Supporting Information

Direct Aminosulfonylation of Electron-rich (hetero)Arenes Utilizing tert-Butyl Chlorosulfonylcarbamate with Diisopropylethylamine

Xiaofei Zhang,^a Jiangtao Tan,^{a, c} Yuanchen Zhong,^a Zhen Zhuang,^{a. c} Qian He,^a Min Jiang,^{b, *} and Chunhao Yang^{a, c, *}

[a] State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China

[b] Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai 200025, China.

[c] School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China

E-mail: jiangm263@163.com for M. Jiang; chyang@simm.ac.cn for C.Yang

Table of Contents

1
1
1
1
2
2
2
4
13
14

1. General methods

Unless otherwise noted, all the reagents were purchased from commercial suppliers including J&K chemical, Accela, Bidepharm, Adamas and used without further purification. The progress of all the reactions was monitored by thin layer chromatography with standard TLC silica gel plates, and the developed plates were visualized under UV light. All the compounds were purified by column chromatography. Chromatography was performed on silica gel (100–200 mesh). Nuclear magnetic resonance spectra were recorded on Brucker Avance III 400/500/600 NMR spectrometer. Chemical shifts were reported in parts per million (ppm, δ). Proton coupling multiplicity are described as (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). Tetramethylsilane (TMS) was used as internal standard (¹H NMR: TMS at 0.00 ppm; CHCl₃ at 7.26 ppm, DMSO at 2.50 ppm; ¹³C NMR: CHCl₃ at 77.16 ppm, DMSO at 39.52 ppm). Low-resolution mass spectra (LRMS) were recorded using an Agilent HPLC-MS (1200-6110). High-resolution mass spectra (HRMS) were recorded on an Agilent 1290-6545 UHPLC-QTOF (ESI) mass spectrometer.

2. Experimental procedures

2.1 General synthetic procedure of *tert*-butyl chlorosulfonylcarbamate (2e)

Add a solution of chlorosulfonyl isocyanate (1.928 g, 13.62 mmol, 1.0 equiv.) in 5.4 mL of toluene dropwise to a solution of anhydrous *tert*-butanol (1.106 g, 14.92 mmol, 1.1 equiv.) in 0.8 mL of anhydrous toluene under argon at 0 °C. Stir the reaction mixture vigorously for 1 hour at 0 °C. Add 14.0 mL of petroleum ether and stir the resulting reaction mixture for an additional 30 minutes at rt. Filter the product, wash with 3 x 10 mL of petroleum ether and dry under vacuum for several minutes to yield 2.3 g *tert*-butyl (chlorosulfonyl)carbamate, white solid, yield = 78%. Store the product under argon at -18°C until use. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 1.57 (s, 9H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 147.63, 87.21, 28.01. The data were consistent with the reference.¹

2.2 General synthetic procedure of aminosulfonylation of electron-rich (hetero)arenes

To an oven dried 8 mL vial with a magnetic stir bar was added 1-methyl-1*H*-indole **1a** (52.5 mg, 0.4 mmol), fresh prepared *tert*-butyl (chlorosulfonyl)carbamate **2e** (172.5 mg, 0.8 mmol) and anhydrous CH₃CN (4.0 mL, 0.1 M). Then, *N*,*N*-diisopropylethylamine (103.4 mg, 0.8 mmol) was added. After that, the vial was capped and stirred under room temperature for 1 hours. The mixture was transfered to a 25 mL round-bottom flask and the solvent was removed under reduced pressure. The residue was purified by flash silica column chromatography eluting with 30-60% ethyl acetate/petroleum ether to afford the desired product **3a**.

2.3 General synthetic procedure for one-pot deprotection of -Boc

After the aminosulfonylation reaction (see section 2.2) was completed, the mixture was transfered to a 25 mL round-bottom flask and the solvent was removed under reduced pressure. Without purification, 10 mL CH₂Cl₂ and 2 mL CF₃COOH were added. The mixture was stirred at room temperature for 2 hours and the solvent was evaporated in vacuo. Then, 15 mL aqueous saturated NaHCO₃ solution was added. The aqueous layer was extracted three times with ethyl acetate (5 mL × 3). The combined organic phase was washed with saturated brine (15 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The the residue was purified by flash silica column chromatography eluting with 2-5% CH₃OH/CH₂Cl₂ to afford the desired product 1-methyl-1*H*-indole-3-sulfonamide. (**3aa**, pink solid, 89% yield). ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.89 – 7.85 (m, 2H), 7.54 (d, *J* = 8.3 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.14 (s, 2H), 3.84 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 136.59, 131.85, 123.32, 122.62, 120.86, 119.66, 117.32, 110.68, 32.82. **LRMS** (ESI) (m/z): 211.1 [M+H]⁺.

