Pyrrolesulfonium salts: Stable, accessible and versatile pseudohalides for Stille couplings.

Jodie L. Hann,^{*a*} Catherine L. Lyall,^{*b*} Gabriele Kociok-Köhn,^{*c*} and Simon E. Lewis^{**a,d*}

- a. Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom. <u>S.E.Lewis@bath.ac.uk</u>
- b. Chemical Characterization Facility, University of Bath, Bath, BA2 7AY, United Kingdom.
- c. Physical Structure Characterization Facility, University of Bath, Bath, BA2 7AY, United Kingdom.
- d. Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom.

ELECTRONIC SUPPORTING INFORMATION

General Experimental Details	Page S2
Preparation of pyrrolylsulfonium salts 2•OTf, 4•OTf and 10•OTf-13•OTf	Page S4
General procedure for Stille coupling of pyrrolylsulfonium salts	Page S8
Preparation of 3-substituted pyrroles 5a-5j	Page S9
Preparation of 2-substituted pyrroles 7a-7f	Page S14
Preparation of multiply-substituted pyrroles 14-18	Page S17
<i>N</i> -deprotection of 5b to give 20	Page S20
NMR and IR spectra	Page S21
References Page	Page S113

General Experimental Details, Synthetic chemistry and compound characterisation.

Reagents

Reagents were purchased from Fluorochem, Merck and Tokyo Chemical Industries. Trifluoromethanesulfonic anhydride was purchased from Merck only and used within 30 days of opening.

Solvents

Reactions were carried out under an atmosphere of nitrogen, by purging the vessel with a flow of nitrogen. Dichloromethane, toluene and methanol were dried and degassed by passing through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system. DMF and *t*-butanol were commercial anhydrous grade, over 4Å molecular sieves. Pet Ether refers to petroleum ether, bp 40-60 °C. Solvents were removed using Büchi rotary evaporators and with high vacuum on a Schlenk line.

Melting Points

Capillary melting points were recorded on a Büchi 535 melting point apparatus and are uncorrected.

NMR Spectroscopy

¹H, ¹³C and ¹⁹F NMR spectra were obtained using a 500 MHz Agilent ProPulse 500 or a 400 MHz Bruker Avance NEO NMR spectrometer, for which proton decoupling was active for ¹³C NMR. Spectra were acquired at 298 K and were referenced to residual solvent peaks. Chemical shifts are reported in parts per million (ppm) relative to residual chloroform (δ = 7.26 ppm, ¹H; 77.16 ppm, ¹³C) or DMSO (δ = 2.50 ppm, ¹H; 39.52 ppm, ¹³C). Coupling constants, *J*, reported in Hz, were calculated using MestreNova x64 to the nearest 0.1 Hz. ¹H and ¹³C{¹H} assignments for novel compounds are corroborated though 2D NMR experiments (COSY, NOESY, HSQC, HMBC).

Infrared Spectroscopy

Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum 100 ATR-FTIR spectrometer with only selected absorbances quoted as v in cm^{-1} .

Mass Spectrometry

For mass spectrometry a microTOF electrospray time-of-flight (ESITOF) mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany) was used. Data are reported in the form of m/z. The observed mass and isotope pattern matched the corresponding theoretical values as calculated from the expected molecular formula.

Chromatography

Analytical thin-layer chromatography was performed on Merck silica gel 60 F254 aluminium-backed plates. Visualisation was accomplished with UV light (254 nm), and vanillin stain. Automated flash column chromatography (normal phase) was performed using a Teledyne ISCO CombiFlash NextGen 300+ system equipped with UV and ELSD detectors, using 4 - 40g silica columns. RediSep[®] Bronze columns (40 - 60 μ m particle size) were used for the purification of all compounds, except *N*-trisyl protected Stille coupling products **5a-5j**, for which RediSep[®] Gold columns (20 - 40 μ m particle size) were required to achieve the stated isolated yields.

X-ray Crystallography

Intensity data for **2**•**PF**₆ were collected at 150(2) K on a Rigaku Xcalibur, EosS2 single crystal diffractometer using graphite monochromated Mo-K α radiation (λ = 0.71073 Å) and for **5f** on a Rigaku SuperNova Dual EosS2 single crystal diffractometer using monochromated Cu-K α radiation (λ = 1.54184 Å). Unit cell determination, data collection data reduction and absorption correction were performed using the CrysAlisPro software¹. The structures were solved with SHELXT² and refined by a full-matrix least-squares procedure based on F² (SHELXL-2018-19/3)². All non-hydrogen atoms were refined anisotropically. Additional programmes used for analysing data and their graphical manipulation included SHELXIe³, ORTEP3 for windows⁴ and Mercury.⁵

Preparation of pyrrolylsulfonium salts 2•OTf, 4•OTf and 10•OTf-13•OTf

General Procedure A for the Synthesis of Pyrrolyl Sulfonium salts

The pyrrole (1.0 equiv) was added to a stirred solution of sulfoxide (1.0 equiv) in dry CH_2Cl_2 (c = 0.32 M) in a round bottom flask under a nitrogen atmosphere. Trifluoromethanesulfonic anhydride (2.0 equiv) was added dropwise at stated temperature, and then stirred until consumption of pyrrole via TLC. The reaction was diluted with CH_2Cl_2 , and washed with 1 M Na₂CO₃ (aq), and then with brine. The aqueous phases were combined and extracted with CH_2Cl_2 (x 3). The organic phases were then combined. (An additional wash with KPF₆ (aq) may also be performed to effect anion exchange at this point if required). The combined organic phase was then dried over MgSO₄ and filtered, then the filtrate was concentrated in *vacuo*. Purification was performed by dissolution of the crude material in MeCN, which was then extracted with 3 portions of an equal volume of hexane. The MeCN layer was then concentrated to dryness and the material was triturated with hexane before drying under high vacuum.

General Procedure B for the Synthesis/isomerisation of Pyrrolyl Sulfonium salts with added Brønsted acid.

The pyrrole (1.0 equiv) was added to a stirred solution of sulfoxide (1.0 equiv) in dry CH_2Cl_2 (c = 0.32 M) in a round bottom flask under a nitrogen atmosphere, followed by trifluoromethanesulfonic acid(3.0 equiv). Trifluoromethanesulfonic anhydride (2.0 equiv) was added dropwise at stated temperature, and then stirred until until full isomerisation observed via ¹H-NMR spectroscopy of reaction aliquots. The reaction was diluted with CH_2Cl_2 , and washed with 1 M Na₂CO₃ (aq), and then with brine. The aqueous phases were combined and extracted with CH_2Cl_2 (x 3). The organic phases were then combined. (An additional wash with KPF₆ (aq) may also be performed to effect anion exchange at this point if required). The combined organic phase was then dried over MgSO₄ and filtered, then the filtrate was concentrated in *vacuo*. Purification was performed by dissolution of the crude material in MeCN, which was then extracted with 3 portions of an equal volume of hexane. The MeCN layer was then concentrated to dryness and the material was triturated with hexane before drying under high vacuum.

Diphenyl(1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium trifluoromethanesulfonate (2•OTf)

The starting material (*N*-tosylpyrrole) was prepared as reported previously.⁶ **2**•**OTf** was prepared using *General Procedure A* (reaction time: 5 h), followed by recrystallisation from MeOH. Black crystals, 85%, m.p. 97-98 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 8.24 (dd, J = 3.3, 1.7 Hz, 1H, H⁴), 7.91–7.85 (m, 2H, H¹³), 7.81–7.74 (m, 8H, H1^{11,12}), 7.71 (d, J = 8.4 Hz, 2H, H⁶), 7.41 (d, J = 8.4 Hz, 2H, H⁷), 6.81–6.71 (m, 1H, H³), 6.67 (dd, J = 4.0, 1.7 Hz, 1H, H²), 2.08 (s, 3H, H⁹) ppm. ¹³C NMR (101 MHz, DMSO- d_6) δ 147.4 (C⁸), 134.7 (C¹³), 133.0 (C⁵), 131.8 (C⁴), 131.5 (C¹¹/C¹²), 130.8 (C¹¹/C¹²), 130.7 (C⁷), 127.8 (C²), 127.5 (C⁶), 125.2 (C¹⁰), 115.4 (C³), 111.0 (C¹), 21.2 (C⁹) ppm. HRMS (ESI+): calc. for C₂₃H₂₀NO₂S₂ [M]⁺ 406.0930, found 406.0928. IR (neat) 3056.2, 1476.2, 1593.9, 1192.0, 1379.3, 815.6 cm⁻¹

