Supporting Information

Nickel-Catalyzed Reductive 1,2-Alkylarylation of Alkenes *via* a 1,5-Hydrogen Atom Transfer (HAT) Cascade

Xi Chen,¹ Qiang Wang,² Xiao-Ping Gong,¹ Rui-Qiang Jiao,¹ Xue-Yuan Liu,^{*,1} and Yong-Min Liang^{*,1}

¹State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China E-mail: liuxuey@lzu.edu.cn; liangym@lzu.edu.cn

²Guangdong Provincial Key Laboratory of Distributed Energy Systems, College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China

Table of Contents

1. General Information	S1
2. The optimization of the reaction	S2
3. General procedure	S6
3.1 General procedure for preparation of O-oxalate hydroxamic acid esters compound	s 1S6
3.2 General procedure for nickel-catalyzed reductive alkylarylation of alkenes	S7
3.3 General procedure for nickel-catalyzed reductive alkylarylation of alkynes	S8
3.4 General procedure for scale-up preparation	S9
3.5 General procedure for radical trapping experiments	S10
3.6 General procedure for studying the generation of radical	S11
3.7 General procedure for stoichiometric reactions of complex Ni-1	S12
3.8 The reactivity of complex Ni-1 in the alkyne difunctionalization reaction	S13
3.9 References	S14
4. X-ray single crystal diffraction data of 4i	S15
5. Characterization Data	S16
6. NMR Spectroscopic Data	S37

1. General Information

Unless otherwise noted, all of these reactions were carried out under an argon atmosphere. For column chromatography, silica gel (200-300 mesh) was employed. Solvent was freshly distilled prior to use unless otherwise noted.

Instrumentation: ¹H NMR spectra were recorded on Bruker AVANCE NEO 600 or Bruker AVANCE NEO 400 with 600 MHz or 400 MHz frequencies. ¹³C NMR spectra were recorded on Bruker AVANCE NEO 600 or Bruker AVANCE NEO 400 with 151 MHz or 101 MHz frequencies. ¹⁹F NMR spectra were recorded on Bruker AVANCE NEO 600 or Bruker AVANCE NEO 400 with 565 MHz or 376 MHz frequencies. Chemical shifts (ppm) were recorded with TMS (tetramethylsilane) as the internal reference standard. Chemical shifts (δ) were reported in ppm relative to the residual solvent signal (TMS $\delta = 0$ for ¹H NMR and CDCl₃ $\delta = 77.0$ for ¹³C NMR). Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets) or m (multiplet). Data collection for crystal structure was performed on a 'Rigaku XtaLAB Synergy-DW' diffractometer. HRMS obtained using a Q-TOF instrument equipped with an ESI source.

Materials: All solvents were dried according to standard procedure before use. The solvents DMA and THF used in the reaction were extra dry treated with commercially available molecular sieves. Deuterated solvents were purchased from Cambridge Isotope Laboratories. Commercial reagents were used as received without further purification unless otherwise noted. Other commercially available reagents and solvents were used without further purification, like Adamas, Innochem, Leyan, Bide, and Laajoo. The *O*-oxalate hydroxamic acid esters compounds **1** used in the reaction are synthesized according to previously reported methods.

2. The optimization of the reaction

The investigation began with the selection of O-oxalate hydroxamic acid ester 1a, benzyl acrylate 2a, and 4-iodobenzoic acid methyl ester 3a as model substrates. Using NiCl₂·DME as the catalyst, bipyridine ligand L1, and Mn powder as the reductant, we were pleased to obtain the desired product 4a with a 13% yield (Table S1, entry 1). Given the critical role of solvents in cross-electrophile coupling, we initially tested several solvents (entries 2-6), discovering that a mixture of DMA/THF in a 2:1 ratio (v/v) was optimal. Screening of Ni salts revealed that the reactions could be catalyzed by both Ni(II) and Ni(0), with NiCl₂·DME proving to be the most effective (entries 7-14). Further optimization of the reactant ratios increased the yield to 36% (entry 15). We also explored various bidentate N-containing ligands (L2-L10), finding that L2 provided the best efficiency, achieving a 45% yield of 4a (entries 16-24). When Zn powder was used as the reductant, the yield decreased to 39% (entry 25). The yield was further improved to 78% with the addition of anhydrous $MgBr_2$, and we deduced that anhydrous $MgBr_2$ may accelerate reduction of the Ni^{II} intermediates or assist in activating the surface of the Mn^{0,1} while the use of LiCl, LiBr, or NaI resulted in only a trace yield (entries 26-33). Reducing the loadings of catalyst and ligand produced a 33% yield of 4a (entry 34). Control experiments confirmed that the Ni salt, ligand, and reductant are all essential components for the successful transformation (entries 35-40).

^t Bu N Oxa		OBn +	N lig ad cO ₂ Me 30 °C	i cat. gand Mn ditive Ivent , Ar, 18 h	OBn
1a	a 2a		3a	4a	CO ₂ ivie
entry	catalyst	ligand	additive	solvent	yield(%) ^c
1	NiCl ₂ ·DME	L1		THF	13
2	NiCl ₂ ·DME	L1		DMA	20
3	NiCl ₂ ·DME	L1		DMSO	11
4	$NiCl_2 \cdot DME$	L1		Et ₂ O	0
5	NiCl ₂ ·DME	L1		1,4-dioxane	0
6	NiCl ₂ ·DME	L1		DMA/THF = 2:1	27
7	NiCl ₂	L1		DMA/THF = 2:1	0
8	NiBr ₂	L1		DMA/THF = 2:1	0
9	NiI ₂	L1		DMA/THF = 2:1	11
10	NiCl ₂ ·6H ₂ O	L1		DMA/THF = 2:1	20
11	NiBr ₂ ·DME	L1		DMA/THF = 2:1	19
12	Ni(COD) ₂	L1		DMA/THF = 2:1	19
13	Ni(acac) ₂	L1		DMA/THF = 2:1	0
14	Ni(PPh ₃)Cl ₂	L1		DMA/THF = 2:1	trace
15^{d}	NiCl ₂ ·DME	L1		DMA/THF = 2:1	36

Table S1. Optimization of reaction conditions for alkylarylation of alkenes^{*a,b*}

16 ^d	NiCl ₂ ·DME	L2		DMA/THF = 2:1	45
17^d	NiCl ₂ ·DME	L3		DMA/THF = 2:1	39
18^d	NiCl ₂ ·DME	L4		DMA/THF = 2:1	35
19^{d}	NiCl ₂ ·DME	L5		DMA/THF = 2:1	44
20^d	NiCl ₂ ·DME	L6		DMA/THF = 2:1	25
21^{d}	NiCl ₂ ·DME	L7		DMA/THF = 2:1	29
22^d	NiCl ₂ ·DME	L8		DMA/THF = 2:1	25
23^d	NiCl ₂ ·DME	L9		DMA/THF = 2:1	16
24^d	NiCl ₂ ·DME	L10		DMA/THF = 2:1	14
$25^{d,e}$	NiCl ₂ ·DME	L2		DMA/THF = 2:1	39
26^d	$NiCl_2 \cdot DME$	L2	$MgCl_2$	DMA/THF = 2:1	65
$27^{d,e}$	$NiCl_2 \cdot DME$	L2	$MgCl_2$	DMA/THF = 2:1	61
28^d	NiCl ₂ ·DME	L2	LiCl	DMA/THF = 2:1	trace
29^{d}	$NiCl_2 \cdot DME$	L2	LiBr	DMA/THF = 2:1	trace
30^d	NiCl ₂ ·DME	L2	NaI	DMA/THF = 2:1	trace
31^d	$NiCl_2 \cdot DME$	L2	$ZnCl_2$	DMA/THF = 2:1	11
32^d	$NiCl_2 \cdot DME$	L2	$ZnBr_2$	DMA/THF = 2:1	13
33 ^{<i>d</i>}	NiCl ₂ ·DME	L2	MgBr ₂	DMA/THF = 2:1	78
$34^{d,f}$	$NiCl_2 \cdot DME$	L2	MgBr ₂	DMA/THF = 2:1	33
35^d	CoCl ₂	L2	MgBr ₂	DMA/THF = 2:1	0
36 ^d	PdCl ₂	L2	MgBr ₂	DMA/THF = 2:1	0
37 ^d	CuCl ₂	L2	MgBr ₂	DMA/THF = 2:1	0
38^d		L2	MgBr ₂	DMA/THF = 2:1	0
39 ^d	$NiCl_2 \cdot DME$		MgBr ₂	DMA/THF = 2:1	0
40 ^{<i>d</i>,<i>g</i>}	NiCl ₂ ·DME	L2	MgBr ₂	DMA/THF = 2:1	0
	R L1: R = L2: R = 1 L3: R = 1 L4: R = 0	Bu H Me OMe	$\bigvee_{N} \bigvee_{L5} \bigvee_{N} \bigvee_{L6} \bigvee_$	$\overset{R}{\underset{N}{\longleftarrow}}\overset{R}{\underset{N}{\longleftarrow}}\overset{R}{\underset{N}{\longleftarrow}}$	L7: R = H L8: R = Me L9: R = OMe L10: R = Ph

^{*a*}Reaction conditions: **1a** (0.2 mmol, 109.2 mg, 2.0 equiv.), **2a** (0.2 mmol, 30 μ L), **3a** (0.3 mmol, 78.6 mg, 1.5 equiv.), Ni cat. (10 mol%), ligand (12 mol%), Mn (3.0 equiv.), additive (1.0 equiv.), solvent (1.5 mL), Ar, 30 °C, and 18 h. ^{*b*}Oxa = OCOCO₂Me. ^{*c*}Isolated yield. ^{*d*}**1a** (0.4 mmol) was used. ^{*e*}Zn as the reductant. ^{*f*}Ni cat. (5 mol%), ligand (6 mol%). ^{*g*}Without Mn.

Under the optimum conditions of alkylarylation of alkenes (Table S1, entry 33), using **7a** as model substrate (Table S2, entry 1), we obtained the target product **8a** in 15% yield. Similarly, we screened the reaction solvents and found that a mixture of DMA/THF in a 2:1 ratio (v/v) were still the best (entries 2-5). As the addition of additives during the screening of reaction conditions for the alkylarylation of alkenes led to a significant increase in yield, we gave priority to the screening of additives, and found that anhydrous MgCl₂ as an additive increased the yield to 26% (entries 6-11). The reaction yield was increased to 50% using the tridentate N-containing ligand **L12** as the ligand (entries 12-22). Screening of Ni salts showed that Ni(PCy₃)Cl₂ was the most effective (entries 23-29). Reducing the loadings of catalyst and ligand leads to a decrease in yield (entry 30). Control experiment demonstrated that no reaction occurred in the absence of ligand (entry 31), highlighting the critical role of the ligand in this reaction.