2.4 The scale-up reaction

To a 50 mL round-bottom flask with a magnetic stir bar was added Tolmetin (1 g, 3.89 mmol), 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 1.49 g, 7.77 mmol), 4-dimethylaminopyridine (DMAP, 95 mg, 0.78 mmol) and CH₃OH (25 mL). The reaction was heated to reflux for 16 hours and the solvent was removed under reduced pressure. Then, 30 mL of water was added and the aqueous layer was extracted three times with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated brine (15 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by flash silica column chromatography eluting with 20-30% ethyl acetate/petroleum ether to afford the desired white solid product (**6ea**, 1.01 g, 95%).¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.67 (d, *J* = 4.0 Hz, 1H), 6.10 (d, *J* = 4.0 Hz, 1H), 3.94 (s, 3H), 3.75 (s, 3H), 3.72 (s, 2H), 2.42 (s, 3H); LRMS (ESI) (m/z): 272.2 [M+H]⁺

To a 100 mL round-bottom flask with a magnetic stir bar was added **6ea** (1.01 g, 3.72 mmol), fresh prepared *tert*-butyl (chlorosulfonyl)carbamate **2e** (1.61 g, 7.45 mmol) and anhydrous CH₃CN (37 mL, 0.1 M). Then, *N*,*N*-diisopropylethylamine (0.96 g, 7.45 mmol) was added. After that, the vial was capped and stirred under room temperature for 1 hour. The mixture was removed under reduced pressure. Subsequently, 50 mL of 4M aqueous HCl was added to the flask, the solvent was stirred for 4 hours at 90 °C. Then, the aqueous layer was extracted three times with ethyl acetate (25 mL × 3). The combined organic phase was washed with saturated brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The solvent was removed under reduced pressure then the residue was purified by flash silica column chromatography eluting with 2-5% CH₃OH/CH₂Cl₂ to afford the desired white solid product. (**6e**, 1.14 g, 91%). ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 12.76 (br, 1H), 7.66 (d, *J* = 7.7 Hz, 2H), 7.36 (d, *J* = 7.7 Hz, 2H), 7.18 (s, 2H), 6.81 (s, 1H), 4.12 (s, 2H), 3.84 (s, 3H), 2.41 (s, 3H); ¹³C **NMR** (150 MHz, DMSO-*d*₆) δ 184.87, 169.89, 142.46, 136.02, 135.02, 129.00, 128.97, 128.87, 125.46, 119.96, 33.25, 30.29, 21.10. **HRMS** (ESI) calculated for [C₁₅H₁₇N₂O₅S]⁺ [M+H]⁺: 337.0853, found m/z 337.0853.

2.5 The intermediate trapping experiment

To an oven dried 8 mL vial with a magnetic stir bar was added 4-vinyl-1,1'-biphenyl **7a** (72 mg, 0.4 mmol), fresh prepared *tert*-butyl (chlorosulfonyl)carbamate **2e** (172.5 mg, 0.8 mmol) and anhydrous CH₃CN (4.0 mL, 0.1 M). Then, *N*,*N*-diisopropylethylamine (103.4 mg, 0.8 mmol) was added. After that, the vial was capped and stirred under room temperature for 1 hour. The mixture was tranfered to a 25 mL round-bottom flask and the solvent was removed under reduced pressure. The residue was purified by flash silica column chromatography eluting with 15-30% ethyl acetate/petroleum ether to afford the desired product **8a**.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.65 – 7.61 (m, 2H), 7.60 – 7.53 (m, 4H), 7.47 – 7.43 (m, 2H), 7.39 – 7.35 (m, 1H), 5.03 (dd, *J* = 8.6, 5.2 Hz, 1H), 4.57 (dd, *J* = 12.9, 8.6 Hz, 1H), 4.06 (dd, *J* = 12.9, 5.2 Hz, 1H), 1.49 (s, 9H). **LRMS** (ESI) (m/z): 382.2 [M+Na]⁺, 741.2 [2M+Na]⁺

¹H NMR spectrum of 8a

LRMS data of 8a

3. Characterization data of products

tert-butyl ((1-methyl-1*H*-indol-3-yl)sulfonyl)carbamate (3a)

O^{HN−Boc} S^SO

General procedure was followed to obtain **3a** (114 mg, 92%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 9.2 Hz, 1H), 7.87 (s, 1H), 7.69 (br, 1H), 7.43 – 7.27 (m, 3H), 3.85 (s, 3H), 1.36 (s, 9H);

¹³**C** NMR (125 MHz, Chloroform-*d*) δ 149.50, 137.01, 135.93, 124.08, 123.85, 123.74, 122.62, 119.96, 111.56, 110.46, 83.45, 33.84, 28.07, 27.98.

HRMS (ESI) calculated for [C₁₄H₁₈N₂NaO₄S]⁺ [M+Na]⁺: 333.0879, found m/z 333.0878.

tert-butyl ((1*H*-indol-3-yl)sulfonyl)carbamate (**3b**)

O_{≈∽} Ó

General procedure was followed to obtain **3b** (100 mg, 84%) as a light yellow solid.

¹**H NMR** (400 MHz, DMSO- d_6) δ 12.10 (s, 1H), 11.33 (s, 1H), 8.02 (d, J = 3.1 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 7.3 Hz, 1H), 7.30 – 7.18 (m, 2H), 1.24 (s, 9H);

¹³C NMR (125 MHz, DMSO-*d*₆) δ 150.02, 135.92, 132.31, 122.99, 122.96, 121.40, 118.89, 112.74, 112.68, 81.34, 27.57. HRMS (ESI) calculated for $[C_{13}H_{16}N_2NaO_4S]^+$ [M+Na]⁺: 319.0723, found m/z 319.0725.

tert-butyl ((1-phenyl-1*H*-indol-3-yl)sulfonyl)carbamate (**3c**)

General procedure was followed to obtain 3c (142 mg, 95%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 8.07 – 8.03 (m, 1H), 7.62 – 7.54 (m, 2H), 7.52 – 7.45 (m, 4H), 7.39 – 7.29 (m, 2H), 1.37 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 149.54, 137.81, 136.56, 134.78, 130.10, 128.52, 125.01, 124.36, 124.24, 123.19, 120.20, 114.22, 111.61, 83.65, 28.04.

