Supplementary Information

Synthesis of bambusurils with perfluoroalkylthiobenzyl groups as highly potent halide receptors

Matúš Chvojka,^{a,b} Hennie Valkenier*^b and Vladimír Šindelář*^a

^aDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. E-mail: sindelar@chemi.muni.cz

^bUniversité libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Avenue F. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium. E-mail: hennie.valkenier@ulb.be

Table of Contents

1. M	aterials and methods	S3
2. Sy	nthetic procedures	S4
2.1.	Methyl 3,5-bis((dimethylcarbamothioyl)oxy)-4-methoxybenzoate 4	S4
2.2.	Methyl 3,5-bis((dimethylcarbamoyl)thio)-4-methoxybenzoate 6	S4
2.3.	3,5-Dimercaptobenzylalcohol 7	S5
2.4.	3,5-Dimercapto-4-methoxybenzylalcohol 8	S5
2.5.	3,5-Bis((trifluoromethyl)thio)benzylalcohol 9	S6
2.6.	4-Methoxy-3,5-bis((trifluoromethyl)thio)benzylalcohol 10	S6
2.7.	3,5-Bis((trifluoromethyl)thio)benzylchloride 11	S7
2.8.	4-Methoxy-3,5-bis((trifluoromethyl)thio)benzylchloride 12	S7
2.9.	3,5-Bis((pentafluoroethyl)thio)benzylalcohol 13	S7
2.10	3,5-Bis((pentafluoroethyl)thio)benzylchloride 15	S8
2.11	3,5-Bis((heptafluoropropyl)thio)benzylalcohol 14	S8
2.12	3,5-Bis((heptafluoropropyl)thio)benzylchloride 16	S9
2.13	2,4-Bis(3,5-bis((trifluoromethyl)thio)benzyl)glycoluril 20	S9
2.14	2,4-Bis(4-methoxy-3,5-bis((trifluoromethyl)thio)benzyl)glycoluril 21	S10
2.15	2,4-Bis(3,5-bis((pentafluoroethyl)thio)benzyl)glycoluril 22	S10
2.16	2,4-Bis(3,5-bis((heptafluoropropyl)thio)benzyl)glycoluril 23	S11
2.17	3,5-Bis((tridecafluorohexyl)thio)benzylalcohol 24	S12
2.18	3,5-Bis((tridecafluorohexyl)thio)benzylchloride 25	S12
2.19	2,4-Bis(3,5-bis((tridecafluorohexyl)thio)benzyl)glycoluril 26	S13
2.20	3,5-Bis((heptadecafluorooctyl)thio)benzylalcohol 27	S13
2.21	3,5-Bis((heptadecafluorooctyl)thio)benzyltosylate 28	S14
2.22	2,4-Bis(3,5-bis((heptadecafluorooctyl)thio)benzyl)glycoluril 29	S14
2.23	Bambusuril BU1	\$15
2.24	Bambusuril BU2	\$15
2.25	Bambusuril BU3	S16
2.26	Bambusuril BU4	\$17
2.27	Anion exchange	S17
3. Ch	aracterization	S18
3.1.	4	S18
3.2.	6	S19

3	8.3.	7	. S20	
Э	3.4.	8	. S21	
Э	8.5.	9	. S21	
Э	8.6.	10	. S23	
Э	8.7.	11	. S25	
Э	8.8.	12	. S27	
Э	3.9.	13	. S29	
Э	8.10.	14	. S30	
Э	3.11.	15	. S31	
Э	3.12.	16	. S32	
Э	8.13.	20	. \$33	
Э	8.14.	21	. S35	
Э	8.15.	22	. S37	
Э	8.16.	23	. S39	
Э	8.17.	24	. S41	
Э	8.18.	25	. S43	
Э	8.19.	26	. S45	
Э	3.20.	27	. S47	
Э	3.21.	28	. S48	
Э	3.22.	29	. S49	
Э	3.23.	Bambusuril BU1	. S50	
Э	3.24.	Bambusuril BU2	. S52	
Э	8.25.	Bambusuril BU3	. S54	
Э	8.26.	Bambusuril BU4	. S56	
Э	8.27.	Bambusuril BU1 with various anions	. S58	
4.	Des	cription of the competition experiment between two bambusurils		.\$59
Z	l.1.	Experimental	. S59	
Z	1.2.	Ratios of association constants obtained from competition experiments	. S61	
Z	1.3.	Examples of the results obtained from the competition experiments	. S63	
5.	Mol	lecular modelling		.S67
6.	Refe	erences		.S67

1. Materials and methods

All reagents and solvents were purchased from commercial suppliers and used without further purification. Compounds **2**, **5** and **19** were prepared using the previously described procedures.^[1–3] Mili-Q grade water was prepared by a Barnstead[™] MicroPure[™] Water Purification System. All reactions that require increased temperature were heated with a DrySyn heating block on an electromagnetic stirrer. Mixing of the reaction mixtures was done by a magnetic stirrer. TLC data were recorded on VWR TLC Aluminium Plates – Silica F254, 200 µm layer thickness.

The NMR spectra were measured on one of the following spectrometers at 25 °C: Bruker Avance III 300 MHz (¹H: 300 MHz, ¹³C: 75 MHz, ¹⁹F: 282 MHz), Bruker Avance III 500 MHz (¹H: 500 MHz, ¹³C: 126 MHz, ¹⁹F 471 MHz); Jeol JNM-ECZ600R/S3 (¹H: 600 MHz, ¹⁹F 565 MHz) was used to measure competition experiments described in the Section 4. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (*J*) are given in Hertz (Hz). The ¹H and ¹³C NMR spectra were referenced to the solvent residual signals; ¹⁹F NMR spectra were either unreferenced.^[4] The NMR spectra were processed using MestReNova 14.3.3.

HRMS spectra were recorded on an Agilent 6224 Accurate-Mass TOF mass spectrometer. Samples were ionized by electrospray ionization (ESI) or atmospheric-pressure chemical ionization (APCI). For recording MALDI-TOF mass spectra MALDI-TOF Axima CFR spectrometer was used. Samples were ionized with the aid of a nitrogen laser (wavelength 337 nm, maximum power 6 MW). Gentisic acid (DHB) or α -cyano-4-hydroxycinnamic acid (HCCA) were used as matrices.

Mass spectra of the compounds **9-16**, **24**, **25** and **27** could not be recorded due to poor ionizability of these compounds.

2. Synthetic procedures

2.1. Methyl 3,5-bis((dimethylcarbamothioyl)oxy)-4-methoxybenzoate 4

2 (7.93 g, 40 mmol, 1 eq) and DABCO (13.46 g, 120 mmol, 3 eq) were heated in dry NMP (80 mL) to 50 °C forming a dark yellow solution under an inert atmosphere. Dimethylthiocarbamoyl chloride (14.83 g, 120 mmol, 3 eq) dissolved in dry NMP (40 mL) was added. The reaction mixture was stirred at 50 °C for 4 h under an inert atmosphere. The yellow suspension was diluted with MeOH (140 mL) and poured into vigorously stirred cold water (700 mL). The mixture was sonicated until a fine precipitate was obtained. The solid was collected by filtration and redissolved in a boiling EtOAc (100 mL). Cyclohexane (350 mL) was added, the resulting mixture was sonicated, then cooled to 4 °C. The product was collected by filtration and usplacement washed with hexane (200 mL). Compound **4** was obtained as a white solid (10.73 g, 72%).

¹**H NMR** (300 MHz, CDCl₃): δ = 7.64 (s; 2H; Ar-H), 3.92 (s; 3H; OCH₃), 3.86 (s; 3H; OCH₃), 3.45 (s; 6H; NCH₃), 3.36 (s; 6H; NCH₃). ¹³C{¹H} APT NMR (75 MHz, CDCl₃): 187.2, 165.5, 149.0, 146.6, 124.4, 124.0, 61.5, 52.3, 43.6, 38.9. **HRMS** (APCl): m/z calc. for C₁₅H₂₀N₂O₅S₂+H⁺: 373.0886 [M+H]⁺; found: 373.0889. **TLC**: R_F = 0.52 (CHCl₃/MeCN 9:1).

