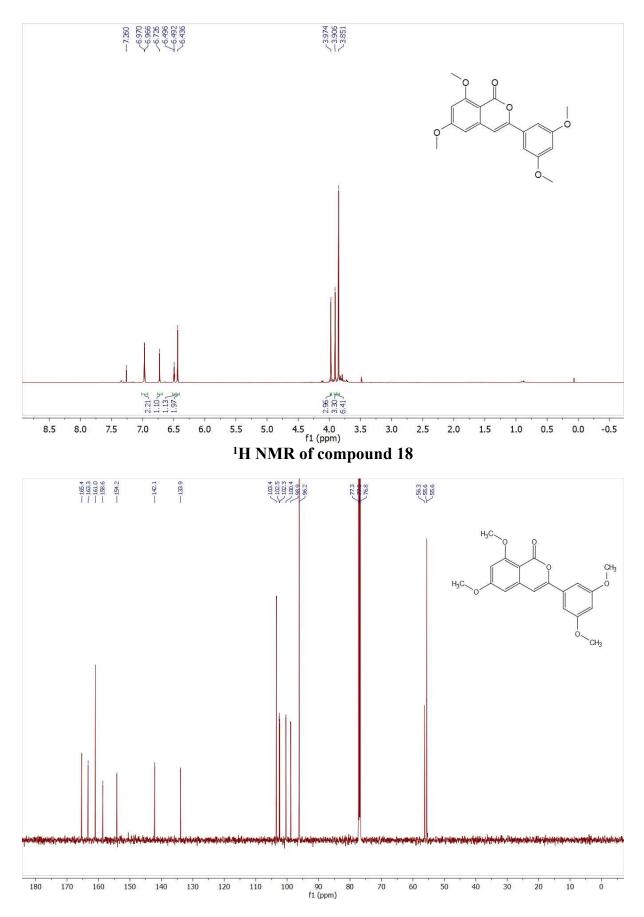


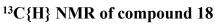


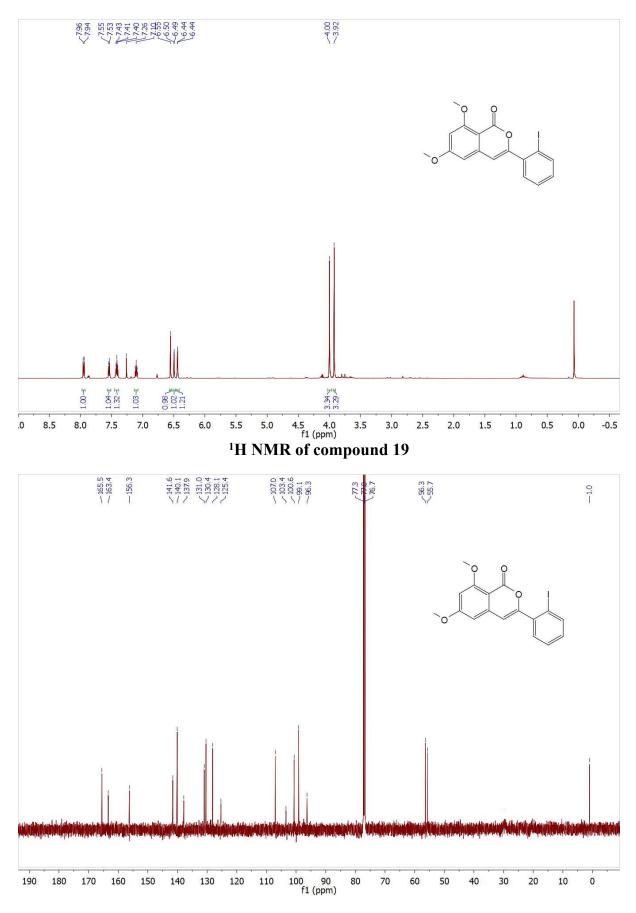


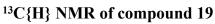


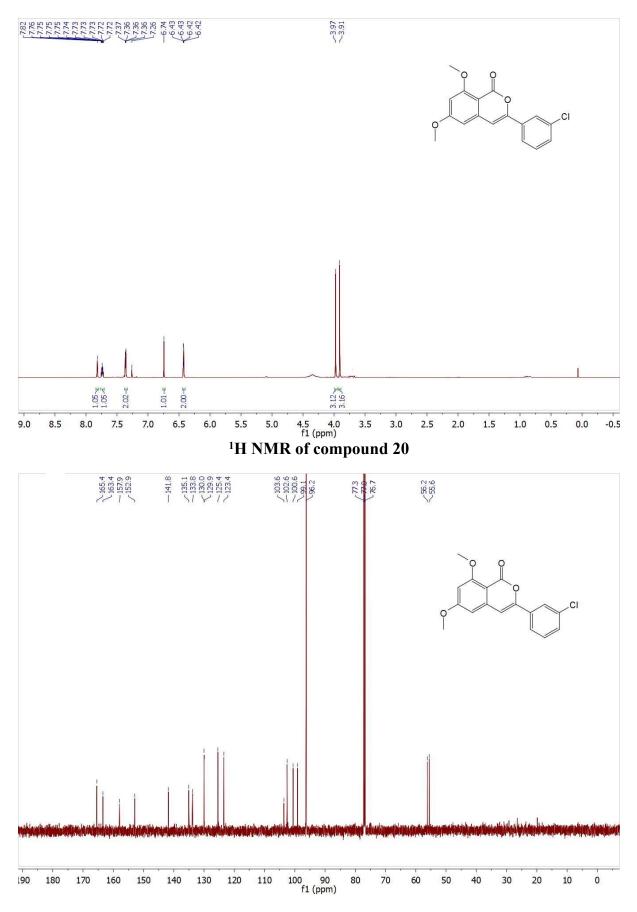

¹³C{H} NMR of compound 14