HRMS calculated for [C₁₉H₂₀N₂NaO₄S]⁺ [M+Na]⁺: 395.1036, found m/z 395.1035.

tert-butyl ((1-benzyl-1*H*-indol-3-yl)sulfonyl)carbamate (**3d**)

General procedure was followed to obtain **3d** (125 mg, 81%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 2H), 7.47 (br, 1H), 7.39 – 7.28 (m, 6H), 7.16 (dd, *J* = 7.3, 2.4 Hz, 2H), 5.36 (s, 2H), 1.34 (s, 9H);

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 149.41, 136.51, 135.52, 135.34, 129.22, 128.54, 127.25, 124.31, 123.93, 122.79, 120.11, 112.17, 111.04, 83.54, 51.17, 28.01.

HRMS (ESI) calculated for [C₂₀H₂₂N₂NaO₄S]⁺ [M+Na]⁺: 409.1192, found m/z 409.1194.

tert-butyl 3-(N-(tert-butoxycarbonyl)sulfamoyl)-1H-indole-1-carboxylate (3e)

Вос

General procedure was followed to obtain 3e (84 mg, 53%) as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.33 (s, 1H), 8.25 (d, J = 8.6 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.71 (br, 1H), 7.47 – 7.41 (m, 1H), 7.40 – 7.34 (m, 1H), 1.68 (s, 9H), 1.39 (s, 9H);

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 149.21, 148.47, 135.52, 132.90, 126.12, 124.64, 124.58, 119.98, 118.29, 115.78, 86.13, 84.23, 28.17, 28.01.

HRMS (ESI) calculated for [C18H24N2NaO6S]+ [M+Na]+: 419.1247, found m/z 419.1244.

tert-butyl ((1,5-dimethyl-1*H*-indol-3-yl)sulfonyl)carbamate (**3f**)

HN-Boc \cap

General procedure was followed to obtain **3f** (114 mg, 88%) as a pink solid.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.29 (s, 1H), 8.03 (s, 1H), 7.61 (s, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 8.5 Hz, 1H), 3.85 (s, 3H), 2.43 (s, 3H), 1.26 (s, 9H);

¹³C NMR (150 MHz, DMSO-*d*₆) δ 150.03, 135.58, 135.01, 130.67, 124.52, 123.60, 118.65, 110.92, 110.90, 81.38, 33.14, 27.63, 21.25.

HRMS (ESI) calculated for [C15H20N2NaO4S]+ [M+Na]+: 347.1036, found m/z 347.1036.

tert-butyl ((5-methoxy-1-methyl-1H-indol-3-yl)sulfonyl)carbamate (3g)

General procedure was followed to obtain 3g (102 mg, 75%) as a pink solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 (s, 1H), 7.49 (br, 1H), 7.34 (d, *J* = 2.4 Hz, 1H), 7.24 (s, 1H), 6.96 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 1.35 (s, 9H);

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 156.31, 149.47, 135.84, 132.02, 124.89, 114.36, 111.39, 110.84, 101.28, 83.45, 56.00, 34.02, 28.11.

HRMS (ESI) calculated for [C15H20N2NaO5S]+ [M+Na]+: 363.0985, found m/z 363.0984.

tert-butyl ((5-fluoro-1-methyl-1H-indol-3-yl)sulfonyl)carbamate (3h)

General procedure was followed to obtain **3h** (121 mg, 92%) as a light yellow solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.66 (br, 1H), 7.59 (dd, *J* = 9.2, 2.5 Hz, 1H), 7.31 (dd, *J* = 9.0, 4.1 Hz, 1H), 7.09 (t, *J* = 10.2 Hz, 1H), 3.85 (s, 3H), 1.37 (s, 9H);

¹³**C** NMR (125 MHz, Chloroform-*d*) δ 159.45 (d, J = 239.3 Hz), 149.49 (d, J = 6.8 Hz), 136.98, 133.51, 124.74 (d, J = 11.1 Hz), 112.41 (d, J = 26.1 Hz), 111.59, 111.51, 105.51 (d, J = 25.9 Hz), 83.66, 34.14, 28.07.

HRMS (ESI) calculated for [C14H17FN2NaO4S]⁺ [M+Na]⁺: 351.0785, found m/z 351.0784.

tert-butyl ((5-chloro-1-methyl-1H-indol-3-yl)sulfonyl)carbamate (3i)

General procedure was followed to obtain 3i (131 mg, 95%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 (t, *J* = 1.3 Hz, 1H), 7.87 (s, 1H), 7.48 (br, 1H), 7.33 – 7.29 (m, 2H), 3.85 (s, 3H), 1.38 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 149.37, 136.86, 135.41, 128.79, 125.03, 124.31, 119.60, 111.63, 111.43, 83.76, 34.09, 28.10.