2.2. Methyl 3,5-bis((dimethylcarbamoyl)thio)-4-methoxybenzoate 6

4 (9.86 g, 26.5 mmol) with Ph_2O (295 mL) were heated to reflux for 75 min while N_2 was bubbled through the reaction mixture for the whole time. After cooling down, a brown solution was diluted with hexane (600 mL) and filtered through a SiO₂ plug (4.0×8.0 cm). The plug was washed with EtOAc/hexane (1:2, 200 mL), and then the product was eluted with EtOAc/hexane (5:1 600 mL). The filtrate was evaporated, and the residue was purified by column chromatography (cyclohexane/EtOAc 1:1 to 4:1). Compound **6** was obtained as an orangish solid (7.15 g, 73%).

¹**H NMR** (300 MHz, CDCl₃): δ = 8.24 (s; 2H; Ar-H), 3.89 (s; 3H; OCH₃), 3.87 (s; 3H; OCH₃), 3.08 (br s; 12H; NCH₃). ¹³C{¹H} APT NMR (75 MHz, CDCl₃): 166.6, 165.7, 165.5, 141.4, 126.8, 124.5, 62.2, 52.4, 37.2. **HRMS** (APCl): m/z calc. for C₁₅H₂₀N₂O₅S₂+H⁺: 373.0886 [M+H]⁺; found: 373.0887. **TLC**: R_F = 0.26 (CHCl₃/MeCN 9:1).

2.3. 3,5-Dimercaptobenzylalcohol 7

LiAlH₄ (1898 mg, 50 mmol, 5 eq) was suspended in dry THF (60 mL) under an inert atmosphere. Dropwise addition of **5** (3424 mg, 10 mmol, 1 eq) in dry THF (40 mL) caused heating of the reaction mixture to reflux. After further stirring for 55 min, the reaction mixture was cooled in an ice bath and quenched by slowly adding EtOAc (20 mL) and water (50 mL). The volatiles were evaporated at 40 °C and the mixture was acidified with aqueous HCl (10%, 100 mL) and extracted with CH_2Cl_2 (4×75 mL). The organic extracts were dried over MgSO₄. Evaporation at 40 °C yielded compound **7** as a white solid (1650 mg, 96%).

¹**H** NMR (300 MHz, CDCl₃): δ = 7.09 (s; 1H; Ar-H), 7.04 (s; 2H; Ar-H), 4.57 (s; 2H; SH), 3.45 (s; 2H; CH₂), 1.89 (s; 1H; OH). ¹³C{¹H} NMR (75 MHz, CDCl₃): 142.8, 132.5, 128.4, 124.8, 64.5. **HRMS** (ESI): m/z calc. for C₇H₈OS₂-H⁻: 170.9944 [M-H]⁻; found: 170.9933. **TLC**: R_F = 0.32 (CHCl₃/MeCN 9:1); 0.27 (cyclohexane/EtOAc 1:1); 0.08 (cyclohexane/EtOAc 5:1).

2.4. 3,5-Dimercapto-4-methoxybenzylalcohol 8

LiAlH₄ (911 mg, 24 mmol, 5 eq) was suspended in dry THF (100 mL) under an inert atmosphere. **6** (1117 mg, 3 mmol, 1 eq) in dry THF (50 mL) was added dropwise at 0 °C. The reaction mixture was stirred for 1.5 h at ambient temperature. Then it was cooled in an ice bath and quenched by slow addition of EtOAc (30 mL) and water (50 mL). The volatiles were evaporated at 40 °C and the mixture was acidified with aqueous HCl (10%, 150 mL) and extracted with CH₂Cl₂ (4×50 mL). The organic extracts were dried over MgSO₄ + Na₂SO₃. Evaporation at 40 °C yielded oil, which was purified by dry column vacuum chromatography (SiO₂, 20% EtOAc in hexane to EtOAc). Compound **8** was obtained as a colourless oil (382 mg, 62%).

¹H NMR (300 MHz, CDCl₃): δ = 7.04 (s; 2H; Ar-H), 4.53 (s; 2H; SH), 3.84 (s; 3H; OCH₃), 3.74 (s; 2H; CH₂), 1.74 (s; 1H; OH). HRMS (ESI): m/z calc. for C₈H₁₀O₂S₂-H⁻: 201.0049 [M-H]⁻; found: 201.0045. TLC: *R_F* = 0.37 (CHCl₃/MeCN 9:1); 0.27 (cyclohexane/EtOAc 1:1); 0.08 (cyclohexane/EtOAc 5:1).

2.5. 3,5-Bis((trifluoromethyl)thio)benzylalcohol 9

Togni reagent II (4535 mg, 14.35 mmol, 2.05 eq) was suspended in dry MeOH (100 mL) and the mixture was degassed with N₂ by bubbling. Then it was cooled to -78 °C (dry ice/acetone bath) and DIPEA (2.56 mL, 14.7 mmol, 2.1 eq) was added, followed by dropwise addition of **7** (1206 mg, 7 mmol, 1 eq) dissolved in dry MeOH (20 mL) over 30 min. The reaction mixture was mixed at -78 °C for an additional 60 min, then left to reach ambient temperature. It was loaded on SiO₂ and purified by column chromatography (SiO₂, cyclohexane/EtOAc 7:1) to yield compound **9** as a yellowish liquid (1892 mg, 88%).

¹H NMR (300 MHz, CDCl₃): δ = 7.88 (s; 1H; Ar-H), 7.77 (s; 2H; Ar-H), 4.76 (s; 2H; CH₂), 2.25 (s; 1H; OH). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ = 145.0, 142.5, 136.9, 129.9 (q; *J* = 308.3 Hz), 126.5 (q; *J* = 2.3 Hz), 63.9. ¹⁹F NMR (282 MHz, CDCl₃): δ = -42.3. TLC: R_F = 0.53 (cyclohexane/EtOAc 1:1); 0.21 (cyclohexane/EtOAc 5:1).

2.6. 4-Methoxy-3,5-bis((trifluoromethyl)thio)benzylalcohol 10

Togni reagent II (6456 mg, 19.41 mmol, 2.05 eq) was suspended in dry MeOH (100 mL) and the mixture was degassed with N₂ by bubbling. Then it was cooled to -78 °C (dry ice/acetone bath) and DIPEA (3.47 mL, 19.88 mmol, 2.1 eq) was added. It was followed by the addition of **8** (1915 mg, 9.47 mmol, 1 eq) dissolved in dry MeOH (25 mL) using a syringe pump at a rate of 1 mL min⁻¹. The reaction mixture was mixed at -78 °C for an additional 60 min, then left to reach ambient temperature. It was evaporated yielding a brown oil, which was purified by column chromatography (SiO₂, cyclohexane/EtOAc 5:1) to yield compound **10** as a yellowish oil (2671 mg, 83%).

¹H NMR (500 MHz, CDCl₃): δ = 7.76 (s; 2H; Ar-H), 4.72 (d; *J* = 308.3 Hz 2H; CH₂), 3.96 (s; 3H; OCH₃), 1.82 (t; *J* = 5.8 Hz; 1H; OH). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 162.1, 138.7, 138.1, 129.4 (q, *J* = 309.1 Hz), 121.1 (q, *J* = 1.8 Hz), 63.7, 62.8. ¹⁹F NMR (471 MHz, CDCl₃): δ = -41.3. TLC: R_F = 0.55 (cyclohexane/EtOAc 1:1); 0.24 (cyclohexane/EtOAc 5:1).

2.7. 3,5-Bis((trifluoromethyl)thio)benzylchloride 11

9 (4194 mg, 13.6 mmol, 1 eq) was dissolved in CH_2Cl_2 (136 mL), then $SOCl_2$ (9.9 mL, 136 mmol, 10 eq) and pyridine (21.9 μ L, 0.27 mmol, 0.02 eq) were added. The reaction mixture was heated to reflux for 24 h. After that, the reaction mixture was cooled to ambient temperature, and quenched by the addition of cold water (200 mL) and vigorous stirring for 20 min. The organic phase was separated, and the aqueous phase was extracted with CH_2Cl_2 (2×100 mL). The combined organic phases were washed with brine (200 mL), dried over MgSO₄ and loaded on Celite. The Celite with adsorbed compounds was placed on the top of a SiO₂ plug and the product was eluted with hexane (200 mL). Evaporation yielded compound **11** as a colourless liquid (3268 mg, 74%).

¹H NMR (300 MHz, CDCl₃): δ = 7.92 (s; 1H; Ar-H), 7.82 (s; 2H; Ar-H), 4.61 (s; 2H; CH₂). ¹³C{¹H} NMR (126 MHz, acetone-*d*₆): δ = 143.6, 142.7, 139.8, 130.5 (q; *J* = 307.4 Hz), 126.9 (q; *J* = 2.3 Hz), 44.7. ¹⁹F NMR (282 MHz, CDCl₃): δ = -42.2. TLC: *R*_F = 0.40 (cyclohexane); 0.51 (pentane).

