Supporting Information

Regio-and Stereoselective Azidation of Activated *N*allenamides: an entry to α , β , γ and δ -amido-azides

Dorian Schutz^{‡a}, Maxime Hourtoule^{‡a} and Laurence Miesch^a*

 ^a Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, Université de Strasbourg, CNRS-UdS UMR 7177,
 4, rue Blaise Pascal CS 90032, 67081 Strasbourg, France

Corresponding author: lmiesch@unistra.fr

Contents

General remarksSz
Experimental procedure & characterization dataS2
General procedure for the preparation of ynamides S4 S2
General procedure for the preparation of <i>N</i> -allenamides 1 S
Trifluoromethylated N-allenamides 1a-q S
Difluoromethylated N-allenamides 1r-t S4
Terminal N-allenamides 1u ³S4
General procedure for the preparation of $eta-$ amido azides 2 S4
Synthesis of trifluoromethylated $eta-$ amido azides 2a-k S4
Sequential one-pot synthesis of ester β –amido azides 2l-n S
Synthesis of difluoromethylated $eta-$ amido azides 20-q S
General procedure for the preparation of $lpha-$ amido azides 4 S
General procedure for the preparation of difluoromethylated $\delta-$ amido azides 6 Section (
Extension and post-functionalization proceduresSe
Large scale synthesis of trifluoromethylated amido azide 2a, 3a & 4a Se
Hydration of trifluoromethylated γ –amido azide 3a S
Hydrocyanation of trifluoromethylated <i>N</i> -allenamide 1c S
Cu(I)-catalyzed Alkyne Azide Cyclisation of trifluoromethylated β –amido azide 2a St
Azide reduction of ester vinyl azide 2l St
Characterization dataS
NMR spectraS3
X-Ray Cristallography dataS12
Crystal Structure Report for 2c (CCDC 2384608)S12
Crystal Structure Report for 2I (CCDC 2384809)S144
Crystal Structure Report for 4a (CCDC 2384604)S16 [.]

General remarks

All reactions were carried out under an inert atmosphere of argon in dried glassware, unless otherwise noted. Conventional solvents (THF, CH_2Cl_2) are stored on molecular sieves and sampled under argon. Toluene, CH_3CN , $CHCl_3$ were used as received.

NMR Spectra (¹H, ¹³C, ¹⁹F) were performed at 298 K. ¹H (500 MHz or 300 MHz) and ¹³C (126 MHz) NMR chemical shifts are reported relative to residual protiated solvent. ¹⁹F (282 MHz or 471 MHz) NMR chemical shifts are reported without any calibration. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet), coupling constant J (Hz) and integration.

HRMS data were recorded on a microTOF spectrometer equipped with an orthogonal electrospray (ESI) interface.

Thin layer chromatography was performed using Merck TLC silica gel 60 F254 aluminum sheets using petroleum ether/EtOAc as eluant and visualized using permanganate stain, ninhydrin stain, vanillin stain and/or UV light. Merck Geduran[®] 40-63 µm silica gel was used for column chromatography.

Infrared spectra were reported in frequency of absorption using Alpha Bruker Optics spectrometer.

Melting points were recorded with a SMP3 Stuart Scientific microscope in open capillary tubes and are uncorrected.

Experimental procedure & characterization data

General procedure for the preparation of ynamides S4¹

Primary amine **S1** (4.5 mmol, 1 equiv) was dissolved in CH_2Cl_2 (0.3 M), TsCl (4.95 mmol, 1.1 equiv) and Et₃N (11.25 mmol, 2.5 equiv) were added successively at 0 °C. After stirring at room temperature for 4 hours, the mixture was diluted with aqueous solution of HCl (1 N). The aqueous layer was extracted with CH_2Cl_2 (3x) and Et_2O (1x). The combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduce pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired sulfonamide **S2**.

¹ Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz, E. L. Vera, Org. Lett. 2004, 6, 1151–1154.

Sulfonamide **S2** (2 mmol, 1 equiv), $CuSO_4 \cdot 5H_2O$ (0.3 mmol, 15 mol%), 1,10-phenanthroline (0.6 mmol, 30 mol%), K_2CO_3 (5 mmol, 2.5 equiv), the bromoacetylenic derivative (2.3 mmol, 1.15 equiv) were dissolved in PhMe (0.08 M) and the reaction mixture was heated to 85 °C with a heating block for 18 h. After cooling down to room temperature, the mixture was filtered on a pad of silica gel and washed with EtOAc. The filtrate was then concentrated under reduced pressure and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc as eluent to afford the desired TIPS protected ynamide **S3**.

The (2-bromoethynyl)tris(propan-2-yl)silane was synthesized according to the literature.²

TIPS protected ynamide **S3** (2.8 mmol, 1 equiv) was dissolved in THF (0.1 M) and cooled at 0 °C. A TBAF solution (3.1 mmol, 1.1 equiv, 1 M) was added dropwise and the resulting mixture was stirred at 0 °C for 30 min. The mixture was allowed to warm up to room temperature and was hydrolyzed with H_2O . The aqueous layer was extracted three times with EtOAc, washed with a saturated aqueous solution of NaCl, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc as eluent or just by washing with cold *n*-pentane to afford the desired ynamide **S4**.

General procedure for the preparation of *N*-allenamides **1**

Trifluoromethylated *N*-allenamides **1a-q**³

The corresponding ynamide **S4** (0.2 mmol, 1 equiv) was solubilized in CH_3CN (0.1 M) in the presence of CuI (0.2 mmol, 20 mol%), and Et_3N (0.4 mmol, 2 equiv). 1,1,1-trifluoro-diazoethane was added dropwise (in excess) at 0 °C and the reaction was stirred for 4 h. The mixture was concentrated under vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired trifluoromethylated *N*-allenamides **1a-q**.

1,1,1-trifluoro-diazoethane was synthesized according to the previous literature and stored in diethyl ether solution in the presence of MgSO₄ at -18 °C for a few weeks.⁴

² H. Hofmeister, K. Annen, H. Laurent, R. Wiechert, Angew. Chem. Int. Ed. Engl. 1984, 23, 727–729.

³ Y. Zheng, B. Moegle, S. Ghosh, A. Perfetto, D. Luise, I. Ciofini, L. Miesch, *Chem. – Eur. J.* 2022, **28**, e202103598.

⁴ H. Gilman, R. G. Jones, *J. Am. Chem.* Soc. 1943, **65**, 1458–1460.

Difluoromethylated N-allenamides 1r-t

2,2-difluoroethan-1-amine (3.0 mmol, 6 equiv), *tert*-butyl nitrite (4.5 mmol, 9 equiv) and AcOH (0.25 mmol, 50 mol%) were dissolved in CHCl₃ and heated to 62 °C with a heating block for 30 min. The reaction mixture was subsequently cooled down at room temperature with a water bath for 10 min. The reaction mixture was then slowly added at 0 °C to another round-bottom flask previously charged with ynamide **S4** (0.5 mmol, 1 equiv), Cul (0.15 mmol, 0.3 equiv) and Et₃N (1.25 mmol, 2.5 equiv) dissolved in CH₃CN (0.05 M). The resulting mixture was stirred for 1 h. The solvent was removed under vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired difluoromethylated *N*-allenamides **1r-t**.

Terminal N-allenamides 1u³

Benzyl-ynamide **S3** (0.5 mmol, 1 equiv) was dissolved in CH_3CN (0.1 M). Cul (0.1 mmol, 20 mol%) and trimethylsilyldiazomethane (0.54 mmol, 1.1 equiv, 2 M Et₂O) was added dropwise and the reaction mixture was stirred at 23 °C for 3 hours. A TBAF solution (0.50 mmol, 1 equiv, 1 M in THF) was added dropwise at 0 °C and the resulting mixture was stirred during 30 min and then hydrolyzed with H₂O. The aqueous layer was extracted with CH_2Cl_2 (x3) and with Et₂O (1x). The combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired terminal *N*-allenamide **1u** (0.34 mmol, 66 %) as a colorless oil.

General procedure for the preparation of β -amido azides 2

Synthesis of trifluoromethylated β -amido azides **2a-k**

Trifluoromethylated *N*-allenamide **1** (0.1 mmol, 1 equiv) was dissolved in THF (0.1 M) and cooled to 0 °C. TMSN₃ (2.0 mmol, 2 equiv) and a TBAF solution (0.2 mmol, 2 equiv, 1 M in THF) were subsequently added and the solution was stirred at 0 °C for 4 h. The solvent was removed under

vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired fluorinated β -amido azides **2a-k**.

Sequential one-pot synthesis of ester β -amido azides **2l-n**

The corresponding ynamide **S4** (0.2 mmol, 1 equiv) was solubilized in CH₃CN (0.1 M) in the presence of Cul (0.2 mmol, 1 equiv) and the diazo ester derivative (0.3 mmol, 1.5 equiv) was added dropwise at room temperature and the reaction was stirred for 2 h. TMSN₃ (0.22 mmol, 1.1 equiv) and a TBAF solution (0.22 mmol, 1.1 equiv, 1 M in THF) were then subsequently added to the reaction mixture at room temperature and stirred for 10 min. The solvent was removed under vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired ester β -amido azides **2l-n**.

The corresponding diazo ester derivatives were synthesized according to the literature.⁵

Synthesis of difluoromethylated β -amido azides **20-q**

Difluoromethylated *N*-allenamide **1r-t** (0.1 mmol, 1 equiv) was dissolved in THF (0.1 M) and cooled to 0 °C. TMSN₃ (2.0 mmol, 2 equiv) and a TBAF solution (0.2 mmol, 2 equiv, 1 M in THF) were subsequently added and the solution was stirred at 0 °C for 4 h. The solvent was removed under vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired mono-fluorinated β -amido azides **20-q** as a diastereoisomeric mixture.

General procedure for the preparation of α -amido azides 4

Caution! Handle with care. This protocol generates hydrazoic acid (HN3), which is acutely toxic and extremely shock sensitive.

N-allenamide **1** (0.1 mmol, 1 equiv) was dissolved in THF (0.1 M) and cooled to 0 °C. TFA (0.02 mmol, 0.2 equiv) and TMSN₃ (0.2 mmol, 2 equiv) were subsequently added and the solution was stirred at 0 °C for 4 h. The reaction mixture was hydrolyzed with a saturated aqueous solution of

⁵ T. Toma, J. Shimokawa, T. Fukuyama, *Org. Lett.* 2007, **9**, 3195–3197.

NaHCO₃. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired γ -amido azides **3a-j**.

Allyl azide **3a-j** (0.1 mmol, 1 equiv) was dissolved in THF (0.05 M) in the presence of DBU (0.15 mmol, 1.2 equiv). The reaction mixture was stirred at 40 °C for 3 h. The reaction was cooled down to room temperature and hydrolyzed with H₂O. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired α -amido azides **4a-i**.

General procedure for the preparation of difluoromethylated $\delta-amido$ azides ${\bf 6}$

Trifluoromethylated *N*-allenamide **1a-q** (0.2 mmol, 1 equiv) was dissolved in CH_2Cl_2 (0.05 M) and cooled to 0 °C. *t*-BuOK (0.4 mmol, 2 equiv) was then added portion by portion and the resulting reaction mixture was stirred for 4 h at 0 °C before being hydrolyzed with H₂O. The aqueous layer was extracted three times with CH_2Cl_2 . The combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired ene-ynamide **5a-c**.⁶

To a stirring solution of TMSN₃ (0.4 mmol, 2 equiv) and TBAF (0.22 mmol, 1.1 equiv, 1 M in THF) in THF (2 mL) at 0 °C was added dropwise a solution of ene-ynamide **5a-c** (0.2 mmol, 1 equiv) in THF (2 mL). After stirring for 30 min, the solvent was removed under vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired difluoromethylated δ -amido azides **6a-c**.

Extension and post-functionalization procedures

Large scale synthesis of trifluoromethylated amido azide 2a, 3a & 4a

Trifluoromethylated *N*-allenamide **1a** (1 mmol, 1 equiv) was dissolved in THF (0.1 M) and cooled to 0 °C. TMSN₃ (2.0 mmol, 2 equiv) and a TBAF solution (2.0 mmol, 2 equiv, 1 M in THF) were subsequently added and the solution was stirred at 0 °C for 6 h. The solvent was removed under vacuum and the crude material was purified by column chromatography on silica gel using a

⁶ M. Hourtoule, L. Miesch, Org. Lett. 2022, **24**, 3896–3900.

mixture petroleum ether/EtOAc, as eluent to afford the desired fluorinated β -amido azides **2a** (0.75 mmol, 75 %) as a white solid.

N-allenamide **1a** (1.5 mmol, 1 equiv) was dissolved in THF (0.1 M) and cooled to 0 °C. TFA (0.3 mmol, 0.3 equiv) and TMSN₃ (3.0 mmol, 3 equiv) were subsequently added and the solution was stirred at 0 °C for 4 h. The reaction mixture was hydrolyzed with a saturated aqueous solution of NaHCO₃. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired γ -amido azides **3a** (1.3 mmol, 88 %) as a white solid.

Allyl azide **3a** (1.3 mmol, 1 equiv) was dissolved in THF (0.05 M) in the presence of DBU (1.9 mmol, 1.5 equiv). The reaction mixture was stirred at 40 °C for 5 h. The reaction was cooled down to room temperature and hydrolyzed with H₂O. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired α -amido azides **4a** (0.9 mmol, 67 %) as a white solid.

Hydration of trifluoromethylated γ -amido azide **3a**

Allyl azide **3a** (0.1 mmol, 1 equiv) was dissolved in THF (0.1 M) and Triton B (0.15 mmol, 1.5 equiv) was added dropwise at 0 °C and the resulting mixture was stirred for 2 h at room temperature. The reaction was then hydrolyzed with an aqueous solution of HCl (10 %) and stirred for another 12 h. The aqueous layer was then extracted with EtOAc (3x), the combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the trifluoromethyl ketone **7** (0.09 mmol, 35 mg, 91 %) as a colorless oil.

Hydrocyanation of trifluoromethylated N-allenamide 1c

Trifluoromethylated *N*-allenamide **1c** (0.1 mmol, 1 equiv) was dissolved in THF (0.1 M) and cooled to 0 °C. TMSCN (2.0 mmol, 2 equiv) and a TBAF solution (0.2 mmol, 2 equiv, 1 M in THF) were

subsequently added and the solution was stirred at 0 °C for 4 h. The solvent was removed under vacuum and the crude material was purified by column chromatography on silica gel using a mixture petroleum ether/EtOAc, as eluent to afford the desired fluorinated vinyl nitrile **8** (0.07 mmol, 29.5 mg, 69 %) as a colorless oil.

Cu(I)-catalyzed Alkyne Azide Cyclisation of trifluoromethylated β -amido azide **2a**⁷

To a solution of phenyl acetylene (0.22 mmol, 1.1 equiv) and CuTC (0.06 mmol, 30 mol%) in PhMe (0.1 M) was added vinyl azide **2a** (0.2 mmol, 1 equiv) and the resulting mixture was stirred at room temperature for 4 h. The aqueous layer was then extracted with EtOAc (3x), the combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the triazole **9** (0.2 mmol, 98 %) as a white solid.

Azide reduction of ester vinyl azide 2l

Ester vinyl azide **2l** (0.1 mmol, 1 equiv) and PPh₃ (0.2 mmol, 2 equiv) were dissolved in PhMe (0.05 M) and stirred at room temperature for 2 h. The reaction was hydrolyzed with a saturated solution of NH₄Cl and stirred for an additional 12 h. The aqueous layer was then extracted with EtOAc (3x), the combined organic layers were washed with a saturated aqueous solution of NaCl, dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc as eluent to afford the desired primary enamine **10** (0.09 mmol, 87 %) as a colorless oil.

⁷ Z. Liu, P. Liao, X. Bi, Org. Lett. 2014, **16**, 3668–3671.

Characterization data

Compound **1a** *N*-benzyl-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

 $C_{18}H_{16}F_3NO_2S$ MW: 367.39 g.mol⁻¹ White solid 87%

¹H NMR (300 MHz, CDCl₃): δ = 7.79 – 7.67 (m, 2H), 7.45 – 7.38 (m, 1H), 7.38 – 7.32 (m, 2H), 7.30 – 7.18 (m, 5H), 5.68 (p, *J* = 5.6 Hz, 1H), 4.46 (d, *J* = 15.3 Hz, 1H), 4.12 (d, *J* = 15.3 Hz, 1H), 2.46 (s, 3H) ppm.