HRMS (ESI) calculated for [C14H17ClN2NaO4S]⁺ [M+Na]⁺: 367.049, found m/z 367.0493.

tert-butyl ((5-bromo-1-methyl-1H-indol-3-yl)sulfonyl)carbamate (3j)

General procedure was followed to obtain **3i** (139 mg, 89%) as a pink solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 1.9 Hz, 1H), 7.85 (s, 1H), 7.48 – 7.41 (m, 2H), 7.28 – 7.23 (m, 1H), 3.85 (s, 3H), 1.38 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 149.34, 136.75, 135.72, 126.91, 125.55, 122.63, 116.36, 112.00, 111.34, 83.78, 34.08, 28.11.

HRMS (ESI) calculated for [C14H17BrN2NaO4S]+ [M+Na]+: 410.9985, found m/z 410.9986.

methyl 3-(*N*-(*tert*-butoxycarbonyl)sulfamoyl)-1-methyl-1*H*-indole-5-carboxylate (**3**k)

Boc-NH

General procedure was followed to obtain 3k (125 mg, 85%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.64 (d, J = 1.7 Hz, 1H), 8.07 (dd, J = 8.7, 1.6 Hz, 1H), 7.94 (s, 1H), 7.58 (br, 1H), 7.42 (d, J = 8.7 Hz, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 1.36 (s, 9H);

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 167.47, 149.32, 139.43, 137.43, 125.14, 124.75, 123.60, 122.51, 113.21, 110.40, 83.72, 52.32, 34.10, 28.08.

HRMS (ESI) calculated for [C16H20N2NaO6S]+ [M+Na]+: 391.0934, found m/z 391.0938.

tert-butyl ((5-cyano-1-methyl-1H-indol-3-yl)sulfonyl)carbamate (31)

Boc-NH

General procedure was followed to obtain **31** (102 mg, 76%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.17 – 7.62 (m, 2H), 7.59 – 7.51 (m, 1H), 7.49 – 7.44 (m, 1H), 3.92 (s, 3H), 1.38 (s, 9H);

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 149.52, 138.43, 137.82, 126.60, 125.51, 123.80, 119.52, 113.17, 111.65, 105.92, 84.03, 34.19, 28.06.

HRMS (ESI) calculated for [C₁₅H₁₈N₃O₄S]⁺ [M+H]⁺: 336.1013, found m/z 336.1015.

tert-butyl ((6-formyl-1-methyl-1*H*-indol-3-yl)sulfonyl)carbamate (**3m**)

Boc-NH

General procedure was followed to obtain 3m (88 mg, 65%) as a white solid.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 10.12 (s, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 8.05 (s, 1H), 7.98 (s, 1H), 7.83 (d, *J* = 8.3 Hz, 1H), 7.49 (br, 1H), 3.97 (s, 3H), 1.37 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 192.02, 149.29, 139.24, 136.87, 132.42, 128.85, 124.22, 120.60, 112.74, 112.44, 83.89, 34.24, 28.10.

HRMS (ESI) calculated for $[C_{15}H_{17}N_2O_5S]^-$ [M-H] : 337.0864, found m/z 337.0864.

tert-butyl ((1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)sulfonyl)carbamate (3n)

General procedure was followed to obtain 3n (161 mg, 92%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 7.87 (s, 1H), 7.80 (d, *J* = 8.3 Hz, 1H), 7.46 (br, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 3.87 (s, 3H), 1.37 (s, 12H), 1.36 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 149.34, 139.01, 136.41, 129.86, 127.17, 123.61, 112.07, 109.83, 84.02, 83.49, 33.88, 28.10, 25.05.

HRMS (ESI) calculated for [C₂₀H₂₉BN₂NaO₆S]⁺ [M+Na]⁺: 459.1732, found m/z 459.1737.

methyl 3-(N-(tert-butoxycarbonyl)sulfamoyl)-1-methyl-1H-indole-2-carboxylate (30)

General procedure was followed to obtain **30** (118 mg, 80%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.33 (d, *J* = 8.3 Hz, 1H), 7.89 (br, 1H), 7.47 – 7.39 (m, 2H), 7.38 – 7.31 (m, 1H), 4.06 (s, 3H), 3.96 (s, 3H), 1.29 (s, 9H);

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 160.98, 149.77, 136.48, 130.60, 125.96, 124.92, 123.73, 122.73, 116.47, 110.59, 83.81, 53.47, 32.68, 28.00.

HRMS (ESI) calculated for [C16H20N2NaO6S]+ [M+Na]+: 391.0934, found m/z 391.0934.

tert-butyl ((1-methyl-2-phenyl-1*H*-indol-3-yl)sulfonyl)carbamate (**3p**)

General procedure was followed to obtain 3p (133 mg, 86%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.24 – 8.15 (m, 1H), 7.62 – 7.46 (m, 5H), 7.45 – 7.30 (m, 3H), 7.12 (br, 1H), 3.57 (s, 3H), 1.25 (s, 9H);

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 149.43 (d, *J* = 6.7 Hz), 144.29, 135.94, 130.62, 130.10, 129.01, 128.59, 125.51, 123.68, 122.84, 121.00, 110.89, 110.12, 83.20, 31.22, 27.98.