2.8. 4-Methoxy-3,5-bis((trifluoromethyl)thio)benzylchloride 12

10 (2482 mg, 7.34 mmol, 1 eq) was dissolved in CH_2Cl_2 (75 mL), then $SOCl_2$ (5.3 mL, 73.4 mmol, 10 eq) and pyridine (29.6 μ L, 0.37 mmol, 0.05 eq) were added. The reaction mixture was mixed at ambient temperature for 16 h. After that, the reaction mixture was cooled to ambient temperature, and quenched by the addition of cold water (45 mL) and vigorous stirring for 20 min. The organic phase was separated away, and the aqueous phase was extracted with CH_2Cl_2 (2×20 mL). Combined organic phases were washed with brine (100 mL) and dried over Na₂SO₄. The drying agent was filtered off, the filtrate was redissolved in Et₂O (30 mL) and filtered through a SiO₂ plug. It was washed with additional Et₂O (2×20 mL). Filtrates were evaporated to yield **12** as a colourless oil (2406 mg, 92%).

¹H NMR (500 MHz, CDCl₃): δ = 7.78 (s; 2H; Ar-H), 4.56 (s; 2H; CH₂), 3.98 (s; 3H; OCH₃). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 162.7, 139.7, 135.3, 129.3 (q, *J* = 309.0 Hz), 121.5 (q, *J* = 2.2 Hz), 62.9, 44.2. ¹⁹F NMR (471 MHz, CDCl₃): δ = -41.2. TLC: R_F = 0.28 (cyclohexane).

2.9. 3,5-Bis((pentafluoroethyl)thio)benzylalcohol 13

C₂F₅-Togni reagent (1558 mg, 4.1 mmol, 2.05 eq) was dissolved in dry MeOH (45 mL) and the mixture was degassed with N₂ by bubbling. Then it was cooled to -78 °C (dry ice/acetone bath). **7** (345 mg, 2 mmol, 1 eq) dissolved in dry MeOH (10 mL) was added using a syringe pump at a rate of 0.7 mL min⁻¹. The reaction mixture was mixed at -78 °C for an additional 30 min, then left to reach ambient temperature. It was loaded on SiO₂ and purified by column chromatography (SiO₂, cyclohexane/acetone 19:1) to yield a mixture of **17** (686 mg) and **13** (695 mg, 85%) as a colourless oil. It was used in the following reaction without further separation.

¹H NMR (300 MHz, CDCl₃): δ = 7.88 (s; 1H; Ar-H), 7.80 (s; 2H; Ar-H), 4.79 (s; 2H; CH₂), 1.95 (s; 1H; OH). ¹⁹F NMR (282 MHz, CDCl₃): δ = -82.5 (t; *J* = 3.4 Hz; 6F; CF₃), -91.5 (q; *J* = 3.6 Hz; 4F; CF₂). **TLC**: R_F = 0.24 (cyclohexane/EtOAc 5:1).

2.10. 3,5-Bis((pentafluoroethyl)thio)benzylchloride 15

A mixture of **13** (695 mg, 1.7 mmol, 1 eq) and **17** (686 mg) was dissolved in CH_2Cl_2 (40 mL), then $SOCl_2$ (1.23 mL, 17 mmol, 10 eq) and pyridine (6.9 µL, 0.085 mmol, 0.05 eq) were added. The reaction mixture was heated to reflux for 1.5 days. After that, the reaction mixture was quenched by the addition of cold water (50 mL) and vigorous stirring for 20 min. The organic phase was washed with phosphate buffer (0.05 M, pH = 7, 2×30 mL), brine (50 mL) and dried over magnesium sulphate. The filtrate was evaporated to yield a brown liquid. It was redissolved in Et_2O (100 mL) and filtered through a SiO₂ plug. The filtrate was evaporated to yield a mixture of **18** (460 mg) and **15** (700 mg, 96%) as a brown liquid. It was used in the following reaction without further separation.

¹H NMR (300 MHz, CDCl₃): δ = 7.92 (s; 1H; Ar-H), 7.83 (s; 2H; Ar-H), 4.61 (s; 2H; CH₂). ¹⁹F NMR (282 MHz, CDCl₃): δ = -82.4 (t; *J* = 3.4 Hz; 6F; CF₃), -91.4 (q; *J* = 3.4 Hz; 4F; CF₂). **TLC**: R_F = 0.40 (cyclohexane).

2.11. 3,5-Bis((heptafluoropropyl)thio)benzylalcohol 14

C₃F₇-Togni reagent (2645 mg, 6.15 mmol, 2.05 eq) was dissolved in dry MeOH (70 mL) and the mixture was degassed with N₂ by bubbling. Then it was cooled to -78 °C (dry ice/acetone bath). **7** (517 mg, 3 mmol, 1 eq) dissolved in dry MeOH (15 mL) was added using a syringe pump at a rate of 0.5 mL min⁻¹. The reaction mixture was mixed at -78 °C for an additional 30 min, then left to reach ambient temperature. It was loaded on SiO₂ and purified by column chromatography (SiO₂, cyclohexane/acetone 19:1) to yield a mixture of **16** (1558 mg) and **14** (1371 mg, 90%) as a colourless oil. It was used in the following reaction without further separation.

¹H NMR (300 MHz, CDCl₃): δ = 7.89 (s; 1H; Ar-H), 7.81 (s; 2H; Ar-H), 4.79 (d; *J* = 4.8 Hz; 2H; CH₂), 2.05 (t; *J* = 5.6 Hz; 1H; OH). ¹⁹F NMR (282 MHz, CDCl₃): δ = -80.2 (t; *J* = 9.2 Hz; 6F; CF₃), -80.2 (qt; *J* = 9.2, 3.3 Hz; 4F; CF₂), -123.5 (t; *J* = 3.4 Hz; 4F; CF₂). **TLC**: R_F = 0.24 (cyclohexane/EtOAc 5:1).

2.12. 3,5-Bis((heptafluoropropyl)thio)benzylchloride 16

A mixture of **14** (1150 mg, 2.26 mmol, 1 eq) and **17** (1549 mg) was dissolved in CH_2Cl_2 (50 mL), then $SOCl_2$ (1.64 mL, 22.6 mmol, 10 eq) and pyridine (9.1 µL, 0.113 mmol, 0.05 eq) were added. The reaction mixture was heated to reflux overnight. After that, the reaction mixture was quenched by the addition of cold water (50 mL) and vigorous stirring for 20 min. The organic phase was washed with phosphate buffer (0.05 M, pH = 7, 2×30 mL), brine (50 mL) and dried over magnesium sulphate. The filtrate was evaporated to yield a yellow liquid. It was purified by column chromatography (SiO₂, pentane) to yield a mixture of **18** (637 mg) and **16** (982 mg, 82%) as a colourless transparent oil. It was used in the following reaction without further separation.

¹H NMR (300 MHz, CDCl₃): δ = 7.96 (t; *J* = 1.8 Hz; 1H; Ar-H), 7.85 (d; *J* = 1.7 Hz; 2H; Ar-H), 4.61 (s; 2H; CH₂). ¹⁹F NMR (282 MHz, CDCl₃): δ = -80.2 (t; *J* = 9.3 Hz; 6F; CF₃), -87.3 (qt; *J* = 9.2, 3.1 Hz; 4F; CF₂), -123.5 (t; *J* = 3.4 Hz; 4F; CF₂). **TLC**: R_F = 0.40 (cyclohexane).

2.13. 2,4-Bis(3,5-bis((trifluoromethyl)thio)benzyl)glycoluril 20

19 (1147 mg, 3 mmol, 1 eq), Cs_2CO_3 (3910 mg, 12 mmol, 4 eq) and **11** (2026 mg, 6.2 mmol, 2.1 eq) were mixed in dry MeCN (35 mL) for 15 h at 60 °C under an inert atmosphere. The orange mixture was filtered through a Celite pad, and the filtration cake was washed with additional MeCN (2×5 mL). The orange filtrate was cooled to -20°C and a solution of CAN (6579 mg, 12 mmol, 4 eq) in cold water (15 mL) was added. The reaction mixture was mixed at ambient temperature for 3 h. Then it was diluted with water (200 mL), extracted with CH₂Cl₂ (3×75 mL) and the combined extracts were dried over MgSO₄. The drying agent was filtered off, the filtrate was loaded on Celite and purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 29:1) yielding compound **20** as a white solid (1577 mg, 73%).