Data match with those described in the literature⁶

Compound **1b** 4-methyl-*N*-phenethyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

C₁₉H₁₈F₃NO₂S MW: 381.41 g.mol⁻¹ White solid 65%

¹H NMR (500 MHz, CDCl₃): δ = 7.74 – 7.63 (m, 2H), 7.46 (dq, J = 6.2, 3.1 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.24 – 7.18 (m, 1H), 7.17 – 7.09 (m, 2H), 5.99 (p, J = 5.6 Hz, 1H), 3.37 – 3.23 (m, 2H), 2.90 – 2.77 (m, 2H), 2.43 (s, 3H) ppm.

Data match with those described in the literature⁶

Compound **1c** *N*-(benzo[d][1,3]dioxol-5-ylmethyl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1

yl)benzenesulfonamide

C₁₉H₁₆F₃NO₄S MW: 411.40 g.mol⁻¹ White solid 75%

¹**H NMR (400 MHz, CDCl₃):** δ = 7.71 (d, J = 8.1 Hz, 2H), 7.41 – 7.37 (m, 1H), 7.35 (d, J = 8.1 Hz, 2H), 6.77 (d, J = 1.7 Hz, 1H), 6.73 – 6.62 (m, 2H), 5.93 (s, 2H), 5.75 (p, J = 5.6 Hz, 1H), 4.34 (d, J = 15.0 Hz, 1H), 4.06 (d, J = 15.0 Hz, 1H), 2.45 (s, 3H) ppm.

Data match with those described in the literature⁶

<u>Compound</u> **1d** *N*-(but-3-en-1-yl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

 $\begin{array}{l} C_{15}H_{16}F_3NO_2S\\ MW:\ 331.35\ g.mol^{-1}\\ Colorless\ oil\\ 95\% \end{array}$

¹**H NMR (500 MHz, CDCl₃):** δ = 7.52 (d, J = 8.1 Hz, 2H), 7.31 – 7.29 (m, 1H), 6.70 (d, J = 8.0 Hz, 2H), 5.57 – 5.48 (m, 1H), 5.35 (p, J = 5.6 Hz, 1H), 5.00 – 4.85 (m, 2H), 3.07 – 2.95 (m, 2H), 2.24 – 2.07 (m, 2H), 1.82 (s, 3H) ppm.

Data match with those described in the literature⁶

Compound **1e** 4-methyl-*N*-(pent-4-en-1-yl)-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

 $\begin{array}{l} C_{16}H_{18}F_3NO_2S\\ MW:\ 345.38\ g.mol^{-1}\\ Colorless\ oil\\ 90\% \end{array}$

¹**H NMR (500 MHz, CDCl₃):** δ = 7.55 (d, J = 8.3 Hz, 2H), 7.33– 7.30 (m, 1H), 6.73 (d, J = 8.0 Hz, 2H), 5.65– 5.57 (m, 1H), 5.36 (p, J = 5.6 Hz, 1H), 4.97–4.89 (m, 2H), 3.02–2.87 (m, 2H), 1.96–1.76 (m, 5H), 1.58–1.39 (m, 2H) ppm.

Data match with those described in the literature⁶

Compound 1f 4-methyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)-N-(2,2,2

trifluoroethyl)benzenesulfonamide

 $C_{13}H_{11}F_6NO_2S$ MW: 359.29 g.mol⁻¹ Colorless oil 71%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.74 (d, J = 8.4 Hz, 2H), 7.53 – 7.33 (m, 3H), 6.07 (p, J = 5.5 Hz, 1H), 3.90 (dqd, J = 15.6, 8.1, 0.8 Hz, 1H), 3.72 (dq, J = 16.1, 8.1 Hz, 1H), 2.49 (s, 3H) ppm.

Data match with those described in the literature⁸

⁸ M. Hourtoule, L. Miesch, Org. Lett. 2023, 25, 1727–1731.

<u>Compound</u> **1g** *N*-(2-((3aR,7aS)-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-yl)ethyl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

¹**H NMR (500 MHz, CDCl₃):** δ = 7.63 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.34 (m, 1H), 7.32 (d, *J* = 7.9 Hz, 2H), 6.08 (p, *J* = 5.5 Hz, 1H), 5.90 (m, 2H), 3.65 – 3.54 (m, 2H), 3.42 – 3.33 (m, 1H), 3.21 – 3.14 (m, 2H), 3.10 (dt, *J* = 14.8, 5.1 Hz, 1H), 2.62 – 2.54 (m, 2H), 2.43 (s, 3H), 2.26 – 2.25 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 198.1 (q, *J* = 5.8 Hz), 180.3, 180.3, 144.8, 134.7, 130.2, 128.0, 128.0, 127.2, 121.3 (q, *J* = 271.9 Hz,), 106.9, 97.3 (q, *J* = 39.2 Hz), 44.0, 39.3, 39.3, 35.3, 23.4, 23.4, 21.7 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -62.08 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{21}H_{21}F_3N_2NaO_4S$ 477.1066; Found 477.1056.

IR (neat): v = 3046, 1703, 1402, 1360, 1166, 1127 cm⁻¹

<u>Compound</u> **1h** 4-methyl-*N*-(2-(2-oxocyclohexyl)ethyl)-*N*-(4,4,4-trifluorobuta-1,2-dien-1yl)benzenesulfonamide

Only one diastereoisomer was described for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃): δ = 7.68 – 7.62 (m, 2H), 7.42 – 7.34 (m, 1H), 7.31 (d, *J* = 8.1 Hz, 2H), 6.02 – 5.90 (m, 1H), 3.30 – 3.01 (m, 2H), 2.42 (s, 4H), 2.40 – 2.29 (m, 2H), 2.13 – 1.98 (m, 2H), 1.98 – 1.81 (m, 2H), 1.78 – 1.56 (m, 2H), 1.41 – 1.27 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 212.8, 198.4 (q, *J* = 5.8 Hz), 144.5, 134.9, 130.1, 127.2, 121.4 (q, *J* = 272.0 Hz), 107.0, 96.3 (q, *J* = 39.2 Hz), 47.4, 45.5, 42.3, 34.8, 28.3, 27.0, 25.4, 21.7 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -62.10, -62.31 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{19}H_{22}F_3NNaO_3S$ 424.1165; Found 424.1159.

IR (neat): v = 3046, 2934, 1708, 1356, 1265, 1121 cm⁻¹

Compound 1i N-phenethyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)methanesulfonamide

C₁₃H₁₄F₃NO₂S MW: 305.32 g.mol⁻¹ White solid 59%

¹**H NMR (500 MHz, CDCl**₃): δ = 7.14 – 7.02 (m, 2H), 7.06 – 6.96 (m, 3H), 6.94 (dt, *J* = 6.3, 3.2 Hz, 1H), 5.46 (p, *J* = 5.6 Hz, 1H), 3.26 – 3.03 (m, 2H), 2.64 (dd, *J* = 8.6, 7.1 Hz, 2H), 1.86 (s, 3H) ppm.

Data match with those described in the literature⁹

Compound 1j 2-(4,4,4-trifluorobuta-1,2-dien-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide

 $C_{11}H_8F_3NO_2S$ MW: 275.24 g.mol⁻¹ White solid 58%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.85 (ddd, *J* = 7.7, 1.3, 0.6 Hz, 1H), 7.69 (td, *J* = 7.7, 1.3 Hz, 1H), 7.63 – 7.55 (m, 1H), 7.47 (dt, *J* = 7.8, 0.9 Hz, 1H), 7.32 (dq, *J* = 5.9, 2.9 Hz, 1H), 6.17 (p, *J* = 5.9 Hz, 1H), 4.46 (d, *J* = 4.8 Hz, 2H) ppm.

Data match with those described in the literature⁶

Compound 1k 3-(4,4,4-trifluorobuta-1,2-dien-1-yl)oxazolidin-2-one

 $C_7H_6F_3NO_2$ MW: 193.13 g.mol⁻¹ Colorless oil 73%

¹**H NMR (500 MHz, CDCl**₃): δ = 6.85 (dq, J = 6.2, 3.1 Hz, 1H), 5.36 (p, J = 5.6 Hz, 1H), 3.05 (pd, J = 8.9, 6.5 Hz, 2H), 2.07 (dtd, J = 22.0, 8.9, 6.5 Hz, 2H) ppm.

Data match with those described in the literature³

Compound **1** *N*-(4-fluorobenzyl)-4-methyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1yl)benzenesulfonamide

 $C_{18}H_{15}F_4NO_2S$ MW: 385.38 g.mol⁻¹ White solid 78%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.71 (d, *J* = 8.4 Hz, 2H), 7.43 – 7.38 (m, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.22 (dd, *J* = 8.6, 5.4 Hz, 2H), 6.97 (t, *J* = 8.7 Hz, 2H), 5.71 (p, *J* = 5.6 Hz, 1H), 4.38 (d, *J* = 15.3 Hz, 1H), 4.14 (d, *J* = 15.2 Hz, 1H), 2.46 (s, 3H) ppm.

⁹ C. Gommenginger, Y. Zheng, D. Maccarone, I. Ciofini, L. Miesch, Org. Chem. Front. 2023, **10**, 4055–4060.

Data match with those described in the literature¹⁰

Compound 1m N,N'-(butane-1,4-diyl)bis(4-methyl-N-(4,4,4-trifluorobuta-1,2-dien-1

yl)benzenesulfonamide)

C₁₇H₁₅F₃N₂O₂S MW: 368.37 g.mol⁻¹ Orange oil 52%

¹**H NMR (300 MHz, CDCl₃):** δ = 8.43 (s, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.17 (m, 1H), 6.72 (d, *J* = 8.1 Hz, 2H), 6.70 – 6.63 (m, 1H), 5.12 (s, 1H), 3.98 (d, *J* = 15.5 Hz, 1H), 3.74 (d, *J* = 15.4 Hz, 1H), 1.84 (s, 3H) ppm.

Data match with those described in the literature¹⁰

Compound 1n N,4-dimethyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

1n was used without any further purification.

Compound 10 N-cyclopropyl-4-methyl-N-(4,4,4-trifluorobuta-1,2-dien-1-yl)benzenesulfonamide

 $C_{14}H_{14}F_3NO_2S$ MW: 317.33 g.mol⁻¹ White solid 74%

¹H NMR (300 MHz, CDCl₃): δ = 7.79 – 7.71 (m, 2H), 7.39 – 7.33 (m, 2H), 7.33 – 7.30 (m, 1H), 5.88 (p, *J* = 5.6 Hz, 1H), 2.45 (s, 3H), 1.73 (tt, *J* = 6.9, 3.6 Hz, 1H), 1.12 – 0.88 (m, 2H), 0.83 – 0.64 (m, 2H) ppm.

Data match with those described in the literature⁶

¹⁰ C. Gommenginger, M. Hourtoule, M. Menghini, L. Miesch, *Org. Biomol. Chem.* 2024, **22**, 940–944.

NC 1 H NMR (300 MHz, CDCl₃): $\delta = 7.68$ (d, J = 8.4 Hz, 2H), 7.47 – 7.38 (m, 1H), 7.35 (d, J = 8.4 Hz, 2H), 5.99 (p, J = 5.5 Hz, 1H), 3.14 (t, J = 6.6 Hz, 2H), 2.45 (s, 3H), 2.39 (tt, J = 6.6, 1.4 Hz, 2H), 1.74 – 1.65 (m, 4H) ppm.

Data match with those described in the literature⁶

Compound **1q** *N*-benzyl-*N*-(4,4,4-trifluorobuta-1,2-dien-1-yl)methanesulfonamide

 \cap

 $C_{12}H_{12}F_3NO_2S$ MW: 291.29 g.mol⁻¹ White solid 81%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.56 – 7.13 (m, 6H), 5.85 (p, *J* = 5.6 Hz, 1H), 4.66 (d, *J* = 15.3 Hz, 1H), 4.41 (d, *J* = 15.3 Hz, 1H), 2.93 (s, 3H) ppm.

Data match with those described in the literature⁶

Compound 1r N-benzyl-N-(4,4-difluorobuta-1,2-dien-1-yl)-4-methylbenzenesulfonamide

 $C_{18}H_{17}F_2NO_2S$ MW: 349.40 g.mol⁻¹ Colorless oil 82%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.76 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.35 – 7.26 (m, 5H), 7.23 (dd, *J* = 11.0, 5.7 Hz, 1H), 5.68 (p, *J* = 6.0 Hz, 1H), 5.39 (td, *J* = 56.0, 6.0 Hz, 1H), 4.48 (d, *J* = 15.1 Hz, 1H), 4.18 (d, *J* = 15.1 Hz, 1H), 2.49 (s, 3H) ppm.

Data match with those described in the literature³

Compound 1s N-cyclopropyl-N-(4,4-difluorobuta-1,2-dien-1-yl)-4-methylbenzenesulfonamide

 $\begin{array}{l} C_{14}H_{15}F_2NO_2S\\ MW:\ 299.34\ g.mol^{-1}\\ White\ solid\\ 89\% \end{array}$

¹**H NMR (500 MHz, CDCl₃):** δ = 7.74 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H), 7.17 (td, *J* = 5.8, 4.9 Hz, 1H), 6.10 – 5.80 (m, 2H), 2.45 (s, 3H), 1.72 (tt, *J* = 6.9, 3.6 Hz, 1H), 1.08 – 0.98 (m, 1H), 0.96 – 0.84 (m, 1H), 0.80 – 0.68 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 200.3 (t, *J* = 12.1 Hz), 144.6, 133.6, 129.9, 127.9, 113.5 (t, *J* = 239.4 Hz), 107.1 (t, *J* = 1.3 Hz), 98.2 (t, *J* = 28.7 Hz), 29.0, 21.8, 8.2, 7.7 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -109.84 ppm.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₅F₂NNaO₂S 322.0689; Found 322.0694.

IR (neat): v = 1350, 1171, 901, 814 cm⁻¹

Compound **1t** *N*-(4,4-difluorobuta-1,2-dien-1-yl)-4-methyl-*N*-(pent-4-en-1-yl)benzenesulfonamide

Only one isomer was described for ¹³C-NMR.

¹H NMR (500 MHz, CDCl₃) δ = 7.68 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.26 – 7.22 (m, 1H), 6.12 – 5.86 (m, 2H), 5.81 – 5.69 (m, 1H), 5.06 – 4.93 (m, 2H), 3.13 – 3.04 (m, 2H), 2.44 (s, 3H), 2.08 – 1.98 (m, 2H), 1.67 – 1.58 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 198.6, 144.2, 137.2, 135.3, 129.9, 127.1, 115.5, 113.0 (t, *J* = 239.8 Hz), 105.1, 99.3 (t, *J* = 28.2 Hz), 46.6, 30.6, 26.5, 21.6 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -109.52 (d, *J* = 298.5 Hz), -110.30 (d, *J* = 299.5 Hz) ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{16}H_{19}F_2NNaO_2S$ 350.0997; Found 350.0994.

IR (neat): v = 1354, 1166, 904, 725 cm⁻¹

¹**H NMR (500 MHz, CDCl₃):** δ = 7.68 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.20 (m, 7H), 6.79 (t, *J* = 6.2 Hz, 1H), 5.10 (d, *J* = 6.2 Hz, 2H), 4.26 (s, 2H), 2.41 (s, 3H) ppm.

Data match with those described in the literature³

2a (E)-N-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-N-benzyl-4-<u>Compound</u> methylbenzenesulfonamide

C₁₈H₁₇F₃N₄O₂S MW: 410.42 g.mol⁻¹ Colorless oil 84%

¹H NMR (300 MHz, CDCl₃): δ = 7.7 – 7.67 (m, 2H), 7.41 – 7.35 (m, 2H), 7.31 – 7.28 (m, 3H), 7.22 – 7.18 (m, 2H), 5.20 (s, 1H), 4.21 (s, 2H), 3.08 (qd, J = 10.2, 0.8 Hz, 2H), 2.48 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 144.5, 138.3 (q, J = 3.0 Hz), 134.2, 133.9, 130.0, 129.2, 128.7, 128.3, 127.7, 123.9 (q, J = 278,3 Hz), 117.8, 55.6, 33.4 (q, J = 31.5 Hz), 21.6 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.88 ppm.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₈H₁₇F₃KN₄O₂S 449.0656; Found 449.0668.

IR (neat): v = 2960, 2112, 1271, 1164 cm⁻¹

Compound 2b (E)-N-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-4-methyl-Nphenethylbenzenesulfonamide

MW: 424.44 g.mol⁻¹ Colorless oil

¹**H NMR (300 MHz, CDCl**₃): δ = 7.66 – 7.59 (m, 2H), 7.35 – 7.22 (m, 5H), 7.16 – 7.11 (m, 2H), 5.22 (s, 1H), 3.32 (m, 4H), 2.79 (m, 2H), 2.44 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 144.5, 138.0 (q, J = 3.1 Hz), 137.7, 133.5, 129.0, 128.7, 128.7, 127.6, 126.8, 124.4 (q, J = 275.7 Hz), 118.3, 52.8, 34.6, 33.5 (q, J = 30.7 Hz), 21.6 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.75 ppm.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₉H₁₉F₃KN₄O₂S 463.0812; Found 463.0815.

