Supporting Information for

One-Pot Synthesis of 2,2'-Biquinolines from Aromatic Amines under

Oxygen as Oxidant and Metal-Free Conditions

Yunfeng Liao, *^a Hualan Gao, ^b Hongrui Qi, ^b Jia Chen, ^b Chang Liu, ^b Yanjun xie, ^a Weijie Zhang, ^a Jiyong Deng, ^a Bing Yi *^a and Guo-Jun Deng *^b

- ^a Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China; Email: liaoyunfeng900@126.com; bingyi2004@126.com.
- ^b Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China. Email: gjdeng@xtu.edu.cn.

Table of Contents

1. General information	2
2. General procedure for preparation (4a)	2
3. General procedure for preparation (5a)	2
4. Gram-scale reaction	2
5. Application of 2,2'-biquinoline ligands for dehydrogenation and	borrowing
hydrogen reaction	3
6. Characterization data of products	3-20
7. References	20-21
8. Copies of ¹ H and ¹³ C NMR spectra of all products	22-55

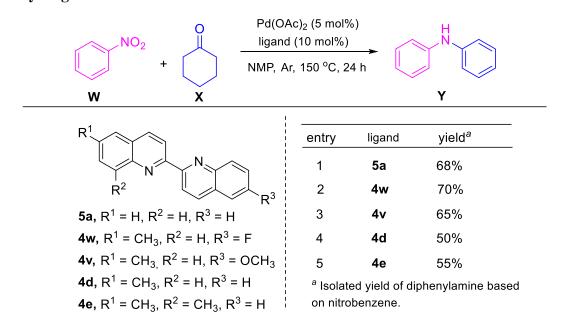
1. General information:

All reactions were carried out under an atmosphere of air unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra was measured on bruker 15T HRMS instrument (maldi). Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. All reagents were obtained from commercial suppliers and used without further purification.

2. General procedure for preparation (4a):

A 10 mL sealed tube was charged with 4-methoxyaniline (**1a**, 49.2 mg, 0.4 mmol) and was purged with oxygen for three times. Then, 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol), 55%HI (9.5 μ L, 0.08 mmol) and 1,4-dioxane (1.5 mL) were added to the sealed reaction vessel by syringe. The reaction vessel was stirred at 130 °C for 16 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to yield the desired product **4a** as white solid (37.8 mg, 66% yield).

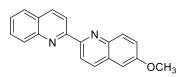
3. General procedure for preparation (5a):


A 10 mL sealed tube was purged with oxygen for three times and was added aniline (**1m**, 18.2 μ L, 0.2 mmol), 55%HI (11.9 μ L, 0.1 mmol) and 1,4-dioxane (1.5 mL) by syringe. The reaction vessel was stirred at 110 °C for 16 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to yield the desired product **5a** as white solid (18.5 mg, 72% yield).

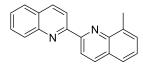
4. Gram-scale reaction

A 100 mL three neck flask with reflow condenser tube was added *p*-toluidine (**1d**, 1.2840 g, 12.0 mmol) and 6-methoxy-2-methylquinoline (**2c**, 1.0381 g, 6.0 mmol) and was purged with oxygen for three times. Next, 55% HI (0.357 mL, 3.0 mmol) and 1,4-dioxane (45 mL) were purged by

syringe. Reaction apparatus loaded with oxygen bulb. The reaction vessel was stirred at 100 °C for 16 h. After cooling to room temperature, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4v** as yellow solid (1.0793 g, 60%), mp 249.3-253.2 °C.

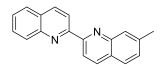

5. Application of 2,2'-biquinoline ligands for dehydrogenation and borrowing hydrogen reaction^[1]

A 10 mL sealed tube was charged with $Pd(OAc)_2$ (0.01 mmol, 5 mol%), ligands (0.02 mmol, 10 mol%). The reaction vessel was purged with argon for three times and was added nitrobenzene (**W**, 0.2 mmol), cyclohexanone (**X**, 0.4 mmol) and NMP (0.3 mL) by syringe. The sealed vessel was stirred at 150 °C for 24 h. After cooling to room temperature, the volatiles were removed under vacuum and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 98:2) to give the corresponding product **Y**.


