Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Understanding the different oxidative pathways of cyclohexene through modulating reactive oxygen species generated from *tert*butyl hydroperoxide (TBHP) by various metal salts

Lu-Jian Zhou^a, Xiao-Hui Liu^{a*}, Han-Wen Zhang^a, Can Xue^a, Han-Kang Zhong^a, Xian-Tai Zhou^{a,b*}

^a School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

^b Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, P.R. China

1. Experimetnal section

1.1 General Considerations

Solvents were dried according to the literature procedures and redistilled under an argon atmosphere before use. All air- and moisture-sensitive operations were carried out using standard high vacuum line, Schlenk techniques or in an inert atmosphere glovebox containing an atmosphere of nitrogen.

1.2 Materials

All reagents were purchased from Energy Chemical and Aldrich. Isotopic oxygen ($^{18}O_2$) was purchased from Taiyo Nippon Sanso. The cyclohexene- D_{10} were purchased from C/D/N ISOTopes.

1.3 Instrumentations

GC analyses were performed on a Shimadzu GC-2010 plus equipped with the capillary column (Rtx-5, $30 \text{ m} \times 0.32 \text{ mm} \times 0.25 \text{ }\mu\text{m}$) and the FID detector. The products were identified by comparison of their GC retention times with commercial samples. The CSI-MS spectrometer were obtained on Bruker's timsTOF, and the cold jet is Bruker's CryoSpray. Mass spectra were obtained on a Shimadzu GCMS-2010A. The EPR (Electron Paramagnetic Resonance) spectroscopy measurements were performed on a JESFA-200 (JEOL, Japan) spectrometer using PBN/DMPO as a free-radical spin-trapping agent. EPR analyses were performed at a microwave frequency of 9.20-9.45 GHz at 298K. Instrument conditions for all analyses were as follows: microwave frequency, 9.20-9.45 GHz; modulation amplitude, 0.1 mT; modulation frequency, 100 kHz; power, 2.0 mW; and time constant, 0.03 s.

1.4 Catalytic oxidation of cyclohexene

A 25 mL Schlenck tube was charged with cyclohexene (1.6 mmol), catalyst (4% mol), TBHP (5 equiv.

to substrate), solvent (acetonitrile, 5 mL) through the reaction solution for 4 h at 30 °C. The formation of products was monitored by GC (Shimadzu GC-2010 plus) or GC-MS (Shimadzu GCMS-QP2010).

1.5 Free radical capture experiments

The reaction solution and DMPO or PBN (free-radical spin-trapping agent: DMPO, 5,5-Dimethyl-1-pyrroline N-Oxide; PBN, N-tert-butyl-2-phenylnitrone) are mixed and added to the Wilmad WG-810-A quartz-flat cell. The cell was sealed after filling with the different experimental atmospheres required. EPR analyses were performed under a microwave frequency of 9.26 GHz at 298 K.

2. Results

Fig. S1. Other products of cyclohexene oxidation

Fig. S2. Time-dependent conversion and product distribution for cyclohexene oxidation in CuCl₂(a) and VCl₃(b) system (cyclohexene 1.6 mmol, TBHP 5.0 equiv, 30.0 °C, 4 mol % catalyst, solvent acetonitrile 5 mL).

Fig. S3. (a) Effect of reaction time on cyclohexene-H10 epoxidation in the $CuCl_2$ system. (b) Effect of reaction time on cyclohexene-D10 epoxidation in the $CuCl_2$ system. (c) Effect of reaction time on cyclohexene-H10 epoxidation in the VCl_3 system. (d) Effect of reaction time on cyclohexene-D10 epoxidation in the VCl_3 system.

Fig. S4. CuCl₂ catalyzed TBHP before (a) and during reaction pictures (b).

Fig. S5.(a) Gas species produced in CuCl₂ systems. (b) O₂ intensity in CuCl₂ systems

Fig. S6. CSI-MS spectra of $^{18}O_2$ (a) oxygen-labeled cyclohexanone.[$C_6H_8^{18}O$]: m/z = 98.0695(exp.), m/z = 98.0695(cal.); (b) oxygen-labeled 1, 4-cyclohexen-2-one.[$C_6H_6^{18}O_2$]: m/z = 114.0439(exp.), m/z = 114.0453(cal.).