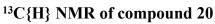

¹³C{H} NMR of compound 15

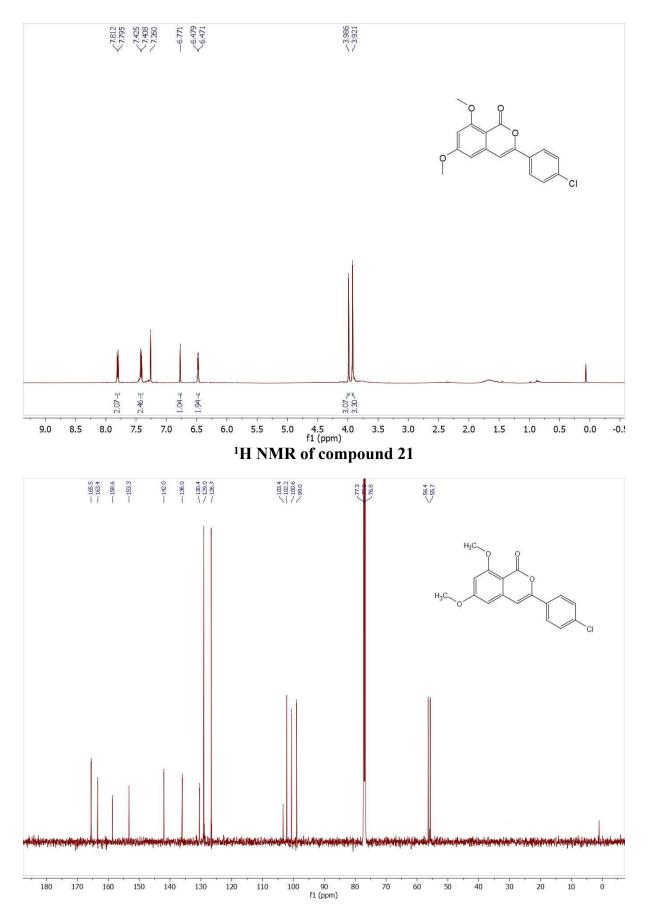


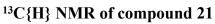

¹³C{H} NMR of compound 16

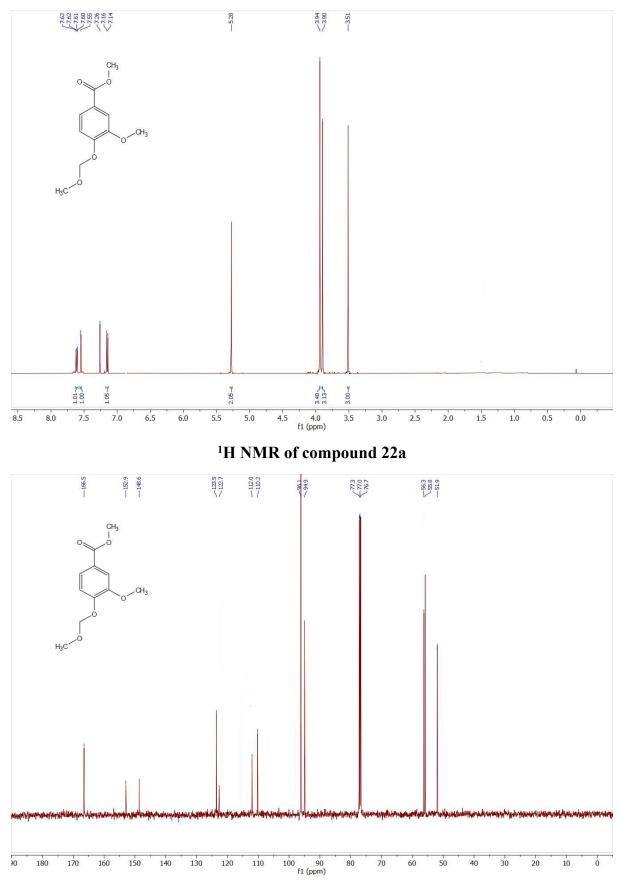


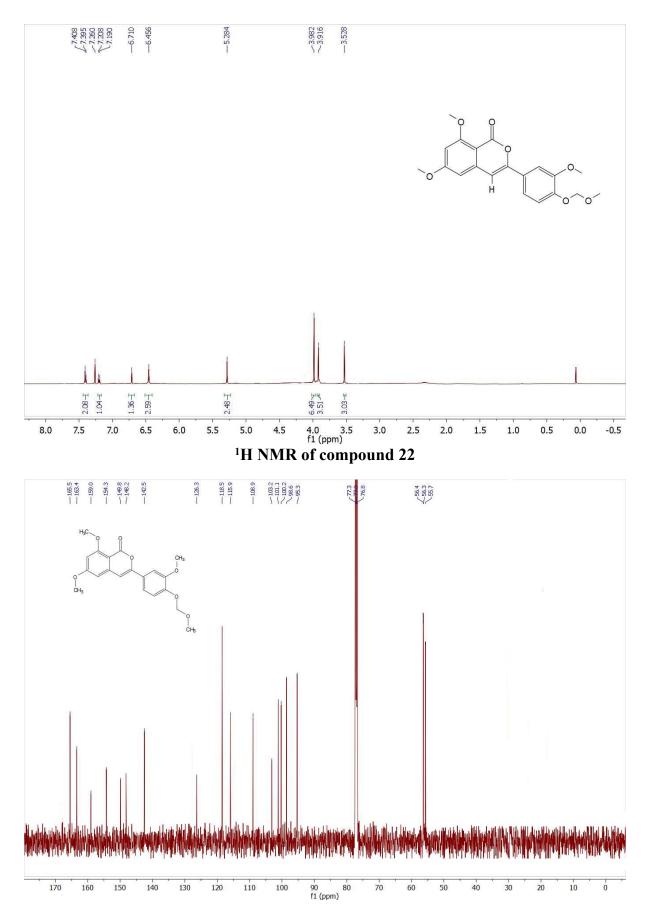