^f Bu	N N Oxa	\uparrow	+ CO ₂ Me	Ni cat. ligand Mn additive solvent 30 °C, Ar, 18		COOM
	1a	7a	3a	,,	8a	×
	entry	Ni cat.	ligand	additive	solvent	yield(%) ^c
_	1	NiCl ₂ ·DME	L2	MgBr ₂	DMA/THF = 2:1	15
	2	NiCl ₂ ·DME	L2	MgBr ₂	THF	9
	3	NiCl ₂ ·DME	L2	MgBr ₂	DMA	11
	4	NiCl ₂ ·DME	L2	MgBr ₂	DMSO	7
	5	NiCl ₂ ·DME	L2	MgBr ₂	DMF	10
	6	NiCl ₂ ·DME	L2	MgCl ₂	DMA/THF = 2:1	26
	7^d	NiCl ₂ ·DME	L2	MgCl ₂	DMA/THF = 2:1	21
	8	NiCl ₂ ·DME	L2	$ZnCl_2$	DMA/THF = 2:1	12
	9	NiCl ₂ ·DME	L2	LiBr	DMA/THF = 2:1	0
	10	NiCl ₂ ·DME	L2	LiCl	DMA/THF = 2:1	trace
	11	NiCl ₂ ·DME	L2	NaI	DMA/THF = 2:1	trace
	12	NiCl ₂ ·DME	L1	MgCl ₂	DMA/THF = 2:1	32
	13	NiCl ₂ ·DME	L3	MgCl ₂	DMA/THF = 2:1	34
	14	NiCl ₂ ·DME	L4	MgCl ₂	DMA/THF = 2:1	trace
	15	NiCl ₂ ·DME	L5	MgCl ₂	DMA/THF = 2:1	35
	16	NiCl ₂ ·DME	L6	MgCl ₂	DMA/THF = 2:1	40
	17	NiCl ₂ ·DME	L7	MgCl ₂	DMA/THF = 2:1	0
	18	NiCl ₂ ·DME	L8	MgCl ₂	DMA/THF = 2:1	trace
	19	NiCl ₂ ·DME	L9	MgCl ₂	DMA/THF = 2:1	trace
	20	NiCl ₂ ·DME	L10	MgCl ₂	DMA/THF = 2:1	trace
	21	NiCl ₂ ·DME	L11	MgCl ₂	DMA/THF = 2:1	26
	22	NiCl ₂ ·DME	L12	MgCl ₂	DMA/THF = 2:1	50
	23	NiCl ₂	L12	MgCl ₂	DMA/THF = 2:1	48
	24	NiBr ₂	L12	MgCl ₂	DMA/THF = 2:1	43

Table S2. Optimization of reaction conditions for alkylarylation of alkynes^{*a,b*}

25	NiI ₂	L12	MgCl ₂	DMA/THF = 2:1	40
26	Ni(acac) ₂	L12	MgCl ₂	DMA/THF = 2:1	56
27	Ni(COD) ₂	L12	MgCl ₂	DMA/THF = 2:1	46
28	Ni(PPh ₃)Cl ₂	L12	MgCl ₂	DMA/THF = 2:1	57
29	Ni(PCy ₃)Cl ₂	L12	MgCl ₂	DMA/THF = 2:1	62
30^{e}	Ni(PCy ₃)Cl ₂	L12	MgCl ₂	DMA/THF = 2:1	57
31	Ni(PCy ₃)Cl ₂		MgCl ₂	DMA/THF = 2:1	0
			^t Bu		

^{*a*}Reaction conditions: **1a** (0.2 mmol, 109.2 mg, 2.0 equiv.), **7a** (0.2 mmol, 22 μ L), **3a** (0.3 mmol, 78.6 mg, 1.5 equiv.), Ni cat. (10 mol%), ligand (12 mol%), Mn (3.0 equiv.), additive (1.0 equiv.), solvent (1.5 mL), Ar, 30 °C, and 18 h. ^{*b*}Oxa = OCOCO₂Me. ^{*c*}Isolated yield. ^{*d*}Zn as the reductant. ^{*e*}Ni cat. (5 mol%), ligand (6 mol%).

L12

L11

3. General procedure

3.1 General procedure for preparation of O-oxalate hydroxamic acid esters compounds 1

O-oxalate hydroxamic acid esters substrates were prepared by following the literature report²

Step 1: To a solution of carboxylic acid (1.0 equiv.) and 3-5 drops of anhydrous DMF in anhydrous CH_2Cl_2 (0.5 M) at 0 °C, oxalyl chloride (1.5 equiv.) was added dropwise over 10 minutes. The reaction was vigorously stirred at room temperature for 3 h. The solvent was removed in vacuum. Anhydrous CH_2Cl_2 was added to remove the residual of oxalyl chloride in vacuum. Then the resulting acyl chloride was redissolved in anhydrous acetonitrile and used directly for the next step without further purification.

Step 2: A solution of the *N*-(*tert*-butyl)hydroxylamine hydrochloride in anhydrous THF (0.4 M) was cooled to 0 °C, treated with DIPEA (2.0 equiv.) and stirred for 15 minutes. The acyl chloride (1.0 equiv.) in anhydrous acetonitrile was added dropwise over 15 minutes and the mixture was allowed to warm to room temperature overnight. The mixture was diluted with saturated NaHCO₃ and EtOAc and the layers were separated. The aqueous layer was extracted twice with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine, successively, and then evaporated. Purification by column chromatography on silica gel eluting with petroleum ether and EtOAc gave the hydroxylamine.

Step 3: To a solution of hydroxylamine in anhydrous CH_2Cl_2 (0.35 M) at 0 °C, Et₃N (1.5 equiv.) was added dropwise. Methyl oxalyl chloride (1.5 equiv.) was then added dropwise over 10 minutes. The reaction was vigorously stirred at room temperature for 4 h. The mixture was diluted with saturated NaHCO₃ and CH_2Cl_2 and the layers were separated. The aqueous layer was extracted twice with CH_2Cl_2 and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine, successively, and then evaporated. Purification by column chromatography on silica gel eluting with petroleum ether and EtOAc gave the *O*-oxalate hydroxamic acid esters compounds 1.

3.2 General procedure for nickel-catalyzed reductive alkylarylation of alkenes

In an argon-filled glove box, to a 10 mL pre-dried schlenk tube equipped with a stir bar were added aryl iodides **3** (0.3 mmol, 1.5 equiv.), NiCl₂·DME (10 mol%, 4.4 mg), bpy (12 mol%, 3.7 mg), Mn powder (0.6 mmol, 33 mg, 3.0 equiv.) and MgBr₂ (0.2 mmol, 36.8 mg, 1.0 equiv.). The vial was capped tightly with a rubber septum and taken out of the glovebox. Then, 1.5 mL anhydrous solvent (DMA/THF = 2/1) was injected via a syringe. The mixture was allowed to stirred (1000 rpm) at 30 °C for approximately 15 minute before *O*-oxalate hydroxamic acid esters **1** (0.4 mmol, 2.0 equiv.) and alkenes **2** (0.2 mmol) were added immediately. The reaction was stirred (1000 rpm) at 30 °C for 18 hours. After the reaction was complete as judged by TLC analysis, the mixture was quenched by adding 20 mL of saturated aqueous NaCl and 20 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with saturated aqueous NaCl (2 × 20 mL) and dried. The filtrate was concentrated under reduced pressure. The resulting reaction mixture was purified by column chromatography on silica gel to afford the desired product.

Note: keeping a stirring speed at 1000 rpm and reaction temperature around 30 °C is necessary for reproducibility. In addition, pre-stirring must be carried out before adding 1 and 2.

Table S3. Unsuccessful or poor resultant substrates

O-oxalate hydroxamic acid esters containing secondary carbon reactive sites were investigated and all showed worse results

3.3 General procedure for nickel-catalyzed reductive alkylarylation of alkynes

In an argon-filled glove box, to a 10 mL pre-dried schlenk tube equipped with a stir bar were added methyl 4-iodobenzoate **3a** (0.3 mmol, 78.6 mg, 1.5 equiv.), Ni(PCy₃)Cl₂ (10 mol%, 13.8 mg), **L12** (12 mol%, 9.7 mg), Mn powder (0.6 mmol, 33 mg, 3.0 equiv.) and MgCl₂ (0.2 mmol, 19 mg, 1.0 equiv.). The vial was capped tightly with a rubber septum and taken out of the glovebox. Then, 1.5 mL anhydrous solvent (DMA/THF = 2/1) was injected via a syringe. The mixture was allowed to stirred (1000 rpm) at 30 °C for approximately 15 minute before *O*-oxalate hydroxamic acid esters **1a** (0.4 mmol, 109.2 mg, 2.0 equiv.) and alkynes **7** (0.2 mmol) were added. The reaction was stirred (1000 rpm) at 30 °C for 18 hours. After the reaction was complete as judged by TLC analysis, the mixture was quenched by adding 20 mL of saturated aqueous NaCl and 20 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with saturated aqueous NaCl (2 × 20 mL) and dried. The filtrate was concentrated under reduced pressure. The resulting reaction mixture was purified by column chromatography on silica gel to afford the desired product.

Note: keeping a stirring speed at 1000 rpm and reaction temperature around 30 °C is necessary for reproducibility. In addition, pre-stirring must be carried out before adding **1a** and 7.

Table S4. Unsuccessful substrates

Unsuccessful unactivated alkynes acceptors

3.4 General procedure for scale-up preparation

In an argon-filled glove box, to a 100 mL pre-dried round bottom flask equipped with a stir bar were added methyl 4-iodobenzoate **3a** (4.5 mmol, 1.179 g, 1.5 equiv.), NiCl₂·DME (10 mol%, 66 mg), bpy (12 mol%, 55.5 mg), Mn powder (9.0 mmol, 495 mg, 3.0 equiv.) and MgBr₂ (3.0 mmol, 552 mg, 1.0 equiv.). The flask was capped tightly with a rubber septum and taken out of the glovebox. Then, 22.5 mL anhydrous solvent (DMA/THF = 2/1) was injected via a syringe. The mixture was allowed to stirred (1000 rpm) at 30 °C for approximately 30 minute before *O*-oxalate hydroxamic acid esters **1a** (6.0 mmol, 1.638 mg, 2.0 equiv.) and benzyl acrylate **2a** (3.0 mmol, 450 µL) were added. The reaction was stirred (1000 rpm) at 30 °C for 36 hours. After the reaction was complete as judged by TLC analysis, the mixture was quenched by adding 100 mL of saturated aqueous NaCl and 100 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 100 mL). The combined organic layers were washed with saturated aqueous NaCl (2 × 100 mL) and dried. The filtrate was concentrated under reduced pressure. The resulting reaction mixture was purified by column chromatography on silica gel to afford the desired product **4a**.

3.5 General procedure for radical trapping experiments

In an argon-filled glove box, to a 10 mL pre-dried schlenk tube equipped with a stir bar were added methyl 4-iodobenzoate **3a** (0.3 mmol, 78.6 mg, 1.5 equiv.), NiCl₂·DME (10 mol%, 4.4 mg), bpy (12 mol%, 3.7 mg), Mn powder (0.6 mmol, 33 mg, 3.0 equiv.), MgBr₂ (0.2 mmol, 36.8 mg, 1.0 equiv.) and TEMPO (0.4 mmol, 62.5 mg, 2.0 equiv.). The vial was capped tightly with a rubber septum and taken out of the glovebox. Then, 1.5 mL anhydrous solvent (DMA/THF = 2/1) was injected via a syringe. The mixture was allowed to stirred (1000 rpm) at 30 °C for approximately 15 minute before *O*-oxalate hydroxamic acid esters **1a** (0.4 mmol, 109.2 mg, 2.0 equiv.) and benzyl acrylate **2a** (0.2 mmol, 30 µL) were added immediately. The reaction was stirred (1000 rpm) at 30 °C for 18 hours. The mixture was quenched by adding 20 mL of saturated aqueous NaCl and 20 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with saturated aqueous NaCl (2 × 20 mL) and dried. After concentration under reduced pressure, the mixture was analyzed by HR-MS. It was found that the reaction was completely suppressed by adding TEMPO and the TEMPO-adduct was detected by HR-MS.

3.6 General procedure for studying the generation of radical

In an argon-filled glove box, to a 10 mL pre-dried schlenk tube equipped with a stir bar were added Ni(COD)₂ (0.2 mmol, 55 mg, 1.0 equiv.), bpy (0.2 mmol, 31.3 mg, 1.0 equiv.), MgBr₂ (0.2 mmol, 36.8 mg, 1.0 equiv.) and TEMPO (0.4 mmol, 62.5 mg, 2.0 equiv.). The vial was capped tightly with a rubber septum and taken out of the glovebox. Then, 1.5 mL anhydrous solvent (DMA/THF = 2/1) and *O*-oxalate hydroxamic acid esters **1a** (0.2 mmol, 54.6 mg) was injected via a syringe. The mixture was stirred (1000 rpm) at 30 °C for 18 hours. The mixture was quenched by adding 20 mL of saturated aqueous NaCl and 20 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2×20 mL). The combined organic layers were washed with saturated aqueous NaCl (2×20 mL) and dried. After concentration under reduced pressure, the TEMPO-adduct was detected by HR-MS.

In an argon-filled glove box, to a 10 mL pre-dried schlenk tube equipped with a stir bar were added Mn powder (0.6 mmol, 33 mg, 3.0 equiv.), MgBr₂ (0.2 mmol, 36.8 mg, 1.0 equiv.) and TEMPO (0.4 mmol, 62.5 mg, 2.0 equiv.). The vial was capped tightly with a rubber septum and taken out of the glovebox. Then, 1.5 mL anhydrous solvent (DMA/THF = 2/1) and *O*-oxalate hydroxamic acid esters **1a** (0.2 mmol, 54.6 mg) were injected via a syringe. The mixture was stirred (1000 rpm) at 30 °C for 18 hours. The mixture was quenched by adding 20 mL of saturated aqueous NaCl and 20 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with saturated aqueous NaCl (2 × 20 mL) and dried. After concentration under reduced pressure, the TEMPO-adduct was detected by HR-MS.