6. Characterization data of products

6-methoxy-2, 2'-biquinoline (4a)^[2]

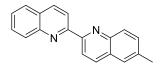
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.80 (dd, *J* = 8.4, 2.0 Hz, 2H), 8.31 (d, *J* = 8.8 Hz, 1H), 8.22 (d, *J* = 8.4 Hz, 2H), 8.12 (d, *J* = 9.2 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.77-7.73 (m, 1H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.41 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.14 (d, *J* = 2.4 Hz, 1H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.2, 156.4, 154.0, 147.9, 143.9, 136.7, 135.5, 131.3, 129.8, 129.5, 129.5, 128.3, 127.6, 126.7, 122.3, 119.7, 119.2, 105.1, 55.6; HRMS (maldi, m/z): calcd. for C₁₉H₁₅N₂O [M+H]⁺ 287.1184, found 287.1176.


8-methyl-2, 2'-biquinoline (4b)

The reaction was conducted with *o*-toluidine (**1b**, 42.7 μ L, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4b** as yellow solid (41.1 mg, 76%), mp 114.8-118.8 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.92 (d, *J* = 8.4 Hz, 1H), 8.85 (d, *J* = 8.4 Hz, 1H), 8.31 - 8.27 (m, 2H), 8.22 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.77-7.69 (m, 2H), 7.60-7.54 (m, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.6, 154.7, 147.9, 146.8, 137.8, 136.9, 136.6, 129.8, 129.6, 129.4, 128.4, 128.4, 127.6, 126.8, 126.7, 125.6, 119.5, 118.8, 17.9; HRMS (maldi, m/z): calcd. for C₁₉H₁₅N₂ [M+H]⁺ 271.1235, found 271.1236.

7-methyl-2, 2'-biquinoline (4c)



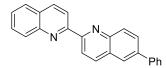
The reaction was conducted with *m*-toluidine (**1c**, 42.9 μ L, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 5:1 to 2:1) afforded the product **4c** as yellow solid (39.4 mg, 73%), mp 136.5-139.1 $^{\circ}$ C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.83 (d, *J* = 8.8 Hz, 1H), 8.77 (d, *J* = 8.4 Hz, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 8.29 (d, *J* = 8.8 Hz, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 8.02 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.79-7.74 (m, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.4, 156.2, 148.1, 147.9, 139.8, 136.7, 136.4, 129.9, 129.5, 129.2, 128.9, 128.4, 127.6, 127.3, 126.9, 126.5, 119.4, 118.6, 21.9; HRMS (maldi, m/z): calcd. for C₁₉H₁₅N₂ [M+H]⁺ 271.1235, found 271.1232.

6-methyl-2, 2'-biquinoline (4d)

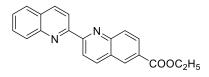
The reaction was conducted with *p*-toluidine (**1d**, 42.9 mg, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4d** as yellow solid (36.7 mg, 68%), mp 198.4-202.3 °C.


¹H NMR (400 MHz, CDCl₃, ppm) δ 8.83-8.79 (m, 2H), 8.32 (d, J = 8.4 Hz, 1H), 8.25-8.22 (m, 2H), 8.12 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.78-7.74 (m, 1H), 7.65 (s, 1H), 7.61-7.56 (m, 2H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.4, 155.4, 147.9, 146.5, 137.0, 136.7, 136.1, 131.9, 129.9, 129.6, 129.5, 128.5, 128.4, 127.6, 126.8, 126.6, 119.4, 119.4, 21.7; HRMS (maldi, m/z): calcd. for C₁₉H₁₄N₂Na [M+Na]⁺ 293.1055, found 293.1056.

6, 8-dimethyl-2, 2'-biquinoline (4e)

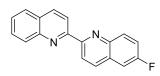
The reaction was conducted with 2,4-dimethylaniline (1e, 49.5 μ L, 0.4 mmol) and 2-methylquinoline (2a, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product 4e as red solid (23.9 mg, 42%), mp 122.4-125.3 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.92 (d, *J* = 8.4 Hz, 1H), 8.81 (d, *J* = 8.4 Hz, 1H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.21 (t, *J* = 8.0 Hz, 2H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.77-7.73 (m, 1H), 7.58-7.55 (m, 1H), 7.48 (s, 1H), 7.45 (s, 1H), 2.92 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.8, 153.9, 147.9, 145.4, 137.4, 136.6, 136.5, 136.2, 132.0, 129.8, 129.4, 128.5, 128.4, 127.6, 126.7, 124.5, 119.5, 118.9, 21.7, 17.8; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂Na [M+Na]⁺ 307.1211, found 307.1213.