¹³C{H} NMR of compound 17

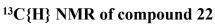


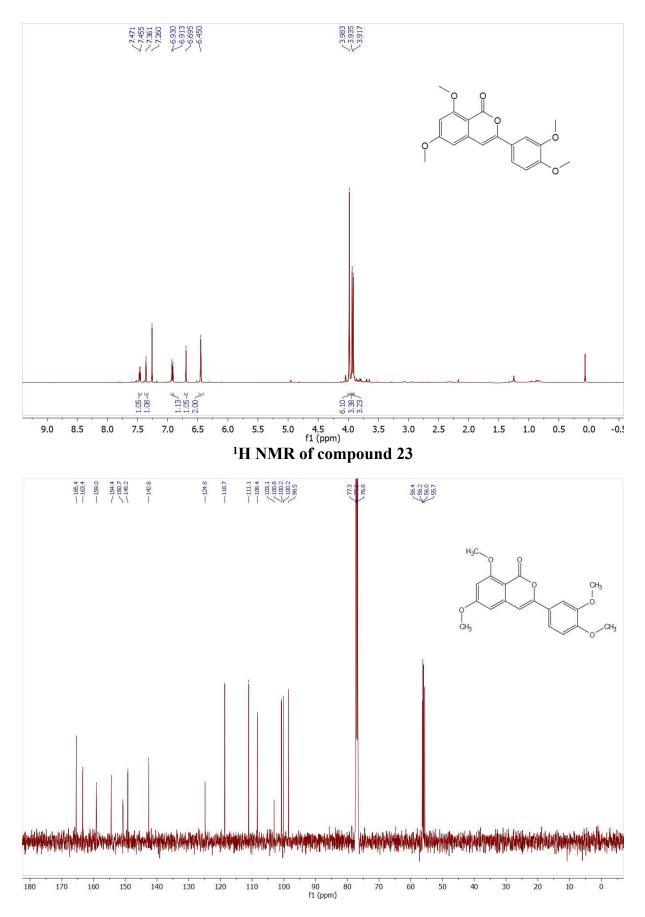


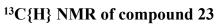


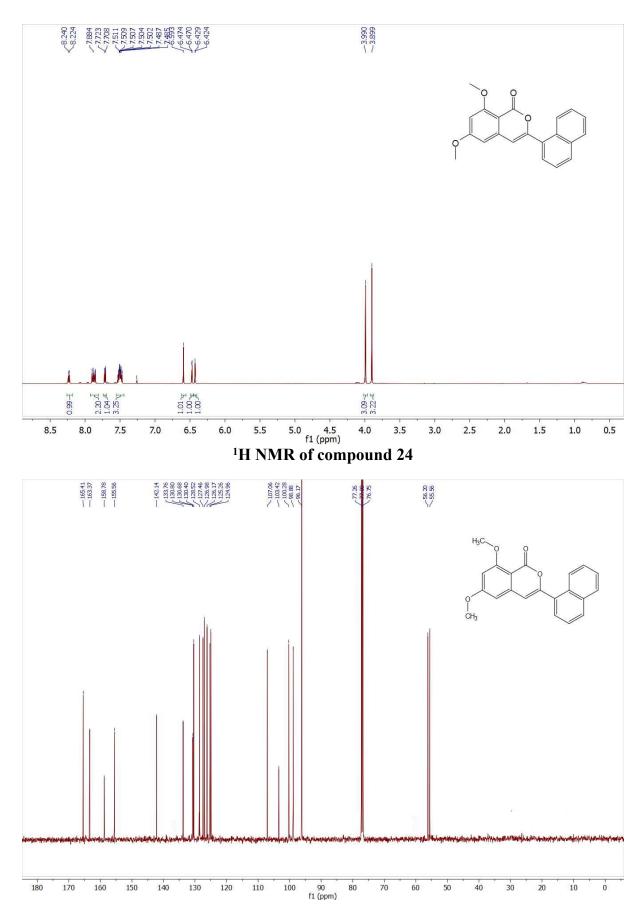


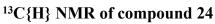