3.7 General procedure for stoichiometric reactions of complex Ni-1

In an argon-filled glove box, to a 10 mL pre-dried schlenk tube equipped with a stir bar were added complex Ni-1 (0.3 mmol, 147.3 mg, 1.5 equiv.), Mn powder (0.6 mmol, 33 mg, 3.0 equiv.), and MgBr₂ (0.2 mmol, 36.8 mg, 1.0 equiv.). The vial was capped tightly with a rubber septum and taken out of the glovebox. Then, 1.5 mL anhydrous solvent (DMA/THF = 2/1), *O*-oxalate hydroxamic acid esters 1a (0.4 mmol, 109.2 mg, 2.0 equiv.) and benzyl acrylate 2a (0.2 mmol, 30 μ L) were added via a syringe. The reaction was stirred (1000 rpm) at 30 °C for 18 hours. The mixture was quenched by adding 20 mL of saturated aqueous NaCl and 20 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with saturated aqueous NaCl (2 × 20 mL) and dried. After concentration under reduced pressure, the mixture was analyzed by TLC, which revealed that the difunctionalization product 6c was not formed.

In an argon-filled glove box, to a 10 mL pre-dried schlenk tube equipped with a stir bar were added complex Ni-1 (10 mol%, 9.8 mg), Mn powder (0.6 mmol, 33 mg, 3.0 equiv.), and MgBr₂ (0.2 mmol, 36.8 mg, 1.0 equiv.). The vial was capped tightly with a rubber septum and taken out of the glovebox. Then, 1.5 mL anhydrous solvent (DMA/THF = 2/1) and ethyl 4-iodobenzoate (0.3 mmol, 51 μ L, 1.5 equiv.) were injected via a syringe. The mixture was allowed to stirred (1000 rpm) at 30 °C for approximately 3 minute before *O*-oxalate hydroxamic acid esters 1a (0.4 mmol, 109.2 mg, 2.0 equiv.) and benzyl acrylate 2a (0.2 mmol, 30 μ L) were added immediately. The reaction was stirred (1000 rpm) at 30 °C for 18 hours. The mixture was quenched by adding 20 mL of saturated aqueous NaCl and 20 mL of EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with saturated aqueous NaCl (2 × 20 mL) and dried. After concentration under reduced pressure, the residue was purified by chromatography on silica gel to give product 6c in a yield of 52%.

Note: The deep red complex *Ni-1* was synthesized according to the reported method.³ It is unstable and quickly converted to the dimer, therefore it was generated and used immediately.

3.8 The reactivity of complex Ni-1 in the alkyne difunctionalization reaction.

Reactivity of the oxidative addition species Ni-1 in the alkyne difunctionalization reaction

We investigated the reactivity of complex Ni-1 in the alkyne bifunctionalization reaction and no detectable amount of **8** was observed in the stoichiometric reaction of Ni-1 with hydroxamic ester **1a** and phenylacetylene **7a**, which is similar to the results for the alkene difunctionalization reaction. Considering that 2,2'-bipyridine (bpy) was not the optimal ligand for the alkyne difunctionalization reaction, a control experiment was performed using catalytic Ni(PCy₃)Cl₂ and bpy as the ligand, and the product **8** was isolated in 23% yield. When 10 mol% of **Ni-1** was used as the catalyst, the desired product **8** was obtained in a 21% yield.

3.9 References

- 1 Z. Zhu, Y. Gong, W. Tong, W. Xue and H. Gong, Org. Lett., 2021, 23, 2158-2163.
- 2 Z.-Y. Liu and S. P. Cook, Org. Lett., 2022, 24, 3313-3318.
- 3 H. Chen, L. Hu, W. Ji, L. Yao and X. Liao, ACS Catal., 2018, 8, 10479-10485.

4. X-ray single crystal diffraction data of 4i

Sample preparation: The pure compound was dissolved in a vial (10 mL) containing MeOH and covered with a lid. Then put the vial in the freezer (2 - 8 °C) for about a week, during which the crystal was formed. The X-ray was detected after the crystal was formed. The crystal was measured on a 'Rigaku XtaLAB Synergy-DW ' diffractometer.

	^{IBU} NH2 4i COOMe	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Bond precision:	C-C = 0.0108 A	Wavelength= 0.71073		
Cell:	a=6.815 (4) alpha=90.897(11)	b=9.609 (5) c=33.961 (19) beta=90.084 (10) gamma=95.582 (11)		
Temperature:	296 K			
Volume	Calculated 2213 (2)	Reported 2213 (2)		
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	C21 H32 N2 0	D4 ?		
Sum formula	C21 H32 N2 0	O4 C21 H32 N2 O4		
Mr	376.49	376.48		
Dx,g cm ⁻³	1.130	1.130		
Ζ	4	4		
Mu (mm-1)	0.078	0.078		
F000	816.0	816.0		
F000'	816.37			
h,k,lmax	8,11,40	8,11,40		
Nref	7796	7646		
Tmin,Tmax	0.981,0.985	0.482,0.746		
Tmin'	0.977			
Correction method= # Reported T Limits: Tmin=0.482 Tmax=0.746 AbsCorr = MULTI-SCAN				
Data completeness	s= 0.981	Theta(max)= 25.000		
R(reflections)= 0.1	1162(2855)	wR2(reflections)= 0.3174(7646)		
S = 1.037		Npar= 500		

5. Characterization Data

methyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (4a) Colorless oil, yield: 78%, 72.9 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.21 (dd, *J* = 7.2, 2.2 Hz, 2H), 5.30 (s, 1H), 5.12 – 5.01 (m, 2H), 3.90 (s, 3H), 3.78 (dd, *J* = 8.8, 3.9 Hz, 1H), 2.33 (dd, *J* = 14.2, 8.8 Hz, 1H), 2.09 – 2.01 (m, 1H), 2.00 – 1.92 (m, 1H), 1.60 – 1.50 (m, 3H), 1.32 (s, 9H), 0.84 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.8, 172.4, 166.7, 145.6, 135.4, 129.9, 129.0, 128.4, 128.2, 128.0, 127.9, 66.9, 52.0, 50.9, 47.6, 44.5, 37.3, 33.2, 32.5, 28.7, 26.9, 26.8.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₈NO₅⁺ 468.2744; found 468.2727.

methyl 4-(7-(*tert*-butylamino)-1-methoxy-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (4b) Colorless oil, yield: 74%, 57.9 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 5.37 (s, 1H), 3.90 (s, 3H), 3.74 (dd, *J* = 9.0, 3.9 Hz, 1H), 3.65 (s, 3H), 2.32 (dd, *J* = 14.2, 8.9 Hz, 1H), 2.10 – 2.04 (m, 1H), 2.02 – 1.94 (m, 1H), 1.58 – 1.49 (m, 3H), 1.33 (s, 9H), 0.87 (d, *J* = 5.1 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.5, 172.4, 166.7, 145.7, 129.9, 129.0, 127.8, 52.2, 52.0, 50.9, 47.4, 44.6, 37.2, 33.2, 32.5, 28.7, 26.9, 26.8.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₃₄NO₅⁺ 392.2431; found 392.2419.

methyl 4-(7-(*tert***-butylamino)-1-ethoxy-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (4c)** Colorless oil, yield: 74%, 60 mg

¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 5.41 (s, 1H), 4.17 – 4.09 (m, 1H), 4.10 – 4.03 (m, 1H), 3.90 (s, 3H), 3.72 (dd, J = 9.0, 3.8 Hz, 1H), 2.32 (dd, J = 14.2, 9.0

Hz, 1H), 2.11 – 2.03 (m, 1H), 2.02 – 1.95 (m, 1H), 1.57 – 1.49 (m, 3H), 1.33 (s, 9H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.87 (d, *J* = 4.4 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.0, 172.5, 166.7, 145.9, 129.8, 128.9, 127.7, 61.0, 52.0, 50.9, 47.6, 44.6, 37.2, 33.2, 32.5, 28.7, 26.9, 26.8, 13.9.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₃₆NO₅⁺ 406.2588; found 406.2574.

methyl 4-(1-(*tert*-butoxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (4d) Colorless oil, yield: 72%, 62.4 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 5.33 (s, 1H), 3.90 (s, 3H), 3.61 (dd, *J* = 8.9, 3.6 Hz, 1H), 2.28 (dd, *J* = 14.2, 8.9 Hz, 1H), 2.11 – 2.04 (m, 1H), 2.02 – 1.94 (m, 1H), 1.58 – 1.54 (m, 2H), 1.51 – 1.48 (m, 1H), 1.35 (s, 9H), 1.32 (s, 9H), 0.88 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.0, 172.5, 166.8, 146.6, 129.8, 128.7, 127.7, 80.8, 51.9, 50.9, 48.7, 44.4, 37.3, 33.2, 32.5, 28.7, 27.7, 26.9, 26.8.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₄₀NO₅⁺ 434.2901; found 434.2887.

methyl 4-(7-(*tert*-butylamino)-1-(cyclohexyloxy)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (4e) Colorless oil, yield: 77%, 70.8 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 5.39 (s, 1H), 4.70 (dt, J = 8.8, 4.7 Hz, 1H), 3.90 (s, 3H), 3.69 (dd, J = 9.1, 3.6 Hz, 1H), 2.33 (dd, J = 14.2, 9.1 Hz, 1H), 2.11 – 2.03 (m, 1H), 2.03 – 1.94 (m, 1H), 1.84 – 1.77 (m, 1H), 1.73 – 1.63 (m, 2H), 1.61 – 1.52 (m, 4H), 1.51 – 1.39 (m, 3H), 1.36 – 1.31 (m, 10H), 1.29 – 1.24 (m, 2H), 0.88 (d, J = 3.9 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.3, 172.5, 166.7, 146.2, 129.8, 128.8, 127.7, 73.1, 51.9, 50.9, 47.9, 44.3, 37.3, 33.2, 32.5, 31.2, 31.0, 28.7, 26.9, 26.9, 25.2, 23.5, 23.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₇H₄₂NO₅⁺ 460.3057; found 460.3042.

methyl 4-(7-(tert-butylamino)-1-(2-methoxyethoxy)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate

(4f)

Colorless oil, yield: 68%, 59.2 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1)

¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 5.32 (s, 1H), 4.32 – 4.23 (m, 1H), 4.20 – 4.05 (m, 1H), 3.90 (d, J = 1.3 Hz, 3H), 3.77 (dd, J = 8.9, 3.8 Hz, 1H), 3.54 – 3.44 (m, 2H), 3.29 (s, 3H), 2.32 (dd, J = 14.2, 8.9 Hz, 1H), 2.15 – 2.01 (m, 1H), 2.01 – 1.93 (m, 1H), 1.59 – 1.45 (m, 3H), 1.32 (s, 9H), 0.87 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.0, 172.5, 166.7, 145.7, 129.9, 129.0, 127.9, 70.2, 64.0, 58.8, 52.1, 51.0, 47.6, 44.6, 37.3, 33.3, 32.5, 28.7, 27.0, 26.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₄H₃₈NO₆⁺ 436.2694; found 436.2677.

methyl 4-(7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxo-1-(2-phenoxyethoxy)heptan-2-yl)benzoate (4g)

Yellow oil, yield: 55%, 54.8 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.29 – 7.20 (m, 2H), 7.01 – 6.89 (m, 1H), 6.82 (dt, *J* = 7.8, 1.0 Hz, 2H), 5.30 (s, 1H), 4.50 – 4.41 (m, 1H), 4.38 – 4.27 (m, 1H), 4.17 – 4.04 (m, 2H), 3.89 (s, 3H), 3.77 (dd, *J* = 9.0, 3.8 Hz, 1H), 2.32 (dd, *J* = 14.2, 9.0 Hz, 1H), 2.11 – 2.02 (m, 1H), 2.01 – 1.89 (m, 1H), 1.58 – 1.45 (m, 3H), 1.31 (s, 9H), 0.86 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.9, 172.4, 166.6, 158.2, 145.5, 129.9, 129.4, 129.0, 127.8, 121.1, 114.5, 65.4, 63.3, 52.0, 50.9, 47.6, 44.6, 37.3, 33.2, 32.4, 28.7, 26.9, 26.7.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₉H₄₀NO₆⁺ 498.2850; found 498.2832.

methyl 4-(7-(*tert*-butylamino)-1-((2,5-dioxopyrrolidin-1-yl)oxy)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (4h)

Yellow oil, yield: 31%, 29.4 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1)

¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 5.34 (s, 1H), 4.02 (dd, J = 7.9, 4.4 Hz, 1H), 3.90 (s, 3H), 2.85 – 2.66 (m, 4H), 2.36 (dd, J = 14.4, 7.9 Hz, 1H), 2.10 – 2.03 (m, 1H), 2.02 – 1.95 (m, 1H), 1.71 (dd, J = 14.4, 4.4 Hz, 1H), 1.64 – 1.51 (m, 2H), 1.32 (s, 9H), 0.92 (d, J = 9.0 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 172.2, 169.5, 166.5, 143.4, 130.2, 129.7, 128.0, 52.1, 51.0, 45.1, 44.6, 37.2, 33.4, 32.5, 28.7, 26.9, 26.7, 25.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{25}H_{35}N_2O_7^+$ 475.2439; found 475.2434.

methyl 4-(1-amino-7-(*tert***-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (4i)** White solid (m. p. 232-234 °C), yield: 63%, 47.4 mg Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1)

¹H NMR (600 MHz, DMSO- d_6) δ 7.93 (d, J = 8.3 Hz, 2H), 7.65 (s, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.35 (s, 1H), 6.86 (s, 1H), 3.89 (s, 3H), 3.72 (dd, J = 8.8, 3.5 Hz, 1H), 2.25 (dd, J = 13.9, 8.8 Hz, 1H), 2.09 – 1.91 (m, 2H), 1.45 (t, J = 7.5, 6.9, 3.8 Hz, 2H), 1.38 (dd, J = 13.9, 3.6 Hz, 1H), 1.26 (s, 9H), 0.86 (s, 6H). ¹³C NMR (151 MHz, DMSO- d_6) δ 175.0, 172.6, 166.6, 149.2, 129.6, 128.3, 128.1, 52.5, 50.1, 47.6, 44.7, 38.0, 33.6, 31.8, 29.0, 27.1, 27.0.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{21}H_{33}N_2O_4^+$ 377.2435; found 377.2422.

methyl 4-(6-(tert-butylamino)-1-cyano-3,3-dimethyl-6-oxohexyl)benzoate (4j)

Colorless oil, yield: 51%, 36.6 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1)

¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 5.50 (s, 1H), 3.93 (s, 3H), 3.86 (dd, J = 10.5, 3.2 Hz, 1H), 2.20 – 2.11 (m, 1H), 2.09 – 2.01 (m, 2H), 1.78 – 1.64 (m, 2H), 1.60 (dd, J = 14.5, 3.3 Hz, 1H), 1.33 (s, 9H), 1.04 (d, J = 12.1 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 172.1, 166.3, 142.3, 130.5, 129.9, 127.2, 121.5, 52.2, 51.1, 47.6, 37.0, 33.5, 32.7, 32.6, 28.7, 27.2, 26.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₁H₃₁N₂O₃⁺ 359.2329; found 359.2317.

methyl 4-(6-(*tert***-butylamino)-1-(diethoxyphosphoryl)-3,3-dimethyl-6-oxohexyl)benzoate (4k)** Colorless oil, yield: 54%, 50.7 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 5.44 (s, 1H), 4.08 (qd, *J* = 7.3, 2.5 Hz, 4H), 3.90 (s, 3H), 3.33 (dd, *J* = 7.7, 4.4 Hz, 1H), 2.37 (dd, *J* = 14.3, 7.7 Hz, 1H), 1.72 – 1.51 (m, 4H), 1.47 (dd, *J* = 14.3, 4.4 Hz, 1H), 1.32 (td, *J* = 7.1, 4.9 Hz, 6H), 1.26 (s, 9H), 0.84 (d, *J* = 24.3 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 171.8, 166.9, 147.6, 130.0, 128.7, 127.5, 61.5 (d, *J* = 6.5 Hz), 52.0, 51.3, 49.9, 44.1, 33.7 (d, *J* = 4.7 Hz), 33.5 (d, *J* = 16.6 Hz), 28.5, 26.8, 26.6, 20.5 (d, *J* = 141.1 Hz), 16.5 (d, *J* = 6.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 33.5.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₄₁NO₆P⁺ 470.2666; found 470.2645.

methyl 4-(6-(*tert*-butylamino)-3,3-dimethyl-6-oxo-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)benzoate (4l)

Colorless oil, yield: 67%, 61.6 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1)

¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 6.5 Hz, 2H), 5.21 (s, 1H), 3.88 (s, 3H), 2.47 (dd, *J* = 8.8, 4.6 Hz, 1H), 2.05 – 1.99 (m, 2H), 1.98 – 1.91 (m, 1H), 1.58 – 1.51 (m, 3H), 1.31 (s, 9H), 1.13 (s, 12H), 0.86 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 172.6, 167.1, 150.6, 129.6, 128.1, 127.0, 83.4, 51.8, 50.9, 43.7, 37.7, 33.7, 32.7, 28.7, 26.9, 26.9, 24.5, 24.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₆H₄₃BNO₅⁺ 460.3229; found 460.3217.

methyl 4-(1-(benzyloxy)-7-(*tert***-butylamino)-4,4,6-trimethyl-1,7-dioxoheptan-2-yl)benzoate (5a)** Colorless oil, yield: 57%, 54.9 mg, dr = 3:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.43 – 7.33 (m, 2H), 7.32 – 7.28 (m, 3H), 7.24 – 7.16 (m, 2H), 5.25 (d, *J* = 4.3 Hz, 1H), 5.10 (dd, *J* = 12.4, 2.2 Hz, 1H), 5.02 (dd, *J* = 12.4, 9.4 Hz, 1H), 3.90 (d, *J* = 2.2 Hz, 3H), 3.81 – 3.68 (m, 1H), 2.46 – 2.29 (m, 1H), 2.14 – 2.00 (m, 1H), 1.99 – 1.88 (m, 1H), 1.70 – 1.49 (m, 1H), 1.28 (d, *J* = 12.3 Hz, 9H), 1.15 – 0.99 (m, 4H), 0.89 – 0.76 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 176.1, 173.9, 173.8, 166.8, 166.8, 145.8, 145.8, 135.5, 129.9, 129.8, 128.9, 128.9, 128.4, 128.4, 128.2, 128.1, 128.0, 128.0, 127.9, 66.8, 52.1, 52.0, 50.8, 47.7, 47.6, 45.6, 45.3, 45.1, 45.0, 38.1, 38.1, 33.9, 33.9, 28.6, 27.1, 26.9, 26.8, 26.5, 21.5, 21.4. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₉H₄₀NO₅⁺ 482.2901; found 482.2877.

methyl 4-(1-(benzyloxy)-7-(*tert***-butylamino)-4,4,5-trimethyl-1,7-dioxoheptan-2-yl)benzoate (5b)** Colorless oil, yield: 55%, 52.9 mg, dr = 1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.96 (dd, J = 8.4, 1.8 Hz, 2H), 7.39 (dd, J = 9.7, 8.3 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.23 – 7.19 (m, 2H), 5.46 – 5.22 (m, 1H), 5.13 – 5.08 (m, 1H), 5.06 – 4.99 (m, 1H), 3.90 (d, J = 1.3 Hz, 3H), 3.84 – 3.74 (m, 1H), 2.45 – 2.30 (m, 1.5H), 2.29 – 2.24 (m, 0.5H), 2.00 – 1.83 (m, 1H), 1.68 – 1.52 (m, 2H), 1.34 (d, J = 9.7 Hz, 9H), 0.86 (d, J = 6.7 Hz, 1.5H), 0.83 – 0.80 (m, 4.5H), 0.77 (d, J = 24.5 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 174.0, 173.8, 172.3, 172.1, 166.8, 145.8, 145.8, 135.5, 135.4, 129.9, 128.9, 128.9, 128.4, 128.1, 128.1, 128.0, 128.0, 127.9, 127.8, 66.9, 66.8, 52.0, 51.1, 51.1, 47.4, 47.3, 43.0, 42.9, 40.0, 38.9, 38.5, 35.7, 35.7, 28.8, 28.7, 24.7, 24.5, 24.2, 23.7, 14.2, 14.1. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₉H₄₀NO₅⁺ 482.2901; found 482.2880.

methyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-5-ethyl-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (5c)

Colorless oil, yield: 49%, 48.6 mg, dr = 1.3:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.96 (t, J = 8.7 Hz, 2H), 7.39 (dd, J = 8.2, 5.6 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.25 – 7.17 (m, 2H), 5.37 (d, J = 6.3 Hz, 0.5H), 5.27 (d, J = 6.8 Hz, 0.5H), 5.13 – 5.08 (m, 1H), 5.03 (d, J = 12.4 Hz, 1H), 3.90 (d, J = 2.4 Hz, 3H), 3.86 – 3.79 (m, 1H), 2.43 – 2.31 (m, 1H), 2.28 – 2.14 (m, 1H), 1.85 – 1.71 (m, 2H), 1.65 – 1.48 (m, 2H), 1.32 (d, J = 10.7 Hz, 9H), 1.09 – 0.97 (m, 1H), 0.91 (t, J = 7.4 Hz, 1.8H), 0.87 – 0.82 (m, 4.2H), 0.78 (d, J = 7.5 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 174.0, 173.9, 172.5, 172.3, 166.8, 166.8, 146.0, 145.9, 135.5, 135.5, 129.9, 129.9, 128.9, 128.8, 128.4, 128.4, 128.1, 128.0, 127.9, 127.9, 66.8, 66.8, 52.0, 52.0, 51.0, 50.9, 47.4, 47.3, 45.2, 45.2, 43.2, 42.8, 38.5, 36.8, 36.7, 28.7, 28.7, 25.2, 25.1, 24.2, 24.0, 23.6, 23.4, 13.3. HRMS (ESI) *m/z*: $[M + H]^+$ Calcd for C₃₀H₄₂NO₅⁺ 496.3057; found 496.3038.

methyl 4-(1-(benzyloxy)-4-(3-(*tert*-butylamino)-3-oxopropyl)-4-methyl-1-oxooctan-2-yl)benzoate (5d)

Colorless oil, yield: 58%, 59.1 mg, dr = 1.1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1)

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 7.7 Hz, 2H), 7.33 – 7.25 (m, 3H), 7.24 – 7.15 (m, 2H), 5.29 (s, 1H), 5.13 – 4.95 (m, 2H), 3.90 (s, 3H), 3.75 (dd, J = 8.6, 3.8 Hz, 1H), 2.31 (dt, J = 14.3, 8.0 Hz, 1H), 2.07 – 1.97 (m, 1H), 1.96 – 1.85 (m, 1H), 1.61 – 1.46 (m, 3H), 1.32 (s, 9H), 1.23 – 1.12 (m, 5H), 0.92 – 0.81 (m, 4H), 0.79 (d, J = 4.5 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 173.9, 172.5, 166.7, 145.7, 135.3, 129.9, 129.0, 128.4, 128.2, 128.0, 127.9, 127.9, 66.9, 66.9, 52.0, 50.9, 47.2, 47.2, 42.4, 42.3, 39.2, 39.1, 35.6, 35.6, 34.7, 34.6, 32.1, 32.1, 28.7, 25.5, 25.5, 24.4, 23.4, 23.4, 14.0, 14.0.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₁H₄₄NO₅⁺ 510.3214; found 510.3193.

methyl 4-(1-(benzyloxy)-4-(3-(*tert*-butylamino)-3-oxopropyl)-4-ethyl-1-oxooctan-2-yl)benzoate (5e) Colorless oil, yield: 46%, 48.2 mg, dr = 1.2:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.30 (dd, *J* = 5.3, 1.8 Hz, 3H), 7.20 (dd, *J* = 7.0, 2.7 Hz, 2H), 5.29 (d, *J* = 18.7 Hz, 1H), 5.10 – 5.01 (m, 2H), 3.90 (s, 3H), 3.74 – 3.69 (m, 1H), 2.27 (dd, *J* = 14.7, 8.3 Hz, 1H), 2.05 – 1.95 (m, 1H), 1.85 – 1.78 (m, 1H), 1.57 – 1.50 (m, 2H), 1.44 – 1.37 (m, 1H), 1.32 (s, 9H), 1.25 – 1.09 (m, 8H), 0.86 – 0.83 (m, 3H), 0.74 – 0.68 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 174.0, 173.9, 172.7, 172.6, 166.7, 145.8, 145.8, 135.3, 135.3, 129.9, 129.0, 128.5, 128.2, 128.2, 128.0, 127.9, 66.9, 52.1, 50.9, 46.8, 46.8, 39.3, 39.3, 38.1, 35.3 (d, *J* = 2.1 Hz), 31.8, 31.7, 31.7, 28.7, 28.2, 28.2, 24.9, 24.8, 23.4, 14.1, 14.0, 7.4, 7.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{46}NO_5^+$ 524.3370; found 524.3350.