5-(1-((2,4,6-Triisopropylphenyl)sulfonyl)-1*H*-pyrrol-3-yl)-5*H*-thianthren-5-ium trifluoromethane sulfonate (4•OTf)

The starting material (*N*-trisylpyrrole) was prepared as reported previously.⁷ **4**•**OTf** was prepared using *General Procedure B* (reaction time: 3 h), followed by purification by column chromatography (SiO₂, CH₂Cl₂–MeOH). Grey powder, 84%, m.p. 80-85°C

¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 7.5 Hz, 2H, H⁶), 7.83 – 7.74 (m, 3H, H¹), 7.72 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.64 (dd, *J* = 7.5, 1.3 Hz, 2H), 7.19 (s, 2H, H¹³), 7.03 (dd, *J* = 3.4, 2.2 Hz, 1H, H⁴), 6.57 (dd, *J* = 3.1, 1.2 Hz, 1H, H³), 3.88 (hept, *J* = 6.8 Hz, 2H, H¹⁵), 2.90 (h, *J* = 7.1 Hz, 1H, H¹⁷), 1.25 (d, *J* = 6.9 Hz, 6H, H¹⁸), 1.09 (d, *J* = 6.6 Hz, 12H, H¹⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 152.4, 135.5, 134.44, 134.41, 130.4, 129.8, 128.5, 125.8, 125.0, 123.0, 120.5, 112.0, 107.5, 34.5, 30.0, 24.6, 23.5 ppm. HRMS (ESI+) m/z calcd. for (C₃₁H₃₄NO₂S₃) [M]⁺ 548.1746, found 548.1479. IR (neat) 2960.8, 1598.0, 1254.4, 884.2 cm⁻¹

(4-Acetyl-1-(*p*-toluenesulfonyl)-1*H*-pyrrol-2-yl)diphenylsulfonium trifluoromethanesulfonate (10•OTf)

The starting material (3-acetyl-*N*-tosylpyrrole) was prepared as reported previously.⁶ **10**•**OTf** was prepared using *General Procedure A*, followed by purification by column chromatography (SiO₂, CH₂Cl₂–MeOH). Brown gum, 23%.

¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 1.9 Hz, 1H, H⁴), 8.13–8.07 (m, 2H, H¹²), 7.80–7.64 (m, 10H, H⁸⁻¹⁰), 7.56–7.52 (m, 2H, H¹³), 6.86 (d, *J* = 1.9 Hz, 1H, H²), 2.47 (s, 3H, H¹⁵), 2.46 (s, 3H, H⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 190.9 (C⁵), 148.7, 134.9, 133.0, 132.1 (C⁴), 131.9, 131.72, 131.65, 131.3, 130.9, 128.6 (C¹²), 124.5 (C²), 112.8, 27.4 (C⁶), 21.6 (C¹⁵) ppm. HRMS (ESI⁺): calc. C₂₅H₂₂NO₃S₂⁺ [M]⁺ 448.1036, found 448.1039. IR (neat) 1681.7, 1260.7, 1146.3, 752.0 cm⁻¹

5-(4-Oxo-1-(*p*-toluenesulfonyl)-4,5,6,7-tetrahydro-1*H*-indol-2-yl)-5*H*-thianthren-5-ium trifluoromethanesulfonate (11•OTf)

The starting material (1-(*p*-toluenesulfonyl)-1,5,6,7-tetrahydro-4*H*-indol-4-one) was prepared as reported previously.⁸ **11**•**OTf** was prepared using *General Procedure A*, followed by purification by column chromatography (SiO₂, CH₂Cl₂–MeOH). Beige powder, 60%

¹H NMR (400 MHz, CDCl₃) δ 8.63 (dd, *J* = 7.4, 2.0 Hz, 2H, H¹⁰), 7.88 (dd, *J* = 7.5, 1.5 Hz, 2H, H¹³), 7.79–7.70 (m, 6H, H^{11,12,16}), 7.42 (d, *J* = 8.0 Hz, 2H, H¹⁷), 6.96 (s, 1H, H²), 2.76 (t, *J* = 6.1 Hz, 2H, H⁵), 2.50–2.42 (m, 2H, H⁷), 2.44 (3H, s, H¹⁹), 2.06 (app quint, *J* = 6.2 Hz, 2H, H⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 193.0 (C⁸), 147.9, 146.6, 142.2, 137.0, 135.7 (C¹⁰), 134.6, 132.5, 131.1 (C¹⁷), 130.4 (C¹³), 130.1, 128.3, 127.3 (C²), 121.5, 118.4, 36.5 (C⁷), 22.8 (C⁶), 22.5 (C⁵), 22.0 (C¹⁹) ppm. HRMS (ESI⁺): calc. C₂₇H₂₂NO₃S₃⁺ [M]⁺ 504.0756, found 504.0749. IR (neat) 1673.1, 1430.6, 1387.4, 1028.7, 911.0 cm⁻¹

5-(5-Formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate (12•OTf)

The starting material (1-methyl-2-pyrrolecarboxaldehyde) was purchased from Fluorochem. **12**•**OTf** was prepared using *General Procedure A*; product precipitated from the CH₂Cl₂ reaction solvent upon standing. White powder, 47%, m.p. 108-111 °C.

¹H NMR (500 MHz, CDCl₃) δ 9.51 (s, 1H, H⁶), 8.43 (dd, *J* = 7.8, 1.4 Hz, 2H, H⁹), 8.26 (d, *J* = 1.9 Hz, 1H, H¹), 7.82 (dd, *J* = 7.8, 1.3 Hz, 2H, H, H¹²), 7.73 (app td, *J* = 7.8, 1.6 Hz, 2H, H¹¹), 7.67 (app td, *J* = 7.8, 1.4 Hz, 2H, H¹⁰), 7.12 (d, *J* = 1.9 Hz, 1H, H³), 3.96 (s, 3H, H⁷) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 179.5 (C⁵), 137.4 (C¹), 135.5 (C⁸), 134.4 (C¹¹), 134.1 (C⁴), 133.9 (C⁹), 130.5 (C¹⁰), 130.1 (C¹²), 122.7 (C³), 121.5 (C¹³), 103.3 (C²), 37.9 (C⁷) ppm. HRMS (ESI⁺): calc. C₁₈H₁₅NOS₂⁺ [M]⁺ 324.0511, found 342.0827. IR (neat) 1660.3, 1443.4, 1003.1, 701.9 cm⁻¹.

5-(1,2,5-Trimethyl-1*H*-pyrrol-3-yl)-5*H*-thianthren-5-ium trifluoromethanesulfonate (13•OTf)

The starting material (1-methyl-2-pyrrolecarboxaldehyde) was purchased from Tokyo Chemical Industries. **13**•**OTf** was prepared using *General Procedure A*. Brown amorphous solid, 75%

¹H NMR (400 MHz, CDCl₃) δ 7.84–7.76 (m, 2H, H⁹), 7.67–7.56 (m, 6H, H¹⁰⁻¹²), 5.97 (s, 1H, H³), 3.62 (s, 3H, H⁶), 2.55 (s, 3H, H⁷), 2.30 (s, 3H, H⁵) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 136.3, 132.8, 132.7, 130.33, 130.25, 128.8, 127.4, 105.7, 86.9, 32.0, 12.9, 11.5 ppm. HRMS (ESI+) m/z calcd. for (C₁₉H₁₈NS₂) [M]⁺ 324.0875, found 324.0870. IR (neat) 3107.0, 1444.0, 812.2, 706.0 cm⁻¹.

General method for Optimised Stille Cross-Couplings:

 $Pd_2(dba)_3$ (2 mol%), AsPh₃ (16 mol%), pyrrolyl sulfonium salt (1.0 equiv) and tributylorganostannane (2.2 equiv) were added to a round bottom flask and 3 evacuation/N₂ fill cycles were performed. DMF (dry, c = 0.12 M) was added, and the reaction was stirred at 50 °C for 16-20 hours. The reaction was then concentrated under vacuum and filtered through a plug of celite with CH₂Cl₂. The filtrate was concentrated under vacuum, and the crude mixture purified via column chromatography (SiO₂, EtOAc–Pet Ether).

NOTE: See the section on chromatography in the "General Experimental Details" for details of the stationary phases used for chromatographic purification of the coupling products.