IR (neat): v = 2928, 2109, 1341, 1270, 1162, 1091 cm⁻¹

Compound 2c (E)-N-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4methylbenzenesulfonamide

C₁₉H₁₇F₃N₄O₄S MW: 454.42 g.mol-1 White solid mp = 105 - 107 °C

¹**H NMR (500 MHz, CDCl₃)**: δ = 7.67 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 6.74 – 6.60 (m, 3H), 5.94 (s, 2H), 5.18 (s, 1H), 4.11 (s, 2H), 3.12 (q, *J* = 10.2 Hz, 2H), 2.47 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 148.1, 147.8, 144.6, 138.5 (q, *J* = 3.0 Hz), 134.1, 130.1, 128.1, 127.8, 124.2 (q, *J* = 278.4 Hz), 122.9, 117.8, 109.5, 108.3, 101.3, 55.6, 33.5 (q, *J* = 31.5 Hz), 21.7 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.86 ppm.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₉H₁₇F₃KN₄O₄S 493.0554; Found 493.0565.

IR (neat): v = 2920, 2115, 1655, 1246, 1167, 1127 cm⁻¹

Compound 2d (*E*)-*N*-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(but-3-en-1-yl)-4methylbenzenesulfonamide

 $C_{15}H_{17}F_{3}N_{4}O_{2}S$ MW : 374.38 g.mol⁻¹ colorless oil 81%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.62 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.70 (ddt, *J* = 17.0, 10.3, 6.6 Hz, 1H), 5.16 (s, 1H), 5.12 – 5.03 (m, 2H), 3.37 (qd, *J* = 10.3, 0.7 Hz, 2H), 3.01 (m, 2H), 2.45 (s, 3H), 2.22 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.6, 138.1 (q, *J* = 3.1 Hz), 134.3, 133.7, 130.1, 127.8, 121.2 (q, *J* = 270.0 Hz), 118.4, 117.5, 50.9, 33.8 (q, *J* = 30.7 Hz), 32.2, 21.7 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -62.74 ppm.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₅H₁₈F₃N₄O₂S 375.1097; Found 375.1105.

IR (neat): v = 2111, 1343, 1271, 1164 cm⁻¹

Compound **2e** (*E*)-*N*-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-4-methyl-*N*-(pent-4-en-1-yl)benzenesulfonamide

 $\begin{array}{l} C_{16}H_{19}F_{3}N_{4}O_{2}S\\ MW: 388.41 \ g.mol^{-1}\\ colorless \ oil\\ 81\% \end{array}$

¹**H NMR (300 MHz, CDCl₃):** δ = 7.61 – 7.65 (m, 2H), 7.38– 7.32 (m, 2H), 5.74 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.14 (s, 1H), 5.05 – 4.96 (m, 2H), 3.39 (q, *J* = 10.2 Hz, 2H) 3.02 – 2.99 (m, 2H), 2.45 (s, 3H), 2.08 – 2.02 (m, 2H), 1.59 – 1.52 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.5, 137.8 (q, *J* = 3.08 Hz), 137.2, 133.7, 130.0, 127.7, 124.5 (q, *J* = 279.0 Hz), 118.7, 115.7, 51.1, 33.7 (q, *J* = 31.2 Hz), 30.9, 27.1, 21.7 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.91 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{16}H_{19}F_3NaN_4O_2S$ 411.1073; Found 411.1078.

IR (neat): v = 2928, 2861, 2110, 1271, 1163 cm⁻¹

<u>Compound **2f** (*E*)-*N*-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-4-methyl-*N*-(2,2,2trifluoroethyl)benzenesulfonamide</u>

 $\begin{array}{l} C_{13}H_{12}F_{6}N_{4}O_{2}S\\ MW: \,402.32 \ g.mol^{-1}\\ white \ solid\\ 88\% \end{array}$

¹**H NMR (500 MHz, CDCl₃):** δ = 7.67 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 5.35 (s, 1H), 3.75 (q, *J* = 8.3 Hz, 2H), 3.32 (q, *J* = 10.2 Hz, 2H), 2.49 (s, 3H) ppm.

¹³**C NMR (125 MHz, CDCl₃):** δ = 145.5 , 140.1 (q, *J* = 3.0 Hz), 133.7, 130.4, 127.8, 124.2 (q, *J* = 277.9 Hz) 123.6 (q, *J* = 280.4 Hz), 117.1, 51.9 (q, *J* = 34.1 Hz), 33.3 (q, *J* = 31.9 Hz), 21.8 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.55 (q, *J* = 3.0 Hz), -69.39 (q, *J* = 3.0 Hz) ppm.

HRMS (ESI-TOF) m/z: $[M+K]^+$ calcd for $C_{13}H_{12}F_6KN_4O_2S$ 441.0217; Found 441.0226.

IR (neat): v = 2933, 2117, 1270, 1166, 1089 cm⁻¹

Compound **2g** *N*-((*E*)-2-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(2-((3a*R*,7a*S*)-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-yl)ethyl)-4-methylbenzenesulfonamide

 $C_{21}H_{22}F_3N_5O_4S$ MW: 497.49 g.mol⁻¹ Colorless oil 63%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.58 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 5.94 – 5.83 (m, 2H), 5.29 (s, 1H), 3.70 – 3.54 (m, 2H), 3.32 (q, *J* = 10.1 Hz, 2H), 3.23 – 3.13 (m, 4H), 2.60 (m, 2H), 2.44 (s, 3H), 2.31 – 2.21 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 180.4, 144.8, 138.9 (q, *J* = 3.1 Hz), 133.8, 130.2, 127.9, 127.7, 124.6 (q, *J* = 278.3 Hz), 118.4, 49.1, 39.3, 37.2, 33.4 (q, *J* = 31.4 Hz), 23.5, 21.7 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.56 ppm.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{21}H_{23}F_3N_5O_4S$ 498.1417; Found 498.1429.

IR (neat): v = 2927, 2361, 2113, 1699, 1162, 906, 727 cm⁻¹

<u>Compound</u> **2h** (*E*)-*N*-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-4-methyl-*N*-(2-(2oxocyclohexyl)ethyl)benzenesulfonamide

¹H NMR (400 MHz, CDCl₃): δ = 7.61 - 7.56 (m, 2H), 7.36 - 7.31 (m, 2H), 5.17 (s, 1H), 3.59 - 3.44 (m, 1H), 3.31 - 3.14 (m, 2H), 2.97 - 2.89 (m, 1H), 2.44 (s, 3H), 2.43 - 2.31 (m, 3H), 2.12 - 1.25 (m, 8H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 212.6, 144.6, 137.6 (q, *J* = 2.8 Hz), 133.6, 130.1, 127.7, 124.5 (q, *J* = 278.2 Hz), 118.9, 49.7, 47.7, 42.4, 34.6, 33.8 (q, *J* = 32.1 Hz), 28.3, 28.1, 25.4, 21.7 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.88 ppm.

HRMS (ESI-TOF) m/z: $[M+K]^+$ calcd for $C_{19}H_{23}F_3KN_4O_3S$ 483.1075; Found 483.1092.

IR (neat): v = 2935, 2864, 2112, 1710, 1342, 1272, 1164 cm⁻¹

Compound 2i (E)-N-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-N-phenethylmethanesulfonamide

C₁₃H₁₅F₃N₄O₂S MW: 348.34 g.mol⁻¹ Colorless oil 73%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.26 – 7.12 (m, 5H), 5.57 (s, 1H), 3.45 (m, 2H), 3.19 (q, *J* = 10.2, 2H), 2.82 (m, 2H), 2.70 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 138.6 (q, *J* = 3.0 Hz), 137.7, 128.9, 128.9, 127.1, 124.4 (q, *J* = 277.6 Hz), 117.5, 53.2, 36.3, 34.9, 33.6 (q, *J* = 31.4 Hz) ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -62.76 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{13}H_{15}F_3N_4NaO_2S$ 371.0760; Found 371.0750.

IR (neat): v = 3028, 2112, 1336, 1270, 1150 cm⁻¹

Compound **2j** (*E*)-2-(2-azido-4,4,4-trifluorobut-1-en-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1dioxide

 $C_{11}H_9F_3N_4O_2S$ MW: 318.27 g.mol⁻¹ White solid 81%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.83 (ddd, *J* = 7.7, 1.2, 0.6 Hz, 1H), 7.67 (td, *J* = 7.5, 1.2 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.43 (dt, *J* = 7.7, 1.0 Hz, 1H), 5.93 (s, 1H), 4.46 (s, 2H), 3.34 (q, *J* = 10.2 Hz, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 139.3 (q, *J* = 2.9 Hz), 134.2, 133.5, 133.3, 129.7, 124.8, 124.5 (q, *J* = 277.9 Hz), 122.0, 114.4, 53.1, 33.4 (q, *J* = 31.4 Hz) ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -64.15 ppm.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₁H₉F₃N₄NaO₂S 341.0291; Found 341.0290.

IR (neat): v = 3267, 2114, 2114, 1654, 1251, 1156, 756 cm⁻¹

Compound 2k (E)-3-(2-azido-4,4,4-trifluorobut-1-en-1-yl)oxazolidin-2-one

 $\begin{array}{l} C_7H_7F_3N_4O_2\\ MW:\ 236.15\ g.mol^{-1}\\ Colorless\ oil\\ 45\% \end{array}$

¹**H NMR (500 MHz, C₆D₆):** δ = 4.86 (qt, *J* = 8.0, 0.7 Hz, 1H), 3.61 (dt, *J* = 1.9, 0.9 Hz, 2H), 3.31 – 3.23 (m, 2H), 2.30 – 2.23 (m, 2H) ppm.

¹³**C NMR (126 MHz, C₆D₆):** δ = 157.5, 147.9 (q, *J* = 5.3 Hz), 123.7 (q, *J* = 269.3 Hz), 105.7 (q, *J* = 36.4 Hz), 61.2, 43.4, 42.4 (q, *J* = 2.1 Hz) ppm.

¹⁹**F NMR (471 MHz, C₆D₆):** δ = -53.94 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_7H_7F_3N_4NaO_2$ 259.0413; Found 259.0410.

IR (neat): v = 2992, 2110, 1712 cm⁻¹

Compound 2l ethyl (E)-3-azido-4-((N-benzyl-4-methylphenyl)sulfonamido)but-3-enoate

C₂₀H₂₂N₄O₄S MW: 414.48 g.mol-1 White solid mp = 76 - 78 °C 65% over 2 steps

¹**H NMR (500 MHz, CDCl₃):** δ = 7.69 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.25 – 7.22 (m, 2H), 5.05 (s, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 3.31 (s, 2H), 2.46 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR (126 MHz, CDCl**₃): δ = 168.2, 144.3, 140.8, 135.2, 134.3, 130.0, 129.1, 128.7, 128.1, 127.8, 115.6, 61.3, 55.6, 34.0, 21.7, 14.2 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{20}H_{22}N_4NaO_4S$ 437.1254; Found 437.1283.

IR (neat): v = 2982, 2360, 2109, 1737, 1348, 1164, 740 cm⁻¹

<u>Compound</u> <u>2m</u> benzyl (*E*)-3-azido-4-((*N*-(benzo[d][1,3]dioxol-5-ylmethyl)-4methylphenyl)sulfonamido)but-3-enoate

C₂₆H₂₄N₄O₆S MW: 520.56 g.mol⁻¹ White solid 61% over 2 steps

¹**H NMR (500 MHz, CDCl₃):** δ = 7.66 (d, *J* = 8.4 Hz, 2H), 7.41 – 7.29 (m, 7H), 6.77 – 6.71 (m, 1H), 6.69 – 6.59 (m, 2H), 5.90 (s, 2H), 5.09 (s, 2H), 5.04 (s, 1H), 4.09 (s, 2H), 3.40 (s, 2H), 2.45 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 168.1, 147.9, 147.4, 144.2, 140.5, 135.4, 134.1, 129.9, 128.8, 128.6, 128.4, 128.3, 127.7, 122.5, 115.5, 109.2, 108.2, 101.2, 67.0, 55.3, 33.9, 21.7 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{26}H_{24}N_4NaS$ 543.1308; Found 543.1315.

IR (neat): v = 3033, 2897, 2108, 1737, 1489, 1445, 1243, 1160, 1036, 730 cm⁻¹

Compound **2n** 4-methoxybenzyl (*E*)-3-azido-4-((*N*-cyclopropyl-4-methylphenyl)sulfonamido)but-3-enoate

C₂₂H₂₄N₄O₅S MW: 456.52 g.mol⁻¹ Colorless oil 36% over 2 steps

¹**H NMR (400 MHz, CDCl₃):** δ = 7.68 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.29 (m, 6H), 6.89 (d, *J* = 8.7 Hz, 2H), 5.20 (s, 1H), 5.11 (s, 2H), 3.81 (s, 3H), 3.47 (s, 2H), 2.44 (s, 3H), 2.02 (tt, *J* = 6.8, 3.5 Hz, 1H), 0.82 – 0.74 (m, 2H), 0.74 – 0.53 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 168.8, 159.9, 144.4, 138.7, 133.3, 130.4, 129.9, 128.2, 127.6, 117.2, 114.1, 67.2, 55.5, 34.4, 32.5, 21.7, 7.2, 6.3 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{22}H_{24}N_4NaO_5S$ 479.1360; Found 479.1354.

IR (neat): v = 3275, 2925, 2110, 1737, 1516, 1164, 816 cm⁻¹

Compound **20** *N*-((1E)-2-azido-4-fluorobuta-1,3-dien-1-yl)-*N*-benzyl-4methylbenzenesulfonamide

C₁₈H₁₇FN₄O₂S MW: 374.42 g.mol⁻¹ White solid 80%, **6:4** *dr*

Only one diastereoisomer was described for ¹³C-NMR.

¹**H NMR (500 MHz, CDCl₃):** δ = 7.77 – 7.67 (m, 4H), 7.39 – 7.27 (m, 11H), 7.25 – 7.22 (m, 3H), 6.88 (ddd, *J* = 58.8, 11.0, 0.5 Hz, 1H), 6.87 (ddd, *J* = 82.0, 10.9, 0.5 Hz, 1H), 6.07 (ddd, *J* = 17.6, 11.0, 0.7 Hz, 1H), 5.62 (ddd, *J* = 16.6, 10.8, 0.6 Hz, 1H), 5.12 – 5.10 (m, 2H), 5.06 – 5.06 (m, 2H), 4.30 (s, 2H), 4.25 (s, 2H), 2.47 (s, 6H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 154.2 (d, *J* = 268.0 Hz), 144.4, 140.6, 135.0, 134.4, 130.1, 129.1, 128.8, 128.3, 127.8, 113.6 (d, *J* = 10.8 Hz), 106.2 (d, *J* = 21.9 Hz), 55.7, 21.7 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -122.76, -124.58 ppm.

IR (neat): v = 3032, 2926, 1018, 1663, 1349, 1164, 1092 cm⁻¹

Compound **2p** *N*-((3*Z*)-2-azido-4-fluorobuta-1,3-dien-1-yl)-*N*-cyclopropyl-4methylbenzenesulfonamide

Only one diastereoisomer was described for ¹³C-NMR.

¹**H NMR (500 MHz, CDCl₃):** δ = 7.77 – 7.66 (m, 4H), 7.39 – 7.30 (m, 4H), 7.05 (ddd, *J* = 82.0, 11.1, 0.3 Hz, 1H), 7.04 (ddd, *J* = 81.8, 10.6, 0.7 Hz, 1H), 6.22 (ddd, *J* = 17.6, 11.0, 0.7 Hz, 1H), 5.72 (ddd, *J* = 17.3, 10.8, 0.4 Hz, 1H), 5.25 (dt, *J* = 1.5, 0.7 Hz, 2H), 5.21 – 5.20 (m, 2H), 2.45 (s, 6H), 2.16 (tt, *J* = 6.8, 3.4 Hz, 1H), 2.10 (tt, *J* = 6.8, 3.5 Hz, 1H), 0.89 (m, 8H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 154.2 (d, *J* = 267.7 Hz), 144.4, 138.6, 133.5, 129.9, 128.1, 115.1 (d, *J* = 11.1 Hz), 106.2 (d, *J* = 21.6 Hz), 32.7, 21.7, 7.4 ppm.

¹⁹**F NMR (471 MHz, CDCl**₃): δ = -122.91, -125.12 ppm.

IR (neat): v = 2934, 2117, 1648, 1358, 1170, 1132 cm⁻¹

<u>Compound</u> **2q** *N*-((3*Z*)-2-azido-4-fluorobuta-1,3-dien-1-yl)-4-methyl-*N*-(pent-4-en-1-yl)benzenesulfonamide

Only one diastereoisomer was described for ¹³C-NMR.