methyl 4-(1-(benzyloxy)-3-(1-(3-(*tert*-butylamino)-3-oxopropyl)cyclopentyl)-1-oxopropan-2yl)benzoate (5f)

Yellow oil, yield: 66%, 65.2 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.20 (dd, *J* = 6.8, 2.9 Hz, 2H), 5.27 (s, 1H), 5.13 – 4.99 (m, 2H), 3.90 (s, 3H), 3.75 (dd, *J* = 8.1, 4.3 Hz, 1H), 2.44 – 2.31 (m, 1H), 2.12 – 2.00 (m, 1H), 1.91 – 1.82 (m, 1H), 1.68 – 1.51 (m, 7H), 1.40 – 1.24 (m, 13H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 172.5, 166.7, 145.6, 135.3, 129.9, 129.0, 128.4, 128.2, 128.0, 127.9, 66.9, 52.0, 50.9, 48.3, 45.3, 41.3, 37.6, 37.4, 33.3, 33.0, 28.7, 24.0, 23.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₄₀NO₅⁺ 494.2901; found 494.2881.

methyl 4-(6-acetoxy-1-(benzyloxy)-7-(tert-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-

yl)benzoate (5g)

Yellow oil, yield: 45%, 47.3 mg, dr = 1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.33 – 7.28 (m, 3H), 7.21 (dt, *J* = 5.4, 2.7 Hz, 2H), 5.68 (d, *J* = 28.7 Hz, 1H), 5.11 – 5.07 (m, 1H), 5.04 – 4.98 (m, 2H), 3.91 (s, 3H), 3.82 – 3.77 (m, 1H), 2.43 – 2.33 (m, 1H), 2.05 (s, 1.5H), 1.95 (s, 1.5H), 1.79 – 1.69 (m, 2H), 1.67 – 1.58 (m, 1H), 1.32 (d, *J* = 3.1 Hz, 9H), 0.89 (d, *J* = 8.3 Hz, 3H), 0.86 (d, *J* = 2.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 173.7, 173.6, 170.0, 169.9, 169.3, 169.3, 166.7, 166.7, 145.4, 135.4, 135.3, 130.0, 129.9, 129.1, 129.0, 128.5, 128.4, 128.2, 128.2, 128.1, 128.1, 127.9, 127.9, 72.2, 72.1, 67.0, 66.9, 52.1, 52.1, 51.2, 47.6, 47.6, 45.3, 44.7, 43.2, 42.6, 33.4, 33.3, 28.5, 27.4, 27.2, 27.1, 26.8, 21.0, 20.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₄₀NO₇⁺ 526.2799; found 526.2777.

methyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-6-(1,3-dioxoisoindolin-2-yl)-4,4-dimethyl-1,7dioxoheptan-2-yl)benzoate (5h)

Yellow oil, yield: 38%, 46.6 mg, dr = 1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.3 Hz, 1H), 7.85 (dd, *J* = 5.4, 3.0 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 1H), 7.78 – 7.72 (m, 2H), 7.68 (dd, *J* = 5.5, 3.0 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.30 – 7.25 (m, 4H), 7.21 – 7.15 (m, 2H), 5.99 (d, *J* = 18.3 Hz, 1H), 5.14 – 4.92 (m, 3H), 4.80 (dd, *J* = 9.4, 3.5 Hz, 0.5H), 4.76 – 4.70 (m, 0.5H), 3.90 (d, *J* = 6.2 Hz, 3H), 3.77 (dd, *J* = 8.7, 4.0 Hz, 0.5H), 3.72 (dd, *J* = 9.3, 3.4 Hz, 0.5H), 2.41 – 2.31 (m, 1.5H), 2.25 (dd, *J* = 14.9, 8.9 Hz, 0.5H), 2.12 (dd, *J* = 14.9, 4.0 Hz, 0.5H), 2.06 – 2.01 (m, 0.5H), 1.68 – 1.58 (m, 1H), 1.29 (d, *J* = 10.0 Hz, 9H), 0.90 (s, 1.5H), 0.87 (d, *J* = 5.6 Hz, 3H), 0.83 (s, 1.5H).

¹³C NMR (151 MHz, CDCl₃) δ 173.7, 173.5, 168.3, 168.3, 168.1, 168.1, 166.8, 166.6, 145.4, 145.0, 135.4, 135.3, 134.3, 134.2, 131.5, 131.4, 129.9, 129.8, 129.0, 128.9, 128.4, 128.4, 128.2, 128.1, 128.0, 128.0, 127.9, 127.8, 67.0, 66.9, 52.6, 52.4, 52.1, 51.5, 51.5, 47.5, 47.5, 45.3, 44.0, 40.3, 39.3, 33.7, 33.6, 28.5, 28.5, 27.0, 26.9, 26.4, 26.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₇H₄₂NO₇⁺ 613.2908; found 613.2886.

methyl 4-(1-(benzyloxy)-4-(2-(*tert*-butylamino)-2-oxoethoxy)-4-methyl-1-oxopentan-2-yl)benzoate (5i)

Colorless oil, yield: 51%, 47.9 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.32 – 7.28 (m, 3H), 7.23 – 7.18 (m, 2H), 6.51 (s, 1H), 5.14 – 5.01 (m, 2H), 3.92 – 3.85 (m, 4H), 3.77 – 3.63 (m, 2H), 2.70 (dd, J = 14.3, 10.5 Hz, 1H), 1.76 (dd, J = 14.3, 2.9 Hz, 1H), 1.39 (s, 9H), 1.21 (d, J = 8.7 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 169.5, 166.7, 144.7, 135.4, 130.0, 129.2, 128.5, 128.3, 127.9, 127.7, 75.7, 66.8, 62.3, 52.1, 50.8, 47.1, 45.2, 28.7, 25.4, 24.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₇H₃₆NO₆⁺ 470.2537; found 470.2521.

methyl 4-(1-(benzyloxy)-3-((1S,2S,3R,5R,7S)-1-(2-(*tert*-butylamino)-2-oxoethyl)adamantan-2-yl)-1-oxopropan-2-yl)benzoate (5j)

Colorless oil, yield: 47%, 51.3 mg, dr = 1.1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1)

¹H NMR (600 MHz, CDCl₃) δ 7.97 (dd, J = 8.4, 2.1 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.34 – 7.28 (m, 3H), 7.26 – 7.19 (m, 2H), 5.29 (s, 0.5H), 5.18 – 5.02 (m, 2.5H), 3.91 (s, 3H), 3.78 (dd, J = 10.6, 4.7 Hz, 0.5H), 3.72 (dd, J = 8.8, 6.5 Hz, 0.5H), 2.17 – 2.06 (m, 1H), 1.97 – 1.83 (m, 4H), 1.80 – 1.66 (m, 6H), 1.65 – 1.49 (m, 6H), 1.44 – 1.42 (m, 1H), 1.35 (s, 4.5H), 1.30 (s, 4.5H).

¹³C NMR (151 MHz, CDCl₃) δ 173.6, 173.1, 170.6, 170.3, 166.9, 166.8, 144.8, 143.8, 135.7, 135.6, 129.9, 129.8, 129.1, 129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 128.1, 127.9, 127.8, 66.6, 66.6, 52.1, 52.0, 51.1, 51.1, 49.6, 49.3, 48.7, 48.6, 45.7, 45.0, 42.9, 42.7, 42.7, 38.3, 38.2, 37.2, 37.1, 36.9, 36.7, 35.3, 35.2, 32.4, 30.8, 30.7, 30.6, 30.4, 30.2, 28.8, 28.8, 28.3, 28.1, 28.1.

HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₄H₄₃NO₅Na⁺ 568.3033; found 568.3012.

methyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-1,7-dioxo-4-propylheptan-2-yl)benzoate (5k) Colorless oil, dr = 1.1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1)

¹H NMR (600 MHz, CDCl₃) δ 7.97 (dd, J = 8.3, 2.9 Hz, 2H), 7.38 (d, J = 7.4 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.25 – 7.18 (m, 2H), 5.31 (s, 0.53H), 5.16 (s, 0.47H), 5.11 (dd, J = 12.4, 3.7 Hz, 1H), 5.06 (dd, J = 12.4, 7.9 Hz, 1H), 3.91 (s, 3H), 3.81 (dt, J = 10.6, 7.3 Hz, 1H), 2.11 – 2.02 (m, 2H), 2.01 – 1.90 (m, 1H), 1.82 – 1.68 (m, 1H), 1.67 – 1.47 (m, 3H), 1.31 (d, J = 17.4 Hz, 9H), 1.26 – 1.16 (m, 4H), 0.82 (dt, J = 17.6, 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.3, 173.3, 172.3, 172.1, 166.8, 166.8, 144.3, 144.3, 135.6, 135.6, 129.9, 129.1, 129.1, 128.5, 128.2, 128.2, 128.1, 128.0, 128.0, 127.9, 66.7, 66.7, 52.1, 51.0, 49.2, 49.2, 37.5, 37.4, 35.7, 35.3, 34.8, 34.7, 34.6, 34.4, 29.1, 29.0, 28.8, 28.7, 19.4, 19.2, 14.3, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₄₀NO₅⁺ 482.2901; found 482.2906.

methyl 4-(1-(tert-butylamino)-1-oxoheptan-4-yl)benzoate (5k')

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 5.09 (s, 1H), 3.91 (s, 3H), 2.60 (dt, *J* = 9.7, 4.8 Hz, 1H), 2.14 – 2.02 (m, 1H), 1.91 – 1.76 (m, 3H), 1.68 – 1.52 (m, 2H), 1.30 (s, 9H), 1.22 – 1.07 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 167.0, 150.8, 129.7, 128.1, 127.8, 52.0, 51.0, 45.2, 39.0, 35.3, 32.0, 28.7, 20.5, 14.0.

HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₃₀NO₃⁺ 320.2220; found 320.2223.

methyl 3-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (6a)

Colorless oil, yield: 77%, 72 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 1H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 5.4 Hz, 3H), 7.24 – 7.19 (m, 2H), 5.36 (s, 1H), 5.14 – 5.07 (m, 1H), 5.07 – 4.99 (m, 1H), 3.91 (s, 3H), 3.78 (dd, *J* = 9.0, 3.9 Hz, 1H), 2.35 (dd, *J* = 14.2, 9.0 Hz, 1H), 2.09 – 2.02 (m, 1H), 2.01 – 1.93 (m, 1H), 1.59 – 1.50 (m, 3H), 1.32 (s, 9H), 0.85 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.0, 172.4, 166.7, 140.8, 135.4, 132.4, 130.4, 128.9, 128.7, 128.4, 128.1, 128.0, 66.8, 52.0, 50.9, 47.3, 44.5, 37.3, 33.2, 32.5, 28.7, 26.9, 26.8.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₈NO₅⁺ 468.2744; found 468.2726.

methyl 2-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (6b) Colorless oil, yield: 31%, 29 mg Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.3 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.16 (dd, *J* = 7.3, 2.3 Hz, 2H), 5.66 (s, 1H), 5.07 – 4.99 (m, 2H), 4.80 (dd, *J* = 8.7, 3.4 Hz, 1H), 3.84 (s, 3H), 2.36 (dd, *J* = 14.2, 8.6 Hz, 1H), 2.06 – 1.94 (m, 2H), 1.65 – 1.57 (m, 1H), 1.57 – 1.51 (m, 2H), 1.33 (s, 9H), 0.86 (d, *J* = 10.0 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.3, 173.1, 168.4, 141.3, 135.7, 132.1, 130.4, 129.6, 129.0, 128.3, 127.9, 127.7, 126.8, 66.6, 52.3, 50.8, 43.7, 42.2, 37.6, 33.5, 33.1, 28.8, 27.5, 27.4.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₈NO₅⁺ 468.2744; found 468.2726.

ethyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (6c) Colorless oil, yield: 82%, 78 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.21 (dd, *J* = 7.4, 2.1 Hz, 2H), 5.32 (s, 1H), 5.12 – 5.07 (m, 1H), 5.06 – 5.00 (m, 1H), 4.36 (q, *J* = 7.1

Hz, 2H), 3.78 (dd, *J* = 8.7, 4.0 Hz, 1H), 2.33 (dd, *J* = 14.2, 8.7 Hz, 1H), 2.08 – 2.01 (m, 1H), 1.99 – 1.93 (m, 1H), 1.60 – 1.46 (m, 3H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.32 (s, 9H), 0.84 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.7, 172.4, 166.2, 145.5, 135.3, 129.8, 129.3, 128.4, 128.1, 128.0, 127.8, 66.8, 60.8, 50.9, 47.6, 44.5, 37.2, 33.2, 32.4, 28.7, 26.9, 26.8, 14.2.