6-phenyl-2, 2'-biquinoline (4f)

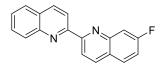
The reaction was conducted with [1,1'-biphenyl]-4-amine (**1f**, 67.7 mg, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4f** as yellow solid (45.8 mg, 69%), mp 251.5-255.2 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.80 (dd, J = 8.4, 5.2 Hz, 2H), 8.33-8.27 (m, 2H), 8.23 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.01 (s, 1H), 7.97 (dd, J = 8.8, 1.8 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.71-7.69 (m, 3H), 7.52 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.36 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.2, 148.0, 147.3, 140.4, 139.7, 136.9, 136.8, 130.3, 129.9, 129.6, 129.3, 129.0, 128.6, 128.5, 127.8, 127.7, 127.4, 127.0, 125.4, 119.8, 119.4; HRMS (maldi, m/z): calcd. for C₂₄H₁₆N₂Na [M+Na]⁺ 355.1211, found 355.1215.


ethyl [2, 2'-biquinoline]-6-carboxylate (4g)

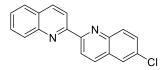
The reaction was conducted with ethyl 4-aminobenzoate (**1g**, 66.0 mg, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 1:1) afforded the product **4g** as white solid (40.4 mg, 62%), mp 202.2-206.0 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.93 (d, *J* = 8.8 Hz, 1H), 8.86 (d, *J* = 8.8 Hz, 1H), 8.65 (d, *J* = 1.6 Hz, 1H), 8.43 (d, *J* = 8.8 Hz, 1H), 8.36 (d, *J* = 8.8 Hz, 2H), 8.25 (t, *J* = 8.6 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.80-7.76 (m, 1H), 7.62-7.59 (m, 1H), 4.48 (q, *J* = 7.1 Hz, 2H), 1.48 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.2, 158.1, 155.7, 149.8, 147.9, 137.9, 136.9, 130.7, 130.1, 130.0, 129.7, 129.1, 128.6, 128.6, 127.7, 127.5, 127.2, 120.1, 119.4, 61.4, 14.4; HRMS (maldi, m/z): calcd. for C₂₁H₁₆N₂NaO₂ [M+Na]⁺ 351.1109, found 351.1114.


6-fluoro-2, 2'-biquinoline (4h)

The reaction was conducted with 4-fluoroaniline (**1h**, 37.9 μ L, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4h** as yellow solid (13.2 mg, 24%), mp 232.7-236.8 °C.

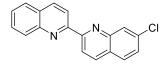
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.80 (d, *J* = 8.8 Hz, 1H), 8.74 (d, *J* = 8.8 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.17-8.14 (m, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.48-7.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.8 (d, *J* = 247.4 Hz), 155.9, 155.7, 147.9, 145.0, 136.8, 136.1 (d, *J* = 5.3 Hz), 132.4 (d, *J* = 9.1 Hz), 129.9, 129.6, 129.1 (d, *J* = 10.1 Hz), 128.5, 127.7, 127.0, 120.2, 119.8 (d, *J* = 25.6 Hz), 119.2, 110.7 (d, *J* = 21.5 Hz); HRMS (maldi, m/z): calcd. for C₁₈H₁₁FN₂Na [M+Na]⁺ 297.0804, found 297.0808.


7-fluoro-2, 2'-biquinoline (4i)

The reaction was conducted with 3-fluoroaniline (**1i**, 38.4 μ L, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4i** as yellow solid (48.8 mg, 89%), mp 160.4-162.5 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.74 (d, *J* = 8.8 Hz, 2H), 8.26 (t, *J* = 8.0 Hz, 2H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.83-7.76 (m, 3H), 7.69 (t, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 8.8, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.2 (d, *J* = 248.1 Hz), 157.2, 155.9, 148.9 (d, *J* = 12.7 Hz), 147.9, 136.8, 136.6, 129.9, 129.6, 129.5, 128.5, 127.7, 127.1, 125.4, 119.4, 118.8 (d, *J* = 2.5 Hz), 117.4 (d, *J* = 25.3 Hz), 113.4 (d, *J* = 20.1 Hz); HRMS (maldi, m/z): calcd. for C₁₈H₁₂FN₂ [M+H]⁺ 275.0985, found 275.0984.