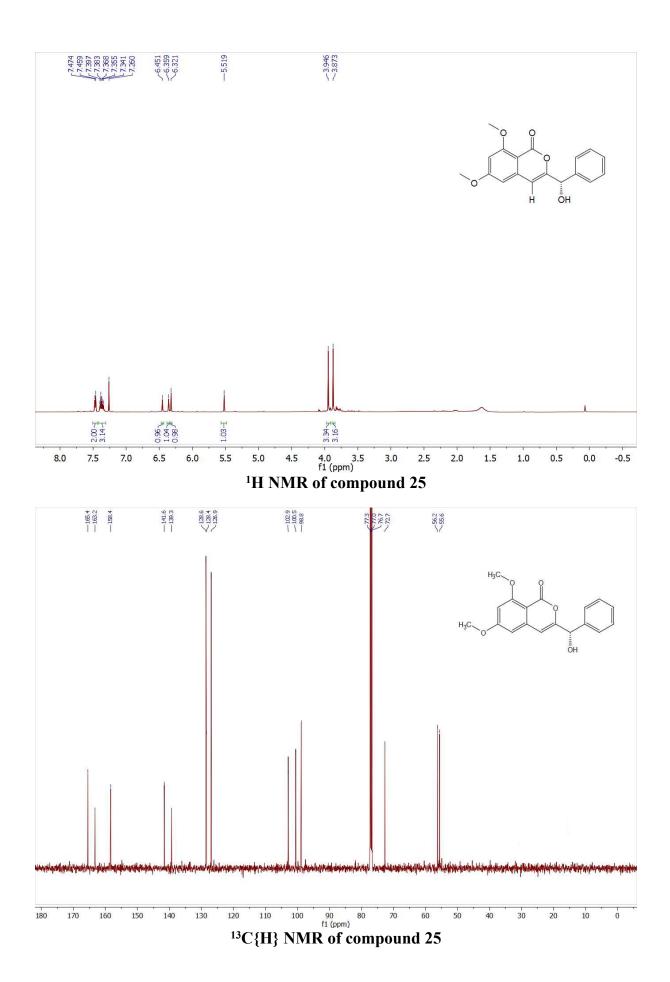


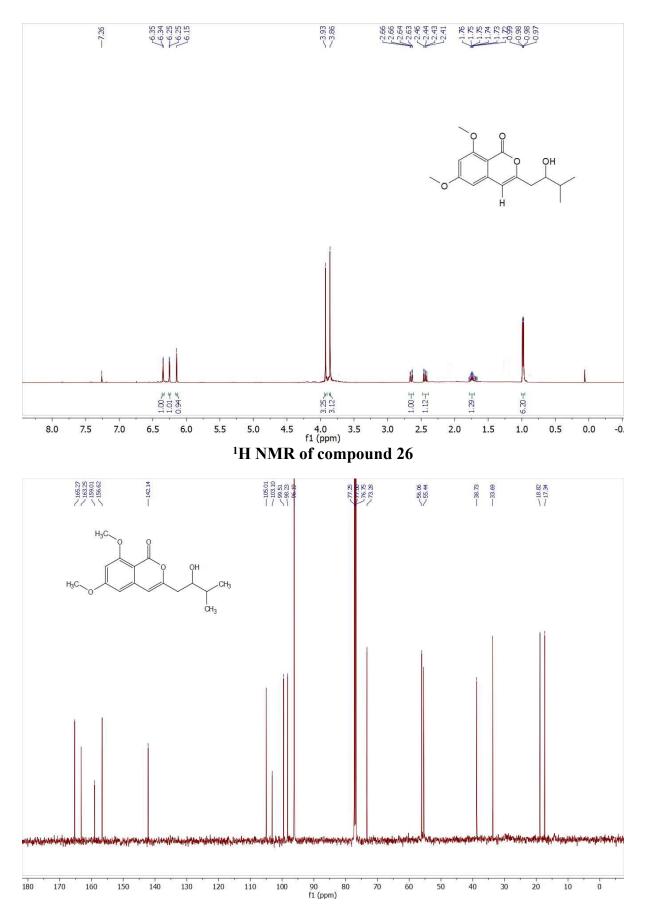


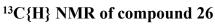


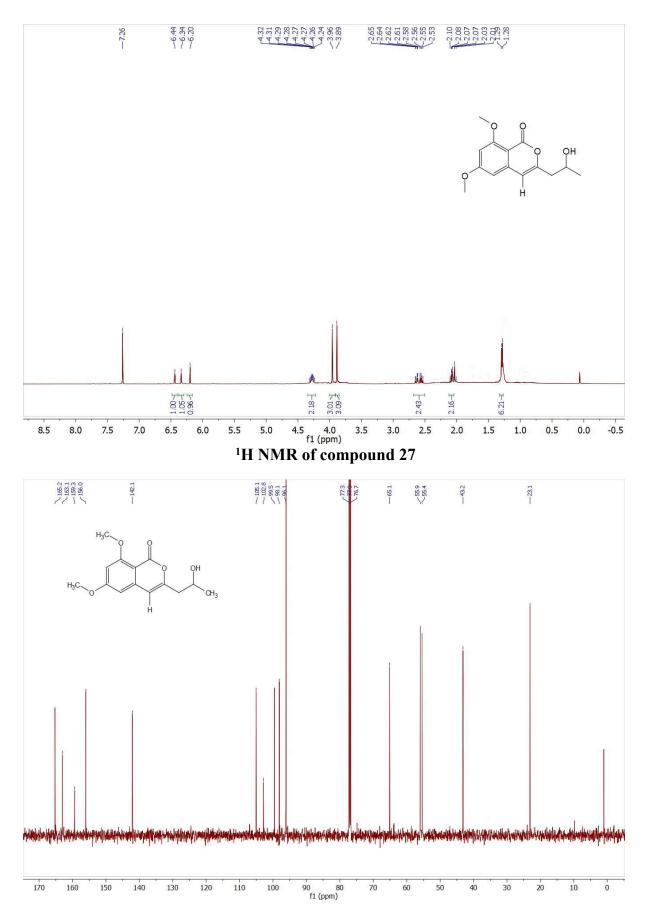

¹³C{H} NMR of compound 22a

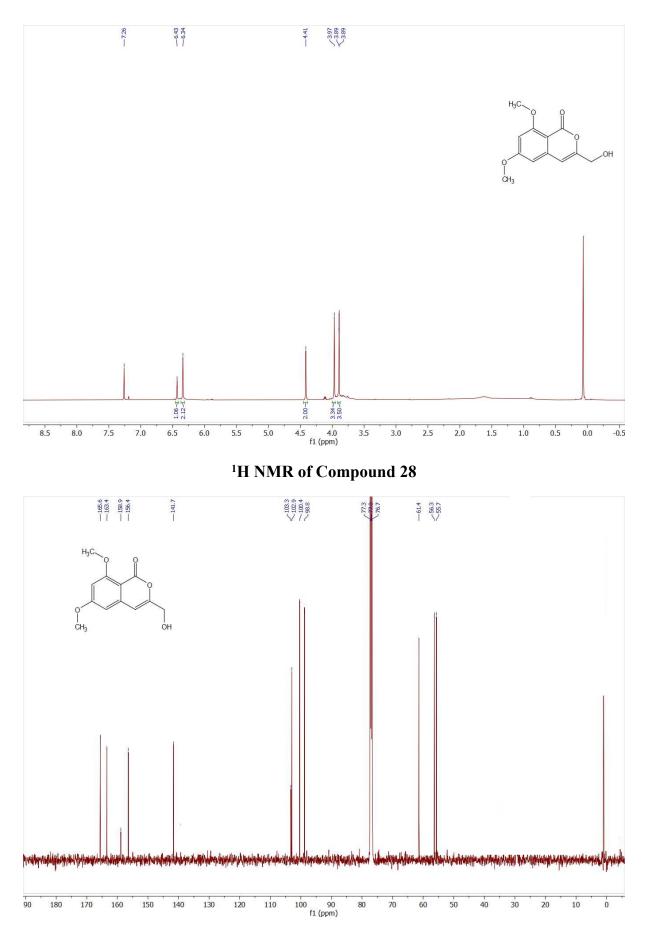