HRMS (ESI) calculated for [C₂₀H₂₂N₂NaO₄S]⁺ [M+Na]⁺: 409.1192, found m/z 409.1196.

tert-butyl ((5,6-dihydro-4*H*-pyrrolo[3,2,1-*ij*]quinolin-1-yl)sulfonyl)carbamate (**3**q)

General procedure was followed to obtain **3q** (123 mg, 91%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.57 (br, 1H), 7.24 – 7.18 (m, 1H), 7.09 – 7.03 (m, 1H), 4.25 – 4.19 (m, 2H), 3.02 (t, J = 6.1 Hz, 2H), 2.27 (p, J = 6.5, 6.0 Hz, 2H), 1.37 (s, 9H);

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 149.49, 134.29, 133.06, 123.00, 122.24, 120.85, 117.36, 111.57, 83.36, 45.12, 28.11, 24.36, 22.68.

HRMS (ESI) calculated for [C₁₆H₂₀N₂NaO₄S]⁺ [M+Na]⁺: 359.1036, found m/z 359.1037.

tert-butyl ((1-methyl-1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)sulfonyl)carbamate (**3r**)

General procedure was followed to obtain 3r (113 mg, 91%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.45 – 8.40 (m, 1H), 8.25 (dt, *J* = 8.0, 1.7 Hz, 1H), 8.02 (s, 1H), 7.26 – 7.19 (m, 1H), 3.95 (s, 3H), 1.33 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 149.66, 147.25, 144.89, 135.55, 128.76, 118.42, 116.93, 110.71, 83.59, 32.28, 28.00. HRMS (ESI) calculated for [C₁₃H₁₈N₃O₄S]⁺ [M+H]⁺: 312.1013, found m/z 312.1016.

tert-butyl ((1-methyl-1*H*-pyrrol-2-yl)sulfonyl)carbamate (**5**a)

S Boc

General procedure was followed to obtain 5a (80 mg, 77%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (br, 1H), 7.00 (dd, *J* = 4.1, 1.9 Hz, 1H), 6.82 (t, *J* = 2.3 Hz, 1H), 6.16 (dd, *J* = 4.0, 2.6 Hz, 1H), 3.88 (s, 3H), 1.40 (s, 9H); ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 149.56, 129.74, 125.17, 120.42, 108.09, 84.22, 36.05, 27.97. **HRMS** (ESI) calculated for [C₁₀H₁₅N₂O₄S]⁻ [M-H]⁻: 259.0758, found m/z 259.0760.

1*H*-pyrrole-2-sulfonamide (5b)

General procedure was followed and deprotected to obtain **5b** (38 mg, 65%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.70 (s, 1H), 7.15 (s, 2H), 6.93 – 6.87 (m, 1H), 6.56 – 6.50 (m, 1H), 6.14 – 6.08 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 131.42, 121.46, 110.92, 108.11. HRMS (ESI) calculated for [C₄H₅N₂O₂S]⁻ [M-H]⁻: 145.0077, found m/z 145.0077.

tert-butyl 2-(*N*-(*tert*-butoxycarbonyl)sulfamoyl)-1*H*-pyrrole-1-carboxylate (**5c**)

General procedure was followed to obtain 5c (85 mg, 61%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 (br, 1H), 7.39 (dd, *J* = 3.3, 1.9 Hz, 1H), 7.23 (dd, *J* = 3.7, 1.9 Hz, 1H), 6.25 (t, *J* = 3.5 Hz, 1H), 1.62 (s, 9H), 1.40 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 149.10, 147.14, 128.52, 127.72, 126.08, 110.42, 86.67, 83.88, 27.99, 27.95. HPLC-MS (ESI) calculated for [C₁₄H₂₂N₂O₆SNa]⁺ [M+Na]⁺: 369.1091, found m/z 369.1095.

tert-butyl ((5-acetyl-1-methyl-1*H*-pyrrol-3-yl)sulfonyl)carbamate (5d)

General procedure was followed to obtain 5d (115 mg, 95%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 (br, 1H), 7.45 (d, *J* = 1.8 Hz, 1H), 7.32 (d, *J* = 2.0 Hz, 1H), 3.96 (s, 3H), 2.45 (s, 3H), 1.43 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 189.20, 149.49, 133.14, 131.44, 120.91, 118.72, 84.00, 38.66, 28.11, 27.33. HRMS (ESI) calculated for [C₁₂H₁₈N₂NaO₅S]⁺ [M+Na]⁺: 325.0829, found m/z 325.0832.

methyl 4-(N-(tert-butoxycarbonyl)sulfamoyl)-1-methyl-1H-pyrrole-2-carboxylate (5e)

General procedure was followed to obtain 5e (115 mg, 90%) as a white solid.

¹**H** NMR (600 MHz, DMSO- d_6) δ 11.36 (s, 1H), 7.78 (d, J = 2.0 Hz, 1H), 7.07 (d, J = 2.0 Hz, 1H), 3.91 (s, 3H), 3.78 (s, 3H), 1.35 (s, 9H);

¹³C NMR (150 MHz, DMSO-*d*₆) δ 160.04, 150.03, 132.10, 122.92, 121.52, 116.04, 81.81, 51.62, 37.01, 27.63.