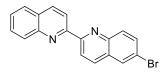
6-chloro-2, 2'-biquinoline (4j)



The reaction was conducted with 4-chloroaniline (**1j**, 51.0 mg, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4j** as yellow solid (9.9 mg, 17%), mp 194.3-198.2 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.88 (d, *J* = 8.4 Hz, 1H), 8.81 (d, *J* = 8.4 Hz, 1H), 8.34 (d, *J* = 8.8 Hz, 1H), 8.23 (t, *J* = 8.0 Hz, 2H), 8.16 (d, *J* = 8.8 Hz, 1H), 7.90-7.87 (m, 2H), 7.79-7.75 (m, 1H), 7.69 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.61-7.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.4, 155.7, 147.9, 146.3, 136.9, 135.8, 132.7, 131.5, 130.5, 129.9, 129.7, 129.0, 128.5, 127.7,

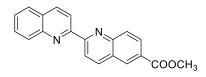
127.1, 126.4, 120.3, 119.3; HRMS (maldi, m/z): calcd. for $C_{18}H_{11}ClN_2Na [M+Na]^+$ 313.0508, found 313.0502.


7-chloro-2, 2'-biquinoline (4k)

The reaction was conducted with 3-chloroaniline (1k, 42.3 μ L, 0.4 mmol) and 2-methylquinoline (2a, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product 4k as yellow solid (11.6 mg, 20%), mp 205.6-209.2 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.76 (dd, J = 17.2, 8.4 Hz, 2H), 8.25 (dd, J = 14.0, 8.4 Hz, 2H), 8.17-8.15 (m, 2H), 7.82 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.72-7.68 (m, 1H), 7.54-7.51 (m, 1H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.2, 155.8, 148.3, 147.9, 136.8, 136.5, 135.4, 130.0, 129.6, 128.9, 128.8, 128.5, 127.9, 127.7, 127.1, 126.8, 119.6, 119.3; HRMS (maldi, m/z): calcd. for C₁₈H₁₁ClN₂Na [M+Na]⁺ 313.0508, found 313.0513.

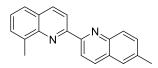
6-bromo-2, 2'-biquinoline (4l)



The reaction was conducted with 4-bromoaniline (**11**, 83.4 mg, 0.4 mmol) and 2-methylquinoline (**2a**, 27.1 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4I** as yellow solid (13.4 mg, 20%), mp 285.0-288.2 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.80 (d, *J* = 8.8 Hz, 1H), 8.73 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 8.17-8.14 (m, 2H), 8.02 (d, *J* = 8.8 Hz, 1H), 7.97 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.76-7.68 (m, 2H), 7.52 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.6, 155.8,

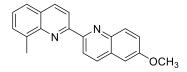
147.9, 146.5, 136.8, 135.7, 133.0, 131.6, 129.9, 129.7, 129.7, 129.5, 128.5, 127.7, 127.1, 120.8, 120.3, 119.3; HRMS (maldi, m/z): calcd. for C₁₈H₁₁BrN₂Na [M+Na]⁺ 357.0003, found 356.9992.


methyl [2, 2'-biquinoline]-6-carboxylate (4m)

The reaction was conducted with aniline (**1m**, 36.4 μ L, 0.4 mmol) and methyl 2-methylquinoline-6-carboxylate (**2g**, 80.5 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 1:1) afforded the product **4m** as yellow solid (23.2 mg, 37%), mp 266.4-269.8 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.86 (d, *J* = 8.8 Hz, 1H), 8.79 (d, *J* = 8.4 Hz, 1H), 8.59 (s, 1H), 8.36 (d, *J* = 8.8 Hz, 1H), 8.30-8.27 (m, 2H), 8.18 (t, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.4 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.7, 158.2, 155.7, 149.8, 147.9, 138.0, 136.9, 130.8, 130.2, 130.0, 129.7, 129.1, 128.6, 128.3, 127.7, 127.6, 127.3, 120.2, 119.4, 52.4; HRMS (maldi, m/z): calcd. for C₂₀H₁₄N₂O₂Na [M+Na]⁺ 337.0953, found 337.0953.