3-Phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5a)

White powder, 76%, m.p. 108-111 °C

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.8 Hz, 2H, H⁶), 7.38–7.32 (m, 3H, H^{4,7}), 7.23 (t, *J* = 7.2 Hz, 1H, H⁸), 7.21 (s, 2H, H¹¹), 7.13 (dd, *J* = 2.8, 2.8 Hz, 1H, H¹), 6.58 (dd, *J* = 3.4, 1.7 Hz, 1H, H³), 4.21 (hept, *J* = 6.7 Hz, 2H, H¹⁵), 2.92 (hept, *J* = 6.8 Hz, 1H, H¹³), 1.26 (d, *J* = 6.9 Hz, 6H, H¹⁴), 1.21 (d, *J* = 6.8 Hz, 12H, H¹⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.8 (C¹²), 151.7 (C¹⁰), 134.0 (C⁵), 131.0 (C⁹), 128.9 (C⁷), 128.4 (C²), 127.0 (C⁸), 125.8 (C⁶), 124.5 (C¹¹), 120.9 (C¹), 115.7 (C⁴), 110.8 (C³), 34.4 (C¹³), 29.8 (C¹⁵), 24.8 (C¹⁶), 23.6 (C¹⁴) ppm. HRMS (ESI+) m/z calcd. for (C₂₅H₃₁NO₂S) [M+H]⁺ 410.2154, found 410.2153. IR (neat) 3137.7, 1447.2, 1263.4, 768.0 cm⁻¹

3-(4-Fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5b)

White powder, 58%, m.p. 105-110 °C

¹H NMR (400 MHz, CDCl₃) δ 7.46-7.39 (m, 2H, H⁶), 7.29 (app t, *J* = 2.0 Hz, 1H, H¹), 7.21 (s, 2H, H¹¹), 7.12 (dd, *J* = 3.3, 2.3 Hz, 1H, H⁴), 7.03 (app t, *J* = 8.7 Hz, 2H, H⁷), 6.52 (dd, *J* = 3.3, 1.7 Hz, 1H, H³), 4.20 (hept, *J* = 6.8 Hz, 2H, H¹³), 2.92 (hept, *J* = 6.9 Hz, 1H, H¹⁵), 1.26 (d, *J* = 6.9 Hz, 6H, H¹⁶), 1.20 (d, *J* = 6.8 Hz, 12H, H¹⁴) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.0 (¹*J*_{CF} = 245.7 Hz, C⁸), 154.9 (C¹²), 151.7 (C¹⁰), 130.9 (C⁹), 130.2 (⁴*J*_{CF} = 3.3 Hz, C⁵), 127.5 (C²), 127.3 (³*J*_{CF} = 7.9 Hz, C⁶), 124.5 (C¹¹), 121.0 (C⁴), 115.8 (²*J*_{CF} = 21.6 Hz, C⁷), 115.4 (C¹), 110.7 (C³), 34.4 (C¹⁵), 29.8 (C¹³), 24.8 (C¹⁴), 23.6 (C¹⁶) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.7 (tt, *J* = 9.1, 4.6 Hz). HRMS (ESI+) m/z calcd. for (C₂₅H₃₁FNO₂S) [M+Na]⁺ 450.1873; found 450.1885. IR (neat) 2964.0, 1344.9, 1060.8, 778.0 cm⁻¹.

3-(4-(Benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5c)

White powder, 75%, m.p. 140-142 °C

¹H NMR (400 MHz, CDCl₃) δ 7.46–7.35 (m, 6H, H^{6,11,12}), 7.34-7.30 (m, 1H, H¹³), 7.24 (app t, *J* = 2.0 Hz, 1H, H¹), 7.20 (s, 2H, H¹⁶), 7.10 (dd, *J* = 3.2, 2.2 Hz, 1H, H⁴), 6.96 (d, *J* = 8.8 Hz, 2H, H⁷), 6.51 (dd, *J* = 3.3, 1.7 Hz, 1H, H³), 5.07 (s, 2H, H⁹), 4.20 (hept, *J* = 6.7 Hz, 2H, H²⁰), 2.91 (hept, *J* = 6.9 Hz, 1H, H¹⁸), 1.26 (d, *J* = 6.9 Hz, 6H, H¹⁹), 1.20 (d, *J* = 6.7 Hz, 12H, H²¹) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (C⁸), 154.7 (C¹⁷), 151.7 (C¹⁵), 137.1 (C¹⁰), 131.1 (C¹⁴), 128.8 (C¹²), 128.12 (C¹³), 128.09 (C²), 127.6 (C¹¹), 127.0 (C⁵) 126.9 (C⁶), 124.5 (C¹⁶), 120.8 (C⁴), 115.3 (C⁷), 114.9 (C¹), 110.7 (C³), 70.2 (C⁹), 34.4 (C¹⁸), 29.7 (C²⁰), 24.8 (C²¹), 23.6 (C¹⁹) ppm. HRMS (ESI+) m/z calcd. for (C₃₂H₃₇NO₃S) [M+H]⁺ 516.2567, found 516.2565. IR (neat) 2693.3, 1363.6, 1052.2, 795.0 cm⁻¹.

3-(4-Chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5d)

White powder, 54%, m.p. 85-89 °C

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.6 Hz, 2H, H⁶), 7.34–7.28 (m, 3H, H^{4or1,7}), 7.21 (s, 2H), 7.11 (dd, *J* = 3.3, 2.3 Hz, 1H, H^{1or4}), 6.53 (dd, *J* = 3.3, 1.7 Hz, 1H, H³), 4.19 (hept, *J* = 6.8 Hz, 2H, H¹⁵), 2.92 (hept, *J* = 6.9 Hz, 1H, H¹³), 1.26 (d, *J* = 6.9 Hz, 6H, H¹⁴), 1.20 (d, *J* = 6.8 Hz, 12H, H¹⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.9 (C¹²), 151.8 (C¹⁰), 132.6 (C⁵/C⁸), 132.5 (C⁵/C⁸), 130.8 (C⁹), 129.0 (C⁷), 127.2 (C²), 127.0 (C⁶), 124.6 (C¹¹), 121.1 (C¹), 115.8 (C⁴), 110.6 (C³), 34.4 (C¹³), 29.8 (C¹⁵), 24.8 (C¹⁶), 23.6 (C¹⁴) ppm. HRMS (ESI+) m/z calcd. for (C₂₅H₃₀CINO₂S) [M+Na]⁺ 466.1583, found 466.1590. IR (neat) 1585.0, 1042.1, 839.2 cm⁻¹

3-(3-(Trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5e)

White crystals, 72%, m.p. 60-63 °C

¹H NMR (400 MHz, CDCl₃) δ 7.70–7.68 (m, 1H, H⁶), 7.64 (dd, *J* = 7.2, 1.8 Hz, 1H, H¹⁰), 7.50–7.43 (m, 2H, H^{8,9}), 7.41 (dd, *J* = 2.0, 2.0 Hz, 1H, H¹), 7.22 (s, 2H, H¹⁴), 7.13 (dd, *J* = 3.3, 2.3 Hz, 1H, H⁴), 6.59 (dd, *J* = 3.3, 1.7 Hz, 1H, H³), 4.19 (hept, *J* = 6.8 Hz, 2H, H¹⁸), 2.92 (hept, *J* = 6.9 Hz, 1H, H¹⁶), 1.26 (d, *J* = 6.9 Hz, 6H, H¹⁷), 1.21 (d, *J* = 6.8 Hz, 12zH, H¹⁹) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.1 (C¹⁵), 151.8 (C¹³), 134.9 (C⁵), 131.3 (q, ²*J*_{CF} = 32 Hz, C⁷), 130.7 (C¹²), 129.4 (C⁹), 128.9 (C¹⁰), 127.0 (C²), 126.7 (q, ¹*J*_{CF} = 240.4 Hz, C¹¹), 124.6 (C¹⁴), 123.5 (q, ³*J*_{CF} = 3.9 Hz, C⁸), 122.4 (q, ³*J*_{CF} = 3.7 Hz, C⁶), 121.3 (C⁴), 116.2 (C¹), 110.5 (C³), 34.4 (C¹⁶), 29.8 (C¹⁸), 24.8 (C¹⁹), 23.6 (C¹⁷) ppm. HRMS (ESI+) m/z calcd. for (C₂₆H₃₀F₃NO₂S) [M+H]⁺ 478.2028, found 478.2029. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.76 ppm. IR (neat) 2959.4, 1598.1, 1124.5, 790.9 cm⁻¹.