HRMS (ESI) calculated for $[C_{12}H_{17}N_2O_6S]^-$ [M-H⁻]⁻: 317.0813, found m/z 317.0816.

methyl 5-(N-(tert-butoxycarbonyl)sulfamoyl)-1-methyl-1H-pyrrole-3-carboxylate (5f)

General procedure was followed to obtain 5f (96 mg, 75%) as a white solid.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.91 (br, 1H), 7.41 (s, 1H), 7.38 (s, 1H), 3.92 (s, 3H), 3.81 (s, 3H), 1.41 (s, 9H); ¹³C NMR (125 MHz, Chloroform-*d*) δ 163.84, 149.34, 132.92, 127.28, 120.76, 115.30, 84.68, 51.68, 36.85, 27.98. HRMS (ESI) calculated for [C₁₂H₁₇N₂O₆S]⁻ [M-H⁻]⁻: 317.0813, found m/z 317.0814.

tert-butyl ((1-oxo-1,2-dihydropyrrolo[1,2-a]pyrazin-6-yl)sulfonyl)carbamate (5g)

General procedure was followed to obtain 5g (114 mg, 91%) as a white solid.

¹**H** NMR (600 MHz, DMSO- d_6) δ 12.03 (br, 1H), 11.17 (s, 1H), 7.55 (d, J = 6.0 Hz, 1H), 7.14 (d, J = 4.3 Hz, 1H), 7.00 (d, J = 4.4 Hz, 1H), 6.95 (t, J = 5.9 Hz, 1H), 1.29 (s, 9H);

¹³C NMR (150 MHz, DMSO- d_6) δ 155.21, 149.79, 128.29, 124.19, 118.75, 116.93, 108.32, 105.62, 82.43, 27.49. HRMS (ESI) calculated for [C₁₂H₁₆N₃O₅S]⁺ [M+H]⁺: 314.0805, found m/z 314.0806.

tert-butyl ((1-((tert-butoxycarbonyl)amino)-1*H*-pyrrol-2-yl)sulfonyl)carbamate (5h)

General procedure was followed to obtain 5h (111 mg, 77%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.46 (br, 1H), 6.99 – 6.92 (m, 2H), 6.19 (t, *J* = 3.7 Hz, 1H), 1.49 (s, 9H), 1.42 (s, 9H); ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 155.23, 150.05, 149.69, 130.29, 118.37, 106.85, 84.65, 83.18, 28.16, 28.01. **HRMS** calculated for [C₁₄H₂₃N₃NaO₆S]⁺ [M+Na]⁺: 384.1200, found m/z 384.1199.

tert-butyl ((2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)sulfonyl)carbamate (5i)

General procedure was followed to obtain 5i (130 mg, 93%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (br, 1H), 7.53 – 7.44 (m, 3H), 7.20 – 7.14 (m, 2H), 6.36 (s, 1H), 2.26 (s, 3H), 1.95 (s, 3H), 1.44 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 149.89, 137.04, 134.71, 129.72, 129.51, 129.18, 128.19, 116.56, 107.19, 83.20, 28.14, 12.77, 11.89.

HRMS calculated for [C₁₇H₂₂N₂NaO₄S]⁺ [M+Na]⁺: 373.1192, found m/z 373.1193.

di-tert-butyl (indolizine-1,3-disulfonyl)dicarbamate (5j)

General procedure was followed to obtain 5j (139 mg, 73%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.92 (d, *J* = 7.1, Hz, 1H), 8.24 (d, *J* = 9.1 Hz, 1H), 7.98 (s, 1H), 7.65 (br, 2H), 7.50 – 7.39 (m, 1H), 7.11 (t, *J* = 7.0 Hz, 1H), 1.39 (s, 18H);

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 149.46, 149.40, 136.99, 127.29, 127.12, 125.18, 119.11, 118.39, 115.54, 110.28, 85.12, 84.28, 28.09, 28.00.

HRMS (ESI) calculated for [C₁₈H₂₅N₃NaO₈S₂]⁺ [M+Na]⁺: 498.0975, found m/z 498.0980.

tert-butyl ((5-pentylfuran-2-yl)sulfonyl)carbamate (5k)

General procedure was followed to obtain 5k (105 mg, 83%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 (br, 1H), 7.18 (d, *J* = 3.4 Hz, 1H), 6.18 (d, *J* = 3.4 Hz, 1H), 2.71 (t, *J* = 7.6 Hz, 2H), 1.75 – 1.63 (m, 2H), 1.44 (s, 9H), 1.37 – 1.32 (m, 4H), 0.94 – 0.89 (m, 3H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 162.71, 148.77, 144.06, 121.01, 107.34, 84.47, 31.30, 28.33, 27.94, 27.33, 22.40, 14.05.