¹**H NMR (500 MHz, CDCl₃):** δ = 7.72 – 7.59 (m, 4H), 7.38 – 7.31 (m, 4H), 7.08 (ddd, *J* = 81.8, 10.9, 0.5 Hz, 1H), 7.06 (ddd, *J* = 82.0, 10.8, 0.5 Hz, 1H), 6.37 (ddd, *J* = 17.5, 11.0, 0.6 Hz, 1H), 5.82 – 5.68 (m, 3H), 5.10 – 4.97 (m, 6H), 3.14 – 3.03 (m, 4H), 2.44 (s, 6H), 2.08 (m, 4H), 1.69 – 1.52 (m, 4H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 154.5 (d, *J* = 268.1 Hz), 144.2, 140.3 (d, *J* = 11.9 Hz), 137.3, 134.2, 130.0, 127.7, 115.8, 114.0 (d, *J* = 11.1 Hz), 106.5 (d, *J* = 21.8 Hz), 51.0, 30.9, 27.6, 21.7 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -122.37, -124.94 ppm.

IR (neat): v = 3099, 2926, 2110, 1349, 1164, 1109 cm⁻¹

Compound **3a** (*E*)-*N*-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-benzyl-4methylbenzenesulfonamide

¹**H NMR (300 MHz, CDCl₃):** δ = 7.69 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.31 – 7.19 (m, 6H), 4.63 – 4.49 (m, 3H), 4.28 – 4.13 (m, 1H), 2.45 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.8, 135.5, 134.9, 133.9, 130.3, 128.9, 128.0, 127.2, 126.9, 123.5 (q, *J* = 280.9 Hz), 98.0 (q, *J* = 1.9 Hz), 62.7 (q, *J* = 32.0 Hz), 49.6, 21.8 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -75.85 ppm.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₈H₁₇F₃KN₄O₂S 449.0656; Found 449.0649.

IR (neat): v = 2113, 1655, 1262, 1167, 1126 cm⁻¹

Compound **3b** (*E*)-*N*-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(4-fluorobenzyl)-4methylbenzenesulfonamide

C₁₈H₁₆F₄N₄O₂S MW: 428.41 g.mol⁻¹ Colorless oil 94%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.68 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.24 (d, *J* = 14.5 Hz, 1H), 7.22 – 7.18 (m, 2H), 7.03 – 6.95 (m, 2H), 4.58 – 4.45 (m, 3H), 4.25 – 4.15 (m, 1H), 2.45 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 162.5 (d, *J* = 246.6 Hz), 145.0, 135.4, 134.8, 130.3, 129.7 (d, *J* = 3.1 Hz), 128.7 (d, *J* = 8.2 Hz), 127.1, 123.5 (q, *J* = 280.8 Hz), 115.9 (d, *J* = 21.8 Hz), 98.1 (q, *J* = 2.2 Hz), 62.7 (q, *J* = 32.0 Hz), 48.9, 21.7 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -75.84, -114.31 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{18}H_{16}F_4N_4NaO_2S$ 451.0828; Found 451.0831.

IR (neat): v = 2112, 1654, 1510, 1165, 1123, 1035, 812 cm⁻¹

<u>Compound</u> **3c** (*E*)-*N*-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(benzo[d][1,3]dioxol-5-ylmethyl)-4methylbenzenesulfonamide

 $C_{19}H_{17}F_3N_4O_4S$ MW: 454.42 g.mol⁻¹ Colorless oil 95%

¹**H NMR (500 MHz, CDCl**₃): δ = 7.61 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 14.1 Hz, 1H), 6.72 – 6.54 (m, 3H), 5.86 (q, *J* = 1.4 Hz, 2H), 4.52 (dd, *J* = 14.1, 8.9 Hz, 1H), 4.43 (d, *J* = 15.9 Hz, 1H), 4.28 (d, *J* = 15.9 H, 1H), 4.13 (dq, *J* = 8.4, 6.5 Hz, 1H), 2.38 (s, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 148.3, 147.3, 144.7, 135.3, 134.7, 130.1, 127.6, 127.0, 123.4 (q, *J* = 280.9 Hz), 120.4, 108.3, 107.3, 101.2, 97.9 (q, *J* = 1.8 Hz), 62.6 (q, *J* = 32.0 Hz), 49.3, 21.6 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -75.79 ppm.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₉H₁₇F₃KN₄O₄S 493.0554; Found 493.0565.

IR (neat): v = 2361, 2114, 1655, 1491, 1245, 1167, 1126, 1038 cm⁻¹

<u>Compound</u> **3d** (*E*)-*N*-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-4-methyl-*N*-(pyridin-3ylmethyl)benzenesulfonamide

 $C_{17}H_{16}F_{3}N_{5}O_{2}S$ MW: 411.40 g.mol⁻¹ Colorless oil 83%

¹**H NMR (400 MHz, CDCl₃):** δ = 8.52 (d, J = 21.8 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.64 (dt, J = 8.1, 1.9 Hz, 1H), 7.35 (dt, J = 8.0, 0.7 Hz, 2H), 7.31 – 7.24 (m, 3H), 4.63 – 4.53 (m, 2H), 4.52 (dd, J = 14.1, 8.7 Hz, 1H), 4.29 – 4.17 (m, 1H), 2.45 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 149.2, 148.2, 145.2, 135.1, 135.0, 134.5, 130.4, 130.1, 127.2, 124.0, 123.5 (d, *J* = 281.0 Hz), 98.2 (q, *J* = 1.8 Hz), 62.5 (q, *J* = 32.1 Hz), 47.0, 21.8 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -75.78 ppm.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₉H₁₇F₃KN₄O₄S 412.1055; Found 412.1060.

IR (neat): v = 2958, 2112, 1658, 1129 cm⁻¹

Compound **3e** (E)-N-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-N,4-dimethylbenzenesulfonamide

C₁₂H₁₃F₃N₄O₂S MW: 334.32 g.mol⁻¹ Colorless oil 89%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.64 (d, *J* = 8.4 Hz, 2H), 7.36 – 7.26 (m, 3H), 4.61 (dd, *J* = 13.9, 8.9 Hz, 1H), 4.40 – 4.24 (m, 1H), 2.91 (s, 3H), 2.44 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.8, 136.8, 134.3, 130.2, 127.1, 123.7 (q, *J* = 280.4 Hz), 96.4 (q, *J* = 1.9 Hz), 62.8 (q, *J* = 32.1 Hz), 32.1, 21.7 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -75.65 ppm.

HRMS (ESI-TOF) m/z: [M+K]⁺ calcd for C₁₂H₁₃F₃KN₄O₂S 373.0348; Found 373.0341.

IR (neat): v = 2113, 1652, 1161, 1126 cm⁻¹

Compound **3f** (*E*)-*N*-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-cyclopropyl-4methylbenzenesulfonamide

 $C_{14}H_{15}F_{3}N_{4}O_{2}S$ MW: 360.36 g.mol⁻¹ Colorless oil 86%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.69 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 14.0 Hz, 1H), 5.06 (dd, *J* = 14.0, 9.1 Hz, 1H), 4.37 – 4.26 (m, 1H), 2.44 (s, 3H), 1.81 (tt, *J* = 6.9, 3.7 Hz, 1H), 1.10 – 0.95 (m, 2H), 0.95 – 0.82 (m, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.8, 137.9, 134.0, 130.0, 127.6, 123.7 (q, *J* = 280.6 Hz), 99.4 (d, *J* = 2.2 Hz), 62.8 (q, *J* = 32.0 Hz), 27.0, 21.7, 8.1, 8.1 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -75.70 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{14}H_{15}F_3N_4NaO_2S$ 383.0766; Found 383.0772.

IR (neat): v = 2114, 1651, 1366, 1171, 1131 cm⁻¹

<u>Compound</u> **3g** (*E*)-*N*-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(4-cyanobutyl)-4methylbenzenesulfonamide

¹**H NMR (400 MHz, CDCl₃):** δ = 7.64 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.6, Hz, 2H), 7.18 (d, *J* = 14.2, 1H), 4.67 (dd, *J* = 14.2, 8.8 Hz, 1H), 4.39 – 4.27 (m, 1H), 3.43 – 3.34 (m, 2H), 2.44 (s, 3H), 2.42 – 2.38 (m, 2H), 1.82 – 1.65 (m, 4H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 145.0, 135.1, 135.0, 130.3, 127.0, 123.6 (q, *J* = 280.8 Hz), 119.2, 96.9 (q, *J* = 1.9 Hz), 62.9 (q, *J* = 32.0 Hz), 44.4, 25.3, 22.5, 21.7, 16.8 ppm.

HRMS (ESI-TOF) m/z: $[M+K]^+$ calcd for $C_{16}H_{18}F_3KN_5O_2S$ 440.0770; Found 440.0779.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -75.61 ppm.

IR (neat): v = 2935, 2115, 1652, 1164, 1126 cm⁻¹

Compound 3h (E)-N-(3-azido-4,4,4-trifluorobut-1-en-1-yl)-N-benzylmethanesulfonamide

C₁₂H₁₃F₃N₄O₂S MW: 334.07 g.mol⁻¹ Colorless oil 89%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.43 – 7.23 (m, 5H), 7.11 (dd, *J* = 14.1, 0.7 Hz, 1H), 4.88 – 4.65 (m, 3H), 4.22 (dqd, *J* = 8.8, 6.5, 0.7 Hz, 1H), 2.96 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 134.6, 134.0, 129.1, 128.2, 127.0, 123.6 (q, *J* = 280.9 Hz), 97.7 (q, *J* = 1.9 Hz), 62.7 (q, *J* = 32.1 Hz), 49.5, 40.5 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -75.76 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{12}H_{13}F_3N_4NaO_2S$ 357.0609; Found 357.0615.

IR (neat): v = 2114, 1657, 1342, 1262, 1159, 1124 cm⁻¹

Compound 3i (E)-N-(3-azido-4,4-difluorobut-1-en-1-yl)-N-benzyl-4-methylbenzenesulfonamide

¹**H NMR (300 MHz, CDCl₃):** δ = 7.69 (d, *J* = 8.4 Hz, 2H), 7.38 – 7.17 (m, 8H), 5.72 – 5.23 (m, 1H), 4.65 – 4.47 (m, 3H), 4.11 – 3.93 (m, 1H), 2.44 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.7, 135.6, 134.2, 133.9, 130.2, 127.9, 127.2, 126.9, 114.2 (t, *J* = 246.4 Hz), 99.3 (t, *J* = 4.3 Hz), 63.3 (t, *J* = 24.4 Hz), 49.6, 21.7 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -124.53 (d, *J* = 282.8 Hz), -126.69 (d, *J* = 282.8 Hz) ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{18}H_{18}F_2N_4NaO_2S$ 415.1011; Found 415.1008.

IR (neat): v = 2110, 1654, 1363, 1166, 1069 cm⁻¹

¹**H NMR (400 MHz, CDCl**₃): δ = 7.70 (d, *J* = 8.4 Hz, 2H), 7.35 – 7.20 (m, 7H), 7.03 (d, *J* = 14.1 Hz, 1H), 4.70 (dt, *J* = 14.3, 7.3 Hz, 1H), 4.52 (s, 2H), 3.66 – 3.60 (m, 2H), 2.43 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.4, 135.8, 134.8, 131.7, 130.1, 128.8, 127.8, 126.9, 103.7, 51.4, 49.6, 21.7 ppm.

Data match with those described in the literature¹¹

Compound **4a** (*E*)-*N*-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-benzyl-4methylbenzenesulfonamide

C₁₈H₁₇F₃N₄O₂S MW: 410.42 g.mol-1 White solid mp = 49 - 51 °C 78%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.76 (d, *J* = 8.3 Hz, 2H), 7.42 – 7.25 (m, 7H), 4.40 (s, 2H), 4.19 (t, *J* = 7.4 Hz, 1H), 2.75 (qd, *J* = 10.6, 7.4 Hz, 2H), 2.48 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 145.0, 137.7, 134.2, 133.6, 129.9, 129.4, 128.9, 128.9, 128.4, 125.5 (q, *J* = 277.0 Hz), 105.4 (q, *J* = 3.7 Hz), 55.9, 31.7 (q, *J* = 30.9 Hz), 21.8 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -65.78 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{18}H_{17}F_3N_4NaO_2S$ 433.0917; Found 433.0935.

IR (neat): v = 2130, 1660, 1370, 1170, 1082 cm⁻¹

¹¹ Y. Liu, N. Ding, X. Tan, X. Li, Z. Zhao, *Chem. Commun.* 2020, **56**, 7507–7510.

<u>Compound</u> **4b** (*E*)-*N*-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(4-fluorobenzyl)-4methylbenzenesulfonamide

C₁₈H₁₆F₄N₄O₂S MW: 428.41 g.mol⁻¹ White solid 68%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.75 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.29 – 7.21 (m, 2H), 7.08 – 6.99 (m, 2H), 4.38 (s, 2H), 4.19 (t, *J* = 7.4 Hz, 1H), 2.77 (qd, *J* = 10.6, 7.4 Hz, 2H), 2.48 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl**₃) δ = 163.1 (d, *J* = 248.0 Hz), 145.1, 137.7, 133.6, 131.2 (d, *J* = 8.4 Hz), 130.1 (d, *J* = 3.3 Hz), 130.0, 128.4, 125.4 (q, *J* = 277.1 Hz), 116.0 (d, *J* = 21.7 Hz), 105.6 (q, *J* = 3.4 Hz), 55.2, 31.7 (q, *J* = 30.7 Hz), 21.8 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -65.78, -112.83 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{18}H_{16}F_4N_4NaO_2S$ 451.0828; Found 451.0841.

IR (neat): v = 2360, 2131, 1510, 1358, 1251, 1065 cm⁻¹

<u>Compound</u> **4c** (*E*)-*N*-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(benzo[d][1,3]dioxol-5-ylmethyl)-4methylbenzenesulfonamide

 $C_{19}H_{17}F_{3}N_{4}O_{4}S$ MW: 454.42 g.mol⁻¹ White solid 81%

¹**H NMR (300 MHz, CDCl₃):** δ = 7.74 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 6.83 – 6.62 (m, 3H), 5.97 (s, 2H), 4.31 (s, 2H), 4.18 (t, *J* = 7.4 Hz, 1H), 2.78 (qd, *J* = 10.6, 7.4 Hz, 2H), 2.47 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 148.2, 148.1, 144.9, 137.7, 133.7, 129.9, 128.4, 127.8, 125.5 (q, *J* = 277.0 Hz), 123.2, 109.6, 108.5, 105.5 (q, *J* = 3.6 Hz), 101.4, 55.8, 31.7 (q, *J* = 30.9 Hz), 21.8 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -65.76 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{19}H_{17}F_3N_4NaO_4S$ 477.0815; Found 477.0801.

IR (neat): v = 2907, 2132, 1661, 1348, 1244, 1036 cm⁻¹

<u>Compound</u> **4d** (*E*)-*N*-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-4-methyl-*N*-(pyridin-3-ylmethyl)benzenesulfonamide

¹**H NMR (500 MHz, CDCl₃):** δ = 8.61 (d, *J* = 3.9 Hz, 1H), 8.42 (s, 1H), 7.80 – 7.70 (m, 3H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.36 – 7.32 (m, 1H), 4.43 (s, 2H), 4.23 (t, *J* = 7.4 Hz, 1H), 2.77 (qd, *J* = 10.6, 7.4 Hz, 2H), 2.48 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 150.2, 150.0, 145.2, 137.4, 137.0, 133.1, 130.1, 129.9, 128.3, 125.2 (q, *J* = 277.1 Hz), 123.9, 105.9 (q, *J* = 3.7 Hz), 53.1, 31.6 (q, *J* = 31.0 Hz), 21.7 ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ = -65.76 ppm.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{17}H_{17}F_3N_5O_2S$ 412.1050; Found 412.1043.

IR (neat): v = 2127, 1660, 1595, 1428, 1249, 1163, 1055 cm⁻¹

Compound 4e (E)-N-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-N,4-dimethylbenzenesulfonamide

 $\begin{array}{l} C_{12}H_{13}F_{3}N_{4}O_{2}S\\ MW: \ 334.32\ g.mol^{-1}\\ Colorless\ oil\\ 61\% \end{array}$

¹**H NMR (500 MHz, CDCl**₃): δ = 7.70 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 4.10 (t, *J* = 7.4 Hz, 1H), 3.02 (s, 3H), 2.84 (qd, *J* = 10.6, 7.4 Hz, 2H), 2.46 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 145.0, 140.0, 131.9, 129.8, 128.7, 125.5 (q, *J* = 276.8 Hz), 103.3 (q, *J* = 3.8 Hz), 39.4, 31.7 (q, *J* = 31.0 Hz), 21.8 ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ = -65.87 ppm.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd C₁₂H₁₃F₃N₄NaO₂S 357.0603; Found 357.0602.