3-(Thiophen-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5f)

Colourless crystals, 80%, m.p. 113-118 °C

¹H NMR (400 MHz, CDCl₃) δ 7.27 (app t, J = 2.0 Hz, 1H, H⁴), 7.20 (s, 2H, H¹¹), 7.15 (dd, J = 5.1, 1.2 Hz, 1H, H⁸), 7.08 (dd, J = 3.3, 2.3 Hz, H¹), 7.07 (dd, J = 3.6, 1.2 Hz, H⁶), 6.99 (dd, J = 5.1, 3.6 Hz, 1H, H⁷), 6.47 (dd, J = 3.3, 1.7 Hz, 1H, H³), 4.19 (hept, J = 6.8 Hz, 2H, H¹⁵), 2.91 (hept, J = 6.8 Hz, 1H, H¹³), 1.26 (d, J = 6.9 Hz, 6H, H¹⁴), 1.20 (d, J = 6.7 Hz, 12H, H¹⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.9 (C¹²), 151.8 (C¹⁰), 137.1 (C⁵), 130.9 (C⁹), 127.7 (C⁷), 124.6 (C¹¹), 123.5 (C⁸), 123.0 (C⁶), 122.4 (C²), 120.9 (C¹), 115.5 (C⁴), 111.2 (C³), 34.4 (C¹³), 29.8 (C¹⁵), 24.8 (C¹⁶), 23.6 (C¹⁴) ppm. HRMS (ESI+) m/z calcd. for (C₂₃H₂₉NO₂S₃) [M+H]⁺ 416.1713, found 416.1714. IR (neat) 2954.2, 2925.8, 1593.7, 1260.2, 1029.5, 750.0 cm⁻¹.

3-(Furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5g)

White powder, 77%, m.p. 122-125 °C

¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 1.8, 0.8 Hz, 1H, H⁸), 7.31 (dd, *J* = 2.3, 1.6 Hz, 1H, H^{10r4}), 7.22 (s, 2H, H¹¹), 7.12 (dd, *J* = 3.3, 2.3 Hz, 1H, H^{10r4}), 6.49 (dd, *J* = 3.3, 1.6 Hz, 1H, H³), 6.39 (dd, *J* = 3.3, 1.8 Hz, 1H, H⁷), 6.36 (dd, *J* = 3.4, 0.8 Hz, 1H, H⁶,), 4.20 (hept, *J* = 6.8 Hz, 2H, H¹⁵), 2.92 (hept, *J* = 6.9 Hz, 1H, H¹³), 1.27 (d, *J* = 7.0 Hz, 6H, C¹⁴), 1.21 (d, *J* = 6.8 Hz, 12H, C¹⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.9 (C¹²), 151.8 (C¹⁰), 149.4 (C⁵), 141.1 (C⁸), 130.8 (C⁹), 124.5 (C¹¹), 120.8 (C^{10r4}), 119.5 (C²), 115.0 (C^{10r4}), 111.3 (C⁷), 109.6 (C³), 104.6 (C⁶), 34.4 (C¹⁵), 29.7 (C¹⁵), 24.8 (C¹⁶), 23.6 (C¹⁴) ppm. HRMS (ESI+) m/z calcd. for (C₂₃H₂₉NO₃S) [M+H]⁺ 400.1941, found 400.1942. IR (neat) 1593.4, 1475.4, 1222.0, 815.7, 745.9 cm⁻¹.

3-(Prop-1-yn-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5h)

White powder, 71%, m.p. 130-133 °C

¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 2H, H¹⁰), 7.09 (dd, *J* = 2.0, 2.0 Hz, 1H, H⁴), 7.01 (dd, *J* = 3.2, 2.3 Hz, 1H, H¹), 6.26 (dd, *J* = 3.2, 1.6 Hz, 1H, H³), 4.10 (hept, *J* = 6.7 Hz, 2H, H¹⁴), 2.90 (hept, *J* = 7.0 Hz, 1H, H¹²), 1.98 (s, 3H, H⁷), 1.25 (d, *J* = 6.9 Hz, 6H, H¹³), 1.17 (d, *J* = 6.8 Hz, 12H, H¹⁵) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.0 (C¹¹), 151.8 (C⁹), 130.6 (C⁸), 124.5 (C¹⁰), 122.4 (C⁴), 119.8 (C¹), 114.8 (C³), 109.4 (C²), 86.1 (C^{5or6}), 72.9 (C^{5or6}), 34.4 (C¹²), 29.7 (C¹⁴), 24.8 (C¹⁵), 23.6 (C¹³), 4.4 (C⁷) ppm. HRMS (ESI+) m/z calcd. for (C₂₂H₂₉NO₂S) [M+H]⁺ 372.1997, found 372.1995. IR (neat) 2960.1, 1459.1, 950.7, 589.9 cm⁻¹.

3-(Phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole (5i)

Beige solid, 71%

¹H NMR (400 MHz, CDCl₃) δ 7.48-7.44 (m, 2H, H⁸), 7.35-7.29 (m, 3H, H⁹, H¹⁰), 7.27-7.25 (m, 1H, H⁴) 7.21 (s, 2H, H¹³), 7.06 (app t, *J* = 2.7 Hz, 1H, H¹), 6.40 (dd, *J* = 3.2, 1.6 Hz, 1H, H³), 4.14 (hept, *J* = 6.7 Hz, 2H, H¹⁷), 2.92 (hept, *J* = 7.0 Hz, 1H, H¹⁵), 1.26 (d, *J* = 7.0 Hz, 6H, H¹⁶), 1.20 (d, *J* = 6.7 Hz, 12H, H¹⁸) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.2 (C¹⁴), 151.9 (C¹²), 131.5 (C⁸), 130.4 (C¹¹), 128.4 (C⁹), 128.2 (C¹⁰), 124.6 (C¹³), 123.4 (C⁷), 122.9 (C⁴), 120.1 (C¹), 114.8 (C³), 108.8 (C²), 89.7 (C⁶), 82.9 (C⁵), 34.4 (C¹⁵), 29.8 (C¹⁷), 24.8 (C¹⁸), 23.6 (C¹⁶) ppm. HRMS (ESI+) m/z calcd. for (C₂₇H₃₁NO₂S) [M+H]⁺ 434.2154; found 434.2149. IR (neat) 3145.7, 2850.4, 2237.0, 1292.0, 702.0 cm⁻¹.

2,5-Bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene (5j)

Yellow powder, 63% m.p. 180-185 °C

¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J* = 2.3, 1.7 Hz, 2H, H⁴), 7.20 (s, 4H, H⁹), 7.07 (dd, *J* = 3.3, 2.3 Hz, 2H, H⁶), 6.94 (s, 2H, H²), 6.45 (dd, *J* = 3.3, 1.7 Hz, 2H, H⁵), 4.17 (hept, *J* = 6.7 Hz, 4H, H¹³), 2.91 (hept, *J* = 6.9 Hz, 2H, H¹¹), 1.26 (d, *J* = 6.9 Hz, 12H, H¹²), 1.20 (d, *J* = 6.8 Hz, 24H, H¹⁴) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.9 (C¹⁰), 151.8 (C⁸), 135.0 (C¹), 130.8 (C⁷), 124.6 (C⁹), 123.5 (C²), 122.3 (C³), 120.9 (C⁶), 115.3 (C⁴), 110.9 (C⁵), 34.4 (C¹¹), 29.8 (C¹³), 24.8 (C¹⁴), 23.6 (C¹²) ppm. HRMS (ESI+) m/z calcd. for (C₄₂H₅₄N₂O₄S₃) [M+H]⁺ 747.3319, found 747.3326. IR (neat) 2954.2, 2925.8, 1551.1, 1171.3, 837.0 cm⁻¹.