¹**H NMR** (300 MHz, CDCl₃): δ = 7.94 (s; 2H; Ar-H), 7.74 (s; 4H; Ar-H), 5.65 (s; 2H; NH), 5.25 (s; 2H; CH), 4.82 (d; *J* = 15.9 Hz; 2H; CH₂), 4.39 (d; *J* = 15.9 Hz; 2H; CH₂). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆): δ = 160.5, 157.4,

141.6, 141.2, 137.7, 129.3 (g; J = 308.2 Hz), 125.1 (d; J = 2.3 Hz), 65.9, 43.6. ¹⁹F NMR (282 MHz, CDCl₃): $\delta =$ -42.1. **HRMS** (APCI): m/z calc. for $C_{22}H_{14}F_{12}N_4O_2S_4+H^+$: 722.9881 [M+H]⁺; found: 722.9877. **TLC**: $R_F = 0.17$ (CH₂Cl₂/MeOH 19:1).

19 (2022 mg, 5.3 mmol, 1 eq), Cs₂CO₃ (6891 mg, 21.2 mmol, 4 eq) and **12** (3961 mg, 11.1 mmol, 2.1 eq) were mixed in dry MeCN (74 mL) for 15 h at 60 °C under an inert atmosphere. The orange mixture was filtered through a Celite pad and the filtration cake was washed with additional MeCN (2×15 mL). The orange filtrate was evaporated yielding an orange sticky foam. It was redissolved in MeCN (79 mL) and cooled to -24°C. A solution of CAN (11622 mg, 21.2 mmol, 4 eq) in cold water (26 mL) was added. The reaction mixture was mixed at ambient temperature for 3 h. Then it was diluted with water (250 mL), extracted with CH₂Cl₂ (3×60 mL) and the combined extracts were washed with brine (80 mL) and dried over Na₂SO₄. The drying agent was filtered off, the filtrate was evaporated, and the residue was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 29:1) yielding compound **21** as a yellowish solid (3464 mg, 84%).

¹**H NMR** (500 MHz, CDCl₃): δ = 7.69 (s; 4H; Ar-H), 6.30 (s; 2H; NH), 5.17 (s; 2H; CH), 4.75 (d; *J* = 15.7 Hz; 2H; CH₂), 4.26 (d; J = 15.7 Hz; 2H; CH₂), 3.96 (s; 6H; OCH₃). ¹³C{¹H} NMR (126 MHz, CDCl₃): $\delta = 162.5$, 161.2 157.3, 139.2, 134.1, 129.3 (q, J = 309.0 Hz), 121.7 (q, J = 2.0 Hz), 66.2, 62.9, 44.6. ¹⁹F NMR (471 MHz, CDCl₃): $\delta = -41.3$. **HRMS** (APCl): m/z calc. for C₂₄H₁₈F₁₂N₄O₄S₄+H⁺: 783.0092 [M+H]⁺; found: 783.0088. **TLC**: $R_F = 0.21$ (CH₂Cl₂/MeOH 19:1).

2.15. 2,4-Bis(3,5-bis((pentafluoroethyl)thio)benzyl)glycoluril 22

15, 2.1 eq

ΗN

19, 1 eq

19 (299 mg, 0.78 mmol, 1 eq), Cs₂CO₃ (1018 mg, 3.12 mmol, 4 eq) and a mixture of 15 (700 mg, 1.64 mmol, 2.1 eq) and **18** (460 mg) were mixed in dry MeCN (10 mL) for 48 h at 60 °C under an inert atmosphere. The reaction mixture was filtered through a Celite pad, and the filtration cake was washed with an additional MeCN (2×10 mL). Combined filtrates were loaded on SiO₂ and purified by column

MeCN/H₂O 3:1

0 °C to rt, 3 h

SC₂F₅

ö

22

 SC_2F_5

F₅C₂S

chromatography (SiO₂, cyclohexane/EtOAc 3:1) to yield a yellow honey-like liquid (738 mg). It was dissolved in MeCN (8.1 mL) and cooled to -20° C. A solution of CAN (1188 mg, 2.17 mmol, 4 eq) in cold water (2.7 mL) was added. The reaction mixture was mixed at ambient temperature for 3 h. Then it was diluted with water (50 mL), extracted with EtOAc (3×50 mL) and combined extracts were dried over MgSO₄. The drying agent was filtered off, the filtrate was loaded on SiO₂ and purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 39:1) yielding compound **22** as a white solid (289 mg, 47%).

¹H NMR (500 MHz, CD₃CN): δ = 7.95 (s; 2H; Ar-H), 7.84 (s; 4H; Ar-H), 6.05 (s; 2H; NH), 5.19 (s; 2H; CH), 4.62 (d; *J* = 16.2 Hz; 2H; CH₂), 4.37 (d; *J* = 16.2 Hz; 2H; CH₂). ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 161.6, 158.9, 144.7, 142.6, 140.1, 125.1 (t; *J* = 3.0 Hz), 121.1 (tq; *J* = 288.3, 40.5 Hz), 119.7 (qt; *J* = 286.1, 36.8 Hz), 67.7, 45.4. ¹⁹F NMR (282 MHz, CD₃CN): δ = -83.3 (t; *J* = 3.5 Hz; 12F; CF₃), -92.3 (d; *J* = 3.6 Hz; 8F; CF₂). HRMS (APCI): m/z calc. for C₂₆H₁₄F₂₀N₄O₂S₄+H⁺: 922.9753 [M+H]⁺; found: 922.9745. TLC: *R_F* = 0.17 (CH₂Cl₂/MeOH 19:1).

19 (340 mg, 0.888 mmol, 1 eq), Cs_2CO_3 (1158 mg, 3.55 mmol, 4 eq) and a mixture of **16** (982 mg, 1.87 mmol, 2.1 eq) and **18** (637 mg) were mixed in dry MeCN (10 mL) for 68 h at 60 °C under an inert atmosphere. The reaction mixture was loaded on SiO₂ and purified by column chromatography (SiO₂, cyclohexane/EtOAc 2:1) to yield a yellowish viscous liquid (1039 mg). It was dissolved in MeCN (11.4 mL) and cooled to -20°C. A solution of CAN (1672 mg, 2.17 mmol, 4 eq) in cold water (3.8 mL) was added. The reaction mixture was mixed at ambient temperature for 4 h. Then it was diluted with water (50 mL), extracted with EtOAc (3×50 mL) and combined extracts were dried over MgSO₄. The drying agent was filtered off, the filtrate was loaded on SiO₂ and purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 29:1) yielding compound **23** as an orangish solid (494 mg, 58%).

¹H NMR (500 MHz, CD₃CN): δ = 7.96 (s; 2H; Ar-H), 7.85 (s; 4H; Ar-H), 5.95 (s; 2H; NH), 5.19 (s; 2H; CH), 4.62 (d; *J* = 16.2 Hz; 2H; CH₂), 4.37 (d; *J* = 16.3 Hz; 2H; CH₂). ¹³C{¹H} NMR (126 MHz, CD₃CN): δ = 161.5, 159.0, 144.9, 142.6, 140.3, 124.9 (t; *J* = 3.0 Hz), 123.4 (tt; *J* = 289.5, 33.3 Hz), 118.7 (qt; *J* = 287.4, 3.1 Hz), 110.0 (tqt; *J* = 265.3, 35.3, 36.6 Hz), 67.7, 45.4. ¹⁹F NMR (282 MHz, CD₃CN): δ = -81.0 (t; *J* = 9.5 Hz; 12F; CF₃), -88.2 (qt; *J* = 9.5, 3.5 Hz; 8F; CF₂), -124.1 (d, *J* = 3.9 Hz, 8F; CF₂). HRMS (APCI): m/z calc. for $C_{30}H_{14}F_{28}N_4O_2S_4$ +H⁺: 1122.9625 [M+H]⁺; found: 1122.9609. TLC: *R_F* = 0.17 (CH₂Cl₂/MeOH 19:1).