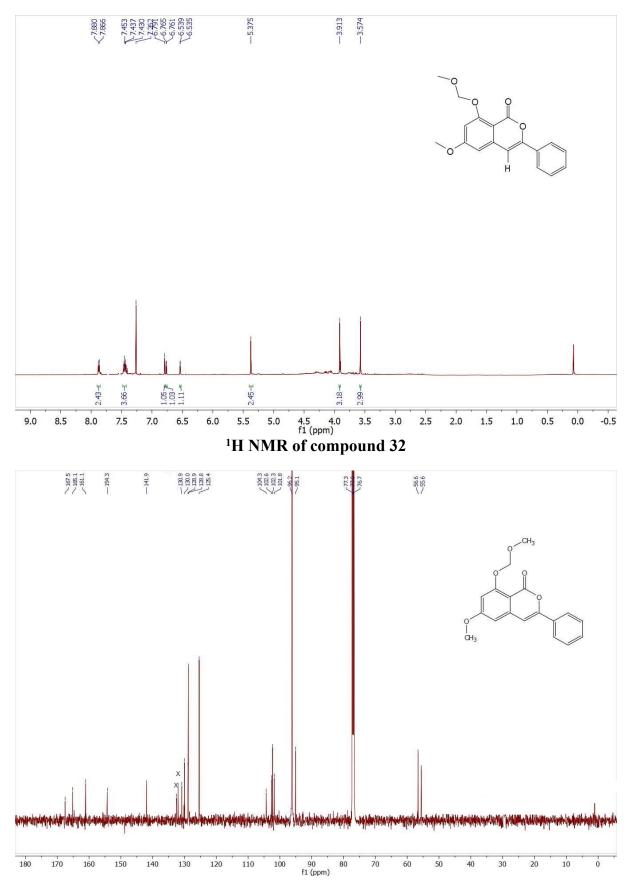


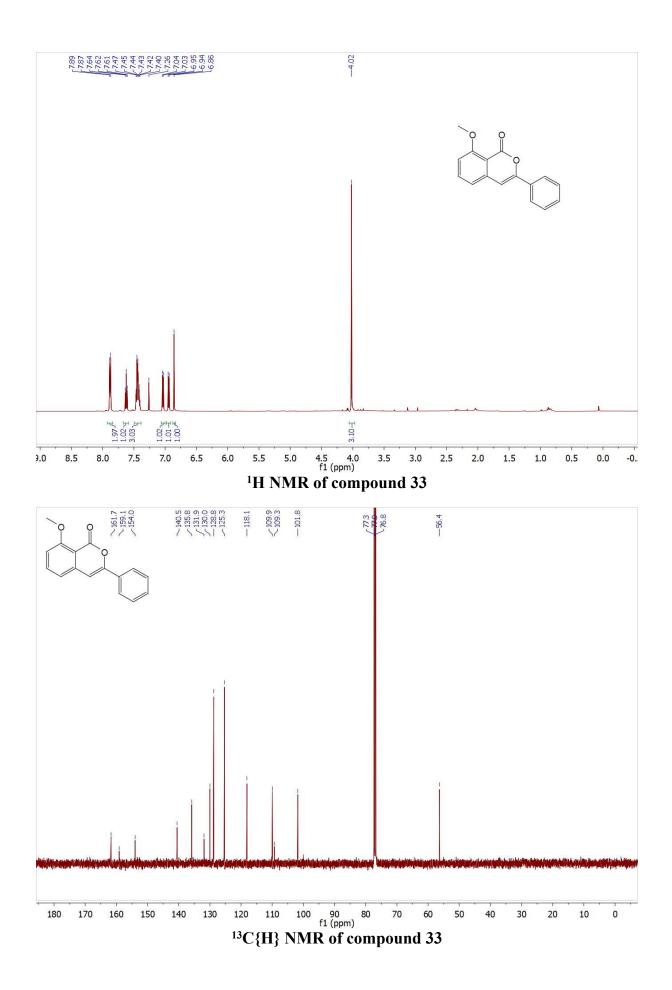


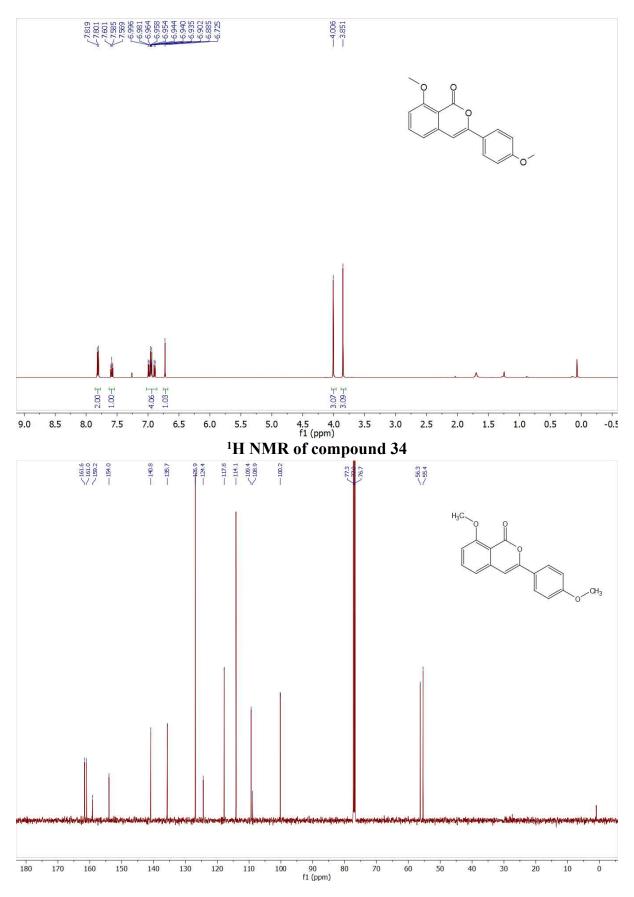




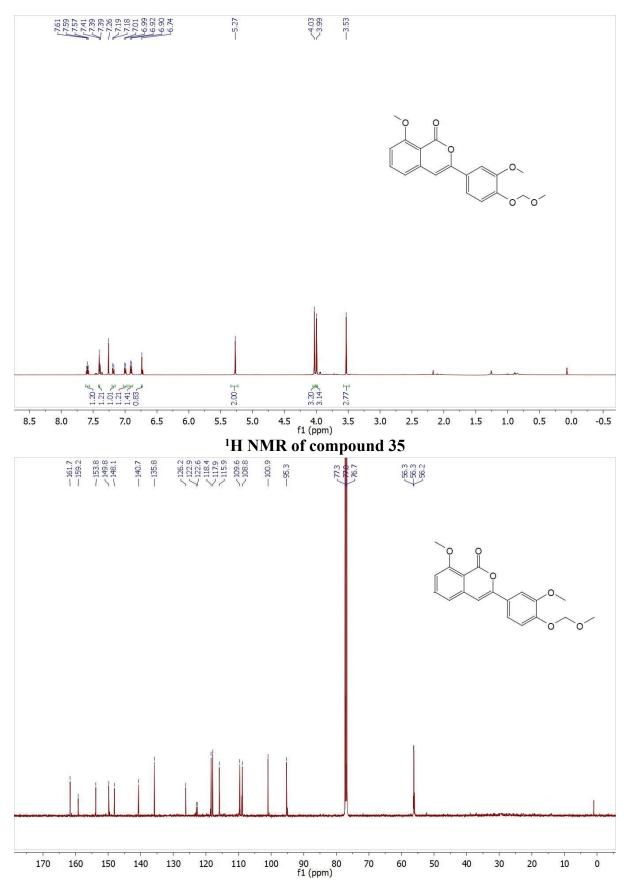

S41

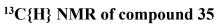


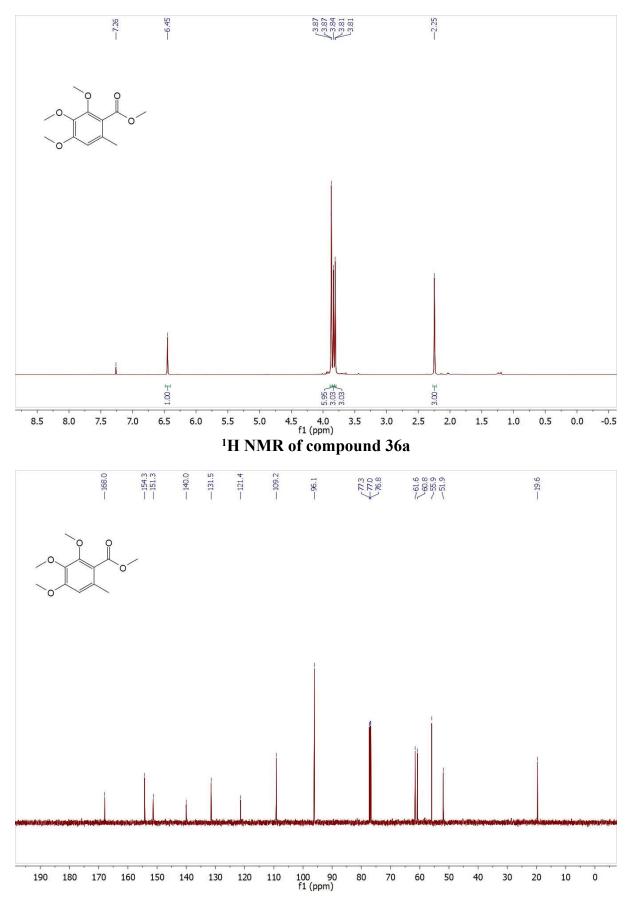