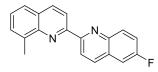
6, 8'-dimethyl-2, 2'-biquinoline (4n)



The reaction was conducted with *o*-toluidine (**1b**, 42.7 μ L, 0.4 mmol) and 2,6-dimethylquinoline (**2b**, 31.4 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4n** as red solid (37.4 mg, 66%), mp 263.2-266.1 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.89 (d, *J* = 8.4 Hz, 1H), 8.84 (d, *J* = 8.8 Hz, 1H), 8.29 (d, *J* = 8.8 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 8.8 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.65 (s, 1H), 7.61-7.57 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 2.96 (s, 3H), 2.58 (s, 3H); ¹³C NMR (100 10 / 55

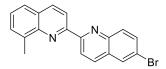
MHz, CDCl₃, ppm) δ 155.8, 154.9, 146.8, 146.5, 137.8, 136.9, 136.8, 135.9, 131.8, 129.6, 128.5, 128.3, 126.6, 126.6, 125.6, 119.5, 118.8, 21.7, 17.9; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂Na [M+Na]⁺ 307.1211, found 307.1214.


6-methoxy-8'-methyl-2, 2'-biquinoline (40)

The reaction was conducted with *o*-toluidine (**1b**, 42.7 μ L, 0.4 mmol) and 6-methoxy-2-methylquinoline (**2c**, 34.6 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 1:1) afforded the product **4o** as red solid (32.5 mg, 54%), mp 175.3-178.6 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.82 (d, J = 8.8 Hz, 1H), 8.74 (d, J = 8.8 Hz, 1H), 8.21 (d, J = 8.8 Hz, 1H), 8.14 (d, J = 8.8 Hz, 1H), 8.05 (d, J = 9.2 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 6.8 Hz, 1H), 7.40-7.32 (m, 2H), 7.08 (d, J = 2.4 Hz, 1H), 3.91 (s, 3H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.1, 154.9, 154.4, 146.8, 143.9, 137.7, 136.9, 135.3, 131.3, 129.5, 129.5, 128.3, 126.5, 125.6, 122.2, 119.8, 118.7, 105.2, 55.6, 17.9; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂NaO [M+Na]⁺ 323.1160, found 323.1166.

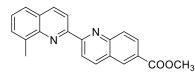
6-fluoro-8'-methyl-2, 2'-biquinoline (4p)



The reaction was conducted with *o*-toluidine (**1b**, 42.7 μ L, 0.4 mmol) and 6-fluoro-2-methylquinoline (**2d**, 32.2 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4p** as white solid (14.4 mg, 27%), mp 205.1-208.4 °C.

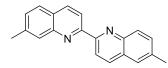
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.95 (d, J = 8.4 Hz, 1H), 8.81 (d, J = 8.4 Hz, 1H), 8.30 - 8.20 (m, 3H), 7.72 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 6.8 Hz, 1H), 7.54-7.44 (m, 3H), 2.96 (s, 3H);

¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.7 (d, J = 247.0 Hz), 156.1, 154.4, 146.8, 145.0, 137.8, 137.0, 135.9 (d, J = 5.2 Hz), 132.3 (d, J = 9.2 Hz), 129.7, 129.1 (d, J = 10.0 Hz), 128.4, 126.8, 125.6, 120.3, 119.6 (d, J = 25.6 Hz), 118.7, 110.7 (d, J = 21.5 Hz), 17.9; HRMS (maldi, m/z): calcd. for C₁₉H₁₃FN₂Na [M+Na]⁺ 311.0960, found 311.0966.


6-bromo-8'-methyl-2, 2'-biquinoline (4q)

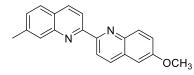
The reaction was conducted with *o*-toluidine (**1b**, 42.7 μ L, 0.4 mmol) and 6-bromo-2-methylquinoline (**2e**, 44.4 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4q** as yellow solid (19.2 mg, 28%), mp 260.3-263.7 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.88 (d, *J* = 8.8 Hz, 1H), 8.74 (d, *J* = 8.8 Hz, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 7.97 (d, *J* = 2.0 Hz, 1H), 7.74 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 6.8 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 2.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.0, 154.3, 146.8, 146.5, 137.9, 137.0, 135.5, 135.5, 132.9, 131.6, 129.7, 129.5, 128.5, 126.9, 125.6, 120.7, 120.4, 118.7, 17.9; HRMS (maldi, m/z): calcd. for C₁₉H₁₃BrN₂Na [M+H]⁺ 349.0340, found 349.0337.


methyl 8'-methyl-[2, 2'-biquinoline]-6-carboxylate (4r)

The reaction was conducted with *o*-toluidine (**1b**, 42.7 μ L, 0.4 mmol) and methyl 2-methylquinoline-6-carboxylate (**2g**, 40.2 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 1:1) afforded the product **4r** as white solid (29.9 mg, 46%), mp 228.5-231.3 °C.