IR (neat): v = 2981, 2122, 1660, 1356, 1250, 1138, 1062 cm⁻¹

Compound **4f** (*E*)-*N*-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-cyclopropyl-4methylbenzenesulfonamide

 $C_{14}H_{15}F_{3}N_{4}O_{2}S$ MW: 360.36 g.mol⁻¹ Colorless oil 67%

¹**H NMR (500 MHz, CDCl**₃): δ = 7.77 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.24 (t, *J* = 7.4 Hz, 1H), 2.87 (qd, *J* = 10.6, 7.4 Hz, 2H), 2.46 (s, 3H), 2.46 – 2.39 (m, 1H), 0.90 – 0.77 (m, 4H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 145.0, 139.5, 133.0, 129.8, 128.8, 125.6 (d, *J* = 276.9 Hz), 104.2 (q, *J* = 3.7 Hz), 32.6, 31.8 (q, *J* = 30.9 Hz), 21.8, 8.1 ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ = -65.95 ppm.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd C₁₄H₁₅F₃N₄NaO₂S 383.0760; Found 383.0765.

IR (neat): v = 2123, 1662, 1363, 1250, 1139, 1064 cm⁻¹

Compound **4g** (*E*)-*N*-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-*N*-(4-cyanobutyl)-4methylbenzenesulfonamide

 $C_{16}H_{18}F_3N_5O_2S$ MW: 401.41 g.mol⁻¹ Colorless oil 59%

¹**H NMR (400 MHz, CDCl₃):** δ = 7.69 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.19 (t, *J* = 7.4 Hz, 1H), 3.35 (td, *J* = 5.8, 1.1 Hz, 2H), 2.88 (qd, *J* = 10.6, 7.4 Hz, 2H), 2.46 (s, 3H), 2.45 – 2.41 (m, 2H), 1.76 (dq, *J* = 4.1, 2.8 Hz, 4H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 145.1, 138.0, 133.1, 129.9, 128.4, 125.4 (q, *J* = 277.0 Hz), 119.1, 105.5 (q, *J* = 3.4 Hz), 50.9, 31.9 (q, *J* = 31.0 Hz), 27.2, 22.3, 21.8, 16.8 ppm.

¹⁹**F NMR (471 MHz, CDCl₃):** δ = -65.74 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd $C_{16}H_{18}F_3N_5NaO_2S$ 424.1025; Found 424.1018.

IR (neat): v = 2941, 2126, 1660, 1353, 1249, 1135, 1060 cm⁻¹

Compound 4h (E)-N-(1-azido-4,4,4-trifluorobut-1-en-1-yl)-N-benzylmethanesulfonamide

C₁₂H₁₃F₃N₄O₂S MW: 334.07 g.mol⁻¹ Colorless oil 80% ¹**H NMR (300 MHz, CDCl₃):** δ = 7.47 – 7.28 (m, 5H), 4.82 (t, *J* = 7.3 Hz, 1H), 4.59 (s, 2H), 3.01 (s, 3H), 2.89 (qd, *J* = 10.6, 7.3 Hz, 2H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 137.7, 134.2, 129.5, 129.1, 129.1, 125.5 (q, *J* = 276.9 Hz), 106.1 (q, *J* = 3.7 Hz), 55.5, 38.2, 32.0 (q, *J* = 31.0 Hz) ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -65.87 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd $C_{12}H_{13}F_3N_4NaO_2S$ 357.0604; Found 357.0610.

IR (neat): v = 2133, 1662, 1349, 1251, 1143, 1065 cm⁻¹

Compound 4i (E)-N-(1-azido-4,4-difluorobut-1-en-1-yl)-N-benzyl-4-methylbenzenesulfonamide

¹**H NMR (400 MHz, CDCl**₃): δ = 7.76 (d, *J* = 8.0 Hz, 2H), 7.40 – 7.27 (m, 7H), 5.79 – 5.40 (m, 1H), 4.40 (s, 2H), 4.25 (t, *J* = 7.5 Hz, 1H), 2.58 – 2.36 (m, 5H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.9, 136.4, 134.3, 133.7, 129.9, 129.5, 128.9, 128.8, 128.4, 115.1 (t, *J* = 241.1 Hz), 107.7 (t, *J* = 6.5 Hz), 55.9, 31.8 (t, *J* = 22.5 Hz), 21.8 ppm.

¹⁹**F NMR (282 MHz, CDCl**₃): δ = -115.54 ppm.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₈F₂N₄NaO₂S 415.1011; Found 415.1008.

IR (neat): v = 2126, 168, 1353, 1165, 1049 cm⁻¹

Compound 5a N-benzyl-N-(4,4-difluorobut-3-en-1-yn-1-yl)-4-methylbenzenesulfonamide

C₁₈H₁₅F₂NO₂S MW: 347.38 g.mol⁻¹ Colorless oil 79%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.92 – 7.65 (d, 2H, *J* = 8.3 Hz, 2H), 7.45 – 7.10 (m, 7H), 4.57 (dd, *J* = 22.8, 1.1 Hz, 1H), 4.50 (s, 2H), 2.44 (s, 3H).

Data match with those described in the literature⁶

Compound **5b** *N*-benzyl-*N*-(4,4-difluorobut-3-en-1-yn-1-yl)-4-methanesulfonamide

C₁₂H₁₁F₂NO₂S MW: 271.28 g.mol⁻¹ Colorless oil 75% ¹H NMR (500 MHz, CDCl₃): 7.60 – 7.32 (m, 5H), 4.72 – 4.63 (m, 1H), 4.64 (s, 2H), 2.87 (s, 3H) ppm.

Data match with those described in the literature⁶

Compound 5c 2-(4,4-difluorobut-3-en-1-yn-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide

C₁₁H₇F₂NO₂S MW: 255.24 g.mol⁻¹ Colorless oil 52%

¹**H NMR (500 MHz, CDCl**₃): 7.88 – 7.79 (m, 1H), 7.69 (td, *J* = 7.6, 1.2 Hz, 1H), 7.64 – 7.56 (m, 1H), 7.42 (dp, *J* = 7.9, 0.9 Hz, 1H), 4.81 (s, 2H), 4.77 (dd, *J* = 22.6, 1.2 Hz, 1H).

Data match with those described in the literature⁶

Compound 6a N-(4-azido-4,4-difluorobut-1-yn-1-yl)-N-benzyl-4-methylbenzenesulfonamide

 $C_{18}H_{16}F_2N_4O_2S$ MW: 390.40 g.mol⁻¹ Colorless oil 52%

¹**H NMR (400 MHz, CDCl₃):** δ = 7.75 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.27 (m, 7H), 4.47 (s, 2H), 2.92 (t, *J* = 10.9 Hz, 2H), 2.45 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 144.9, 134.7, 134.4, 129.8, 128.9, 128.6, 128.5, 127.9, 121.4 (d, *J* = 267.0 Hz), 76.9, 61.2 (t, *J* = 6.3 Hz), 55.5, 28.2 (d, *J* = 33.2 Hz), 21.8 ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ = -74.00 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{18}H_{16}F_2N_4NaO_2S$ 413.0854; Found 413.0856.

IR (neat): v = 2930, 2361, 2148, 1366, 1168, 1060 cm⁻¹

Compound 6b N-(4-azido-4,4-difluorobut-1-yn-1-yl)-N-benzylmethanesulfonamide

 $C_{12}H_{12}F_2N_4O_2S$ MW: 314.31 g.mol⁻¹ Colorless oil 44%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.47 – 7.32 (m, 5H), 4.61 (s, 2H), 3.01 (t, *J* = 10.9 Hz, 2H), 2.86 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 134.4, 129.1, 129.0, 129.0, 121.4 (t, *J* = 266.8 Hz), 77.0, 61.8 (t, *J* = 6.0 Hz), 55.7, 39.0, 28.2 (t, *J* = 32.7 Hz) ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ = -73.96 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{12}H_{12}F_2N_4NaO_2S$ 337.0541; Found 337.0522.

IR (neat): v = 2932, 2264, 2149, 1361, 1164, 1059 cm⁻¹

Compound 6c 2-(4-azido-4,4-difluorobut-1-yn-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide

 $C_{11}H_8F_2N_4O_2S$ MW: 298.27 g.mol⁻¹ Colorless oil 47%

¹**H NMR (500 MHz, C₆D₆):** δ = 7.22 (dq, *J* = 7.8, 0.6 Hz, 1H), 6.73 (td, *J* = 7.6, 1.2 Hz, 1H), 6.64 (td, *J* = 7.6, 0.9 Hz, 1H), 6.15 (dt, *J* = 7.7, 0.9 Hz, 1H), 3.65 (s, 2H), 2.54 (t, *J* = 11.2 Hz, 2H) ppm.

¹³**C NMR (126 MHz, C₆D₆):** δ = 133.7, 132.6, 131.6, 129.3, 124.3, 121.8 (t, *J* = 265.8 Hz), 121.6, 73.9, 63.1 (t, *J* = 6.0 Hz), 51.7, 28.0 (t, *J* = 32.8 Hz) ppm.

¹⁹**F NMR (471 MHz, C₆D₆):** δ = -74.11 ppm.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₁H₈F₂N₄NaO₂S 321.0228; Found 321.0213.

IR (neat): v = 2951, 2261, 2151, 1327, 1179, 1059 cm⁻¹

Compound 7 (E)-N-benzyl-4-methyl-N-(4,4,4-trifluoro-3-oxobut-1-en-1-yl)benzenesulfonamide

¹**H NMR (300 MHz, CDCl₃):** δ = 8.5 (d, *J* = 13.7 Hz, 1H), 7.7 (d, *J* = 8.4 Hz, 2H), 7.4 – 7.3 (m, 2H), 7.2 – 7.1 (m, 5H), 5.57 (dq, J = 13.7, 0.8 Hz, 1H), 4.7 (s, 2H), 2.5 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 179.1 (q, *J* = 35.1 Hz), 147.1 (d, *J* = 1.4 Hz), 146.0, 134.6, 133.0, 130.6, 129.1, 128.4, 127.7, 126.9, 116.5 (q, *J* = 290.9 Hz), 98.5, 50.4, 21.8 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -77.81 ppm.

HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₆F₃NNaO₃S 406.0695; Found 406.0686.

IR (neat): v = 2939, 1579, 1170, 1022 cm⁻¹

Compound **8** (*E*)-*N*-(benzo[d][1,3]dioxol-5-ylmethyl)-*N*-(2-cyano-4,4,4-trifluorobut-1-en-1-yl)-4methylbenzenesulfonamide


```
C_{20}H_{17}F_3N_2O_4S
MW: 438.42 g.mol<sup>-1</sup>
Colorless oil
69%
```

¹**H NMR (300 MHz, CDCl₃):** δ = 7.68 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.03 (s, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.74 – 6.61 (m, 1H), 6.61 – 6.51 (m, 1H), 5.97 (s, 2H), 4.42 (s, 2H), 3.02 (qd, *J* = 9.8, 0.9 Hz, 2H), 2.48 (s, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 148.7, 148.0, 145.8, 144.0, 134.2, 130.6, 127.7, 127.6, 124.3 (q, *J* = 278.0 Hz), 120.6, 118.4, 108.9, 107.4, 101.6, 94.6 (q, *J* = 3.6 Hz), 52.3, 33.6 (q, *J* = 31.5 Hz), 21.8 ppm.

¹⁹**F NMR (282 MHz, CDCl₃):** δ = -64.71 ppm.

HRMS (ESI-TOF) m/z: $[M+K]^+$ calcd for $C_{20}H_{17}F_3KN_2O_4S$ 477.0493; Found 477.0504.

IR (neat): v = 2905, 1626, 1361, 1247, 1168, 1039 cm⁻¹

Compound 9 (E)-N-benzyl-4-methyl-N-(4,4,4-trifluoro-3-oxobut-1-en-1-yl)benzenesulfonamide

C₂₇H₂₃F₃N₄O₄S MW: 556.56 g.mol⁻¹ White solid 98%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.86 – 7.79 (m, 2H), 7.73 (s, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.49 – 7.40 (m, 2H), 7.40 – 7.33 (m, 3H), 6.78 – 6.63 (m, 3H), 6.16 (s, 1H), 5.95 (s, 2H), 4.27 (s, 2H), 3.80 (q, *J* = 9.8 Hz, 2H), 2.46 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 148.3, 148.2, 148.0, 145.1, 134.0, 133.3 (q, *J* = 3.1 Hz), 130.4, 129.8, 129.1, 128.8, 127.8, 127.7, 127.0, 126.0, 124.1 (q, *J* = 279.0 Hz), 122.9, 118.8 (q, *J* = 1.4 Hz), 109.5, 108.5, 101.4, 55.5, 34.1 (q, *J* = 31.7 Hz), 21.8 ppm.

¹⁹F NMR (282 MHz, CDCl₃): δ = -62.45 ppm.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₄F₃N₄O₄S 557.1465; Found 557.1459.

IR (neat): v = 2360, 1489, 1350, 1244, 1164, 1039, 804 cm⁻¹

Compound 10 ethyl (E)-3-amino-4-((N-benzyl-4-methylphenyl)sulfonamido)but-3-enoate

C₂₀H₂₄N₂O₄S MW: 388.48 g.mol⁻¹ Colorless oil 87%

¹**H NMR (500 MHz, CDCl₃):** δ = 7.72 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 7.28 – 7.26 (m, 3H), 7.19 – 7.12 (m, 2H), 4.40 (s, 2H), 4.31 (s, 1H), 4.09 (d, *J* = 7.1 Hz, 2H), 3.67 (s, 2H), 2.45 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR (126 MHz, CDCl₃):** δ = 169.6, 156.4, 144.1, 136.5, 135.1, 130.1, 128.9, 128.7, 128.2, 127.3, 85.0, 58.9, 51.7, 50.6, 21.7, 14.6 ppm.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{20}H_{24}N_2NaO_4S$ 411.1349; Found 411.1346.

IR (neat): v = 3462, 3340, 2978, 1668, 1619, 1562, 1278, 1154, 1091 cm⁻¹

NMR spectra

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 11 $^{19}F{^{1}H} NMR (CDCl_3, 471 MHz) of 1g$

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 10 f¹(ppm) 19 F{¹H} NMR (CDCl₃, 471 MHz) of **1s**

¹³C{¹H} NMR (CDCl₃, 126 MHz) of **1t**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (pm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm) $^{19}F{^1H} NMR (CDCl_3, 282 MHz) of$ **2c**

— -62.74

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 fi (ppm)

— -62.91

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $f_{1}(ppm)$ 1⁹F{¹H} NMR (CDCl₃, 282 MHz) of **2**g

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{10}$ (ppm) 1⁹F{¹H} NMR (CDCl₃, 282 MHz) of **2h**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $^{19}F{^{1}H} NMR (CDCl_3, 282 MHz) of$ **2i**

¹³C{¹H} NMR (CDCl₃, 126 MHz) of **2j**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{f1}(ppm)$ ${}^{9}F{}^{1}H{}NMR(CDCl_{3}, 282 \text{ MHz}) \text{ of } 2j$

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 11 $^{$

¹³C{¹H} NMR (CDCl₃, 126 MHz) of **2m**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm) $^{19}F{^1H} NMR (CDCl_3, 471 MHz) of$ **20**

— -122.91 — -125.12

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm) 19rc(110 NINAP (ODD) 474 N414-) -60-

¹⁹F{¹H} NMR (CDCl₃, 471 MHz) of **2p**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{(ppm)}$ 19F{¹H} NMR (CDCl₃, 282 MHz) of **3b**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{10}$ (ppm) 19F{1H} NMR (CDCl₃, 282 MHz) of **3c**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{10}$ (ppm) 1⁹F{¹H} NMR (CDCl₃, 471 MHz) of **3d**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm) $^{19}F{^1H} NMR (CDCl_3, 282 MHz) of$ **3e**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{(ppm)}$ 19F{¹H} NMR (CDCl₃, 282 MHz) of **3f**

— -75.61

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{10}$ (ppm) 1⁹F{¹H} NMR (CDCl₃, 282 MHz) of **3h**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $^{10}_{f1}$ (ppm) $^{19}F{^1H} NMR (CDCl_3, 282 MHz) of$ **3i**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $f_{1}(ppm)$ 1⁹F{¹H} NMR (CDCl₃, 282 MHz) of **4a**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm) 1⁹F{¹H} NMR (CDCl₃, 282 MHz) of **4b**

S98

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 10 f¹(ppm) 19 F{¹H} NMR (CDCl₃, 282 MHz) of **4c**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{(ppm)}$ 1⁹F{¹H} NMR (CDCl₃, 471 MHz) of **4e**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $_{f1}^{(ppm)}$ 19F{¹H} NMR (CDCl₃, 471 MHz) of **4f**

 $^{13}\text{C}\{^{1}\text{H}\}\,\text{NMR}\,(\text{CDCl}_{3}\text{, }126\,\text{MHz})\,\text{of}\,\textbf{4g}$

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $f_{11}^{(ppm)}$ 1⁹F{¹H} NMR (CDCl₃, 471 MHz) of **4g**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $f_{11}^{(ppm)}$ 1⁹F{¹H} NMR (CDCl₃, 282 MHz) of **4h**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $^{10}_{f1}$ (ppm) $^{19}F{^1H} NMR (CDCl_3, 282 MHz) of$ **4i**

¹³C{¹H} NMR (CDCl₃, 126 MHz) of **6a**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $f_{1}(ppm)$ 1⁹F{¹H} NMR (CDCl₃, 471 MHz) of **6a**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 f1 (ppm) $^{19}F{^1H} NMR (CDCl_3, 471 MHz) of 6b$

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 10 19 F{¹H} NMR (C₆D₆, 471 MHz) of **6c**

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 126 MHz) of $\boldsymbol{7}$

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 10 f¹(ppm) 19 F{¹H} NMR (CDCl₃, 282 MHz) of **7**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 $^{19}F{^{1}H} NMR (CDCl_{3}, 282 MHz) of 9$

X-Ray Cristallography data

CCDC **2384608** (**2c**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge crystallographic Data Centre. Compound **2c** was dissolved in a $0.5 \text{ mL CH}_2\text{Cl}_2$, and *n*-hexane 2 mL were added. The sample was maintained at 4 °C for several days. Crystals were obtained through diffusion.