2.17. 3,5-Bis((tridecafluorohexyl)thio)benzylalcohol 24

 C_6F_{13} -Togni reagent (2379 mg, 4.1 mmol, 2.05 eq) was dissolved in dry MeOH (55 mL) and the mixture was degassed with N₂ by bubbling. Then it was cooled to -78 °C (dry ice/acetone bath). **7** (345 mg, 2 mmol, 1 eq) dissolved in dry MeOH (10 mL) was added using a syringe pump at a rate of 0.5 mL min⁻¹. The reaction mixture was mixed at -78 °C for an additional 30 min, then left to reach ambient temperature. It was loaded on SiO₂ and purified by column chromatography (SiO₂, cyclohexane/acetone 19:1) to yield compound **24** as a colourless oil (993 mg, 61%).

¹**H NMR** (500 MHz, CDCl₃): δ = 7.90 (s; 1H; Ar-H), 7.81 (s; 2H; Ar-H), 4.80 (d; *J* = 5.1 Hz; 2H; CH₂), 1.88 (t; *J* = 5.7 Hz; 2H; OH). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ = 144.4, 144.0, 137.8, 125.3 (t; *J* = 34.7 Hz), 124.8, 123.0 (t; *J* = 34.6 Hz), 121.0–120.4 (m), 118.5 (t; *J* = 33.1 Hz), 116.2 (t; *J* = 33.0 Hz), 114.3–112.3 (m), 111.6–109.9 (m), 109.2–107.9 (m), 106.9–106.0 (m), 63.8. ¹⁹F **NMR** (282 MHz, CDCl₃): δ = -80.9 (tt; *J* = 9.7, 2.6 Hz; 12F; CF₃), -86.6 (tq; *J* = 13.9, 3.2 Hz; 8F; CF₂), -119.0 (tdq; *J* = 13.6, 6.8, 3.5 Hz; 8F; CF₂), -121.4 – -121.6 (m; 8F; CF₂) –122.8 (br s; 8F; CF₂) –126.2 (tdd; *J* = 14.9, 7.1, 3.7 Hz; 8F; CF₂). **TLC**: *R*_F = 0.14 (cyclohexane/EtOAc 9:1).

2.18. 3,5-Bis((tridecafluorohexyl)thio)benzylchloride 25

24 (954 mg, 1.18 mmol, 1 eq) was dissolved in CH_2Cl_2 (35 mL), then $SOCl_2$ (0.86 mL, 11.8 mmol, 10 eq) and pyridine (4.8 μ L, 0.059 mmol, 0.05 eq) were added. The reaction mixture was heated to reflux overnight. After that, the reaction mixture was loaded on Celite. The Celite with absorbed compounds was placed on the top of a SiO₂ plug and the product was eluted using pentane (2×50 mL). Evaporation of filtrates yielded compound **25** as a colourless transparent oil (746 mg, 76%).

¹H NMR (500 MHz, CDCl₃): δ = 7.94 (t; *J* = 1.7 Hz; 1H; Ar-H), 7.834 (d; *J* = 1.7 Hz; 2H; Ar-H), 2.07 (s; 2H; CH₂). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 145.2, 140.5, 139.7, 125.2 (t; *J* = 3.1 Hz), 122.9 (t; *J* = 34.6 Hz), 120.9–120.3 (m), 118.5 (t; *J* = 33.2 Hz), 116.2 (t; *J* = 33.0 Hz), 113.9–112.3 (m), 111.6–110.2 (m), 109.2–108.2 (m), 106.6–106.0 (m), 44.2. ¹⁹F NMR (282 MHz, CD₃CN): δ = -126.2 – -126.3 (m; 6F; CF₃), -86.5 (ddd; *J* = 17.4, 10.4, 3.3 Hz; 4F; CF₂), -119.0 (br s; 4F; CF₂), -121.4 (br s; 4F; CF₂), -122.8 (br s; 4F; CF₂), -126.1 – -126.3 (m; 4F; CF₂), **TLC**: *R_F* = 0.46 (cyclohexane/EtOAc 9:1); 0.39 (cyclohexane); 0.55 (pentane).

2.19. 2,4-Bis(3,5-bis((tridecafluorohexyl)thio)benzyl)glycoluril 26

19 (150 mg, 0.393 mmol, 1 eq), Cs_2CO_3 (513 mg, 1.57 mmol, 4 eq) and **25** (730 mg, 0.826 mmol, 2.1 eq) were mixed in dry MeCN (10 mL) for 21 h at 60 °C under an inert atmosphere. The reaction mixture was filtered, and solids were washed with additional MeCN (2×10 mL). The filter cake was taken into CH_2Cl_2 (40 mL) and washed with water (2×30 mL). The organic phase was dried over MgSO₄ and evaporated. The residue was redissolved in CH_2Cl_2 (5 mL) and cooled to -20 °C. Solution of CAN (863 mg, 1.57 mmol, 4 eq) in cold *t*-BuOH/H₂O (5:1, 6 mL) was added and the reaction mixture was mixed at ambient temperature for 7 h. The reaction mixture was loaded on SiO₂ and purified by column chromatography (SiO₂, PhMe/MeCN 4:1) yielding compound **26** as a yellow solid (245 mg, 36%).

¹H NMR (500 MHz, CDCl₃): δ = 7.93 (s; 2H; Ar-H), 7.76 (s; 4H; Ar-H), 6.29 (s; 2H; NH), 5.16 (s; 2H; CH), 4.83 (d; *J* = 15.9 Hz; 2H; CH₂), 4.31 (d; *J* = 15.7 Hz; 2H; CH₂). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 161.1, 157.3, 144.9, 139.4, 139.3, 125.5, 125.3–125.1 (m), 123.0 (t; *J* = 34.7 Hz), 120.9–120.4 (m), 118.4 (t; *J* = 33.0 Hz), 116.1 (t; *J* = 33.1 Hz), 114.1–112.3 (m), 111.6–110.1 (m), 109.4–108.2 (m), 106.9–106.3 (m), 66.2, 44.9. ¹⁹F NMR (471 MHz, CDCl₃): δ = -81.0 (t; *J* = 10.3 Hz; 12F; CF₃), -86.5 (t; *J* = 14.0 Hz; 8F; CF₂), -119.0 (br s; 8F; CF₂), -121.5 (br s; 8F; CF₂), -122.9 (br s; 8F; CF₂), -126.2 – -126.3 (m; 8F; CF₂). HRMS (APCl): m/z calc. for C₄₂H₁₄F₅₂N₄O₂S₄+H⁺: 1722.9242 [M+H]⁺; found: 1722.9253. TLC: *R_F* = 0.15 (CH₂Cl₂/MeOH 19:1).

2.20. 3,5-Bis((heptadecafluorooctyl)thio)benzylalcohol 27

7 (536 mg, 3.1 mmol, 1 eq) was dissolved in dry CH_2Cl_2 (40 mL) and the mixture was degassed with N_2 by bubbling. Then it was cooled to -78 °C (dry ice/acetone bath). C_6F_{13} -Togni reagent (4340 mg, 6.4 mmol, 2.05 eq) dissolved in dry CH_2Cl_2 (50 mL) was added over 40 min. The reaction mixture was mixed at -78 °C for an additional 30 min, then left to reach ambient temperature. It was loaded on SiO₂ and purified by column chromatography (SiO₂, cyclohexane/CH₂Cl₂/acetone 18:1:1) to yield compound **27** as a white solid (785 mg, 25%), with impurities **17** and **18**.

¹**H NMR** (300 MHz, CDCl₃): δ = 7.90 (s; 1H; Ar-H), 7.81 (s; 2H; Ar-H), 4.80 (d; *J* = 5.5 Hz; 2H; CH₂). ¹⁹**F NMR** (282 MHz, CDCl₃): δ = -80.9 (t; *J* = 10.3 Hz; 6F; CF₃), -86.6 (t; *J* = 14.2 Hz; 4F; CF₂), -118.9 (br s; 4F; CF₂), -121.2 (br s; 4F; CF₂), -121.9 (br s; 8F; CF₂), -122.8 (br s), -126.2 (br s; 4F; CF₂).

2.21. 3,5-Bis((heptadecafluorooctyl)thio)benzyltosylate 28

27 (785 mg, 0.78 mmol, 1 eq) was dissolved in CH₂Cl₂ (10 mL), then TEA (0.16 mL, 1.17 mmol, 1.5 eq) and DMAP (4.8 mg, 0.039 mmol, 0.05 eq) were added. TsCl (145 mg, 0.76 mmol, 0.98 eq) was added portionwise, while the reaction mixture was cooled in an ice bath. The reaction mixture was mixed at ambient temperature for 2 h. After that, the reaction mixture was washed with aqueous HCl (5%, 10 mL), saturated aqueous NH₄Cl (10 mL) and water (10 mL). The organic phase was dried over MgSO₄. After evaporation, a yellowish solid was obtained, it was loaded on SiO₂ and purified by column chromatography (petroleum ether/EtOAc 9:1). The product **28** was obtained as a white solid (482 mg, 54%).