¹³C{H} NMR of compound 27

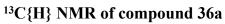


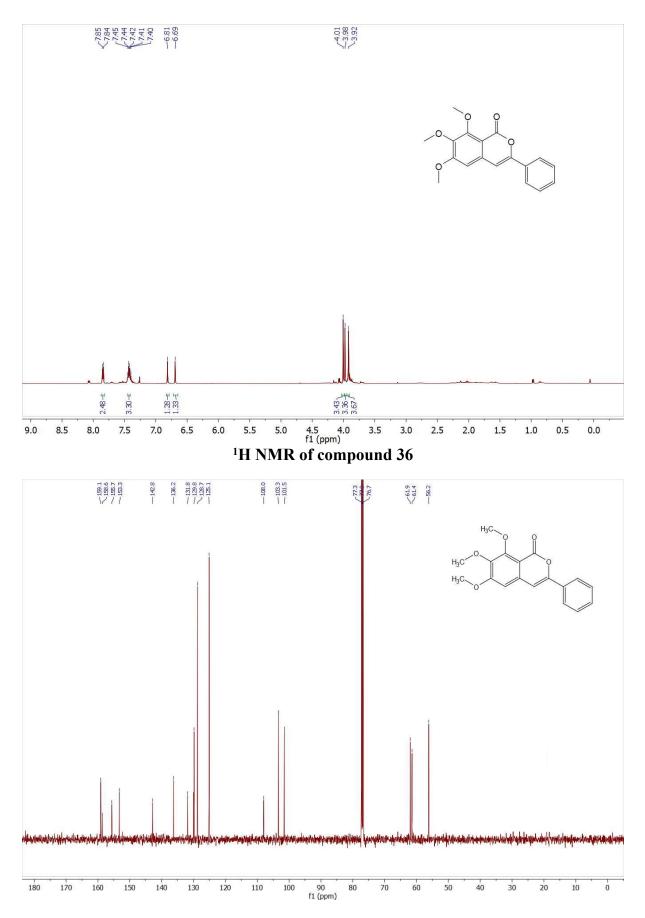
¹³C{H} NMR of Compound 28

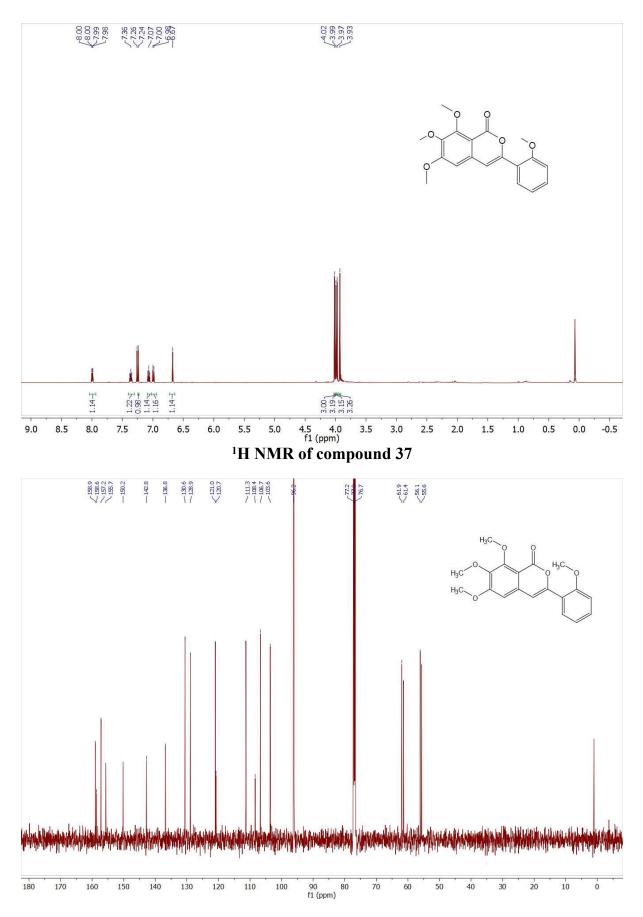


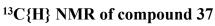

¹³C{H} NMR of compound 32.