Fig. S7. The consumption of t-BuOO• radicals in CuCl₂ and VCl₃ system

Fig. S8. TBHP consumption rate curves catalyzed by various catalysts

Fig. S9. Experimental (black) and simulated (red) X-band EPR spectra of *t*-BuO• (a) and •OH in the oxidation of cyclohexene (DMPO as a free-radical spin trapping agent).

Fig. S10. CSI-MS spectra of DMPO spin adducts of (a) \bullet O₂C₄H₉ radical. m/z = 202.1438(exp.), m/z = 202.1443(cal.), (b) \bullet OC₄H₉ radical. m/z = 186.1487(exp.), m/z = 186.1494(cal.), (c) \bullet OH radical. m/z = 130.0864(exp.), m/z = 130.0868(cal.), (d) \bullet C₆H₉ radical. m/z = 194.1535(exp.), m/z = 194.1545(cal.), (e) \bullet OC₆H₇ radical. m/z = 208.1303(exp.), m/z = 208.1338(cal.), (f) \bullet O₂C₆H₉ radical. m/z = 226.1430(exp.), m/z = 226.1443(cal.), (g) \bullet O₂C₁₀H₁₉ radical. m/z = 284.2223(exp.), m/z = 284.2226(cal.), (h) \bullet OC₆H₁₂ radical. m/z = 212.1640(exp.), m/z = 212.1651(cal.) in CuCl₂ catalytic system.

And (i) \bullet O₂C₄H₉ radical. m/z = 202.1445(exp.), m/z = 202.1443(cal.), (j) \bullet OC₄H₉ radical. m/z = 186.1489(exp.), m/z = 186.1494(cal.), (k) \bullet OH radical. m/z = 130.0865(exp.), m/z = 130.0868(cal.), (l) \bullet C₆H₉ radical. m/z = 194.1539(exp.), m/z = 194.1545(cal.), (m) \bullet OC₆H₇ radical. m/z = 208.1302(exp.), m/z = 208.1338(cal.), (n) \bullet O₂C₁₀H₁₉ radical. m/z = 284.2223(exp.), m/z = 284.2226(cal.), (o) \bullet OC₆H₁₂ radical.

m/z = 228.1600(exp.), m/z = 228.1600(cal.) in VCl₃ catalytic system.

Table S1. Catalytic performance of metal salts for cyclohexene selective oxidation ^a

Entry	Catalant	Conv. (0/)	Select. of products (%)				
Entry	Catalyst	Catalyst Conv. (%)		Path B	Others		
1	None	9	33	48	19		
2	$CuCl_2$	93	73	13	14		
3	VCl ₃	90	30	58	12		
4	$RuCl_2$	30	32	47	21		
5	$CrCl_2$	29	36	42	22		
6	$CoCl_2$	25	28	48	24		
7	PbCl ₂	10	32	57	11		
8	TiCl ₃	12	32	43	25		

^a Cyclohexene 1.6 mmol, TBHP 5.0 equiv, 30.0 °C, 4.0 h, 4 mol % catalyst, MeCN as solvent (5 mL).

Table S2. Effect of catalyst on cyclohexene oxidation ^a

Enter	Catalreat	Conv. (%)	Select. (%)						
Entry	Catalyst		1-one	dione	1-ol	epox	diol	Others	
1	None	9	19	8	6	5	43	19	
2	VCl ₃	90	16	11	3	51	7	12	
2	$CuCl_2$	93	43	24	6	7	6	14	
3	$RuCl_2$	30	20	9	3	7	40	21	
4	$CrCl_2$	29	22	8	6	5	37	22	
5	$CoCl_2$	25	15	7	6	5	43	24	
6	$ZnCl_2$	7	21	8	4	6	45	16	
7	$PbCl_2$	10	18	10	4	6	51	11	
8	TiCl ₃	12	15	12	5	4	39	25	
9	$MnCl_2$	8	17	10	5	7	38	23	
11	$CdCl_2$	8	18	9	4	6	50	13	

^a Cyclohexene 1.6 mmol, TBHP 5.0 equiv, 30.0 °C, 4.0 h, 4 mol % catalyst, MeCN as solvent (5 mL).