2-Phenyl-1-(p-toluenesulfonyl)-1H-pyrrole (7a)

White powder, 71%

¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 3.5, 1.7 Hz, 1H), 7.39 – 7.20 (m, 8H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.31 (app t, *J* = 3.3 Hz, 1H), 6.16 (dd, *J* = 3.4, 1.8 Hz, 1H), 2.36 (s, 3H) ppm. Data in agreement with those previously reported.⁹

2-(4-(Benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole (7b)

White powder, 54%, m.p. 110-113 °C

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.0 Hz, 2H, H¹¹), 7.45–7.40 (m, 3H, H^{4,12}), 7.36 (t, *J* = 7.2 Hz, 1H, H¹³), 7.22 (d, *J* = 8.3 Hz, 2H, H¹⁵), 7.14 (d, *J* = 8.1 Hz, 2H, H⁶), 7.07 (d, *J* = 8.1 Hz, 2H, H¹⁶), 6.91 (d, *J* = 8.1 Hz, 1H, H⁷), 6.29 (dd, *J* = 3.3, 0.9 Hz, 1H, H³), 6.10 (dd, *J* = 3.3, 1.6 Hz, 1H, H²), 5.12 (s, 2H, H⁹), 2.34 (s, 3H, H¹⁸) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 158.8 (C⁸), 144.6 (C¹⁷), 136.9 (C¹⁴), 135.71 (C¹/C¹⁰), 135.69 (C¹/C¹⁰), 132.3 (C⁶), 129.3 (C¹⁶), 128.7 (C¹²), 128.1 (C¹³), 127.6 (C¹¹), 127.2 (C¹⁵), 124.0 (C⁵), 123.7 (C⁴), 115.3 (C²), 113.8 (C⁷), 111.9 (C³), 70.0 (C⁹), 21.6 (C¹⁸) ppm. HRMS (ESI+) m/z calcd. for (C₂₄H₂₁NO₃S) [M+H]⁺ 404.1318, found 404.1316. IR (neat) 1507.8, 1131.0, 1064.3, 748.8, 670.1 cm⁻¹

2-(4-Chlorophenyl)-1-(p-toluenesulfonyl)-1H-pyrrole (7c)

Pale yellow solid, 51%

¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 3.4, 1.7 Hz, 1H), 7.32–7.22 (m, 4H), 7.17 (d, J = 8.5 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 6.30 (app t, J = 3.3 Hz, 1H), 6.15 (dd, J = 3.3, 1.8 Hz, 1H), 2.36 (s, 3H) ppm. Data in agreement with those previously reported.¹⁰

2-(Thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole (7d)

White powder, 70%, m.p. 61-64 °C

¹H NMR (500 MHz, CDCl₃) δ 7.49 (dd, *J* = 3.3, 1.9 Hz, 1H, H⁴), 7.31 (d, *J* = 8.4 Hz, 2H, H¹⁰), 7.28 (dd, *J* = 5.2, 1.2 Hz, 1H, H⁸), 7.14 (dd, *J* = 3.6, 1.2 Hz, 1H, H⁶), 7.12 (d, *J* = 7.9 Hz, 2H, H¹¹), 7.03 (dd, *J* = 5.2, 3.6 Hz, 1H, H⁷), 6.33–6.25 (m, 2H, H^{2,3}), 2.36 (s, 3H, H¹³) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 144.9 (C¹²), 135.5 (C⁹), 131.3 (C⁵), 130.5 (C⁶), 129.6 (C¹¹), 127.4 (C¹⁰), 127.0 (C⁷/C⁸), 126.9 (C⁷/C⁸), 124.7 (C⁴), 117.6 (C²/C³), 113.6 (C¹), 111.6 (C²/C³), 21.8 (C¹³) ppm. HRMS (ESI+) m/z calcd. for (C₁₅H₁₃NO₂S₂) [M+H]⁺ 304.0461, found 304.0463. IR (neat) 2920.3, 2853.6, 1440.3, 998.0 cm⁻¹

2-(Furan-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole (7e)

Pale yellow solid, 58%

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.1 Hz, 2H), 7.46–7.44 (m, 1H), 7.40–7.39 (m, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.59 (d, *J* = 3.6 Hz, 1H), 6.45–6.42 (m, 2H), 6.32–6.30 (m, 1H), 2.38 (s, 3H) ppm. Data in agreement with those previously reported.¹¹

2-(Prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole (7f)

White powder, 65%, m.p. 100-105 °C

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H, H⁹), 7.34–7.28 (m, 3H, H^{4,10}), 6.38 (dd, *J* = 3.6, 1.7 Hz, 1H, H²), 6.17 (app t, *J* = 3.4 Hz, 1H, H³), 2.42 (s, 3H, H¹²), 2.07 (s, 3H, H⁷) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 145.3 (C⁸), 135.7 (C¹¹), 129.8 (C¹⁰), 127.9 (C⁹), 122.7 (C⁴), 120.1 (C²), 116.2 (C¹), 111.4 (C³), 91.9 (C⁶), 70.2 (C⁵), 21.9 (C¹²), 4.9 (C⁷) ppm. HRMS (ESI+) m/z calcd. for (C₁₄H₁₃NO₂S) [M+Na]⁺ 282.0565, found 282.0560. IR (neat) 1292.4, 1177.6, 1053.1, 702.3 cm⁻¹

1-(5-Phenyl-1-(*p*-toluenesulfonyl)-1*H*-pyrrol-3-yl)ethan-1-one (14)

White powder, 65%, m.p. 108-111 °C

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 1.9 Hz, 1H, H⁴), 7.42–7.34 (m, 1H, H¹⁰), 7.31-7.26 (m, 2H, H⁹), 7.20 (d, *J* = 8.5 Hz, 2H, H¹²), 7.18–7.14 (m, 2H, H⁸), 7.10 (d, *J* = 8.2 Hz, 2H, H¹³), 6.53 (d, *J* = 2.0 Hz, 1H, H²), 2.47 (s, 3H, H⁶), 2.37 (s, 3H, H¹⁵) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 193.2 (C⁵), 145.7 (C¹⁴), 136.8 (C¹), 134.8 (C¹¹), 131.3 (C⁸), 130.4 (C⁷), 129.8 (C¹³), 129.0 (C¹⁰), 127.8 (C⁹/C¹²), 127.7 (C⁹/C¹²), 127.6 (C⁴), 127.1 (C³), 113.7 (C²), 27.3 (C⁶), 21.8 (C¹⁵) ppm. HRMS (ESI+) m/z calcd. for (C₁₉H₁₇NO₃S) [M+H]⁺ 340.1002, found 340.1000. IR (neat) 2925.3, 1704.5, 1449.4, 1326.6, 1011.5, 837.8 cm⁻¹.

2-(Furan-2-yl)-1-(*p*-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one (15)

Beige powder, 66%, m.p. 177-180 °C

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 2H, H¹⁴), 7.63 (s, 1H, H²), 7.40 (dd, *J* = 3.4, 0.8 Hz, 1H, H¹⁰), 7.38-7.33 (m, 3H, H^{15,12}), 6.43 (dd, *J* = 3.4, 1.8 Hz, 1H, H¹¹), 3.01 (t, *J* = 6.2 Hz, 2H, H⁵), 2.50-2.45 (m, 2H, H⁷), 2.44 (s, 3H, H¹⁷), 2.09 (tt, *J* = 7.8, 6.4 Hz, 2H, H⁶) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 194.0 (C⁸), 147.6 (C⁹), 146.2 (C¹⁶), 144.7 (C⁴), 141.4 (C¹²), 135.2 (C¹³), 130.6 (C¹⁵), 127.4 (C¹⁴), 120.6 (C³), 118.6 (C²), 116.8 (C¹), 111.7 (C¹¹), 110.8 (C¹⁰), 38.7 (C⁷), 23.4 (C⁵), 23.0 (C⁶), 21.9 (C¹⁷) ppm. HRMS (ESI+) m/z calcd. for (C₁₉H₁₇NO₄S) [M+H]⁺ 356.0951; found 356.0958. IR (neat) 2922.9, 1671.4, 14336, 1258.8, 821.1 cm⁻¹.

1-Methyl-4-phenyl-1*H*-pyrrole-2-carbaldehyde (16)

White powder, 30% conv.

¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.51–7.47 (m, 2H), 7.47 (dd, *J* = 7.7, 7.7 Hz, 2H), 7.34–7.29 (m, 1H), 7.27–7.25 (m, 2H), 4.08 (s, 3H) ppm. **16** clearly identifiable in crude ¹H-NMR spectrum, but only trace amounts of pure product isolated from column (most **16** co-eluted with **17**). Data in agreement with those previously reported.¹²

4-((2-([1,1'-Biphenyl]-2-ylthio)phenyl)thio)-1-methyl-1*H*-pyrrole-2-carbaldehyde (17)

White powder, 30% conv, m.p. 97-101 °C

¹H NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.53–7.46 (m, 2H), 7.45–7.34 (m, 3H), 7.33–7.27 (m, 2H), 7.25–7.20 (m, 2H), 7.19–7.10 (m, 1H), 7.08–7.00 (m, 2H), 6.97 (s, 2H), 6.92 (dd, *J* = 8.0, 1.4 Hz, 1H), 3.96 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 179.7, 143.5, 142.5, 140.6, 137.1, 134.7, 134.6, 133.2, 131.7, 130.7, 129.8, 129.5, 129.4, 128.7, 128.20, 128.17, 127.7, 127.1, 126.5, 126.0, 110.9, 37.0 ppm. HRMS (ESI⁺): calc. C₂₄H₁₉NOS₂⁺ [M+Na]⁺ 424.0806, found 424.0819. IR (neat) 2961.3, 1666.4, 1289.5, 705.7 cm⁻¹. Only trace amounts of pure product isolated from column (most **17** co-eluted with **16**).