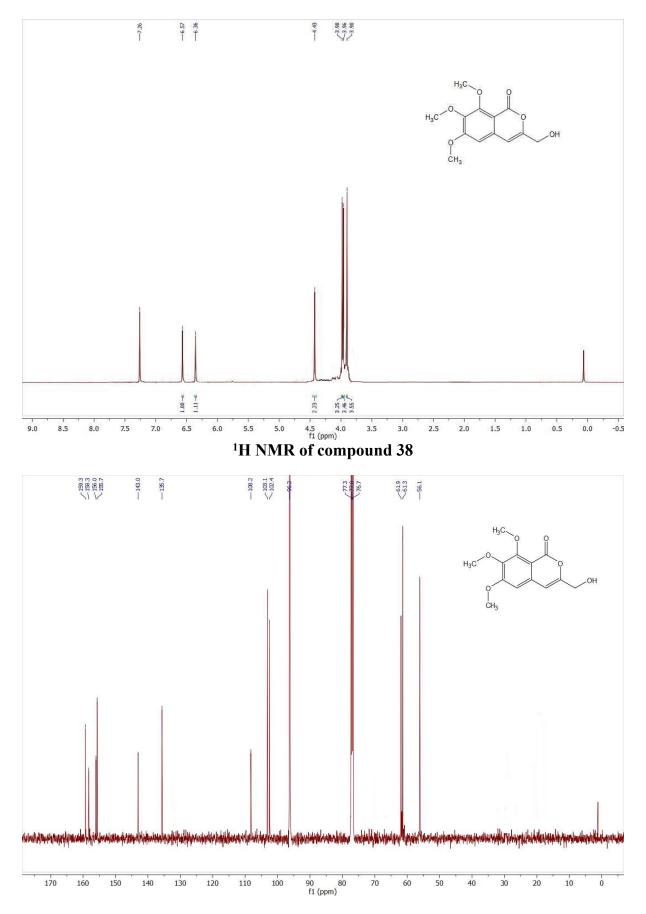


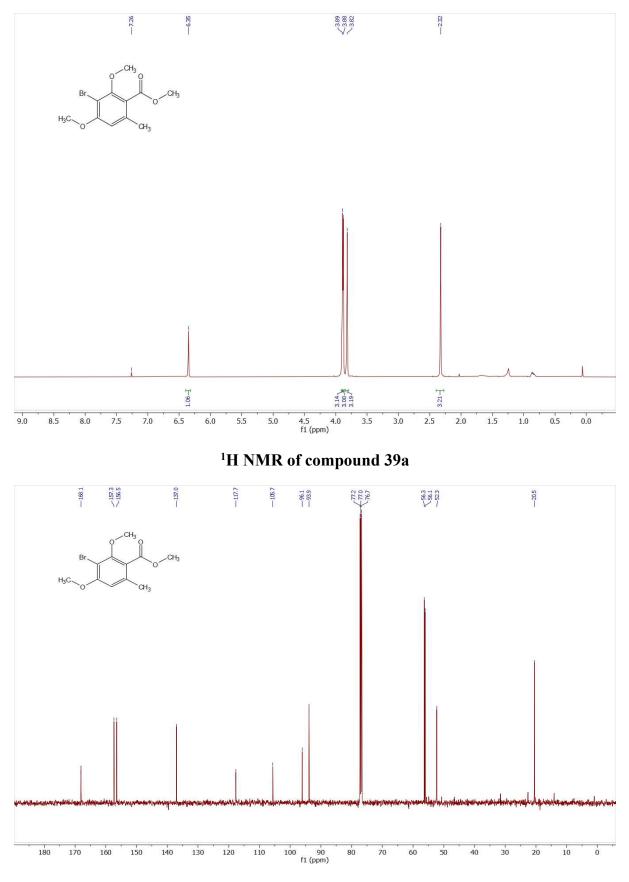


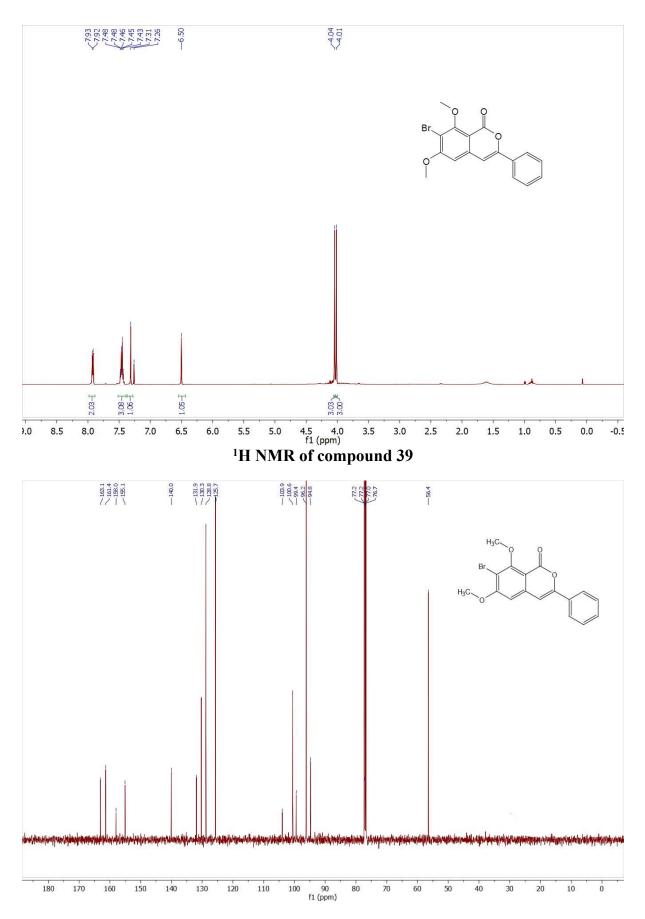


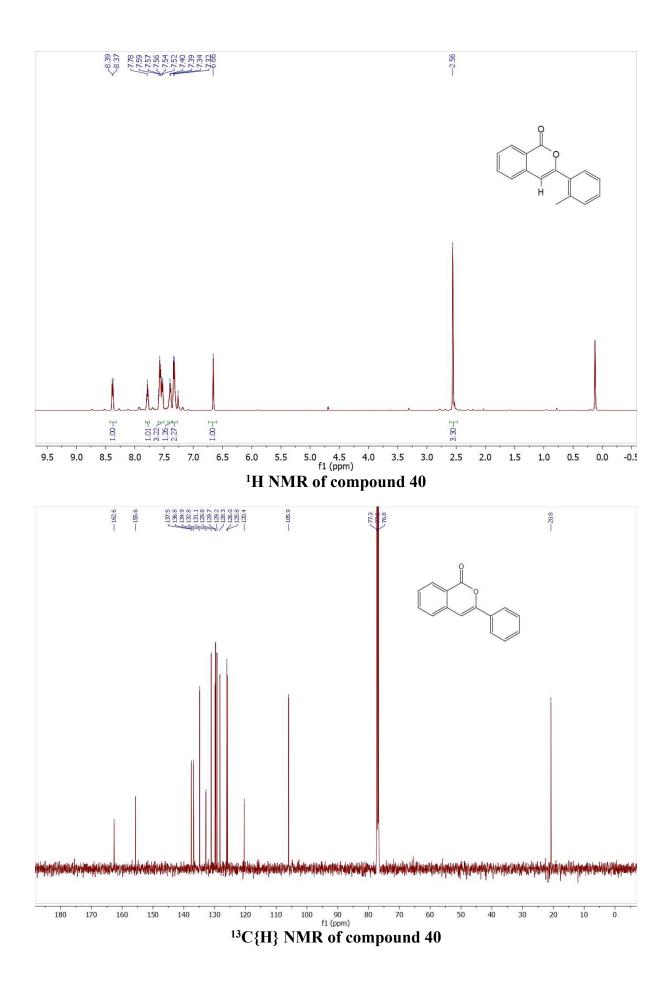


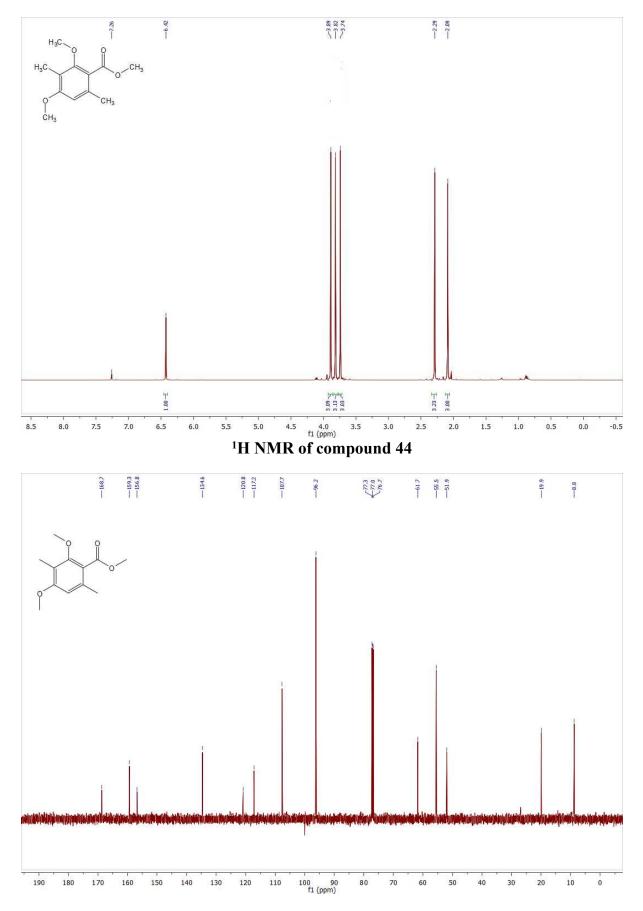


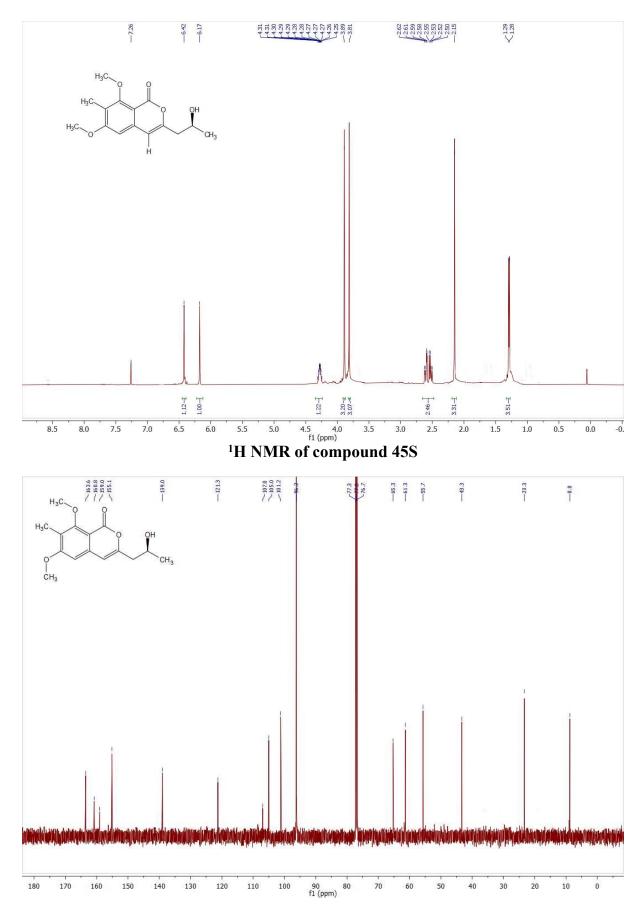