HRMS (ESI) calculated for [C₁₄H₂₃NNaO₅S]⁺ [M+Na]⁺: 340.1189, found m/z 340.1188.

tert-butyl ((5-phenylfuran-2-yl)sulfonyl)carbamate (51)

General procedure was followed to obtain 51 (116 mg, 90%) as a white solid.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.78 – 7.71 (m, 2H), 7.53 (br, 1H), 7.47 – 7.41 (m, 2H), 7.41 – 7.37 (m, 1H), 7.33 (d, *J* = 3.6 Hz, 1H), 6.76 (d, *J* = 3.6 Hz, 1H), 1.42 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 158.65, 148.69, 145.12, 129.67, 129.09, 128.87, 125.07, 121.71, 106.36, 84.75, 27.98. HRMS (ESI) calculated for [C₁₅H₁₅NO₅S]⁻ [M-H⁻]⁻: 322.0755, found m/z 322.0757.

tert-butyl ((2,5-dimethylfuran-3-yl)sulfonyl)carbamate (5m)

General procedure was followed to obtain 5m (66 mg, 60%) as a white solid.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.52 (br, 1H), 6.22 (s, 1H), 2.54 (s, 3H), 2.25 (s, 3H), 1.43 (s, 9H); ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 156.84, 151.02, 149.48, 120.13, 105.48, 83.91, 28.09, 13.34, 13.26. **HRMS** (ESI) calculated for $[C_{11}H_{16}NO_5S]^-$ [M-H⁻]: 274.0755, found m/z 274.0756.

tert-butyl ((5-(tert-butyl)thiophen-2-yl)sulfonyl)carbamate (5n)

General procedure was followed to obtain 5n (92 mg, 72%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 3.9 Hz, 1H), 7.44 (br, 1H), 6.84 (d, *J* = 3.9 Hz, 1H), 1.44 (s, 9H), 1.40 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 166.76, 148.64, 134.55, 134.39, 121.49, 83.86, 34.94, 31.79, 27.50. HRMS (ESI) calculated for [C₁₃H₂₁NNaO₄S₂]⁺ [M+Na]⁺: 342.0804, found m/z 342.0804.

tert-butyl ((4,5-dimethylthiophen-2-yl)sulfonyl)carbamate (50)

General procedure was followed to obtain **50** (99 mg, 85%) as a white solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.51 (s, 1H), 7.34 (br, 1H), 2.40 (s, 3H), 2.15 (s, 3H), 1.45 (s, 9H); ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 149.11, 143.46, 137.51, 134.18, 133.03, 84.29, 28.09, 13.81, 13.70. **HRMS** (ESI) calculated for [C₁₁H₁₆NO₄S₂]⁻ [M-H⁻]⁻: 290.0526, found m/z 290.053.

tert-butyl ((3-methoxythiophen-2-yl)sulfonyl)carbamate (5p)

General procedure was followed to obtain 5p (108 mg, 92%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.60 (br, 1H), 7.56 (d, J = 5.5 Hz, 1H), 6.85 (d, J = 5.5 Hz, 1H), 3.99 (s, 3H), 1.40 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 159.25, 149.27, 131.82, 115.48, 114.73, 84.16, 59.50, 28.00. HRMS (ESI) calculated for [C₁₀H₁₄NO₅S₂]⁻ [M-H⁻]⁻: 292.0319, found m/z 292.0318.

tert-butyl ((2,4-dimethoxyphenyl)sulfonyl)carbamate (5q)

Boc

General procedure was followed to obtain 5q (96 mg, 76%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.93 (dd, *J* = 8.8, 1.8 Hz, 1H), 7.67 (br, 1H), 6.56 (dd, *J* = 8.8, 1.8 Hz, 1H), 6.51 (d, *J* = 2.3 Hz, 1H), 3.93 (s, 3H), 3.87 (s, 3H), 1.32 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 165.73, 158.45, 149.65, 133.74, 118.63, 104.44, 99.39, 83.64, 56.48, 55.91, 27.91. HRMS (ESI) calculated for [C₁₃H₁₉NNaO₆S]⁺ [M+Na]⁺: 340.0825, found m/z 340.0825.

tert-butyl ((2,4,6-trimethoxyphenyl)sulfonyl)carbamate (5r)

General procedure was followed to obtain **5r** (131 mg, 94%) as a white solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 (br, 1H), 6.12 (s, 2H), 3.89 (s, 6H), 3.84 (s, 3H), 1.33 (s, 9H); ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 165.03, 160.83, 150.18, 108.80, 91.34, 83.12, 56.75, 55.69, 27.92. **HRMS** (ESI) calculated for [C₁₄H₂₁NNaO₇S]⁺ [M+Na]⁺: 370.0931, found m/z 370.0932.

tert-butyl ((5-bromo-2-(dimethylamino)phenyl)sulfonyl)carbamate (5s)

General procedure was followed to obtain 5s (93 mg, 61%) as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 2.4 Hz, 1H), 7.70 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.31 (d, *J* = 8.5 Hz, 1H), 2.73 (s, 6H), 1.30 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 152.44, 149.79, 137.66, 137.16, 133.95, 125.65, 118.16, 83.95, 46.37, 27.85. HRMS (ESI) calculated for [C₁₃H₂₀BrN₂O₄S]⁺ [M+H]⁺: 379.0322, found m/z 379.0325.

tert-butyl ((2,3,6,7-tetrahydro-1*H*,5*H*-pyrido[3,2,1-*ij*]quinolin-9-yl)sulfonyl)carbamate (5t)

General procedure was followed to obtain 5t (113 mg, 80%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40 (br, 1H), 7.34 (s, 2H), 3.25 (t, *J* = 5.8 Hz, 4H), 2.73 (t, *J* = 6.3 Hz, 4H), 1.93 (dt, *J* = 11.6, 6.1 Hz, 4H), 1.40 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 149.76, 146.84, 127.28, 121.90, 120.09, 83.35, 49.91, 28.07, 27.79, 21.21. HRMS (ESI) calculated for [C₁₇H₂₅N₂O₄S]⁺ [M+H]⁺: 353.1530, found m/z 353.1530.