CCDC **2384809** (**2l**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge crystallographic Data Centre. Compound **2l** was dissolved in a $0.5 \text{ mL CH}_2\text{Cl}_2$, and *n*-hexane 2 mL were added. The sample was maintained at 4 °C for several days. Crystals were obtained through diffusion.

CCDC **2384604** (**4a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge crystallographic Data Centre. Compound **4a** was dissolved in a 0.5 mL CH_2Cl_2 , and *n*-hexane 2 mL were added. The sample was maintained at 4 °C for several days. Crystals were obtained through diffusion.

The X-ray diffraction data were collected at and 173 K on a Bruker SMART CCD diffractometer with MoKa radiation ($\lambda = 0.71073$ Å). The diffraction data were corrected for absorption using the SADABS program.¹² The structures were solved using SHELXS97¹³ and refined by full matrix least squares on F2 using SHELXL-2014 in the anisotropic approximation for all non-hydrogen atoms. The hydrogen atoms were introduced at calculated positions and not refined (riding model).¹⁴

¹² Bruker. SADABS. Bruker AXS Inc.: Madison, Wisconsin, USA 2001.

¹³ M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2008, **64**, 112–122

¹⁴ G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, **71**, 3-8

Crystallography data of **2c**

Structure of **2c**: ellipsoid contour probability: 50%

Crystallography data of **2l**

Structure of **2l**: ellipsoid contour probability: 50%

Crystallography data of 4a

Structure of **4a**: ellipsoid contour probability: 50%

Crystal Structure Report for **2c** (CCDC **2384608**)

Table 1. Crystal data and structure refinement for **2c** (CCDC **2384608**)

Identification code	2384608
Empirical formula	C19 H17 F3 N4 O4 S,solvent
Formula weight	454.42
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space g	roup Monoclinic, P 21/c
Unit cell dimensions b = 19.0 c = 21.2	a = 5.5258(4) A alpha = 90 deg. 0765(13) A beta = 94.338(3) deg. 2903(18) A gamma = 90 deg.
Volume 22	37.8(3) A^3
Z, Calculated density	4, 1.349 Mg/m^3
Absorption coefficient	0.201 mm^-1
F(000) 936	
Crystal size 0	.160 x 0.150 x 0.140 mm
Theta range for data col	lection 1.435 to 27.921 deg.

Limiting indices -7<=h<=7, -25<=k<=24, -27<=l<=28

Reflections collected / unique 44897 / 5345 [R(int) = 0.0557]

Completeness to theta = 25.242 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7456 and 0.7138

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5345 / 0 / 281

Goodness-of-fit on F² 1.024

Final R indices [I>2sigma(I)] R1 = 0.0446, wR2 = 0.1104

R indices (all data) R1 = 0.0741, wR2 = 0.1245

Extinction coefficient n/a

Largest diff. peak and hole 0.317 and -0.218 e.A^-3

Table 2. Atomic coordinates ($x 10^4$) and equivalent isotropic displacement parameters (A² $x 10^3$) for elmmh_a_sq. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х у	z U	(eq)		
N(1)	8271(3)	4230(1)	3532(1)	28(1)	
S(1)	10064(1)	3907(1)	4126(1)	29(1)	
O(1)	11547(2)	3392(1)	3854(1)	36(1)	
O(2)	11188(2)	4496(1)	4446(1)	40(1)	
C(1)	8130(3)	3483(1)	4621(1)	29(1)	
C(2)	7528(4)	2780(1)	4515(1)	36(1)	
C(3)	5866(4)	2470(1)	4878(1)	43(1)	
C(4)	4751(4)	2838(1)	5336(1)	40(1)	
C(5)	5382(4)	3537(1)	5430(1)	43(1)	
C(6)	7060(4)	3863(1)	5081(1)	35(1)	
C(7)	2891(4)	2491(1)	5720(1)	59(1)	
C(8)	6872(3)	3700(1)	3190(1)	31(1)	
C(9)	7638(3)	3357(1)	2703(1)	33(1)	
N(2)	6030(3)	2823(1)	2445(1)	46(1)	
N(3)	6908(3)	2380(1)	2099(1)	42(1)	
N(4)	7470(4)	1950(1)	1782(1)	57(1)	
C(10)	9965(4)	3493(1)	2406(1)	40(1)	
C(11)	9605(5)	3857(1)	1783(1)	50(1)	
F(004)	8345(3)	3481(1)	1344(1)	70(1)	
F(005)	8469(3)	4469(1)	1830(1)	72(1)	
F(006)	11730(3)	3997(1)	1552(1)	72(1)	

C(12)	6793(3)	4856(1)	3696(1)	34(1)	
C(13)	6163(3)	5290(1)	3117(1)	32(1)	
C(14)	3993(4)	5197(1)	2763(1)	40(1)	
C(15)	3412(4)	5568(1)	2209(1)	45(1)	
C(16)	5080(4)	6038(1)	2034(1)	41(1)	
O(3)	4920(3)	6482(1)	1519(1)	57(1)	
C(17)	7226(5)	6810(1)	1528(1)	65(1)	
O(4)	8515(3)	6683(1)	2122(1)	57(1)	
C(18)	7227(4)	6154(1)	2391(1)	39(1)	
C(19)	7835(3)	5789(1)	2934(1)	37(1)	

Table 3. Selected bond lengths [A] and angles [deg] for elmmh_a_sq.

N(1)-C(8)	1.437(2)	
N(1)-C(12)	1.502(2)	
N(1)-S(1)	1.6659(16)	
S(1)-O(2)	1.4301(14)	

1.4301(13)

1.7529(18)

S(1)-O(1)

S(1)-C(1)

Table 4. Bond lengths [A] and angles [deg] for elmmh_a_sq.

C(1)-C(6)	1.387(3)
C(1)-C(2)	1.397(3)
C(2)-C(3)	1.376(3)
C(2)-H(2)	0.9500
C(3)-C(4)	1.385(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.387(3)
C(4)-C(7)	1.514(3)
C(5)-C(6)	1.380(3)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-C(9)	1.322(3)
C(8)-H(8)	0.9500
C(9)-N(2)	1.433(3)
C(9)-C(10)	1.498(3)
N(2)-N(3)	1.243(2)
N(3)-N(4)	1.122(2)
C(10)-C(11)	1.497(3)

C(10)-H(10A)

0.9900

C(10)-H(10B)	0.9900
C(11)-F(004)	1.332(3)
C(11)-F(005)	1.333(3)
C(11)-F(006)	1.334(3)
C(12)-C(13)	1.505(3)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(14)	1.378(3)
C(13)-C(19)	1.402(3)
C(14)-C(15)	1.394(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.358(3)
C(15)-H(15)	0.9500
C(16)-C(18)	1.378(3)
C(16)-O(3)	1.382(2)
O(3)-C(17)	1.418(3)
C(17)-O(4)	1.426(3)
C(17)-H(17A)	0.9900
C(17)-H(17B)	0.9900
O(4)-C(18)	1.383(2)
C(18)-C(19)	1.368(3)
C(19)-H(19)	0.9500
C(8)-N(1)-C(12)	113.34(14)
C(8)-N(1)-S(1)	112.97(12)
C(12)-N(1)-S(1)	114.80(13)
O(2)-S(1)-O(1)	119.36(8)
O(2)-S(1)-N(1)	106.45(8)
O(1)-S(1)-N(1)	105.78(8)
O(2)-S(1)-C(1)	109.84(9)
O(1)-S(1)-C(1)	108.70(8)

N(1)-S(1)-C(1)	105.80(8)
C(6)-C(1)-C(2)	120.43(18)
C(6)-C(1)-S(1)	119.67(14)
C(2)-C(1)-S(1)	119.70(15)
C(3)-C(2)-C(1)	118.88(19)
C(3)-C(2)-H(2)	120.6
C(1)-C(2)-H(2)	120.6
C(2)-C(3)-C(4)	121.94(19)
C(2)-C(3)-H(3)	119.0
C(4)-C(3)-H(3)	119.0
C(3)-C(4)-C(5)	117.90(18)
C(3)-C(4)-C(7)	121.0(2)
C(5)-C(4)-C(7)	121.1(2)
C(6)-C(5)-C(4)	121.84(19)
C(6)-C(5)-H(5)	119.1
C(4)-C(5)-H(5)	119.1
C(5)-C(6)-C(1)	119.00(18)
C(5)-C(6)-H(6)	120.5
C(1)-C(6)-H(6)	120.5
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(9)-C(8)-N(1)	123.60(17)
C(9)-C(8)-H(8)	118.2
N(1)-C(8)-H(8)	118.2
C(8)-C(9)-N(2)	115.24(17)
C(8)-C(9)-C(10)	125.56(18)
N(2)-C(9)-C(10)	119.19(17)

N(3)-N(2)-C(9)	116.82(17)
N(4)-N(3)-N(2)	172.8(2)
C(11)-C(10)-C(9)	113.21(18)
C(11)-C(10)-H(10A)	108.9
C(9)-C(10)-H(10A)	108.9
C(11)-C(10)-H(10B)	108.9
C(9)-C(10)-H(10B)	108.9
H(10A)-C(10)-H(10B) 107.7
F(004)-C(11)-F(005)	107.5(2)
F(004)-C(11)-F(006)	106.06(18)
F(005)-C(11)-F(006)	106.60(19)
F(004)-C(11)-C(10)	113.46(19)
F(005)-C(11)-C(10)	111.83(19)
F(006)-C(11)-C(10)	111.0(2)
N(1)-C(12)-C(13)	110.04(15)
N(1)-C(12)-H(12A)	109.7
C(13)-C(12)-H(12A)	109.7
N(1)-C(12)-H(12B)	109.7
C(13)-C(12)-H(12B)	109.7
H(12A)-C(12)-H(12B) 108.2
C(14)-C(13)-C(19)	120.04(19)
C(14)-C(13)-C(12)	120.93(17)
C(19)-C(13)-C(12)	119.02(18)
C(13)-C(14)-C(15)	122.16(19)
C(13)-C(14)-H(14)	118.9
C(15)-C(14)-H(14)	118.9
C(16)-C(15)-C(14)	116.7(2)
C(16)-C(15)-H(15)	121.6
C(14)-C(15)-H(15)	121.6
C(15)-C(16)-C(18)	121.9(2)
C(15)-C(16)-O(3)	128.2(2)

C(18)-C(16)-O(3)	109.84(18)
C(16)-O(3)-C(17)	104.89(18)
O(3)-C(17)-O(4)	108.93(19)
O(3)-C(17)-H(17A)	109.9
O(4)-C(17)-H(17A)	109.9
O(3)-C(17)-H(17B)	109.9
O(4)-C(17)-H(17B)	109.9
H(17A)-C(17)-H(17B)	108.3
C(18)-O(4)-C(17)	104.65(17)
C(19)-C(18)-C(16)	122.01(19)
C(19)-C(18)-O(4)	128.25(19)
C(16)-C(18)-O(4)	109.73(18)
C(18)-C(19)-C(13)	117.07(19)
C(18)-C(19)-H(19)	121.5
C(13)-C(19)-H(19)	121.5

Table 5. Anisotropic displacement parameters $(A^2 \times 10^3)$ for elmmh_a_sq.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U1	1	U22	U33	U23	U13	U12
N(1) 3	30(1)	24(1)	32(1)	0(1)	9(1)	2(1)
S(1)) 2	26(1)	25(1)	36(1)	-3(1)	5(1)	0(1)
O(1) 2	29(1)	35(1)	46(1)	-5(1)	8(1)	7(1)
O(2) (35(1)	35(1)	50(1)	-9(1)	3(1)	-7(1)
C(1) 3	31(1)	27(1)	29(1)	0(1)	1(1)	-1(1)
C(2) 4	44(1)	28(1)	37(1)	-3(1)	2(1)	-3(1)
C(3) 5	51(1)	34(1)	42(1)	4(1)	-3(1)	-12(1)
C(4) 3	38(1)	49(1)	34(1)	13(1)	1(1)	-3(1)
C(5) 4	49(1)	47(1)	33(1)	4(1)	12(1)	7(1)
C(6) 4	44(1)	29(1)	33(1)	-1(1)	5(1)	2(1)
C(7) 5	51(1)	76(2)	51(2)	21(1)	6(1)	-15(1)
C(8) 2	26(1)	31(1)	38(1)	2(1)	4(1)	2(1)
C(9) 2	29(1)	34(1)	37(1)	-4(1)	2(1)	1(1)
N(2) 3	39(1)	47(1)	52(1)	-15(1)	4(1)	-6(1)
N(3) 4	44(1)	37(1)	43(1)	-6(1)	-7(1)	0(1)
N(4) (67(1)	46(1)	55(1)	-15(1)	-10(1)	6(1)
C(1	0)	34(1)) 42(1)) 43(1)	-10(1) 8(1)	-2(1)
C(1	1)	57(1)) 44(1)) 51(1)	-10(1) 20(1)) -6(1)
F(0	04)	89(1) 76(1) 43(1)	-5(1)	1(1)	-20(1)
F(0	05)	96(1) 52(1) 71(1)	9(1)	31(1)	13(1)
F(0	06)	79(1) 77(1) 65(1)	-13(1) 41(1) -18(1)
C(1	2)	34(1)) 27(1)	42(1)	0(1)	15(1)	6(1)

C(13)	30(1)	24(1)	44(1)	2(1)	10(1)	5(1)	
C(14)	34(1)	31(1)	56(1)	6(1)	8(1)	-3(1)	
C(15)	36(1)	37(1)	62(2)	4(1)	-6(1)	0(1)	
C(16)	46(1)	29(1)	47(1)	8(1)	2(1)	3(1)	
O(3)	61(1)	46(1)	61(1)	22(1)	-8(1)	-3(1)	
C(17)	72(2)	55(2)	66(2)	26(1)	1(1)	-14(1)	
O(4)	50(1)	47(1)	72(1)	29(1)	0(1)	-12(1)	
C(18)	36(1)	29(1)	54(1)	9(1)	8(1)	0(1)	
C(19)	29(1)	31(1)	52(1)	6(1)	4(1)	2(1)	

Table 6. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters (A² x 10³) for elmmh_a_sq.

	x	V 7	U(ea)	
		, L	0(04)	
H(2)	8254	2519	4199	43
H(3)	5473	1990	4811	51
H(5)	4639	3797	5743	51
H(6)	7476	4341	5155	42
H(7A)	3553	2050	5896	89
H(7B)	1415	2394	5449	89
H(7C)	2501	2803	6064	89
H(8)	5312	3589	3322	38
H(10A)) 1103	4 378	3 2695	48
H(10B) 1079	304	0 2347	48
H(12A)) 7727	7 5143	3 4016	41
H(12B) 5286	6 4698	3 3876	41
H(14)	2856	4869	2903	48
H(15)	1921	5495	1964	55
H(17A)) 7023	3 732 ⁻	1 1460	77
H(17B) 8149	9 6619	9 1186	77
H(19)	9325	5870	3175	45

Table 7. Selected torsion angles [deg] for elmmh_a_sq.

Table 8. Torsion angles [deg] for elmmh_a_sq.