¹H NMR (500 MHz, CDCl₃): δ = 7.91 (t; *J* = 1.6 Hz; 1H; Ar-H), 7.79–7.77 (m; 2H; Ar-H), 7.65 (d; *J* = 1.8 Hz; 2H; Ar-H), 7.32 (d; *J* = 7.9 Hz; 2H; Ar-H), 5.12 (s; 2H; CH₂), 2.43 (s; 3H; CH₃). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 145.6, 145.5, 139.1, 136.9, 133.1, 130.2, 128.1, 125.3, 122.9 (t; *J* = 34.7 Hz), 121.0–120.3 (m), 118.4 (t; *J* = 32.9 Hz), 116.1 (t; *J* = 33.1 Hz), 114.1–110.1 (m), 111.6–112.3 (m), 109.3–108.0 (m), 106.9–105.9 (m), 69.6, 21.7. ¹⁹F NMR (471 MHz, CD₃CN): δ = -80.9 (t; *J* = 10.0 Hz; 6F; CF₃), -86.5 (t; *J* = 14.3 Hz; 4F; CF₂), -118.9 (br s; 4F; CF₂), -121.2 (br s; 4F; CF₂), -121.8 (br s; 4F; CF₂), -121.9 (br s; 4F; CF₂), -122.8 (br s; 4F; CF₂), -126.2 (dq; *J* = 14.7, 6.9 Hz; 6F; CF₃). HRMS (APCl): m/z calc. for C₂₆H₁₄F₂₀N₄O₂S₄+H⁺: 922.9753 [M+H]⁺; found: 922.9745. TLC: *R_F* = 0.29 (cyclohexane/EtOAc 9:1).

2.22. 2,4-Bis(3,5-bis((heptadecafluorooctyl)thio)benzyl)glycoluril 29

19 (57 mg, 0.150 mmol, 1 eq), Cs₂CO₃ (195 mg, 0.600 mmol, 4 eq) and **28** (366 mg, 0.315 mmol, 2.1 eq) were mixed in dry MeCN (5 mL) for 23 h at 60 °C under an inert atmosphere. The reaction mixture was diluted with MeOH (5 mL), and filtered, and solids were washed with MeOH (2×5 mL). The obtained white solid (300 mg of a tetrasubstituted glycoluril intermediate) and 1,4-dimethoxybenzene (41 mg, 0.300 mmol, 2 eq) were dissolved in CHCl₃/TFA (1:1, 10 mL) forming a green solution. It was subjected to microwave irradiation (150 W maximal power) at 120 °C for 90 min. The resulting brown solution was loaded on SiO₂ and purified by column chromatography (SiO₂, hexane/EtOAc 3:1) yielding compound **28** as a brownish solid (93 mg, 29%).

¹**H NMR** (300 MHz, CDCl₃): δ = 7.95 (s; 2H; Ar-H), 7.74 (s; 4H; Ar-H), 5.59 (s; 2H; NH), 5.22 (s; 2H; CH), 4.81 (d; *J* = 16.0 Hz; 2H; CH₂), 4.38 (d; *J* = 16.1 Hz; 2H; CH₂). ¹⁹**F NMR** (282 MHz, CDCl₃): δ = -80.9 (t; *J* = 9.8 Hz; 12F; CF₃), -86.5 (br s; 8F; CF₂), -118.9 (br s; 8F; CF₂), -121.2 (br s; 8F; CF₂), -121.9 (br s; 16F; CF₂), -122.8 (br s; 8F; CF₂), -126.2 (br s; 8F; CF₂). **HRMS** (APCl): m/z calc. for C₅₀H₁₄F₆₈N₄O₂S₄+H⁺: 2122.8987 [M+H]⁺; found: 2122.9006.

2.23. Bambusuril BU1

20 (415 mg, 574 µmol, 1 eq) and paraformaldehyde (21 mg, 689 µmol, 1.2 eq) were suspended in 1,4-dioxane (1.5 mL). Concentrated H₂SO₄ (97.2 µL, 1810 µmol, 3 eq) was added to a warm mixture which dissolved all reactants. The yellow solution was heated to 80 °C for 19 h. Then dioxane (2 mL) was added to the brown suspension and the solid was collected by filtration and washed with 1,4-dioxane (2×1 mL). The solid was dissolved in MeOH (5 mL) and mili-Q water was added (15 mL). The precipitated solid was collected by filtration and washed with mili-Q water (3×5 mL). The product **BU1** was obtained as a white solid (288 mg, 63%). (The product was obtained as a mixture of anion-free BU and BU·H₂SO₄ complex; therefore Me₄NI was added for NMR analysis.)

¹**H NMR** (500 MHz, acetone-*d*₆): δ = 7.96 (s; 24H; Ar-H), 7.93 (s; 12H; Ar-H), 5.95 (s; 12H; CH), 5.14 (d; *J* = 16.5 Hz; 12H; CH₂), 4.99 (d; *J* = 16.7 Hz; 12H; CH₂), 4.15 (s; 12H; CH₂). ¹³C{¹H} **NMR** (126 MHz, acetone-*d*₆): δ = 160.6, 159.9, 144.1, 142.4, 137.72, 130.4 (q; *J* = 307.5 Hz), 126.8 (d; *J* = 1.8 Hz), 70.9, 48.1, 47.9. ¹⁹F **NMR** (471 MHz, acetone-*d*₆): δ = -43.4. **MS** (MALDI): m/z calcd. for C₁₃₈H₈₄F₇₂N₂₄O₁₂S₂₄+Na⁺: 4426.875 [M+Na]⁺; found: 4426.825.

2.24. Bambusuril BU2

21 (1565 mg, 2 mmol, 1 eq) and paraformaldehyde (72 mg, 2.4 μ mol, 1.2 eq) were suspended in 1,4-dioxane (4.0 mL). Concentrated H₂SO₄ (322 μ L, 6 mmol, 3 eq) was added to a warm mixture which dissolved all reactants. The yellow solution was heated to 80 °C for 70 h. The resulting brown suspension was filtered and the solid was washed with mili-Q water (3×10 mL). It was then purified by column chromatography (SiO₂, CH₂Cl₂/acetone 9:1 to 4:1). The product **BU2** was obtained as a white solid (1180 mg, 74%).

HSO₄⁻ templating anion was removed from the **BU2** cavity as follows. **BU2**·H₂SO₄ (40 mg) was dissolved in CHCl₃/acetone (8+1 mL) in a 15 mL centrifugal tube. It was filled to full volume with mili-Q water and the resulting mixture was shaken. Phase separation was accelerated by centrifugation and the aqueous phase was discarded. This was repeated 60 times. The remaining organic solution was transferred to a clean 5 mL round-bottomed flask and evaporated to dryness yielding anion-free **BU2** as a white solid (35 mg, 88% recovery).

¹**H NMR** (500 MHz, MeCN-*d*₃): δ = 7.84 (s; 24H; Ar-H), 5.30 (s; 12H; CH), 4.91 (d; *J* = 16.3 Hz; 12H; CH₂), 4.66 (d; *J* = 16.4 Hz; 12H; CH₂), 4.17 (s; 12H; CH₂), 3.91 (s; 36H; OCH₃). ¹³C{¹H} **NMR** (126 MHz, MeCN-*d*₃): δ = 163.0, 161.5, 159.5, 139.8, 137.6, 130.4 (q; *J* = 308.2 Hz), 71.5, 63.7, 48.7, 48.5. ¹⁹**F NMR** (471 MHz, MeCN-*d*₃): δ = -42.5. **MS** (ESI): m/z calcd. for C₁₅₀H₁₀₈F₇₂N₂₄O₂₄S₂₄+Cl⁻: 4802.9818 [M+Cl]⁻; found: 4802.9677.

2.25. Bambusuril BU3

Glycoluril **22** (92 mg, 100 μ mol, 1 eq) and paraformaldehyde (3.6 mg, 120 μ mol, 1.2 eq) were suspended in 1,4-dioxane (200 μ L). Concentrated H₂SO₄ (16.1 μ L, 300 μ mol, 3 eq) was added to a warm mixture which dissolved all reactants. The yellow solution was heated to 80 °C for 15 h. The reaction mixture was diluted with Et₂O (10 mL) and washed with mili-Q water (2×10 mL). The organic phase was evaporated, and the residue was purified by column chromatography (SiO₂, CH₂Cl₂/acetone 6:1 to 4:1). The product **BU3**·H₂SO₄ was obtained as an off-white solid (51 mg, 54%).