HRMS (ESI) *m/z*: [M + H]+ Calcd for C₂₉H₄₀NO₅⁺ 482.2901; found 482.2882.

benzyl 7-(*tert*-butylamino)-2-(4-cyanophenyl)-4,4-dimethyl-7-oxoheptanoate (6d) Colorless oil, yield: 71%, 61.7 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1)

¹H NMR (600 MHz, CDCl₃) δ 7.60 – 7.56 (m, 2H), 7.46 – 7.40 (m, 2H), 7.34 – 7.29 (m, 3H), 7.21 (dd, J = 6.6, 2.9 Hz, 2H), 5.32 (s, 1H), 5.17 – 4.95 (m, 2H), 3.77 (dd, J = 9.0, 3.7 Hz, 1H), 2.32 (dd, J = 14.2, 9.0 Hz, 1H), 2.11 – 1.95 (m, 2H), 1.62 – 1.49 (m, 3H), 1.32 (s, 9H), 0.84 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.3, 172.2, 145.8, 135.1, 132.4, 128.6, 128.4, 128.3, 128.1, 118.6, 111.0, 67.1, 51.0, 47.7, 44.7, 37.1, 33.3, 32.4, 28.7, 26.8, 26.7.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{27}H_{35}N_2O_3^+$ 435.2642; found 435.2626.

benzyl 7-(*tert***-butylamino)-4,4-dimethyl-7-oxo-2-(4-(trifluoromethyl)phenyl)heptanoate (6e)** Yellow solid (m. p. 66-68 °C), yield: 81%, 77.4 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.59 – 7.50 (m, 2H), 7.45 – 7.39 (m, 2H), 7.32 – 7.27 (m, 3H), 7.23 – 7.17 (m, 2H), 5.32 (s, 1H), 5.12 – 5.02 (m, 2H), 3.78 (dd, *J* = 9.1, 3.6 Hz, 1H), 2.35 (dd, *J* = 14.2, 9.1 Hz, 1H), 2.08 – 2.02 (m, 1H), 2.01 – 1.95 (m, 1H), 1.60 – 1.51 (m, 3H), 1.32 (s, 9H), 0.85 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 172.4, 144.5, 135.3, 129.4 (q, *J* = 32.4 Hz), 128.4, 128.2, 128.2,

128.0, 125.5 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.0 Hz), 66.9, 51.0, 47.4, 44.7, 37.2, 33.2, 32.5, 28.7, 26.8, 26.8.

¹⁹F NMR (565 MHz, CDCl₃) δ -62.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{27}H_{35}F_3NO_3^+$ 478.2564; found 478.2545.

benzyl 7-(tert-butylamino)-2-(4-fluorophenyl)-4,4-dimethyl-7-oxoheptanoate (6f)

Colorless oil, yield: 41%, 35.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1)

¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.26 (m, 5H), 7.23 – 7.18 (m, 2H), 7.01 – 6.95 (m, 2H), 5.25 (s, 1H), 5.11 – 4.98 (m, 2H), 3.70 (dd, *J* = 8.9, 4.0 Hz, 1H), 2.28 (dd, *J* = 14.2, 8.9 Hz, 1H), 2.07 – 2.01 (m, 1H), 1.98 – 1.92 (m, 1H), 1.56 – 1.48 (m, 3H), 1.32 (s, 9H), 0.84 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.4, 172.5, 161.9 (d, *J* = 245.5 Hz), 136.2 (d, *J* = 3.2 Hz), 135.5, 129.3 (d, *J* = 8.0 Hz), 128.4, 128.2, 128.0, 115.4 (d, *J* = 21.3 Hz), 66.7, 51.0, 46.8, 44.7, 37.3, 33.2, 32.6, 28.8, 26.9, 26.9.

¹⁹F NMR (565 MHz, CDCl₃) δ -115.5.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₃₅FNO₃⁺ 428.2595; found 428.2578.

benzyl 7-(tert-butylamino)-2-(3-chlorophenyl)-4,4-dimethyl-7-oxoheptanoate (6g)

Colorless oil, yield: 83%, 73.7 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H), 7.25 – 7.17 (m, 5H), 5.33 (s, 1H), 5.13 – 5.07 (m, 1H), 5.06 – 5.00 (m, 1H), 3.68 (dd, *J* = 9.1, 3.7 Hz, 1H), 2.29 (dd, *J* = 14.2, 9.1 Hz, 1H), 2.08 – 2.00 (m, 1H), 2.00 – 1.93 (m, 1H), 1.55 – 1.49 (m, 3H), 1.32 (s, 9H), 0.87 – 0.81 (m, 6H).
¹³C NMR (151 MHz, CDCl₃) δ 173.9, 172.5, 142.4, 135.3, 134.3, 129.8, 128.4, 128.2, 128.0, 127.9, 127.3, 126.1, 66.9, 51.0, 47.2, 44.5, 37.3, 33.2, 32.5, 28.7, 26.9, 26.8.
HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₆H₃₄ClNO₃Na⁺ 466.2119; found 466.2104.

benzyl 7-(*tert*-butylamino)-2-(4-carbamoylphenyl)-4,4-dimethyl-7-oxoheptanoate (6h) Colorless oil, yield: 43%, 38.9 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.24 – 7.20 (m, 2H), 6.36 (s, 1H), 6.03 (s, 1H), 5.33 (s, 1H), 5.11 – 5.07 (m, 1H), 5.05 – 4.99 (m, 1H), 3.77 (dd, *J* = 8.9, 3.9 Hz, 1H), 2.32 (dd, *J* = 14.2, 8.9 Hz, 1H), 2.08 – 2.00 (m, 1H), 1.98 – 1.92 (m, 1H), 1.60 – 1.50 (m, 3H), 1.32 (s, 9H), 0.83 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.9, 172.5, 169.0, 144.6, 135.3, 132.2, 128.5, 128.2, 128.1, 128.0, 127.8, 66.9, 51.0, 47.5, 44.6, 37.3, 33.2, 32.5, 28.7, 26.9, 26.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{27}H_{37}N_2O_4^+$ 453.2748; found 453.2731.

benzyl 2-(4-acetylphenyl)-7-(*tert*-butylamino)-4,4-dimethyl-7-oxoheptanoate (6i) Colorless oil, yield: 82%, 74.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.34 – 7.27 (m, 3H), 7.24 – 7.19 (m, 2H), 5.36 (s, 1H), 5.10 (d, *J* = 12.3 Hz, 1H), 5.03 (d, *J* = 12.3 Hz, 1H), 3.79 (dd, *J* = 8.9, 3.8 Hz, 1H), 2.58 (s, 3H), 2.34 (dd, *J* = 14.2, 8.9 Hz, 1H), 2.08 – 2.02 (m, 1H), 2.01 – 1.95 (m, 1H), 1.60 – 1.51 (m, 3H), 1.32 (s, 9H), 0.84 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 197.5, 173.7, 172.4, 145.8, 135.9, 135.3, 128.7, 128.4, 128.2, 128.0, 128.0, 66.9, 50.9, 47.6, 44.6, 37.2, 33.2, 32.4, 28.7, 26.8, 26.8, 26.5.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₈NO₄⁺ 452.2795; found 452.2779.

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 7.1 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.26 – 7.22 (m, 2H), 5.35 (s, 1H), 5.14 – 5.10 (m, 1H), 5.09 – 5.04 (m, 1H), 3.81 (dd, *J* = 9.1, 3.7 Hz, 1H), 2.37 (dd, *J* = 14.2, 9.1 Hz, 1H), 2.09 – 2.03 (m, 1H), 2.02 – 1.96 (m, 1H), 1.62 – 1.54 (m, 3H), 1.32 (s, 9H), 0.86 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 196.1, 173.8, 172.4, 145.1, 137.4, 136.3, 135.3, 132.4, 130.4, 129.9, 128.4, 128.2, 128.2, 128.0, 127.7, 66.9, 50.9, 47.6, 44.6, 37.3, 33.2, 32.5, 28.7, 26.8, 26.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₃H₄₀NO₄⁺ 514.2952; found 514.2932.

benzyl 7-(*tert*-butylamino)-2-(4-formylphenyl)-4,4-dimethyl-7-oxoheptanoate (6k) Colorless oil, yield: 71%, 62.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1) ¹H NMR (600 MHz, CDCl₃) δ 9.98 (s, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.24 – 7.20 (m, 2H), 5.34 (s, 1H), 5.13 – 5.08 (m, 1H), 5.07 – 5.00 (m, 1H), 3.81 (dd, *J* = 8.9, 3.8 Hz, 1H), 2.35 (dd, *J* = 14.2, 8.9 Hz, 1H), 2.09 – 2.03 (m, 1H), 2.02 – 1.96 (m, 1H), 1.61 – 1.51 (m, 3H), 1.32 (s, 9H), 0.85 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 191.7, 173.5, 172.3, 147.3, 135.3, 135.2, 130.0, 128.5, 128.4, 128.2, 128.0, 67.0, 50.9, 47.8, 44.6, 37.2, 33.3, 32.4, 28.7, 26.8, 26.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₇H₃₆NO₄⁺ 438.2639; found 438.2622.

dimethyl 5-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)isophthalate (6l) Colorless oil, yield: 36%, 37.8 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1)

¹H NMR (600 MHz, CDCl₃) δ 8.57 (s, 1H), 8.19 (d, J = 1.6 Hz, 2H), 7.32 – 7.28 (m, 3H), 7.25 – 7.20 (m, 2H), 5.30 (s, 1H), 5.14 – 5.09 (m, 1H), 5.05 – 5.00 (m, 1H), 3.94 (s, 6H), 3.84 (dd, J = 9.0, 3.9 Hz, 1H), 2.38 (dd, J = 14.2, 9.0 Hz, 1H), 2.09 – 2.03 (m, 1H), 2.02 – 1.96 (m, 1H), 1.61 – 1.50 (m, 3H), 1.32 (s, 9H), 0.85 (d, J = 2.7 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.6, 172.3, 165.9, 141.5, 135.2, 133.2, 131.0, 129.6, 128.4, 128.2, 128.2, 67.0, 52.4, 51.0, 47.3, 44.5, 37.4, 33.3, 32.5, 28.7, 26.9, 26.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₄₀NO₇⁺ 526.2799; found 526.2778.

methyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)-2-fluorobenzoate (6m)

Colorless oil, yield: 65%, 63.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.89 – 7.83 (m, 1H), 7.36 – 7.28 (m, 3H), 7.26 – 7.20 (m, 2H), 7.17 – 7.08 (m, 2H), 5.32 (s, 1H), 5.13 – 5.08 (m, 1H), 5.06 – 5.03 (m, 1H), 3.91 (s, 3H), 3.74 (dd, *J* = 9.1, 3.8 Hz, 1H), 2.35 – 2.24 (m, 1H), 2.08 – 2.01 (m, 1H), 2.01 – 1.95 (m, 1H), 1.58 – 1.51 (m, 3H), 1.32 (s, 9H), 0.84 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 173.2, 172.3, 164.5 (d, *J* = 3.7 Hz), 161.8 (d, *J* = 260.8 Hz), 147.8 (d, *J* = 8.5 Hz), 135.2, 132.3, 128.5, 128.3, 128.1, 123.5 (d, *J* = 3.3 Hz), 117.2 (d, *J* = 10.0 Hz), 116.3 (d, *J* = 23.2 Hz), 67.1, 52.2, 51.0, 47.4, 44.5, 37.2, 33.2, 32.4, 28.7, 26.8, 26.7.

¹⁹F NMR (565 MHz, CDCl₃) δ -108.7 (dd, J = 12.0, 7.1 Hz, 1F).