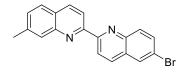
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.92 (d, *J* = 8.8 Hz, 1H), 8.78 (d, *J* = 8.4 Hz, 1H), 8.56 (s, 1H), 8.33 (d, *J* = 8.8 Hz, 1H), 8.24 (t, *J* = 9.2 Hz, 2H), 8.17 (d, *J* = 8.8 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 6.8 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 3.94 (s, 3H), 2.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.7, 158.6, 154.2, 149.8, 146.8, 137.9, 137.8, 137.1, 130.8, 130.1, 129.7, 129.0, 128.6, 128.1, 127.5, 127.1, 125.6, 120.3, 118.9, 52.4, 17.9; HRMS (maldi, m/z): calcd. for C₂₁H₁₆N₂NaO₂ [M+Na]⁺ 351.1109, found 351.1114.


6, 7'-dimethyl-2, 2'-biquinoline (4s)

The reaction was conducted with *m*-toluidine (**1c**, 42.9 μ L, 0.4 mmol) and 2,6-dimethylquinoline (**2b**, 31.4 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4s** as red solid (35.3 mg, 62%), mp 258.6-263.7 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.69 (dd, J = 12.0, 8.4 Hz, 2H), 8.17 (dd, J = 15.6, 8.8 Hz, 2H), 8.04 (d, J = 8.4 Hz, 1H), 7.93 (s, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.56 (s, 1H), 7.51 (d, J = 8.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 2.53 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.3, 155.6, 148.2, 146.5, 139.7, 136.9, 136.4, 136.0, 131.8, 129.6, 129.1, 128.9, 128.4, 127.3, 126.5, 126.4, 119.4, 118.6, 21.9, 21.7; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂Na [M+Na]⁺ 307.1211, found 307.1219.

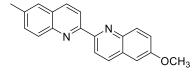
6-methoxy-7'-methyl-2, 2'-biquinoline (4t)



The reaction was conducted with *m*-toluidine (**1c**, 42.9 μ L, 0.4 mmol) and 6-methoxy-2-methylquinoline (**2c**, 34.6 mg, 0.2 mmol). The residue was purified by column

chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4t** as yellow solid (51.2 mg, 85%), mp 245.4-248.3 $^{\circ}$ C.

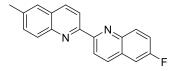
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.70 (d, *J* = 8.4 Hz, 1H), 8.65 (d, *J* = 8.8 Hz, 1H), 8.18 (d, *J* = 8.8 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 8.8 Hz, 1H), 7.92 (s, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.34-7.31 (m, 2H), 7.07 (d, *J* = 2.4 Hz, 1H), 3.89 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.2, 156.4, 154.2, 148.2, 144.0, 139.7, 136.4, 135.4, 131.4, 129.5, 129.0, 128.8, 127.3, 126.4, 122.3, 119.7, 118.4, 105.2, 55.6, 21.9; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂NaO [M+Na]⁺ 323.1160, found 323.1170.


6-bromo-7'-methyl-2, 2'-biquinoline (4u)

The reaction was conducted with *m*-toluidine (**1c**, 42.9 μ L, 0.4 mmol) and 6-bromo-2-methylquinoline (**2e**, 44.4 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4u** as yellow solid (57.3 mg, 82%), mp 260.2-264.0 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.78 (d, J = 8.4 Hz, 1H), 8.66 (d, J = 8.8 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.02-7.94 (m, 3H), 7.75-7.70 (m, 2H), 7.35 (d, J = 7.6 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.8, 155.7, 148.2, 146.5, 140.0, 136.5, 135.6, 133.0, 131.6, 129.7, 129.5, 129.4, 128.9, 127.3, 126.6, 120.7, 120.3, 118.5, 21.9; HRMS (maldi, m/z): calcd. for C₁₉H₁₄BrN₂ [M+H]⁺ 349.0340, found 349.0336.