C(8)-N(1)-S(1)-O(2)	-175.82(12)
C(12)-N(1)-S(1)-O(2)	-43.76(14)
C(8)-N(1)-S(1)-O(1)	56.24(13)
C(12)-N(1)-S(1)-O(1)	-171.69(12)
C(8)-N(1)-S(1)-C(1)	-58.98(14)
C(12)-N(1)-S(1)-C(1)	73.08(14)
O(2)-S(1)-C(1)-C(6)	28.05(18)
O(1)-S(1)-C(1)-C(6)	160.31(15)
N(1)-S(1)-C(1)-C(6)	-86.47(16)
O(2)-S(1)-C(1)-C(2)	-156.99(15)
O(1)-S(1)-C(1)-C(2)	-24.73(18)
N(1)-S(1)-C(1)-C(2)	88.49(16)
C(6)-C(1)-C(2)-C(3)	-0.3(3)
S(1)-C(1)-C(2)-C(3)	-175.17(16)
C(1)-C(2)-C(3)-C(4)	0.9(3)
C(2)-C(3)-C(4)-C(5)	-0.9(3)
C(2)-C(3)-C(4)-C(7)	178.8(2)
C(3)-C(4)-C(5)-C(6)	0.2(3)
C(7)-C(4)-C(5)-C(6)	-179.5(2)
C(4)-C(5)-C(6)-C(1)	0.5(3)
C(2)-C(1)-C(6)-C(5)	-0.4(3)
S(1)-C(1)-C(6)-C(5)	174.49(16)
C(12)-N(1)-C(8)-C(9)	137.99(19)
S(1)-N(1)-C(8)-C(9)	-89.2(2)
N(1)-C(8)-C(9)-N(2)	177.10(17)
N(1)-C(8)-C(9)-C(10)	-4.2(3)
C(8)-C(9)-N(2)-N(3)	-162.64(19)
C(10)-C(9)-N(2)-N(3)	18.6(3)

-106.0(2)
72.6(2)
-63.7(2)
58.1(2)
176.99(17)
-73.51(19)
154.61(13)
94.3(2)
-84.9(2)
2.3(3)
-176.88(18)
-0.9(3)
-1.1(3)
-178.0(2)
-174.8(2)
8.0(3)
-13.6(3)
13.9(3)
1.9(3)
179.27(19)
-176.79(19)
0.6(3)
172.6(2)
-8.9(2)
-0.5(3)
177.9(2)
-1.5(3)
177.66(17)

Table 9. Hydrogen bonds for elmmh_a_sq [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) Crystal Structure Report for **2l** (CCDC **2384809**)

Table 1. Crystal data and structure refinement for 2l (CCDC 2384809)

Identification code	2384809	
Empirical formula	C20 H22 N4 O4 S	
Formula weight	414.47	
Temperature	120(2) K	
Wavelength	0.71073 A	
Crystal system, space group Triclinic, P1		
Unit cell dimensions	a = 5.9999(8) A alpha = 86.813(5) deg.	
b = 8.0325(11) A beta = 82.243(5) deg.		
c = 10.7268(15) A gamma = 86.551(5) deg.		
Volume 5 ⁻	10.72(12) A^3	
Z, Calculated density	1, 1.348 Mg/m^3	
Absorption coefficient 0.193 mm ⁻¹		

F(000) 218
Crystal size 0.200 x 0.160 x 0.100 mm

Theta range for data collection 1.918 to 27.958 deg.

Limiting indices -7<=h<=7, -10<=k<=10, -14<=l<=14

Reflections collected / unique 18622 / 4435 [R(int) = 0.0373]

Completeness to theta = 25.242 99.7 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7456 and 0.6954

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 4435 / 3 / 264

Goodness-of-fit on F² 1.051

Final R indices [I>2sigma(I)] R1 = 0.0329, wR2 = 0.0750

R indices (all data) R1 = 0.0360, wR2 = 0.0777

Absolute structure parameter 0.02(2)

Extinction coefficient n/a

Largest diff. peak and hole 0.310 and -0.184 e.A^-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for elmds_a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х у	Z	U(eq)		
S(1)	7087(1)	5310(1)	2877(1)	20(1)	
O(1)	6866(3)	3918(2)	2129(2)	28(1)	
O(2)	9275(3)	5788(3)	3062(2)	33(1)	
C(1)	5660(4)	7083(3)	2260(2)	19(1)	
C(2)	3746(4)	6891(3)	1695(2)	21(1)	
C(3)	2533(5)	8297(4)	1289(3)	26(1)	
C(4)	3192(5)	9898(3)	1443(2)	26(1)	
C(5)	5131(5)	10066(3)	2000(2)	26(1)	
C(6)	6371(4)	8676(3)	2412(2)	22(1)	
C(7)	1824(6)	11410(4)	1027(3)	40(1)	
N(1)	5737(4)	4861(3)	4296(2)	20(1)	
C(8)	3629(4)	4086(3)	4311(2)	23(1)	
C(9)	3422(4)	2489(3)	4692(2)	23(1)	
C(10)	5244(5)	1376(3)	5191(2)	24(1)	
C(11)	4700(5)	890(3)	6582(2)	24(1)	
O(3)	2930(3)	1245(3)	7226(2)	35(1)	
O(4)	6424(3)	16(2)	7000(2)	29(1)	
C(12)	6115(6)	-490(4)	8332(3)	32(1)	
C(13)	8257(6)	-1418(5)	8625(3)	41(1)	
N(2)	1287(4)	1829(3)	4622(2)	30(1)	
N(3)	1124(4)	302(3)	4853(3)	33(1)	

N(4)	711(5)	-1056(4)	5022(3)	48(1)	
C(14)	5708(5)	6174(3)	5225(2)	28(1)	
C(15)	5832(5)	5395(3)	6531(2)	24(1)	
C(16)	4021(5)	5576(4)	7482(3)	31(1)	
C(17)	4203(6)	4911(4)	8685(3)	38(1)	
C(18)	6168(6)	4064(4)	8957(3)	38(1)	
C(19)	7957(6)	3848(4)	8008(3)	33(1)	
C(20)	7801(5)	4516(4)	6799(3)	28(1)	

Table 3. Selected bond lengths [A] and angles [deg] for elmds_a.

Table 4.	Bond lengths [A] and angles [deg] for elmds_a.	,

S(1)-O(2)	1.432(2)
S(1)-O(1)	1.435(2)
S(1)-N(1)	1.656(2)
S(1)-C(1)	1.762(2)
C(1)-C(2)	1.389(4)
C(1)-C(6)	1.398(4)
C(2)-C(3)	1.389(4)
C(2)-H(2)	0.9500
C(3)-C(4)	1.393(4)
C(3)-H(3)	0.9500
C(4)-C(5)	1.394(4)
C(4)-C(7)	1.506(4)
C(5)-C(6)	1.389(4)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
N(1)-C(8)	1.441(4)
N(1)-C(14)	1.488(3)
C(8)-C(9)	1.333(4)
C(8)-H(8)	0.9500
C(9)-N(2)	1.428(4)
C(9)-C(10)	1.506(4)
C(10)-C(11)	1.518(4)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-O(3)	1.214(3)

C(11)-O(4)	1.330(3)
O(4)-C(12)	1.454(3)
C(12)-C(13)	1.507(4)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
N(2)-N(3)	1.245(4)
N(3)-N(4)	1.132(4)
C(14)-C(15)	1.512(4)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.393(4)
C(15)-C(20)	1.395(4)
C(16)-C(17)	1.384(4)
C(16)-H(16)	0.9500
C(17)-C(18)	1.383(5)
C(17)-H(17)	0.9500
C(18)-C(19)	1.387(5)
C(18)-H(18)	0.9500
C(19)-C(20)	1.388(4)
C(19)-H(19)	0.9500
C(20)-H(20)	0.9500
O(2)-S(1)-O(1)	120.11(13)
O(2)-S(1)-N(1)	106.44(12)
O(1)-S(1)-N(1)	106.42(11)
O(2)-S(1)-C(1)	107.40(12)
O(1)-S(1)-C(1)	108.89(12)
N(1)-S(1)-C(1)	106.88(11)

120.5(2)
119.5(2)
119.9(2)
119.4(3)
120.3
120.3
121.2(3)
119.4
119.4
118.5(2)
120.5(3)
120.9(3)
121.2(3)
119.4
119.4
119.2(2)
120.4
120.4
109.5
109.5
109.5
109.5
109.5
109.5
114.8(2)
115.23(16)
115.38(18)
120.7(2)
119.7
119.7
116.0(2)

C(8)-C(9)-C(10)	124.8(3)
N(2)-C(9)-C(10)	119.2(2)
C(9)-C(10)-C(11)	113.0(2)
C(9)-C(10)-H(10A)	109.0
C(11)-C(10)-H(10A)	109.0
C(9)-C(10)-H(10B)	109.0
C(11)-C(10)-H(10B)	109.0
H(10A)-C(10)-H(10B)	107.8
O(3)-C(11)-O(4)	124.5(2)
O(3)-C(11)-C(10)	124.8(2)
O(4)-C(11)-C(10)	110.8(2)
C(11)-O(4)-C(12)	115.8(2)
O(4)-C(12)-C(13)	107.6(2)
O(4)-C(12)-H(12A)	110.2
C(13)-C(12)-H(12A)	110.2
O(4)-C(12)-H(12B)	110.2
C(13)-C(12)-H(12B)	110.2
H(12A)-C(12)-H(12B)	108.5
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)) 109.5
H(13B)-C(13)-H(13C)) 109.5
N(3)-N(2)-C(9)	117.1(2)
N(4)-N(3)-N(2)	171.3(3)
N(1)-C(14)-C(15)	110.7(2)
N(1)-C(14)-H(14A)	109.5
C(15)-C(14)-H(14A)	109.5
N(1)-C(14)-H(14B)	109.5
C(15)-C(14)-H(14B)	109.5

H(14A)-C(14)-H(14B)	108.1
C(16)-C(15)-C(20)	119.4(2)
C(16)-C(15)-C(14)	120.9(3)
C(20)-C(15)-C(14)	119.7(3)
C(17)-C(16)-C(15)	120.0(3)
C(17)-C(16)-H(16)	120.0
C(15)-C(16)-H(16)	120.0
C(18)-C(17)-C(16)	120.7(3)
C(18)-C(17)-H(17)	119.6
C(16)-C(17)-H(17)	119.6
C(17)-C(18)-C(19)	119.6(3)
C(17)-C(18)-H(18)	120.2
C(19)-C(18)-H(18)	120.2
C(20)-C(19)-C(18)	120.2(3)
C(20)-C(19)-H(19)	119.9
C(18)-C(19)-H(19)	119.9
C(19)-C(20)-C(15)	120.1(3)
C(19)-C(20)-H(20)	119.9
C(15)-C(20)-H(20)	119.9

Table 5. Anisotropic displacement parameters ($A^2 \times 10^3$) for elmds_a.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
S(1)	18(1)	20(1)	22(1)	4(1)	-1(1)	1(1)
O(1)	35(1)	21(1)	24(1)	-2(1)	3(1)	6(1)
O(2)	19(1)	33(1)	45(1)	14(1)	-7(1)	-4(1)
C(1)	20(1)	19(1)	16(1)	2(1)	0(1)	0(1)
C(2)	22(1)	20(1)	20(1)	2(1)	-2(1)	-4(1)
C(3)	21(1)	31(2)	24(1)	5(1)	-4(1)	0(1)
C(4)	25(1)	24(1)	24(1)	5(1)	5(1)	5(1)
C(5)	34(2)	17(1)	24(1)	0(1)	3(1)	-2(1)
C(6)	23(1)	22(1)	20(1)	-2(1)	-1(1)	-5(1)
C(7)	38(2)	30(2)	46(2)	13(1)	3(1)	13(1)
N(1)	23(1)	20(1)	16(1)	2(1)	-3(1)	-3(1)
C(8)	17(1)	27(1)	23(1)	5(1)	-3(1)	1(1)
C(9)	17(1)	27(1)	26(1)	1(1)	-1(1)	-2(1)
C(10) 23(1) 23(1)	26(1)	0(1)	-2(1)	0(1)
C(11) 26(1) 21(1)	25(1)	1(1)	-4(1)	-2(1)
O(3)	29(1)	45(1)	29(1)	2(1)	4(1)	5(1)
O(4)	31(1)	28(1)	26(1)	4(1)	-6(1)	4(1)
C(12	2) 40(2) 32(2)	24(1)	2(1)	-5(1)	-2(1)
C(13	3) 44(2) 43(2)	36(2)	9(1)	-16(1)	2(2)
N(2)	23(1)	29(1)	39(1)	2(1)	-6(1)	-3(1)
N(3)	21(1)	32(1)	47(2)	-3(1)	-4(1)	-4(1)
N(4)	31(2)	29(2)	84(2)	-6(1)	-2(1)	-9(1)

C(14)	41(2)	20(1)	24(1)	0(1)	-8(1)	-2(1)
C(15)	33(2)	20(1)	20(1)	-2(1)	-6(1)	-3(1)
C(16)	32(2)	31(2)	29(1)	-7(1)	-3(1)	2(1)
C(17)	48(2)	41(2)	24(1)	-5(1)	4(1)	-8(2)
C(18)	60(2)	36(2)	19(1)	2(1)	-10(1)	-11(2)
C(19)	40(2)	31(2)	32(2)	2(1)	-15(1)	-4(1)
C(20)	30(2)	28(1)	25(1)	0(1)	-4(1)	-2(1)

Table 6. Hydrogen coordinates (x 10^4) and isotropic	
displacement parameters (A^2 x 10^3) for elmds_a.	

	x	У	:	Z	U(eo	a)	
H(2)	32	272	580	7	158	7	25
H(3)	12	229	816	5	898	3	31
H(5)	56	612	111	51	210	00	31
H(6)	76	687	880	7	279	2	26
H(7A)) 2	192	123	386	14	52	60
H(78)) 2	216	112	20	124	44	60
H(7C) 2	2171	116	607	1	13	60
H(8)	23	373	472	0	404	6	27
H(10	4) (6671	19	959	50)55	29
H(10	B) !	5476	3	50	47	09	29
H(12	4) 4	4830	-12	221	85	525	38
H(12	B) !	5800	5	03	884	47	38
H(13	A) 8	8548	-24	400	81	113	61
H(13I	B) 8	8100	-17	773	95	520	61
H(130	C)	9516	-6	82	84	32	61
H(14	4) 4	4308	68	393	52	27	34
H(14I	B) 7	7003	68	383	49	977	34
H(16)	2	663	61	54	730	06	37
H(17)	2	964	50	39	933	31	46
H(18)	6	291	36	33	979	90	45
H(19)	9	295	324	40	818	35	40
H(20)	9	037	43	74	615	53	33

Table 7. Selected torsion angles [deg] for elmds_a.

Table 8. Torsion angles [deg] for elmds_a.

O(2)-S(1)-C(1)-C(2)	163.7(2)
O(1)-S(1)-C(1)-C(2)	32.2(2)
N(1)-S(1)-C(1)-C(2)	-82.4(2)
O(2)-S(1)-C(1)-C(6)	-20.3(2)
O(1)-S(1)-C(1)-C(6)	-151.82(19)
N(1)-S(1)-C(1)-C(6)	93.6(2)
C(6)-C(1)-C(2)-C(3)	-0.5(4)
S(1)-C(1)-C(2)-C(3)	175.5(2)
C(1)-C(2)-C(3)-C(4)	-0.3(4)
C(2)-C(3)-C(4)-C(5)	1.0(4)
C(2)-C(3)-C(4)-C(7)	-178.4(3)
C(3)-C(4)-C(5)-C(6)	-0.9(4)
C(7)-C(4)-C(5)-C(6)	178.5(3)
C(4)-C(5)-C(6)-C(1)	0.2(4)
C(2)-C(1)-C(6)-C(5)	0.5(4)
S(1)-C(1)-C(6)-C(5)	-175.40(19)
O(2)-S(1)-N(1)-C(8)	-170.21(18)
O(1)-S(1)-N(1)-C(8)	-41.0(2)
C(1)-S(1)-N(1)-C(8)	75.2(2)
O(2)-S(1)-N(1)-C(14)	52.3(2)
O(1)-S(1)-N(1)-C(14)	-178.53(19)
C(1)-S(1)-N(1)-C(14)	-62.3(2)
C(14)-N(1)-C(8)-C(9)	-112.4(3)
S(1)-N(1)-C(8)-C(9)	109.9(2)
N(1)-C(8)-C(9)-N(2)	-177.6(2)
N(1)-C(8)-C(9)-C(10)	3.1(4)
C(8)-C(9)-C(10)-C(11)	111.9(3)
N(2)-C(9)-C(10)-C(11)	-67.4(3)

4.9(4)
-175.3(2)
-1.5(4)
178.7(2)
-178.5(3)
173.0(3)
-7.6(4)
77.6(3)
-144.7(2)
-113.5(3)
68.0(4)
1.2(4)
-177.4(3)
-0.1(5)
-1.4(5)
1.7(5)
-0.6(5)
-0.8(4)
177.7(3)

Table 9. Hydrogen bonds for elmds_a [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

Crystal Structure Report for **4a** (CCDC **2384604**)

Table 1. Crystal data and structure refinement for **4a** (CCDC **2384604**)

Identification code 2384604
Empirical formula C18 H17 F3 N4 O2 S
Formula weight 410.42
Temperature 173(2) K
Wavelength 0.71073 A
Crystal system, space group Triclinic, P -1
Unit cell dimensions $a = 7.1393(12) \text{ A} alpha = 87.980(7) deg.$ b = 10.5980(18) A beta = 88.779(6) deg. c = 13.216(2) A gamma = 76.119(6) deg.
Volume 970.1(3) A^3
Z, Calculated density 2, 1.405 Mg/m^3
Absorption coefficient 0.216 mm^-1

F(000) 424

Crystal size 0.180 x 0.160 x 0.140 mm

Theta range for data collection 1.542 to 27.907 deg.