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₇FNO₅⁺ 486.2650; found 486.2633.

benzyl 2-(4-acetoxyphenyl)-7-(*tert*-butylamino)-4,4-dimethyl-7-oxoheptanoate (6n)

Colorless oil, yield: 30%, 28.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.29 (m, 5H), 7.25 – 7.20 (m, 2H), 7.04 – 6.98 (m, 2H), 5.27 (s,

1H), 5.12 – 5.07 (m, 1H), 5.04 – 5.00 (m, 1H), 3.70 (dd, *J* = 9.4, 3.4 Hz, 1H), 2.35 – 2.27 (m, 4H), 2.07 – 2.00 (m, 1H), 1.99 – 1.94 (m, 1H), 1.57 – 1.48 (m, 3H), 1.32 (s, 9H), 0.84 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.3, 172.5, 169.4, 149.7, 138.1, 135.5, 128.8, 128.5, 128.2, 128.0, 121.7, 66.8, 51.0, 46.9, 44.7, 37.4, 33.2, 32.6, 28.8, 26.9, 26.9, 21.1.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₈NO₅⁺ 468.2744; found 468.2726.

benzyl 7-(tert-butylamino)-4,4-dimethyl-7-oxo-2-(thiophen-3-yl)heptanoate (60)

Colorless oil, yield: 77%, 64 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.29 (m, 3H), 7.26 – 7.22 (m, 3H), 7.11 (dd, *J* = 3.0, 1.3 Hz, 1H), 7.05 (dd, *J* = 5.0, 1.3 Hz, 1H), 5.33 (s, 1H), 5.11 – 5.04 (m, 2H), 3.87 (dd, *J* = 9.0, 4.0 Hz, 1H), 2.25 (dd,

J = 14.2, 9.0 Hz, 1H), 2.08 – 2.01 (m, 1H), 1.99 – 1.93 (m, 1H), 1.62 – 1.57 (m, 1H), 1.54 – 1.49 (m, 2H), 1.32 (s, 9H), 0.85 (d, *J* = 2.8 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 174.1, 172.6, 140.4, 135.5, 128.4, 128.1, 128.0, 127.1, 125.7, 121.4, 66.6, 50.9, 44.3, 43.0, 37.3, 33.1, 32.6, 28.7, 26.8, 26.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₄H₃₄NO₃S⁺ 416.2254; found 416.2239.

(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (6p)

Colorless oil, yield: 59%, 69.8 mg, dr = 1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.42 – 7.37 (m, 2H), 7.33 – 7.28 (m, 3H), 7.25 – 7.18 (m, 2H), 5.30 (s, 1H), 5.13 – 5.07 (m, 1H), 5.05 – 4.99 (m, 1H), 4.92 (td, J = 10.8, 4.4 Hz, 1H), 3.78 (dd, J = 8.7, 3.8 Hz, 1H), 2.38 – 2.28 (m, 1H), 2.15 – 2.07 (m, 1H), 2.03 – 1.91 (m, 3H), 1.77 – 1.67 (m, 2H), 1.60 – 1.50 (m, 5H), 1.32 (s, 9H), 0.92 (dd, J = 6.8, 4.0 Hz, 6H), 0.85 (s, 6H), 0.79 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.8, 173.8, 172.4, 165.7, 145.4, 145.4, 135.4, 129.9, 129.7, 128.4, 128.2, 128.0, 127.8, 74.8, 66.9, 50.9, 47.6, 47.2, 44.5, 44.5, 40.9, 37.3, 34.2, 33.2, 32.5, 31.4, 28.7, 26.9, 26.9, 26.8, 26.4, 23.6, 22.0, 20.7, 16.5.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₇H₅₄NO₅⁺ 592.3997; found 592.3973.

((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5yl)methyl 4-(1-(benzyloxy)-7-(*tert*-butylamino)-4,4-dimethyl-1,7-dioxoheptan-2-yl)benzoate (6q) Colorless oil, yield: 52%, 72.4 mg, dr = 1:1

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 3:1)

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.24 – 7.19 (m, 2H), 5.56 (d, J = 4.9 Hz, 1H), 5.27 (s, 1H), 5.09 (d, J = 12.3 Hz, 1H), 5.03 (d, J = 12.3 Hz, 1H), 4.66 (dd, J = 7.9, 2.5 Hz, 1H), 4.54 – 4.48 (m, 1H), 4.47 – 4.39 (m, 1H), 4.37 – 4.30 (m, 2H), 4.22 – 4.15 (m, 1H), 3.77 (dd, J = 8.9, 3.8 Hz, 1H), 2.39 – 2.29 (m, 1H), 2.09 – 1.92 (m, 2H), 1.58 – 1.50 (m, 6H), 1.48 (s, 3H), 1.36 (s, 3H), 1.35 – 1.31 (m, 12H), 0.84 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 173.8, 172.4, 166.0, 145.7, 135.4, 130.1, 128.9, 128.4, 128.2, 128.0, 127.9, 109.6, 108.7, 96.3, 71.1, 70.7, 70.5, 66.9, 66.1, 66.1, 63.8, 63.8, 51.0, 47.7, 44.5, 37.3, 33.3, 32.5, 28.7, 26.9, 26.8, 26.0, 25.9, 24.9, 24.4.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{39}H_{53}NO_{10}Na^+$ 718.3562; found 718.3534.

methyl (*E*)-4-(6-(*tert*-butylamino)-3,3-dimethyl-6-oxo-1-phenylhex-1-en-1-yl)benzoate (8a) White solid (m. p. 106-108 °C), yield: 62%, 50.5 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.38 – 7.30 (m, 3H), 7.24 – 7.20 (m, 2H), 7.19 – 7.13 (m, 2H), 6.07 (s, 1H), 5.25 (s, 1H), 3.88 (s, 3H), 2.16 – 2.06 (m, 2H), 1.69 – 1.60 (m, 2H), 1.31 (s, 9H), 0.92 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 166.9, 148.2, 140.0, 139.7, 139.6, 130.0, 129.3, 128.2, 128.0, 127.2, 126.7, 52.0, 51.0, 39.7, 37.0, 33.6, 28.8, 28.7.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₃₄NO₃⁺ 408.2533; found 408.2518.

methyl (*Z*)-4-(6-(*tert*-butylamino)-1-(4-methoxyphenyl)-3,3-dimethyl-6-oxohex-1-en-1-yl)benzoate (8b)

Colorless oil, yield: 66%, 57.8 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.3 Hz, 2H), 6.05 (s, 1H), 5.25 (s, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 2.16 – 2.06 (m, 2H), 1.69 – 1.60 (m, 2H), 1.31 (s, 9H), 0.93 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 172.4, 166.9, 158.7, 148.7, 140.1, 139.3, 131.8, 131.1, 129.2, 128.1, 126.7, 113.4, 55.1, 51.9, 50.9, 39.7, 36.9, 33.5, 28.8, 28.7.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₇H₃₆NO₄⁺ 438.2639; found 438.2622.

methyl (*E*)-4-(6-(*tert*-butylamino)-3,3-dimethyl-6-oxo-1-(p-tolyl)hex-1-en-1-yl)benzoate (8c) Colorless oil, yield: 63%, 53.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 7.7 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.04 (s, 1H), 5.22 (s, 1H), 3.88 (s, 3H), 2.38 (s, 3H), 2.14 - 2.06 (m, 2H), 1.67 – 1.58 (m, 2H), 1.31 (s, 9H), 0.93 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 166.9, 148.5, 139.9, 139.7, 136.8, 136.7, 129.9, 129.3, 128.7, 128.1, 126.7, 51.9, 51.0, 39.6, 36.9, 33.6, 28.9, 28.7, 21.2.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{27}H_{36}NO_3^+$ 422.2690; found 422.2675.

methyl (Z)-4-(6-(*tert*-butylamino)-3,3-dimethyl-6-oxo-1-(m-tolyl)hex-1-en-1-yl)benzoate (8d) Colorless oil, yield: 67%, 56.5 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.26 – 7.21 (m, 3H), 7.15 – 7.09 (m, 1H), 7.02 – 6.90 (m, 2H), 6.04 (s, 1H), 5.23 (s, 1H), 3.88 (s, 3H), 2.35 (s, 3H), 2.15 – 2.06 (m, 2H), 1.69 – 1.59 (m, 2H), 1.32 (s, 9H), 0.92 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 166.9, 148.4, 139.8, 139.8, 139.6, 137.5, 130.7, 129.3, 128.1, 127.9, 127.8, 127.1, 126.7, 51.9, 51.0, 39.8, 37.0, 33.6, 28.8, 28.7, 21.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{27}H_{36}NO_3^+$ 422.2690; found 422.2674.

methyl (Z)-4-(6-(*tert*-butylamino)-3,3-dimethyl-6-oxo-1-(o-tolyl)hex-1-en-1-yl)benzoate (8e) Colorless oil, yield: 67%, 56.5 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, *J* = 8.3 Hz, 2H), 7.27 – 7.20 (m, 4H), 7.19 – 7.14 (m, 2H), 6.12 (s, 1H), 5.30 (s, 1H), 3.88 (s, 3H), 2.17 – 2.08 (m, 2H), 2.03 (s, 3H), 1.76 – 1.69 (m, 1H), 1.68 – 1.62 (m, 1H), 1.33 (s, 9H), 0.88 (s, 3H), 0.84 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 172.3, 166.9, 147.2, 139.9, 138.8, 138.7, 136.3, 130.6, 130.1, 129.4, 128.2, 127.6, 126.3, 125.1, 51.9, 51.0, 40.4, 37.1, 33.5, 28.7, 27.8, 27.5, 19.9.

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₇H₃₆NO₃⁺ 422.2690; found 422.2675.

methyl (Z)-4-(6-(*tert*-butylamino)-1-(4-fluorophenyl)-3,3-dimethyl-6-oxohex-1-en-1-yl)benzoate (8f)

Colorless oil, yield: 66%, 56.2 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.5 Hz, 2H), 7.23 – 7.18 (m, 2H), 7.14 (dd, *J* = 8.5, 5.6 Hz, 2H), 7.09 – 7.00 (m, 2H), 6.09 (s, 1H), 5.25 (s, 1H), 3.88 (s, 3H), 2.14 – 2.06 (m, 2H), 1.71 – 1.62 (m, 2H), 1.32 (s, 9H), 0.91 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 172.2, 166.8, 162.0 (d, *J* = 246.7 Hz), 148.0, 140.6, 138.6, 135.5 (d, *J* = 3.6 Hz), 131.6 (d, *J* = 7.8 Hz), 129.4, 128.4, 126.7, 115.0 (d, *J* = 21.3 Hz), 52.0, 51.0, 39.9, 37.0, 33.4, 28.7, 28.7.

¹⁹F NMR (565 MHz, CDCl₃) δ -114.8 – -114.9 (m, 1F).

HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₃₃FNO₃⁺ 426.2439; found 426.2423.

methyl (*E*)-4-(6-(*tert*-butylamino)-1-(4-cyanophenyl)-3,3-dimethyl-6-oxohex-1-en-1-yl)benzoate (8g)

Colorless oil, yield: 33%, 28.6 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.5 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 6.13 (s, 1H), 5.26 (s, 1H), 3.89 (s, 3H), 2.15 – 2.07 (m, 2H), 1.71 – 1.64 (m, 2H), 1.33 (s, 9H), 0.89 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 171.9, 166.7, 146.9, 145.1, 141.3, 138.1, 131.8, 130.9, 129.5, 128.8, 126.7, 118.6, 111.3, 52.1, 51.1, 40.0, 37.1, 33.3, 28.8, 28.6.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{27}H_{33}N_2O_3^+$ 433.2486; found 433.2470.

methyl (Z)-4-(6-(*tert*-butylamino)-3,3-dimethyl-1-(naphthalen-1-yl)-6-oxohex-1-en-1-yl)benzoate (8h)

Deep red oil, yield: 58%, 53.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 4H), 7.71 (d, *J* = 8.3 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.45 – 7.33 (m, 3H), 7.31 – 7.24 (m, 2H), 6.37 (s, 1H), 5.14 (s, 1H), 3.84 (s, 3H), 2.17 – 2.01 (m, 2H), 1.74 – 1.55 (m, 2H), 1.29 (s, 9H), 0.78 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.3, 166.8, 147.7, 141.9, 137.5, 136.9, 133.6, 132.4, 129.5, 128.3, 128.3, 128.0, 127.9, 126.2, 126.2, 126.1, 125.8, 125.0, 51.9, 51.0, 40.0, 37.3, 33.6, 28.7, 27.8, 27.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₃₆NO₃⁺ 458.2690; found 458.2673.

methyl (Z)-4-(6-(*tert*-butylamino)-3,3-dimethyl-1-(naphthalen-2-yl)-6-oxohex-1-en-1-yl)benzoate (8i)