¹**H NMR** (500 MHz, acetone-*d*₆): δ = 8.00 (s; 24H; Ar-H), 7.96 (s; 12H; Ar-H), 5.89 (s; 12H; CH), 5.22 (d; *J* = 17.4 Hz; 12H; CH₂), 5.03 (d; *J* = 16.8 Hz; 12H; CH₂), 4.40 (s; 12H; CH₂). ¹³C{¹H} **NMR** (126 MHz, acetone-*d*₆): δ = 160.4, 159.6, 144.0, 144.0, 125.2, 123.5–115.8 (m), 70.1, 48.4, 48.1. ¹⁹F **NMR** (471 MHz, acetone-*d*₆): δ = -83.2 (t; *J* = 3.9 Hz; 72F; CF₃), -92.3 (s; 48F; CF₂). **MS** (ESI): m/z calcd. for C₁₆₂H₈₄F₁₂₀N₂₄O₁₂S₂₄+Na⁺: 5629.7997 [M+Na]⁺; found: 5629.6603.

2.26. Bambusuril BU4

Glycoluril **23** (112 mg, 100 μ mol, 1 eq) and paraformaldehyde (3.6 mg, 120 μ mol, 1.2 eq) were suspended in 1,4-dioxane (200 μ L). Concentrated H₂SO₄ (16.1 μ L, 300 μ mol, 3 eq) was added to a warm mixture which dissolved all reactants. The yellow solution was heated to 80 °C for 8 h. The reaction mixture was loaded on SiO₂ and purified by column chromatography (SiO₂, hexane/acetone 3:1 to 2:1). The obtained product was sonicated in hexane/Et₂O (4:1, 15 mL) and collected by centrifugation. The product **BU4**·H₂SO₄ was obtained as a white solid (75 mg, 65%).

¹H NMR (500 MHz, acetone-*d*₆): δ = 8.02 (s; 24H; Ar-H), 7.97 (s; 12H; Ar-H), 5.91 (s; 12H; CH), 5.23 (d; *J* = 16.3 Hz; 12H; CH₂), 5.06 (d; *J* = 16.6 Hz; 12H; CH₂), 4.49 (s; 12H; CH₂). ¹³C{¹H} NMR (126 MHz, acetone-*d*₆): δ = 160.7, 159.7, 144.3, 144.0, 125.0, 125.7–107.2 (m), 70.2, 48.4, 48.3. ¹⁹F NMR (471 MHz, acetone-*d*₆): δ = -81.1 (t; *J* = 9.1 Hz; 72F; CF₃), -88.2 (dq; *J* = 10.2, 4.9 Hz; 48F; CF₂), -124.2 (d; *J* = 3.9 Hz; 48F; CF₂). MS (MALDI): m/z calcd. for C₁₈₆H₈₄F₁₆₈N₂₄O₁₂S₂₄+Na⁺: 6826.7213 [M+Na]⁺; found: 6828.318.

2.27. Anion exchange

BU1·H₂SO₄ (~10 mg) was dissolved together with Bu₄NX (~10 mg mL⁻¹, X = Cl, Br, I) in acetone (1-3 mL) in a 15 mL centrifuge tube. The solution was shaken, the solid was precipitated with mili-Q water (10 mL), sonicated and collected by centrifugation. This was repeated 5 times. The solid was then washed with CHCl₃ (2×1 mL) and Et₂O (5 mL). The solid was then transferred to a glass vial and dried in a vacuum. The recovery of **BU1**·BU₄NX was 30-60%.

Figure S4: ¹³C{¹H} APT NMR spectrum of 6 (75 MHz, CDCl₃).

Figure S10: ¹H-¹³C HSQC NMR spectrum of 9 (500 MHz, 126 MHz, CD₂Cl₂).

S23

Figure S14: ¹H-¹³C HSQC NMR spectrum of 10 (500 MHz, 126 MHz, CDCl₃).

Figure S16: ¹H NMR spectrum of 11 (300 MHz, CDCl₃).

110 100 δ (ppm)

Figure S18: ¹H-¹³C HSQC NMR spectrum of 11 (500 MHz, 126 MHz, acetone-*d*₆).

Figure S22: ¹H-¹³C HSQC NMR spectrum of 12 (500 MHz, 126 MHz, CDCl₃).

Figure S24: ¹H NMR spectrum of a mixture of 13 and 17 (300 MHz, CDCl₃).

Figure S26: ¹H NMR spectrum of a mixture of 14 and 17 (300 MHz, CDCl₃).

Figure S28: ¹H NMR spectrum of a mixture of 15 and 18 (300 MHz, CDCl₃).

Figure S30: ¹H NMR spectrum of a mixture of 16 and 18 (300 MHz, CDCl₃).

Figure S32: ¹H NMR spectrum of 20 (300 MHz, CDCl₃).

Figure S34: ¹H-¹³C HSQC NMR spectrum of **20** (500 MHz, 126 MHz, DMSO-*d*₆).

Figure S36: ¹H NMR spectrum of 21 (500 MHz, CDCl₃).

110 100 δ (ppm)

Figure S38: ¹⁹F NMR spectrum of **21** (282 MHz, CDCl₃).

Figure S40: ¹³C{¹H} NMR spectrum of **22** (126 MHz, CD₃CN).

S38

S40

Figure S48: ¹³C{¹H} NMR spectrum of **24** (126 MHz, CDCl₃).

Figure S50: ¹⁹F NMR spectrum of 24 (282 MHz, CDCl₃).

Figure S52: ¹³C{¹H} NMR spectrum of 25 (126 MHz, CDCl₃).

Figure S54: ¹⁹F NMR spectrum of 25 (471 MHz, CDCl₃).

Figure S62: ¹³C{¹H} NMR spectrum of 28 (126 MHz, CDCl₃).

Figure S68: ¹H-¹³C HSQC NMR spectrum of BU1 in the presence of excess Me₄NI (500 MHz, 126 MHz, acetone-*d*₆).

3.24. Bambusuril BU2

Figure S72: ¹H-¹³C HSQC NMR spectrum of BU2 (500 MHz, 126 MHz, MeCN-d₃).

S55

Figure S80: ¹H-¹³C HSQC NMR spectrum of BU4·H₂SO₄ (500 MHz, 126 MHz, acetone-*d*₆).

3.27. Bambusuril BU1 with various anions

Each complex is characterized by unique chemichal shift of macrocyclic protons.^[5]

4. Description of the competition experiment between two bambusurils

To obtain binding affinities of **BU1** and **BU2** we have performed a competition experiment with **BU5** as described previously.^[6] We took advantage of the great resolution of ¹⁹F NMR spectroscopy and the slow exchange rate of BUs with halides. As shown in Figure 2 in the main text, upon mixing anion-free **BU5** with the Bu₄NCl complex of **BU2** in CD₃CN, anion-free **BU5** scavenges a part of the chloride from the **BU2** resulting in the formation of 2 new signals, corresponding to the Bu₄NCl complex of **BU5** and anion-free **BU2**. Simple integration of the corresponding signals and using equation (S1) gives a ratio *R* of association constants of **BU2** and **BU5**.w

$$R = \frac{K_a(\mathbf{BU2} \cdot \mathbf{A}^-)}{K_a(\mathbf{BU5} \cdot \mathbf{A}^-)} = \frac{I(\mathbf{BU5})I(\mathbf{BU2} \cdot \mathbf{A}^-)}{I(\mathbf{BU5} \cdot \mathbf{A}^-)I(\mathbf{BU2})}$$
(S1)

Given that the absolute association constant value for **BU5** is known, the absolute association constant for **BU2** can be determined. The uncertainty of the *R* value (described as the standard deviation σ) is obtained from several experiments using equation (S2), where *R_i* are the values obtained from the individual experiments and \bar{R} is the average value.