Limiting indices -9<=h<=9, -13<=k<=13, -17<=l<=14

Reflections collected / unique 17075 / 4609 [R(int) = 0.0288]

Completeness to theta = 25.242 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7456 and 0.6918

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 4609 / 30 / 276

Goodness-of-fit on F² 1.056

Final R indices [I>2sigma(I)] R1 = 0.0384, wR2 = 0.0953

R indices (all data) R1 = 0.0568, wR2 = 0.1060

Extinction coefficient n/a

Largest diff. peak and hole 0.324 and -0.291 e.A^-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for elmds_a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х у	z	U(eq)		
N(1)	6582(2)	2212(1)	6487(1)	31(1)	
S(1)	8606(1)	1755(1)	7120(1)	34(1)	
O(1)	9826(2)	749(1)	6562(1)	51(1)	
O(2)	9196(2)	2924(1)	7304(1)	46(1)	
C(1)	8086(2)	1076(2)	8298(1)	30(1)	
C(2)	8345(2)	-260(2)	8408(1)	34(1)	
C(3)	7995(2)	-794(2)	9346(1)	36(1)	
C(4)	7389(2)	-16(2)	10173(1)	33(1)	
C(5)	7121(2)	1321(2)	10037(1)	37(1)	
C(6)	7470(2)	1876(2)	9111(1)	35(1)	
C(7)	7039(2)	-618(2)	11187(1)	44(1)	
C(8)	5331(2)	3444(1)	6694(1)	29(1)	
N(2)	5716(2)	4545(1)	6169(1)	40(1)	
N(3)	7128(2)	4334(1)	5584(1)	40(1)	
N(4)	8369(2)	4271(2)	5037(1)	55(1)	
C(9)	3790(2)	3577(2)	7295(1)	34(1)	
C(10)	2349(2)	4827(2)	7462(1)	43(1)	
C(11)	2224(4)	5216(2)	8532(2)	69(1)	
F(1)	2080(40)	4296(12	2) 9237(12)	98(3)	
F(2)	3883(14)	5548(14	l) 8762(12)	77(2)	
F(3)	760(20)	6263(11)	8632(11)	100(3)	

F(1A)	990(20)	6358(11)	8713(14)	104(4)	
F(2A)	1490(30)	4327(12)	9080(14)	89(3)	
F(3A)	3862(18)	5270(20)	8980(16)	104(3)	
C(12)	5703(2)	1220(1)	6043(1)	35(1)	
C(13)	5056(2)	1650(1)	4983(1)	31(1)	
C(14)	6408(3)	1589(2)	4205(1)	41(1)	
C(15)	5833(3)	2000(2)	3235(1)	53(1)	
C(16)	3913(4)	2476(2)	3026(1)	58(1)	
C(17)	2553(3)	2546(2)	3784(2)	53(1)	
C(18)	3115(2)	2130(2)	4767(1)	40(1)	

Table 3. Selected bond lengths [A] and angles [deg] for elmds_a.

Table 4. Bond lengths [A] and angles [deg] for elmds_a.

N(1)-C(8)	1.4262(18)
N(1)-C(12)	1.4892(19)
N(1)-S(1)	1.6460(12)
S(1)-O(1)	1.4221(13)
S(1)-O(2)	1.4313(13)
S(1)-C(1)	1.7615(15)
C(1)-C(2)	1.386(2)
C(1)-C(6)	1.390(2)
C(2)-C(3)	1.388(2)
C(2)-H(2)	0.9500
C(3)-C(4)	1.390(2)
C(3)-H(3)	0.9500
C(4)-C(5)	1.389(2)
C(4)-C(7)	1.506(2)
C(5)-C(6)	1.384(2)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-C(9)	1.325(2)
C(8)-N(2)	1.4162(19)
N(2)-N(3)	1.2389(19)
N(3)-N(4)	1.1223(19)
C(9)-C(10)	1.490(2)
C(9)-H(9)	0.9500
C(10)-C(11)	1.481(3)
C(10)-H(10A)	0.9900

C(10)-H(10B)	0.9900
C(11)-F(3A)	1.337(10)
C(11)-F(3)	1.339(8)
C(11)-F(1A)	1.340(10)
C(11)-F(1)	1.345(10)
C(11)-F(2)	1.357(9)
C(11)-F(2A)	1.362(10)
C(12)-C(13)	1.506(2)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(14)	1.387(2)
C(13)-C(18)	1.389(2)
C(14)-C(15)	1.377(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.373(3)
C(15)-H(15)	0.9500
C(16)-C(17)	1.372(3)
C(16)-H(16)	0.9500
C(17)-C(18)	1.392(3)
C(17)-H(17)	0.9500
C(18)-H(18)	0.9500
C(8)-N(1)-C(12)	117 29(12)
C(8)-N(1)-S(1)	118 25(9)
C(12)-N(1)-S(1)	120 13(10)
O(1)-S(1)-O(2)	120.70(10)
O(1)-S(1)-N(1)	106 /1(7)
O(2)-S(1)-N(1)	105 78(7)
	100.70(7)

O(1)-S(1)-C(1)

O(2)-S(1)-C(1)

N(1)-S(1)-C(1)

107.75(7)

107.99(7)

108.12(7)

C(2)-C(1)-C(6)	120.73(14)
C(2)-C(1)-S(1)	119.28(12)
C(6)-C(1)-S(1)	119.97(12)
C(1)-C(2)-C(3)	119.07(14)
C(1)-C(2)-H(2)	120.5
C(3)-C(2)-H(2)	120.5
C(2)-C(3)-C(4)	121.33(15)
C(2)-C(3)-H(3)	119.3
C(4)-C(3)-H(3)	119.3
C(5)-C(4)-C(3)	118.35(14)
C(5)-C(4)-C(7)	121.20(15)
C(3)-C(4)-C(7)	120.45(15)
C(6)-C(5)-C(4)	121.39(15)
C(6)-C(5)-H(5)	119.3
C(4)-C(5)-H(5)	119.3
C(5)-C(6)-C(1)	119.12(15)
C(5)-C(6)-H(6)	120.4
C(1)-C(6)-H(6)	120.4
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(9)-C(8)-N(2)	120.00(14)
C(9)-C(8)-N(1)	122.82(14)
N(2)-C(8)-N(1)	117.04(13)
N(3)-N(2)-C(8)	116.19(13)
N(4)-N(3)-N(2)	173.15(17)
C(8)-C(9)-C(10)	124.72(15)
C(8)-C(9)-H(9)	117.6

C(10)-C(9)-H(9)	117.6
C(11)-C(10)-C(9)	112.93(17)
C(11)-C(10)-H(10A)	109.0
C(9)-C(10)-H(10A)	109.0
C(11)-C(10)-H(10B)	109.0
C(9)-C(10)-H(10B)	109.0
H(10A)-C(10)-H(10B)) 107.8
F(3A)-C(11)-F(1A)	105.1(8)
F(3)-C(11)-F(1)	110.2(9)
F(3)-C(11)-F(2)	108.4(8)
F(1)-C(11)-F(2)	104.0(8)
F(3A)-C(11)-F(2A)	106.5(7)
F(1A)-C(11)-F(2A)	104.4(8)
F(3A)-C(11)-C(10)	117.6(9)
F(3)-C(11)-C(10)	108.7(7)
F(1A)-C(11)-C(10)	115.0(8)
F(1)-C(11)-C(10)	116.7(8)
F(2)-C(11)-C(10)	108.5(6)
F(2A)-C(11)-C(10)	107.2(8)
N(1)-C(12)-C(13)	109.50(12)
N(1)-C(12)-H(12A)	109.8
C(13)-C(12)-H(12A)	109.8
N(1)-C(12)-H(12B)	109.8
C(13)-C(12)-H(12B)	109.8
H(12A)-C(12)-H(12B)) 108.2
C(14)-C(13)-C(18)	118.88(15)
C(14)-C(13)-C(12)	120.06(14)
C(18)-C(13)-C(12)	121.05(14)
C(15)-C(14)-C(13)	120.51(17)
C(15)-C(14)-H(14)	119.7
C(13)-C(14)-H(14)	119.7

C(16)-C(15)-C(14)	120.37(18)
C(16)-C(15)-H(15)	119.8
C(14)-C(15)-H(15)	119.8
C(17)-C(16)-C(15)	120.09(17)
C(17)-C(16)-H(16)	120.0
C(15)-C(16)-H(16)	120.0
C(16)-C(17)-C(18)	120.09(18)
C(16)-C(17)-H(17)	120.0
C(18)-C(17)-H(17)	120.0
C(13)-C(18)-C(17)	120.07(17)
C(13)-C(18)-H(18)	120.0
C(17)-C(18)-H(18)	120.0

Table 5. Anisotropic displacement parameters ($A^2 \times 10^3$) for elmds_a.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22 I	J33	U23	U13	U12
N(1)	33(1)	24(1)	34(1)	0(1)	-7(1)	-5(1)
S(1)	27(1)	40(1)	34(1)	7(1)	-2(1)	-5(1)
O(1)	40(1)	59(1)	41(1)	9(1)	9(1)	10(1)
O(2)	42(1)	56(1)	48(1)	15(1)	-13(1)) -27(1)
C(1)	22(1)	35(1)	32(1)	3(1)	-4(1)	-6(1)
C(2)	30(1)	33(1)	37(1)	-2(1)	-1(1)	-4(1)
C(3)	32(1)	31(1)	44(1)	6(1)	-4(1)	-7(1)
C(4)	23(1)	43(1)	33(1)	7(1)	-7(1)	-10(1)
C(5)	35(1)	41(1)	34(1)	-4(1)	-3(1)	-9(1)
C(6)	36(1)	31(1)	37(1)	0(1)	-5(1)	-9(1)
C(7)	34(1)	60(1)	38(1)	14(1)	-6(1)	-15(1)
C(8)	32(1)	24(1)	32(1)	1(1)	-6(1)	-7(1)
N(2)	40(1)	31(1)	48(1)	6(1)	5(1)	-9(1)
N(3)	40(1)	31(1)	48(1)	6(1)	5(1)	-9(1)
N(4)	44(1)	62(1)	59(1)	14(1)	9(1)	-14(1)
C(9)	38(1)	29(1)	37(1)	1(1)	0(1)	-10(1)
C(10) 39(1) 37(1)	50(1)	-5(1)	8(1)	-6(1)
C(11) 92(2) 48(1)	61(1)	-12(1) 23(1) -8(1)
F(1)	158(8)	78(3)	55(4)	-2(2)	38(5)	-24(4)
F(2)	115(4)	61(4)	60(4)	-13(3)) -22(2	2) -27(2)
F(3)	124(6)	63(4)	84(4)	-24(4) 34(4) 31(5)
F(1A) 115(5	5) 73(5)	124(8	3) -55((5) 48	(4) -21(5)

F(2A)	117(7)	89(4)	52(4)	-4(3)	40(4)	-10(3)	
F(3A)	151(5)	87(6)	70(5)	-17(4)	-31(4)	-16(4)	
C(12)	45(1)	24(1)	37(1)	0(1)	-8(1)	-9(1)	
C(13)	39(1)	21(1)	33(1)	-5(1)	-2(1)	-7(1)	
C(14)	43(1)	38(1)	44(1)	-12(1)	4(1)	-12(1)	
C(15)	79(1)	50(1)	36(1)	-11(1)	9(1)	-28(1)	
C(16)	100(2)	42(1)	36(1)	1(1)	-17(1)	-21(1)	
C(17)	58(1)	41(1)	57(1)	-4(1)	-23(1)	-2(1)	
C(18)	37(1)	36(1)	44(1)	-8(1)	-2(1)	-4(1)	

Table 6. Hydrogen coordinates (x 10^4) and isotropic	
displacement parameters (A^2 x 10^3) for elmds_a.	

	х у	Z	U(eq)	
H(2)	8756	-802	7849	41
H(3)	8173	-1709	9425	43
H(5)	6689	1866	10593	44
H(6)	7291	2791	9032	41
H(7A)	5671	-620	11259	65
H(7B)	7395	-111	11726	65
H(7C)	7824	-1513	11236	65
H(9)	3590	2820	7643	41
H(10A)) 2702	5520	7032	51
H(10B)) 1065	4742	7249	51
H(12A)) 4585	1112	6464	42
H(12B)) 6659	372	6032	42
H(14)	7740	1262	4342	49
H(15)	6771	1953	2708	63
H(16)	3526	2759	2356	70
H(17)	1225	2878	3638	64
H(18)	2170	2176	5290	47

Table 7. Selected torsion angles [deg] for elmds_a.

Table 8. Torsion angles [deg] for elmds_a.

C(8)-N(1)-S(1)-O(1)	-161.54(11)
C(12)-N(1)-S(1)-O(1)	42.48(13)
C(8)-N(1)-S(1)-O(2)	-32.53(13)
C(12)-N(1)-S(1)-O(2)	171.49(11)
C(8)-N(1)-S(1)-C(1)	82.95(12)
C(12)-N(1)-S(1)-C(1)	-73.04(13)
O(1)-S(1)-C(1)-C(2)	-19.22(14)
O(2)-S(1)-C(1)-C(2)	-150.57(12)
N(1)-S(1)-C(1)-C(2)	95.41(12)
O(1)-S(1)-C(1)-C(6)	159.16(12)
O(2)-S(1)-C(1)-C(6)	27.82(14)
N(1)-S(1)-C(1)-C(6)	-86.20(13)
C(6)-C(1)-C(2)-C(3)	-0.5(2)
S(1)-C(1)-C(2)-C(3)	177.89(11)
C(1)-C(2)-C(3)-C(4)	0.1(2)
C(2)-C(3)-C(4)-C(5)	0.6(2)
C(2)-C(3)-C(4)-C(7)	-179.29(14)
C(3)-C(4)-C(5)-C(6)	-0.9(2)
C(7)-C(4)-C(5)-C(6)	178.94(14)
C(4)-C(5)-C(6)-C(1)	0.6(2)
C(2)-C(1)-C(6)-C(5)	0.2(2)
S(1)-C(1)-C(6)-C(5)	-178.20(11)
C(12)-N(1)-C(8)-C(9)	57.35(19)
S(1)-N(1)-C(8)-C(9)	-99.32(15)
C(12)-N(1)-C(8)-N(2)	-118.21(14)
S(1)-N(1)-C(8)-N(2)	85.12(15)
C(9)-C(8)-N(2)-N(3)	-176.57(14)
N(1)-C(8)-N(2)-N(3)	-0.9(2)

N(2)-C(8)-C(9)-C(10)	1.0(2)
N(1)-C(8)-C(9)-C(10)	-174.40(14)
C(8)-C(9)-C(10)-C(11)	-118.8(2)
C(9)-C(10)-C(11)-F(3A)	53.2(12)
C(9)-C(10)-C(11)-F(3)	-173.2(8)
C(9)-C(10)-C(11)-F(1A)	177.8(8)
C(9)-C(10)-C(11)-F(1)	-47.8(13)
C(9)-C(10)-C(11)-F(2)	69.2(7)
C(9)-C(10)-C(11)-F(2A)	-66.6(9)
C(8)-N(1)-C(12)-C(13)	68.02(17)
S(1)-N(1)-C(12)-C(13)	-135.77(12)
N(1)-C(12)-C(13)-C(14)	73.66(17)
N(1)-C(12)-C(13)-C(18)	-105.25(16)
C(18)-C(13)-C(14)-C(15)	0.0(2)
C(12)-C(13)-C(14)-C(15)	-178.92(15)
C(13)-C(14)-C(15)-C(16)	0.1(3)
C(14)-C(15)-C(16)-C(17)	-0.1(3)
C(15)-C(16)-C(17)-C(18)	-0.1(3)
C(14)-C(13)-C(18)-C(17)	-0.2(2)
C(12)-C(13)-C(18)-C(17)	178.73(15)
C(16)-C(17)-C(18)-C(13)	0.3(3)

Table 9. Hydrogen bonds for elmds_a [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)