6-methoxy-6'-methyl-2, 2'-biquinoline (4v)



The reaction was conducted with *p*-toluidine (**1d**, 42.9 mg, 0.4 mmol) and 6-methoxy-2-methylquinoline (**2c**, 34.6 mg, 0.2 mmol). The residue was purified by column 14/55

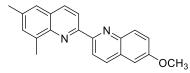
chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product 4v as yellow solid (43.7 mg, 73%), mp 249.3-253.2 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.69 (t, *J* = 8.4 Hz, 2H), 8.15 (dd, *J* = 8.8, 3.2 Hz, 2H), 8.04 (dd, *J* = 9.2, 4.8 Hz, 2H), 7.57 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.33 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.07 (d, *J* = 2.8 Hz, 1H), 3.90 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.1, 155.6, 154.2, 146.5, 144.0, 136.7, 136.0, 135.4, 131.8, 131.3, 129.5, 129.4, 128.3, 126.6, 122.2, 119.7, 119.2, 105.2, 55.6, 21.7; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂NaO [M+Na]⁺ 323.1160, found 323.1170.

6-fluoro-6'-methyl-2, 2'-biquinoline (4w)

The reaction was conducted with *p*-toluidine (**1d**, 42.9 mg, 0.4 mmol) and 6-fluoro-2-methylquinoline (**2d**, 32.2 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4w** as yellow solid (31.2 mg, 54%), mp 263.7-266.0 °C.

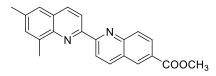
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.78 (d, *J* = 8.8 Hz, 1H), 8.69 (d, *J* = 8.8 Hz, 1H), 8.21-8.13 (m, 3H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.58 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.48-7.41 (m, 2H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.7 (d, *J* = 247.1 Hz), 155.9, 155.1, 146.5, 145.0, 137.0, 136.1, 136.0 (d, *J* = 5.3 Hz), 132.3 (d, *J* = 9.1 Hz), 131.9, 129.6, 129.0 (d, *J* = 10.1 Hz), 128.5, 126.6, 120.1, 119.7 (d, *J* = 25.6 Hz), 119.2, 110.7 (d, *J* = 21.6 Hz), 21.7; HRMS (maldi, m/z): calcd. for C₁₉H₁₃FN₂Na [M+Na]⁺ 311.0960, found 311.0965.


methyl 6'-methyl-[2, 2'-biquinoline]-6-carboxylate (4x)

N соосн₃

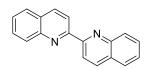
The reaction was conducted with *p*-toluidine (**1d**, 42.9 mg, 0.4 mmol) and methyl 2-methylquinoline-6-carboxylate (**2g**, 40.2 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 1:1) afforded the product **4x** as red solid (33.0 mg, 50%), mp 281.6-284.3 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.83 (d, *J* = 8.8 Hz, 1H), 8.73 (d, *J* = 8.8 Hz, 1H), 8.57 (d, *J* = 1.6 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.28-8.25 (m, 1H), 8.18 (d, *J* = 7.6 Hz, 2H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.59 (s, 1H), 7.54 (d, *J* = 8.8 Hz, 1H), 3.95 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.7, 158.4, 154.8, 149.8, 146.5, 137.9, 137.3, 136.2, 132.0, 130.8, 130.1, 129.7, 129.0, 128.6, 128.2, 127.5, 126.6, 120.2, 119.4, 52.4, 21.7; HRMS (maldi, m/z): calcd. for C₂₁H₁₆N₂NaO₂ [M+Na]⁺ 351.1109, found 351.1108.


6'-methoxy-6, 8-dimethyl-2, 2'-biquinoline (4y)

The reaction was conducted with 2,4-dimethylaniline (**1e**, 49.5 μ L, 0.4 mmol) and 6-methoxy-2-methylquinoline (**2c**, 34.6 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **4y** as yellow solid (25.5 mg, 41%), mp 255.8-259.4 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.87 (d, J = 8.4 Hz, 1H), 8.76 (d, J = 8.4 Hz, 1H), 8.19 (t, J = 7.6 Hz, 2H), 8.11 (d, J = 9.2 Hz, 1H), 7.47-7.38 (m, 3H), 7.14 (d, J = 2.4 Hz, 1H), 3.97 (s, 3H), 2.92 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.1, 154.6, 154.1, 145.4, 143.9, 137.3, 136.4, 136.2, 135.3, 131.9, 131.3, 129.4, 128.3, 124.5, 122.1, 119.8, 118.7, 105.2, 55.6, 21.7, 17.8; HRMS (maldi, m/z): calcd. for C₂₁H₁₈N₂NaO [M+Na]⁺ 337.1317, found 337.1321.