3-((2-([1,1'-Biphenyl]-2-ylthio)phenyl)thio)-1,2,5-trimethyl-1*H*-pyrrole (18)

White powder, 78% NMR conv

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 6.9 Hz, 2H, H¹⁵), 7.43 (app t, *J* = 7.5 Hz, 2H, H¹⁶), 7.37 (t, *J* = 7.3 Hz, 1H, H¹⁷), 7.29–7.16 (m, 4H, H⁸⁻¹¹), 7.10 (app td, *J* = 7.6, 1.4 Hz, 1H, H²¹), 7.00 (dd, *J* = 7.5, 1.6 Hz, 1H, H¹⁹), 6.96 (ddd, *J* = 7.5, 7.5, 1.4 Hz, 1H, H²⁰), 6.77 (dd, *J* = 8.0, 1.4 Hz, 1H, H²²), 5.88 (s, 1H, H³), 3.44 (s, 3H, H⁶), 2.22 (s, 3H, H⁵), 2.12 (s, 3H, H⁷) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 146.6 (C¹⁸), 141.6 (C¹³), 140.8 (C¹⁴), 135.5 (C¹²), 135.2 (C⁸ or C¹¹), 134.0 (C¹), 130.5 (C⁸ or C¹¹), 129.6 (C¹⁵), 129.4 (C²³), 128.74 (C²¹), 128.70 (C⁴), 128.6 (C¹⁹), 128.2 (C¹⁶), 128.0 (C⁹ or C¹⁰), 127.6 (C¹⁷), 125.9 (C⁹ or C¹⁰), 125.7 (C²²), 124.7 (C²⁰), 111.5 (C³), 102.9 (C²), 31.2 (C⁶), 12.6 (C⁵), 10.6 (C⁷) ppm. HRMS (ESI+) m/z calcd. for (C₂₅H₂₃NS₂) [M+Na]⁺ 424.1170, found 424.1164. Only trace amounts of pure product isolated from column, melting point and IR data not obtained.

Deprotection of 3-(4-Fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole

Procedure:

3-(4-Fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** (0.176 mmol, 75 mg) was added to magnesium metal (3.52 mmol, 61 mg) in dry methanol (2.2 ml). The flask was then sonicated for 5 hours at 50 °C. The reaction mixture was poured onto 1M HCl (aq) then neutralised with 1M NaHCO₃ (aq) and extracted with CH_2Cl_2 (x3). The mixture was then dried over MgSO₄ and filtered, then the filtrate was concentrated *in vacuo*. Trimethoxybenzene internal standard (0.059 mmol) was added, from a stock solution to the crude mixture. A conversion of 73% to desired product was determined by integration of the ¹H-NMR spectrum. Attempted further purification by chromatography on silica led to decomposition of the product.

3-(4-Fluorophenyl)-1H-pyrrole 20

Crude brown solid, 73% NMR conv

¹H NMR (400 MHz, CDCl₃) δ 8.33 (br s, 1H, N-H), 7.48 (dd, *J* = 8.5, 5.5 Hz, 2H, H⁶), 7.06-6.98 (m, 3H, H¹, H⁷), 6.84-6.81 (m, 1H, H⁴), 6.52-6.46 (m, 1H, H³) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, ¹*J*_{CF} = 243.4 Hz, C⁸), 132.1 (C⁵), 126.8 (d, ³*J*_{CF} = 7.8 Hz, C⁶), 124.3 (C²), 119.1 (C⁴), 115.5 (d, ²*J*_{CF} = 21.3 Hz, C⁷), 114.4 (C¹), 106.7 (C³) ppm. HRMS (ESI+) m/z calcd. for (C₁₀H₇FN) [M-H]⁻ 160.0568; found 160.0563.

Figure S2: ¹³C NMR spectrum of Diphenyl(1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium trifluoromethanesulfonate **2**•OTf in DMSO- d_6

Figure S3: COSY NMR spectrum of Diphenyl(1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium trifluoromethanesulfonate **2•OTf** in DMSO-d₆

Figure S4: NOESY NMR spectrum of Diphenyl(1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium trifluoromethanesulfonate **2•OTf** in DMSO-d₆

Figure S5: HSQC NMR spectrum of Diphenyl(1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium trifluoromethanesulfonate $2 \circ OTf$ in DMSO-d₆

Figure S6: HMBC NMR spectrum of Diphenyl(1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium trifluoromethanesulfonate $2 \cdot OTf$ in DMSO-d₆

Figure S7: IR spectrum of Diphenyl(1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium trifluoromethanesulfonate 2•0Tf

Fig S8: ¹H NMR spectrum of 5-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate $4 \bullet OTf$ in CDCl₃

trifluoromethanesulfonate **4**•**OTf** in CDCl₃

Fig S10: COSY NMR spectrum of 5-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate $4 \bullet OTf$ in CDCl₃

Fig S11: NOESY NMR spectrum of 5-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate $4 \bullet OTf$ in CDCl₃

Fig S12: HSQC NMR spectrum of 5-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate $4 \circ OTf$ in CDCl₃

Fig S13: HMBC NMR spectrum of 5-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate $4 \bullet OTf$ in CDCl₃

Fig S14: IR spectrum of $5-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate <math>4 \circ OTf$.

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1. f1 (ppm)

Figure S15: ¹H NMR spectrum of 3-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5a** in CDCl₃

Figure S16: ¹³C NMR spectrum of 3-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5a** in CDCl₃

Figure S17: COSY NMR spectrum of 3-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5a in CDCl₃

Figure S18: NOESY NMR spectrum of 3-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5a in CDCl₃

Figure S19: HSQC NMR spectrum of 3-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5a** in CDCl₃

Figure S20: HMBC NMR NMR spectrum of 3-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5a in CDCl₃.

Figure S21: IR spectrum of 3-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5a

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1 f1 (ppm)

Figure S22: ¹H NMR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** in CDCl₃

Figure S23: ¹³C NMR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** in CDCl₃

Figure S24: COSY NMR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** in CDCl₃

Figure S25: NOESY NMR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** in CDCl₃

Figure S26: HSQC NMR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** in CDCl₃

Figure S27: HMBC NMR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** in CDCl₃

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Figure S28: ¹⁹F NMR spectrum of NMR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b** in CDCl₃

Figure S29: IR spectrum of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5b**.

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1 f1 (ppm)

Figure S30: ¹H NMR spectrum of 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5c** in CDCl₃

Figure S31: ¹³C NMR spectrum of 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5c** in CDCl₃

Figure S32: COSY NMR spectrum of 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5c** in CDCl₃

Figure S33: NOESY NMR spectrum of 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5c in CDCl₃

Figure S34: HSQC NMR spectrum of 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5c** in CDCl₃

 $Figure \ S35: \ HMBC \ NMR \ spectrum \ of \ 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1 \\ H-pyrrole \ \textbf{5c} \ in \ CDCl_3 \ NMR \ spectrum \ of \ 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1 \\ H-pyrrole \ \textbf{5c} \ in \ CDCl_3 \ NMR \ spectrum \ spectrum$

 $\label{eq:Figure S36: IR spectrum of 3-(4-(benzyloxy)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1 \\ H-pyrrole~{\bf 5c}$

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1. f1 (ppm)

Figure S37: ¹H NMR spectrum of 3-(4-chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5d** in CDCl₃

Figure S38: ¹³C NMR spectrum of 3-(4-chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5d in CDCl₃.

Figure S39: COSY NMR spectrum of 3-(4-chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5d in CDCl₃.

Figure S40: NOESY NMR spectrum of 3-(4-chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5d in CDCl₃.

Figure S41: HSQC NMR spectrum of 3-(4-chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5d in CDCl₃.