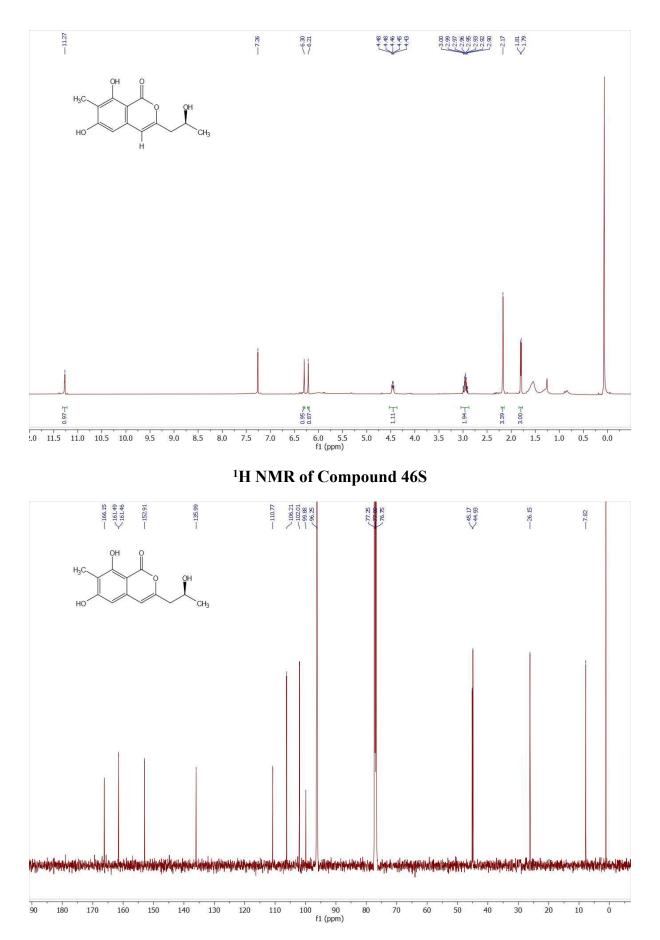

¹³C{H} NMR of compound 36




¹³C{H} NMR of compound 38


¹³C{H} NMR of compound 39a


¹³C{H} NMR of compound 39


S55

¹³C{H} NMR of compound 44

¹³C{H} NMR of compound 45S

¹³C{H} NMR of Compound 46S