5-((2-((N-(2-(dimethylamino)ethyl)sulfamoyl)methyl)phenyl)amino)pyrimidin-4-yl)oxy)-2-methyl-1H-indole-3-sulfonamide (6a)

General procedure was followed and typical deprotected to obtain **6a** (125 mg, 56%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.89 (s, 1H), 9.63 (s, 1H), 8.33 (d, J = 5.6 Hz, 1H), 7.62 – 7.52 (m, 3H), 7.45 (d, J = 8.7 Hz, 1H), 7.11 – 6.95 (m, 5H), 6.88 (d, J = 7.7 Hz, 1H), 6.34 (d, J = 5.6 Hz, 1H), 4.13 (s, 2H), 2.98 (t, J = 6.8 Hz, 2H), 2.60 (s, 3H), 2.47 – 2.40 (m, 2H), 2.24 (s, 6H); ¹³C NMR (125 MHz, DMSO- d_6) δ 170.23, 159.83, 159.75, 146.53, 140.24, 140.01, 131.74, 130.26, 128.16, 125.38, 123.84,

121.03, 118.64, 116.45, 113.99, 112.01, 111.54, 98.13, 58.30, 57.42, 44.50, 12.70. **HRMS** (ESI) calculated for $[C_{24}H_{28}N_7O_5S_2]^-[M-H^-]^-: 558.1599$, found m/z 558.1599.

tert-butyl ((2,6-dimethyl-4-((2-oxooxazolidin-5-yl)methoxy)phenyl)sulfonyl)carbamate (6b)

General procedure was followed to obtain **6b** (151 mg, 94%) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.64 (s, 1H), 6.53 (s, 2H), 5.27 (br, 1H), 4.99 – 4.88 (m, 1H), 4.36 (t, *J* = 9.0 Hz, 1H), 4.29 – 4.22 (m, 1H), 4.18 – 4.06 (m, 2H), 2.24 (s, 6H), 1.48 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 158.01, 152.12, 151.02, 139.54, 123.73, 112.60, 84.48, 72.73, 67.43, 48.09, 28.02, 21.48.

HRMS (ESI) calculated for [C₁₇H₂₄N₂NaO₇S]⁺ [M+Na]⁺: 423.1196, found m/z 423.1197.

methyl (S)-2-(2-(N-(tert-butoxycarbonyl)sulfamoyl)-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)acetate (6c)

General procedure was followed to obtain 6c (134 mg, 67%) as a white solid.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.62 – 7.57 (m, 1H), 7.45 – 7.40 (m, 2H), 7.32 – 7.28 (m, 2H), 4.94 (s, 1H), 3.78 – 3.62 (m, 5H), 2.98 – 2.87 (m, 4H), 1.45 (s, 9H);

¹³C NMR (125 MHz, Chloroform-*d*) δ 171.34, 148.96, 143.52, 135.79, 134.98, 134.16, 133.39, 133.15, 130.16, 129.94, 129.85, 127.37, 84.41, 67.59, 52.43, 49.99, 47.56, 28.19, 28.13, 26.15.

HRMS (ESI) calculated for $[C_{21}H_{24}ClN_2O_6S_2]^-$ [M-H⁻]⁻: 499.0770, found m/z 499.0771.

methyl (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(5-(N-(tert-butoxycarbonyl)sulfamoyl)furan-2-yl)propanoate (6d)

General procedure was followed to obtain 6d (132 mg, 58%) as a white solid.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.14 (br, 1H), 6.23 (s, 1H), 5.57 (d, *J* = 7.9 Hz, 1H), 4.68 (q, *J* = 6.2 Hz, 1H), 4.41 (dq, *J* = 17.5, 10.5, 9.2 Hz, 2H), 4.21 (t, *J* = 6.8 Hz, 1H), 3.77 (s, 3H), 3.27 (qd, *J* = 15.4, 5.6 Hz, 2H), 1.41 (s, 9H);

¹³C NMR (150 MHz, Chloroform-*d*) δ 171.10, 156.16, 155.70, 145.83, 143.88, 143.75, 141.47, 127.92, 127.28, 125.20, 120.42, 120.16, 110.18, 84.54, 67.30, 53.07, 52.78, 47.22, 31.43, 27.96.

HRMS (ESI) calculated for [C₂₈H₃₀N₂NaO₉S]⁺ [M+Na]⁺: 593.1564, found m/z 593.1566.

4. Reference

1. Gorelik, D. J.; Turner, J. A.; Taylor, M. S., Catalyst-Controlled, Site-Selective Sulfamoylation of Carbohydrate Derivatives. *Org. Lett.* **2022**, *24* (29), 5249-5253.

5. NMR spectrum

S18

S32

¹H NMR spectrum of **5e**

¹H NMR spectrum of 5g

S55

¹H NMR spectrum of **6e**

S57