Colorless oil, yield: 68%, 62.2 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.80 (m, 5H), 7.68 (s, 1H), 7.53 – 7.47 (m, 2H), 7.29 – 7.22 (m, 3H), 6.16 (s, 1H), 5.20 (s, 1H), 3.86 (s, 3H), 2.17 – 2.09 (m, 2H), 1.70 – 1.61 (m, 2H), 1.27 (s, 9H), 0.93 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.3, 166.9, 148.2, 140.4, 139.6, 137.2, 132.8, 132.4, 129.3, 128.8, 128.3, 128.2, 127.9, 127.7, 127.6, 126.9, 126.3, 126.0, 51.9, 50.9, 39.8, 37.1, 33.5, 28.9, 28.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₃₆NO₃⁺ 458.2690; found 458.2673.

methyl (Z)-4-(6-(*tert*-butylamino)-3,3-dimethyl-6-oxo-1-(thiophen-2-yl)hex-1-en-1-yl)benzoate (8j) Colorless oil, yield: 48%, 39.7 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1)

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.5 Hz, 2H), 7.35 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.32 – 7.24 (m, 2H), 7.08 – 7.01 (m, 1H), 6.98 – 6.91 (m, 1H), 6.18 (s, 1H), 5.25 (s, 1H), 3.89 (s, 3H), 2.17 – 2.06 (m, 2H), 1.74 – 1.64 (m, 2H), 1.32 (s, 9H), 1.03 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.3, 166.9, 148.0, 144.2, 139.9, 132.5, 129.4, 128.6, 128.5, 126.6, 126.5, 126.1, 52.0, 51.0, 39.4, 37.3, 33.6, 28.8, 28.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₄H₃₂NO₃S⁺ 414.2097; found 414.2083.

methyl (Z)-4-(6-(*tert*-butylamino)-3,3-dimethyl-6-oxo-1-(thiophen-3-yl)hex-1-en-1-yl)benzoate (8k) Colorless oil, yield: 63%, 52.1 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 4:1) ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.33 (dd, *J* = 4.8, 3.0 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.14 - 7.10 (m, 1H), 6.91 - 6.84 (m, 1H), 6.12 (s, 1H), 5.24 (s, 1H), 3.89 (s, 3H), 2.16 - 2.05 (m, 2H), 1.72 - 1.61 (m, 2H), 1.32 (s, 9H), 0.96 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 166.9, 147.7, 141.6, 139.1, 134.7, 129.6, 129.3, 128.3, 126.5, 125.2, 123.9, 52.0, 51.0, 39.5, 36.9, 33.5, 28.8, 28.6.
HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₃₂NO₃S⁺ 414.2097; found 414.2082.

$ethyl\ (E) - 4 - (6 - (tert - butylamino) - 3, 3 - dimethyl - 6 - oxo - 1 - phenylhex - 1 - en - 1 - yl) benzoate\ (8l)$

Colorless oil, yield: 52%, 43.8 mg

Purified by flash column chromatography through silica gel (petroleum ether/ethyl acetate = 5:1) ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.39 – 7.31 (m, 3H), 7.24 – 7.16 (m, 4H), 6.06 (s, 1H), 5.23 (s, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.15 – 2.06 (m, 2H), 1.68 – 1.58 (m, 2H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.32 (s, 9H), 0.92 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 166.4, 148.2, 139.9, 139.7, 139.7, 130.0, 129.3, 128.6, 128.0, 127.2, 126.7, 60.8, 51.0, 39.7, 37.0, 33.5, 28.8, 28.7, 14.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{27}H_{36}NO_3^+$ 422.2690; found 422.2695.

6. NMR Spectroscopic Data

¹H NMR (600 MHz, CDCl₃) of 4a

7.571 7.7385 7.7386 7.7386 7.7386 7.7286 7.7295 7.7

¹H NMR (600 MHz, CDCl₃) of 4b

¹H NMR (600 MHz, CDCl₃) of 4c

¹H NMR (600 MHz, CDCl₃) of 4d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (600 MHz, CDCl₃) of 4e

¹H NMR (600 MHz, CDCl₃) of 4f

7.979 7.1979 7.1976 7.1403 7.1403 7.1403 7.1403 7.1403 7.1403 7.1403 7.1403 7.1413 7.1

¹³C NMR (151 MHz, CDCl₃) of 4f

-174.00-166.75-166.75-145.72-145.72128.99 $\sqrt{127.88}$

 $\begin{array}{c} 77.21\\77.70\\76.79\\76.79\\76.39$

¹H NMR (600 MHz, CDCl₃) of 4g

 $\begin{array}{c} 7.7 \\$

¹³C NMR (151 MHz, CDCl₃) of 4g

¹H NMR (600 MHz, CDCl₃) of 4h

¹H NMR (600 MHz, (CD₃)₂SO) of 4i

 $\begin{array}{c} 7.591\\ 7.527\\ 7.527\\ 7.527\\ 7.527\\ 7.539\\ 7.530\\ 7.530\\ 7.530\\ 7.530\\ 7.5372\\ 7.5372\\ 7.5372\\ 7.5372\\ 7.5372\\ 7.5372\\ 7.7337\\ 7$

¹H NMR (600 MHz, CDCl₃) of 4j

8.8.052
8.8.052
8.8.052
8.8.053
8.8.054
4.422
8.8.053
5.8.053
3.8.875
5.8.053
3.8.875
5.8.053
3.8.875
5.8.053
5.8.053
5.8.053
5.8.053
5.8.053
5.8.054
5.8.054
5.8.054
5.8.054
5.8.054
5.8.054
5.8.055
5.8.054
5.8.055
5.5.055
5.5.054
5.5.055
5.5.054
5.5.055
5.5.054
5.5.055
5.5.054
5.5.055
5.5.054
5.5.055
5.5.054
5.5.055
5.5.054
5.5.055
5.5.055
5.5.055
5.5.055
5.5.055
5.5.055
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
5.5.056
<l

¹H NMR (600 MHz, CDCl₃) of 4k

7.7.978 3.923 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.924 3.934 4.0056 4.0056 4.0056 4.0056 4.0056 4.0056 4.0056 4.0056 4.0056 4

³¹P NMR (162 MHz, CDCl₃) of 4k

¹³C NMR (151 MHz, CDCl₃) of 4k

¹H NMR (600 MHz, CDCl₃) of 4l

¹³C NMR (151 MHz, CDCl₃) of 4l

¹H NMR (600 MHz, CDCl₃) of 5a

¹³C NMR (151 MHz, CDCl₃) of 5a

¹H NMR (600 MHz, CDCl₃) of 5b

¹³C NMR (151 MHz, CDCl₃) of 5b

¹H NMR (600 MHz, CDCl₃) of 5c

¹³C NMR (151 MHz, CDCl₃) of 5c

¹H NMR (400 MHz, CDCl₃) of 5d

¹³C NMR (151 MHz, CDCl₃) of 5d

¹H NMR (600 MHz, CDCl₃) of 5e

¹³C NMR (151 MHz, CDCl₃) of 5e

¹H NMR (400 MHz, CDCl₃) of 5f

¹³C NMR (151 MHz, CDCl₃) of 5f

¹H NMR (600 MHz, CDCl₃) of 5g

¹³C NMR (151 MHz, CDCl₃) of 5g

¹H NMR (600 MHz, CDCl₃) of 5h

¹³C NMR (151 MHz, CDCl₃) of 5h

¹³C NMR (151 MHz, CDCl₃) of 5i

¹H NMR (600 MHz, CDCl₃) of 5j

¹³C NMR (151 MHz, CDCl₃) of 5j

 $\begin{array}{c} 1173.57\\ 1173.57\\ 11773.51\\ 11773.51\\ 11773.51\\ 11773.57\\ 11773.57\\ 11773.57\\ 11773.57\\ 1129.55$

¹H NMR (600 MHz, CDCl₃) of 5k

¹³C NMR (101 MHz, CDCl₃) of 5k

¹H NMR (400 MHz, CDCl₃) of 5k'

¹³C NMR (101 MHz, CDCl₃) of 5k'

¹H NMR (600 MHz, CDCl₃) of 6a

 8.003

 7.7.331

 7.7.332

 7.7.332

 7.7.332

 7.7.332

 7.7.332

 7.7.333

 7.7.357

 7.7.357

 7.7.357

 7.7.357

 7.7.357

 7.7.357

 7.7.357

 7.7.357

 7.7.357

 7.7.357

 7.7.258

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.216

 7.7.217

 7.7.216

 7.7.217

 7.7.216

 7.7.217

 7.7.217

 7.7.216

 7.7.217

 7.7.216

 7.7.217

 7.7.218

 7.7.218

7.7.219

¹³C NMR (151 MHz, CDCl₃) of 6a

¹H NMR (600 MHz, CDCl₃) of 6b

¹³C NMR (151 MHz, CDCl₃) of 6b

¹H NMR (600 MHz, CDCl₃) of 6c

¹³C NMR (151 MHz, CDCl₃) of 6c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (600 MHz, CDCl₃) of 6d

¹³C NMR (151 MHz, CDCl₃) of 6d

¹H NMR (600 MHz, CDCl₃) of 6e

¹⁹F NMR (376 MHz, CDCl₃) of 6e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR (151 MHz, CDCl₃) of 6e

¹H NMR (600 MHz, CDCl₃) of 6f

7,311 7,328 7,328 7,229 7,229 7,228 7,238

¹⁹F NMR (376 MHz, CDCl₃) of 6f

¹³C NMR (151 MHz, CDCl₃) of 6f

¹H NMR (600 MHz, CDCl₃) of 6g

¹³C NMR (151 MHz, CDCl₃) of 6g

¹H NMR (600 MHz, CDCl₃) of 6h

¹³C NMR (151 MHz, CDCl₃) of 6h

¹H NMR (600 MHz, CDCl₃) of 6i

¹³C NMR (151 MHz, CDCl₃) of 6i

¹H NMR (600 MHz, CDCl₃) of 6j

¹³C NMR (151 MHz, CDCl₃) of 6j

¹H NMR (600 MHz, CDCl₃) of 6k

¹³C NMR (151 MHz, CDCl₃) of 6k

¹H NMR (600 MHz, CDCl₃) of 6l

 $\begin{array}{c} 8,857\\ 8,857\\ 30,858\\ 8,858\\ 30,858\\ 30,858\\ 30,958\\ 30,958\\ 30,958\\ 30,17,233\\ 30,233\\ 30,27,222\\ 30,27,223\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,27,222\\ 30,2$

¹³C NMR (151 MHz, CDCl₃) of 6l

¹H NMR (600 MHz, CDCl₃) of 6m

¹H NMR (600 MHz, CDCl₃) of 6n

¹H NMR (600 MHz, CDCl₃) of 60

¹H NMR (400 MHz, CDCl₃) of 6p

¹³C NMR (101 MHz, CDCl₃) of 6p

¹H NMR (400 MHz, CDCl₃) of 6q

(7, 38) (7, 38) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 37) (7, 27) (7,

¹³C NMR (101 MHz, CDCl₃) of 6q

¹H NMR (400 MHz, CDCl₃) of 8a

-7,893-7,893-7,354-7,354-7,354-7,354-7,354-7,354-7,354-7,354-7,354-7,354-7,315-7,325-7,315-7,315-7,325-7,315-7,325-7,325-7,325-7,355-5,255-

-3.875 -3.875 -3.875 -2.112 -2.112 -2.103 -2.103 -2.103 -2.003 -2.003 -2.103 -2.103 -2.103 -2.103 -2.110 -2.110 -2.112 -2.112 -2.113 -2.112 -2.113 -2.112 -2.113 -2.112 -2.113 -3.123 -2.113 -2

¹³C NMR (101 MHz, CDCl₃) of 8a

¹H NMR (400 MHz, CDCl₃) of 8b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 8c

S82

¹H NMR (400 MHz, CDCl₃) of 8d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (600 MHz, CDCl₃) of 8e

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 8f

¹⁹F NMR (565 MHz, CDCl₃) of 8f

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR (151 MHz, CDCl₃) of 8f

¹³C NMR (151 MHz, CDCl₃) of 8g

¹H NMR (400 MHz, CDCl₃) of 8h

¹³C NMR (101 MHz, CDCl₃) of 8h

¹³C NMR (101 MHz, CDCl₃) of 8k

¹³C NMR (101 MHz, CDCl₃) of 8l