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (R_i - \bar{R})^2}$$
(S2)

The absolute value K_a of **BU2** and Bu₄NCl and related uncertainty are obtained from equations (S3) and (S4) respectively.

$$K_a(\mathbf{BU2}) = K_a(\mathbf{BU5}) \cdot R \tag{S3}$$

$$\sigma_{K_a(A^-)} = K_a(A^-) \sqrt{\left(\frac{\sigma_{K_a(BU5)}}{K_a(BU5)}\right)^2 + \left(\frac{\sigma_R}{R}\right)^2}$$
(S4)

For the logarithmic scale presented in Table 1 in the main text, the uncertainty (described by the standard deviation) was recalculated using the following equation:

$$\log_{10}\sigma_{K_a(A^-)} \approx \frac{\sigma_{K_a(A^-)}}{K_a(A^-)\ln 10}$$
 (S5)

4.1. Experimental

For a typical competition experiment, the complex of the first BU with Bu₄NX (X = Cl, Br or I) and an excess of competing anion-free BU are dissolved in CD₃CN by gentle heating. The final concentrations of the bambusurils in the solution range from 50 to 400 μ M. The competition is set up in such a way that the total amount of bambusurils is larger than the anion amount in the sample ($n(BU2)+n(BU5)>n(A^-)$). The prepared sample is measured by ¹⁹F qNMR spectroscopy at 298 K within an hour after its preparation. The experiments were repeated 4-7 times (Table S1) for each combination of the species.

The obtained data were processed by zero-filling to two times the original spectrum size and applying exponential apodization matching average T2*. Automatic baseline correction by polynomial fits (3rd-5th order) was used; only regions of ±10 ppm from the signals of interest were corrected. Phase correction was done when needed. Integration regions were done manually.

Anion-free and complexed forms of the individual bambusurils are characterized by essentially the same T1, which is lower than 1.5 seconds. The usage of a 90° pulse or precisely adjusting the pulse frequency and relaxation delay was found not to be absolutely necessary, as only their ratio is important according to the equation (S1). On the other hand, a good signal-to-noise ratio and good separation and resolution of the integrated signals are required for the experiment. Integration regions were manually picked.

In the ¹⁹F NMR spectrum of some BUs (**BU5** and **BU7** in particular), there are a few minor signals with a lower chemical shift than the main peak of the anion-free bambusuril. The nature of these signals is explained in our previous work.^[5]

4.2. Ratios of association constants obtained from competition experiments

BU	Competing	Anion	R	Bambusuril	Competing	Anion	R
	BU				BU		
BU1	BU5	Chloride	9.493	BU2	BU6	Chloride	3.296
BU1	BU5	Chloride	9.610	BU2	BU6	Chloride	2.764
BU1	BU5	Chloride	9.856	BU2	BU6	Chloride	2.871
BU1	BU5	Chloride	8.402	BU2	BU6	Chloride	3.528
BU1	BU5	Chloride	13.193	BU2	BU6	Chloride	3.808
BU1	BU5	Chloride	14.452	Average			3.25±0.44
BU1	BU5	Chloride	14.766	BU1	BU5	Iodide	19.468
BU1	BU5	Chloride	10.836	BU1	BU5	Iodide	18.701
Average			11.33±2.46	BU1	BU5	Iodide	27.950
BU2	BU5	Chloride	7.100	BU1	BU5	Iodide	22.483
BU2	BU5	Chloride	11.020	BU1	BU5	lodide	21.557
BU2	BU5	Chloride	9.243	BU1	BU5	lodide	24.611
BU2	BU5	Chloride	9.112	BU1	BU5	lodide	20.619
BU2	BU5	Chloride	14.341	Average			22.20±3.20
BU2	BU5	Chloride	14.637	BU2	BU5	Iodide	29.863
BU2	BU5	Chloride	14.588	BU2	BU5	lodide	27.973
Average			11.43±3.11	BU2	BU5	lodide	27.649
BU6	BU5	Chloride	3.482	BU2	BU5	lodide	28.710
BU6	BU5	Chloride	2.123	Average			28.55±0.98
BU6	BU5	Chloride	5.742	BU1	BU2	Iodide	1.252
BU6	BU5	Chloride	4.757	BU1	BU2	Iodide	1.154
Average			4.03±1.57	BU1	BU2	lodide	1.027
BU1	BU2	Chloride	0.946	BU1	BU2	lodide	0.700
BU1	BU2	Chloride	0.973	BU1	BU2	lodide	0.767
BU1	BU2	Chloride	0.949	BU1	BU2	Iodide	0.918
BU1	BU2	Chloride	0.961	BU1	BU2	Iodide	0.911
Average			0.96±0.01	Average			0.96±0.20
BU1	BU6	Chloride	2.465	BU2	BU7	Iodide	3,597
BU1	BU6	Chloride	3.626	BU2	BU7	Iodide	4,180
BU1	BU6	Chloride	2.841	BU2	BU7	lodide	3,005
BU1	BU6	Chloride	2.999	BU2	BU7	Iodide	2,361
BU1	BU6	Chloride	2.954	BU2	BU7	Iodide	2,284
Average			2.98±0.42	Average			3.09±0.81

Table S1: Overview of all *R* values (*K*_a(BU)/*K*_a(Competing BU)) obtained from the individual competition experiments.

BU	Competing	Anion	R
	BU		
BU1	BU5	Bromide	9.363
BU1	BU5	Bromide	7.805
BU1	BU5	Bromide	10.790
BU1	BU5	Bromide	5.843
BU1	BU5	Bromide	7.581
BU1	BU5	Bromide	6.670
BU1	BU5	Bromide	8.197
Average			8.04±1.65
BU2	BU5	Bromide	9.385
BU2	BU5	Bromide	9.640
BU2	BU5	Bromide	11.555
BU2	BU5	Bromide	10.552
BU2	BU5	Bromide	9.640
Average			11.28±0.98
BU5	BU6	Bromide	5.466
BU5	BU6	Bromide	5.478
BU5	BU6	Bromide	5.836
BU5	BU6	Bromide	5.266
BU5	BU6	Bromide	6.528
BU5	BU6	Bromide	6.595
Average			5.86±0.57

Table S1 (continued): Overview of all *R* values ($K_a(BU)/K_a(Competing BU)$) obtained from the individual competition experiments.

4.3. Examples of the results obtained from the competition experiments

Figure S84: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU5** and **BU6** for Cl⁻, giving $K_a(BU6)/K_a(BU5) = 5.74$.

Figure S85: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU1** and **BU2** for Cl⁻, giving $K_a(BU1)/K_a(BU2) = 0.96$.

Figure S86: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU1** and **BU6** for Cl⁻, giving $K_a(BU1)/K_a(BU6) = 2.95$.

Figure S87: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU2** and **BU6** for Cl⁻, giving $K_a(BU2)/K_a(BU6) = 3.30$.

Figure S88: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU1** and **BU5** for I^- , giving $K_a(BU1)/K_a(BU5) =$ 19.47.

Figure S89: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU2** and **BU5** for I^- , giving $K_a(BU2)/K_a(BU5) = 27.65$.

Figure S90: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU1** and **BU2** for I^- , giving $K_a(BU1)/K_a(BU2) = 1.15$.

Figure S91: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU2** and **BU7** for I^- , giving $K_a(BU2)/K_a(BU7) = 4.18$.

Figure S92: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU1** and **BU5** for Br⁻, giving $K_a(BU1)/K_a(BU5) = 10.79$.

Figure S93: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU2** and **BU5** for Br⁻, giving $K_a(BU2)/K_a(BU5) = 11.56$.

Figure S94: ¹⁹F NMR spectrum (CD₃CN) of a competition experiment between **BU5** and **BU6** for Br⁻, giving $K_a(BU6)/K_a(BU5) = 5.48$.

5. Molecular modelling

The calculations were done in Spartan '18, Version 1.4.4. Geometries of BU structures were optimized using semi-empirical method at PM6 level of theory.

BU6 - side view

BU1 – top view BU

BU1 - side view

BU3 – top view

BU3 – side view

Figure S95: Space-filling models of BU5 (top), BU1 (middle) and BU3 (bottom).

6. References

- [1] J. Zhu, J. Chastanet, R. Beugelmans, Synth. Commun. 1996, 26, 2479–2486.
- [2] P. T. Corbett, J. K. M. Sanders, S. Otto, Chem. Eur. J. 2008, 14, 2153–2166.
- [3] V. Havel, T. Sadilová, V. Šindelář, ACS Omega 2018, 3, 4657–4663.
- [4] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176–2179.
- [5] V. Havel and V. Sindelar, ChemPlusChem, 2015, 80, 1601–1606.
- [6] M. Chvojka, D. Madea, H. Valkenier, V. Šindelář, Angew. Chem. Int. Ed. 2024, 63, e202318261, DOI: 10.1002/anie.202318261.