Figure S42: HMBC NMR spectrum of 3-(4-chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5d in CDCl₃.

Figure S43: 1IR spectrum of 3-(4-chlorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5d

Figure S44: ¹H NMR spectrum of 3-(3-(trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5e** in CDCl₃

 $Figure \ S45: \ ^{13}C \ NMR \ spectrum \ of \ 3-(3-(trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1 \\ H-pyrrole \ 5e \ in \ CDCl_3 \ Same \ Sam$

Figure S46: COSY spectrum of 3-(3-(trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5e** in CDCl₃

Figure S47: NOESY spectrum of 3-(3-(trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5e** in CDCl₃

Figure S48: HSQC spectrum of 3-(3-(trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5e in CDCl₃

Figure S49: HMBC spectrum of 3-(3-(trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5e** in CDCl₃

Figure S50: IR spectrum of 3-(3-(trifluoromethyl)phenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5e

 $\label{eq:Figure S51: 1} Figure \ S51: \ ^1H \ NMR \ of \ 3-(thiophen-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1\\ H-pyrrole \ {\it 5f} \ in \ CDCl_3 \ i$

Figure S52: ¹³C NMR of 3-(thiophen-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5f** in CDCl₃

Figure S53: COSY NMR of 3-(thiophen-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5f** in CDCl₃

Figure S54: NOESY NMR of 3-(thiophen-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5f** in CDCl₃

 $\label{eq:Figure S55: HSQC NMR of 3- (thiophen-2-yl)-1-((2,4,6-triisopropylphenyl) sulfonyl)-1 \\ H-pyrrole \ {\it 5f} \ in \ CDCl_3 = 1, \ CDC$

Figure S56: HMBC NMR of 3-(thiophen-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5f** in CDCl₃

Figure S57: IR spectrum of 3-(thiophen-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5f

 $\label{eq:Figure S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{Eq:S58: 1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H-pyrrole 5g in CDCl_3} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H NMR spectrum of 3-(furan-2-yl)-1} \textit{H NMR$

Figure S59: ¹³C NMR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5g** in CDCl₃

Figure S60: COSY NMR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5g in CDCl₃

Figure S61: NOESY NMR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5g in CDCl₃

Figure S62: HSQC NMR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5g** in CDCl₃

Figure S63: HMBC NMR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5g** in CDCl₃

Figure S64: IR spectrum of 3-(furan-2-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5g

Figure S65: ¹H NMR spectrum of 3-(prop-1-yn-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5h** in CDCl₃

Figure S66: ¹³C NMR spectrum of 3-(prop-1-yn-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5h** in CDCl₃

Figure S67: COSY NMR spectrum of 3-(prop-1-yn-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5h** in CDCl₃

Figure S68: NOESY NMR spectrum of 3-(prop-1-yn-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5h** in CDCl₃

Figure S69: HSQC NMR spectrum of 3-(prop-1-yn)-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5h in CDCl₃

Figure S70: HMBC NMR spectrum of 3-(prop-1-yn-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5h** in CDCl₃

Figure S71: IR spectrum of 3-(prop-1-yn-1-yl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5h**

Figure S72: ¹H NMR spectrum of 3-(phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5i** in CDCl₃

Figure S73: ¹³C NMR spectrum of 3-(phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5i** in CDCl₃

Figure S74: COSY NMR spectrum of 3-(phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5i in CDCl₃

Figure S75: NOESY NMR spectrum of 3-(phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5i** in CDCl₃

Figure S76: HSQC NMR NMR spectrum of 3-(phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **5i** in CDCl₃

Figure S77: HMBC NMR spectrum of 3-(phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5i in CDCl₃

Figure S78: IR spectrum of 3-(phenylethynyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole 5i

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 f1 (ppm)

Figure S79: ¹H NMR spectrum of 2,5-bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene **5***j* in CDCl₃

Figure S80: ¹³C NMR spectrum of 2,5-bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene **5***j* in CDCl₃

Figure S81: COSY NMR spectrum of 2,5-bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene 5j in CDCl₃

Figure S82: NOESY NMR spectrum of 2,5-bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene 5j in CDCl₃

Figure S83: HSQC NMR spectrum of 2,5-bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene 5j in CDCl₃

Figure S84: HMBC NMR spectrum of 2,5-bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene 5j in CDCl₃

Figure S85: IR spectrum of spectrum of 2,5-bis(1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrol-3-yl)thiophene 5j

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 f1 (ppm)

Figure S86: ¹H NMR spectrum of 2-(4-(benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole **7b** in CDCl₃.

Figure S87: ¹³C NMR spectrum of 2-(4-(benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole **7b** in CDCl₃.

Figure S88: COSY NMR spectrum of 2-(4-(benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole **7b** in CDCl₃.

Figure S89: NOESY NMR spectrum of 2-(4-(benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole 7b in CDCl₃.

Figure S90: HSQC NMR spectrum of 2-(4-(benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole 7b in CDCl₃.

Figure S91: HMBC NMR spectrum of 2-(4-(benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole 7b in CDCl₃.

Figure S92: IR spectrum of 2-(4-(benzyloxy)phenyl)-1-(p-toluenesulfonyl)-1H-pyrrole **7b***.*

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 f1 (ppm)

Figure S93: ¹H NMR spectrum of 2-(thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7d** in CDCl₃

Figure S94: ¹³C NMR spectrum of NMR spectrum of 2-(thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7d** in CDCl₃

Figure S95: COSY NMR spectrum of 2-(thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole 7d in CDCl₃

Figure S96: NOESY NMR spectrum of 2-(thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole 7d in CDCl₃

Figure S97: HSQC NMR spectrum of 2-(thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole 7d in CDCl₃

Figure S98: HMBC NMR spectrum of 2-(thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole 7d in CDCl₃

Figure S99: IR NMR spectrum of 2-(thiophen-2-yl)-1-(p-toluenesulfonyl)-1H-pyrrole 7d

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1. f1 (ppm)

Figure S100: ¹H NMR spectrum of 2-(prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7f** in CDCl₃

Figure S101: ¹³C NMR spectrum of 2-(prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7f** in CDCl₃

Figure S102: COSY NMR spectrum of 2-(prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7f** in CDCl₃

Figure S103: NOESY NMR spectrum of 2-(prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7f** in CDCl₃

Figure S104: HSQC NMR spectrum of 2-(prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7f** in CDCl₃

Figure S105: HMBC NMR spectrum of 2-(prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7f** in CDCl₃

Figure S106: IR spectrum of 2-(prop-1-yn-1-yl)-1-(p-toluenesulfonyl)-1H-pyrrole **7f**

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 f1 (ppm)

Figure S107: ¹H NMR spectrum of (4-acetyl-1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)diphenylsulfonium trifluromethanesulfonate **10•OTf** in CDCl₃

Figure S108: ${}^{13}C$ NMR spectrum of (4-acetyl-1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)diphenylsulfonium trifluromethanesulfonate **10+OTf** in CDCl₃

Figure S109: COSY NMR spectrum of (4-acetyl-1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)diphenylsulfonium trifluromethanesulfonate $10 \circ OTf$ in CDCl₃

Figure S110: NOESY NMR spectrum of (4-acetyl-1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)diphenylsulfonium trifluromethanesulfonate $10 \circ OTf$ in CDCl₃

Figure S111: HSQC NMR spectrum of (4-acetyl-1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)diphenylsulfonium trifluromethanesulfonate **10•OTf** *in* CDCl₃

Figure S112: HMBC NMR spectrum of (4-acetyl-1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)diphenylsulfonium trifluromethanesulfonate **10+OTf** *in* CDCl₃

Figure S113: IR spectrum of (4-acetyl-1-(p-toluenesulfonyl)-1H-pyrrol-2-yl)diphenylsulfonium trifluoromethanesulfonate **10•OTf**

Figure S114: ¹H NMR spectrum of 5-(4-oxo-1-(p-toluenesulfonyl)-4,5,6,7-tetrahydro-1H-indol-2-yl)-5H-thianthren-5-ium trifluoromethanesulfonate $11 \circ OTf$ in CDCl₃

Figure S115: ${}^{13}C$ NMR spectrum of 5-(4-oxo-1-(p-toluenesulfonyl)-4,5,6,7-tetrahydro-1H-indol-2-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **11**•**OTf** in CDCl₃