Table S3. Effect of solvent type on cyclohexene oxidation ^a

Entry Catalyst		C - 14	Conversion		selectivity (%)						
Entry	Catalyst	Solvent	(%)	1-one	dione	1-ol	epox	diol	Others		
1	CuCl ₂	DCM	40	39	11	5	11	8	19		
2	CuCl ₂	DCE	53	40	22	6	7	6	59		
3	$CuCl_2$	EA	95	18	10	5	4	4	7		
4	CuCl ₂	THF	10	51	24	3	7	8	14		
5	$CuCl_2$	ACN	93	43	24	6	7	6	19		
6	VCl_3	DCM	25	15	7	6	5	43	24		
7	VCl_3	DCE	30	21	8	4	6	45	16		
8	VCl_3	EA	92	18	10	4	6	51	11		
9	VCl_3	THF	8	15	12	5	4	39	25		
10	VCl ₃	ACN	90	16	11	3	51	7	12		

^a Cyclohexene 1.6 mmol, TBHP 5.0 equiv, 30.0 °C, 4.0 h, 4 mol % catalyst, solvent (5 mL).

Table S4. Effect of temperature type on cyclohexene oxidation ^a

Entry	Catalyst	T (9C)	Conv. (9/)		(%)				
	Catalyst	T (°C)	Conv. (%)	1-one	dione	1-ol	epox	diol	Others
1	CuCl ₂	30	93	43	24	6	7	6	19
2	CuCl ₂	40	92	40	21	5	9	5	14
3	CuCl ₂	50	94	38	19	6	7	6	20
4	CuCl ₂	60	93	38	19	5	4	5	24
6	VCl ₃	30	90	16	11	3	51	7	12
7	VCl_3	40	91	17	10	4	50	8	11
8	VCl ₃	50	92	18	13	2	49	6	12
10	VCl ₃	60	90	16	14	3	47	7	13

^aCyclohexene 1.6 mmol, TBHP 5.0 equiv, 4.0 h, 4 mol % catalyst, MeCN as solvent (5 mL).

Table S5. Oxidation of cis-stilbene by VCl₃ and CuCl₂ ^a

Products/mmol Ratio of cis-Entry Catalysts Conv./% cis-stilbene oxide trans-stilbene oxide /trans-oxide 1 12 0.182 0.009 95/5 2 VCl_3 70 0.123 0.997 11/89 $CuCl_2$ 3 23 0.096 0.272 26/74

cis-stilbene oxide

trans-stilbene oxide

cis-stilbene

Table S6. Control experiments with various oxidants ^a

Enters	Substrate	Orridant	Conversion			Selectivity (%)				
Entry Substrate	Oxidant	(%)	1-one	dione	1-ol	epox	diol	Others		
1	^	ТВНР	0	-	-	-	-	-	-	
2	0	DTBP	0	-	-	-	-	-	-	
3		H_2O_2	0	-	-	-	-	-	-	
4		ТВНР	93	43	24	6	7	6	14	
5		DTBP	10	-	-	-	-	-	100	
6		H_2O_2	35	38	25	13		14	10	
7	ÓН	TBHP	100	67	10	-	-	-	23	
8		DTBP	0	-	-	-	-	-	-	
9		H_2O_2	68	52	11	-	-	-	37	
10	0	ТВНР	10	-	60	-	-	-	40	
11		DTBP	0	-	-	-	-	-	-	
12		H_2O_2	8	-	76	-	-	-	24	

^a Substrate: 1.6 mmol, oxidant 5.0 equiv, 30.0 °C, 4.0 h, 0.1 MPa, 4 mol % CuCl₂, MeCN (5 mL).

a cis-stilbene 1.6 mmol, TBHP 5.0 equiv, MeCN (5 mL), 4.0 h, 4 mol % catalyst.