Figure S116: COSY NMR spectrum of 5-(4-oxo-1-(p-toluenesulfonyl)-4,5,6,7-tetrahydro-1H-indol-2-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **11•OTf** in CDCl₃

Figure S117: NOESY NMR spectrum of 5-(4-oxo-1-(p-toluenesulfonyl)-4,5,6,7-tetrahydro-1H-indol-2-yl)-5H-thianthren-5-ium trifluoromethanesulfonate $11 \circ OTf$ in CDCl₃

Figure S118: HSQC NMR spectrum of 5-(4-oxo-1-(p-toluenesulfonyl)-4,5,6,7-tetrahydro-1H-indol-2-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **11•OTf** in CDCl₃

Figure S119: IR spectrum of 5-(4-oxo-1-(p-toluenesulfonyl)-4,5,6,7-tetrahydro-1H-indol-2-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **11+OTf**

Figure S120: ¹H NMR spectrum of 5-(5-formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **12•OTf** in CDCl₃

Figure S121: ¹³C NMR spectrum of 5-(5-formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **12•OTf** in CDCl₃

f2 (ppm)

Figure S122: COSY NMR spectrum of 5-(5-formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **12•OTf** in CDCl₃

Figure S123: NOESY NMR spectrum of 5-(5-formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **12•OTf** in CDCl₃

f2 (ppm)

Figure S124: HSQC NMR spectrum of 5-(5-formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **12•OTf** in CDCl₃

f2 (ppm)

Figure S125: HMBC NMR spectrum of 5-(5-formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **12•OTf** in CDCl₃

Figure S126: IR spectrum of 5-(5-formyl-1-methyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **12•OTf**

Figure S127: ¹H NMR spectrum of 5-(1,2,5-trimethyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **13•OTf** in CDCl₃

Figure S128: ¹³*C NMR spectrum of 5-(1,2,5-trimethyl-1*H-*pyrrol-3-yl)-5*H-*thianthren-5-ium trifluoromethanesulfonate* **13•OTf** *in CDCl*₃

Figure S129: NOESY NMR spectrum of 5-(1,2,5-trimethyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate **13•OTf** in CDCl₃

L

Figure S130: IR spectrum of 5-(1,2,5-trimethyl-1H-pyrrol-3-yl)-5H-thianthren-5-ium trifluoromethanesulfonate 13•0Tf

Figure S131: ¹H NMR spectrum of 1-(5-phenyl-1-(p-toluenesulfonyl)-1H-pyrrol-3-yl)ethan-1-one **14** in CDCl₃

Figure S132: ¹³C NMR spectrum of 1-(5-phenyl-1-(p-toluenesulfonyl)-1H-pyrrol-3-yl)ethan-1-one **14** in CDCl₃

Figure S133: COSY NMR spectrum of 1-(5-phenyl-1-(p-toluenesulfonyl)-1H-pyrrol-3-yl)ethan-1-one 14 in CDCl₃

Figure S134: NOESY NMR spectrum of 1-(5-phenyl-1-(p-toluenesulfonyl)-1H-pyrrol-3-yl)ethan-1-one 14 in CDCl₃

Figure S135: HSQC NMR spectrum of 1-(5-phenyl-1-(p-toluenesulfonyl)-1H-pyrrol-3-yl)ethan-1-one 14 in CDCl₃

Figure S136: HMBC NMR spectrum of 1-(5-phenyl-1-(p-toluenesulfonyl)-1H-pyrrol-3-yl)ethan-1-one 14 in CDCl₃

Figure S137: IR spectrum of 1-(5-phenyl-1-(p-toluenesulfonyl)-1H-pyrrol-3-yl)ethan-1-one 14

Figure S138: ¹H NMR spectrum of 2-(furan-2-yl)-1-(p-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one **15** in CDCl₃.

Figure S139: ¹³C NMR spectrum of 2-(furan-2-yl)-1-(p-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one **15** in CDCl₃.

Figure S140: COSY NMR spectrum of 2-(furan-2-yl)-1-(p-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one 15 in CDCl₃.

Figure S141: NOESY NMR spectrum of 2-(furan-2-yl)-1-(p-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one 15 in CDCl₃.

Figure S142: HSQC NMR spectrum of 2-(furan-2-yl)-1-(p-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one **15** in CDCl₃.

Figure S143: HMBC NMR spectrum of 2-(furan-2-yl)-1-(p-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one 15 in CDCl₃.

Figure S144: IR Spectrum of spectrum of 2-(furan-2-yl)-1-(p-toluenesulfonyl)-1,5,6,7-tetrahydro-4H-indol-4-one **15**

Figure S145: ¹H NMR spectrum of 4-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1-methyl-1H-pyrrole-2-carbaldehyde **17** in CDCl₃

Figure S146: ¹³C NMR spectrum of 4-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1-methyl-1H-pyrrole-2-carbaldehyde **17** in CDCl₃

Figure S147: COSY spectrum of 4-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1-methyl-1H-pyrrole-2-carbaldehyde 17 in CDCl₃

Figure S148: NOESY spectrum of 4-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1-methyl-1H-pyrrole-2-carbaldehyde 17 in CDCl₃

Figure S149: HSQC spectrum of 4-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1-methyl-1H-pyrrole-2-carbaldehyde 17 in CDCl₃

Figure S150: IR spectrum of spectrum of 4-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1-methyl-1H-pyrrole-2-carbaldehyde 17

3.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 f1 (ppm)

Figure S151: ¹H NMR spectrum of 3-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1,2,5-trimethyl-1H-pyrrole **18** in CDCl₃

Figure S152: Zoomed region of ¹H NMR spectrum of 3-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1,2,5-trimethyl-1H-pyrrole **18** in CDCl₃

Figure S153: ¹³C NMR spectrum of 3-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1,2,5-trimethyl-1H-pyrrole **18** in CDCl₃

Figure S154: COSY spectrum of 3-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1,2,5-trimethyl-1H-pyrrole 18 in CDCl₃

Figure S156: HSQC spectrum of 3-((2-([1,1'-biphenyl]-2-ylthio)phenyl)thio)-1,2,5-trimethyl-1H-pyrrole 18 in CDCl₃

Figure S158: ¹H Crude NMR of deprotection of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **20** in CDCl₃ with trimethoxy benzene (**TMB**) internal standard.

Figure S159: Zoomed region of ¹H Crude NMR of deprotection of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **20** in CDCl₃ with trimethoxy benzene (**TMB**) internal standard

Figure S161: Zoomed region of ¹³C Crude NMR of deprotection of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)- 1H-pyrrole in CDCl₃ with trimethoxy benzene (TMB) internal standard

Figure S162: Crude COSY NMR of deprotection of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **20** in CDCl₃ with trimethoxy benzene (TMB) internal standard

Figure S163: Crude NOESY NMR of deprotection of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1H-pyrrole **20** with trimethoxy benzene (TMB) internal standard

*Figure S164: Crude HSQC NMR of deprotection of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1*H-pyrrole **20** *with trimethoxy benzene (TMB) internal standard*

*Figure S165: Crude HMBC NMR of deprotection of 3-(4-fluorophenyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1*H-pyrrole **20** *with trimethoxy benzene (TMB) internal standard.*

References

- 1. CrysAlisPro 1.171.41.93a 1.171.43.104a (Rigaku OD, 2020-23)
- 2. G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8.
- 3. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst., 2011, 44, 1281-1284.
- 4. L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
- 5. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van der Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457.
- 6. C. Retich and S. Bräse, *Eur. J. Org. Chem.*, 2018, 60-77
- 7. T. Okumi, A. Mori and K. Okano, *Chem. Commun.*, 2023, **59**, 1046-1049.
- 8. M. L. Rosenberg, J. H. F. Aasheim, M. Trebbin, E. Uggerud and T. Hansen, *Tetrahedron Lett.*, 2009, **50**, 6506-6508.
- 9. L. Knight, J. Huffman and M. Isherwood, Synlett, 2003, 1993-1996.
- 10. C. B. Bheeter, J. K. Bera and H. Doucet, *Tetrahedron Lett.*, 2012, **53**, 509-513.
- 11. T. J. Donohoe, A. J. Orr, K. Gosby and M. Bingham, Eur. J. Org. Chem., 2005, 1969-1971.
- 12. K. Xu, W. J. Li, R. Sun, L. H. Luo, X. Chen, C. C. Zhang, X. L. Zheng, M. L. Yuan, H. Y. Fu, R. X. Li and H. Chen, *Org. Lett.*, 2020, **22**, 6107-6111.