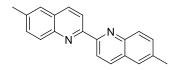

methyl 6', 8'-dimethyl-[2, 2'-biquinoline]-6-carboxylate (4z)

The reaction was conducted with 2,4-dimethylaniline (**1e**, 49.5 μ L, 0.4 mmol) and 2-methylquinoline-6-carboxylate (**2g**, 40.2 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 1:1) afforded the product **4y** as white solid (23.9 mg, 35%), mp 280.1-283.0 °C

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.99 (d, *J* = 8.4 Hz, 1H), 8.81 (d, *J* = 8.4 Hz, 1H), 8.64 (s, 1H), 8.40 (d, *J* = 8.8 Hz, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 8.23 (t, *J* = 9.6 Hz, 2H), 7.49 (s, 1H), 7.46 (s, 1H), 4.02 (s, 3H), 2.92 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.8, 158.8, 153.4, 149.8, 145.5, 137.7, 137.5, 137.0, 136.4, 132.1, 130.8, 130.1, 129.0, 128.7, 128.0, 127.5, 124.5, 120.3, 118.9, 52.4, 21.7, 17.8; HRMS (maldi, m/z): calcd. for C₂₂H₁₈N₂NaO₂ [M+Na]⁺ 365.1266, found 365.1261.

2, 2'-biquinoline (5a)^[3]

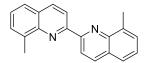
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.76 (d, J = 8.8 Hz, 2H), 8.24 (d, J = 8.4 Hz, 2H), 8.15 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.67 (t, J = 7.6 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.2, 147.9, 136.7, 129.9, 129.5, 128.4, 127.6, 126.9, 119.4; HRMS (maldi, m/z): calcd. for C₁₈H₁₃N₂ [M+H]⁺ 257.1079, found 257.1071.


6, 6'-dimethoxy-2, 2'-biquinoline (5b)^[2]

¥N≷

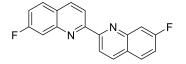
The reaction was conducted with 4-methoxyaniline (**1a**, 24.6 mg, 0.2 mmol) and 1,4-dioxane (1.5 mL). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **5b** as yellow solid (18.7 mg, 59%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.68 (d, J = 8.8 Hz, 2H), 8.14 (d, J = 8.8 Hz, 2H), 8.04 (d, J = 9.2 Hz, 2H), 7.33 (dd, J = 9.2, 2.8 Hz, 2H), 7.08 (d, J = 2.4 Hz, 2H), 3.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.1, 154.2, 144.0, 135.4, 131.3, 129.4, 122.2, 119.5, 105.2, 55.6; HRMS (maldi, m/z): calcd. for C₂₀H₁₇N₂O₂ [M+H]⁺ 317.1290, found 317.1277.


6, 6'-dimethyl-2, 2'-biquinoline (5c)^[3]

The reaction was conducted with *p*-toluidine (**1d**, 21.4 mg, 0.2 mmol) and 1,4-dioxane (1.5 mL). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **5c** as white solid (23.0 mg, 81%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.70 (d, J = 8.8 Hz, 2H), 8.15 (d, J = 8.4 Hz, 2H), 8.04 (d, J = 8.4 Hz, 2H), 7.56 (s, 2H), 7.51 (d, J = 8.4 Hz, 2H), 2.50 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 155.6, 146.5, 136.8, 136.0, 131.8, 129.5, 128.4, 126.5, 119.4, 21.7; HRMS (maldi, m/z): calcd. for C₂₀H₁₇N₂ [M+H]⁺ 285.1392, found 285.1382.


8, **8'-dimethyl-2**, **2'-biquinoline** (5d) ^[2]

The reaction was conducted with *o*-toluidine (**1b**, 21.3 μ L, 0.2 mmol) and 1,4-dioxane (1.5 mL). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **5d** as yellow solid (13.9 mg, 49%).

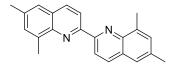
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.86 (d, *J* = 8.4 Hz, 2H), 8.21 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 6.4 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 2.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 155.1, 146.8, 137.8, 136.8, 129.5, 128.3, 126.6, 125.6, 118.9, 17.9; HRMS (maldi, m/z): calcd. for C₂₀H₁₇N₂ [M+H]⁺ 285.1392, found 285.1388.

7, 7'-difluoro-2, 2'-biquinoline (5e)

The reaction was conducted with 3-fluoroaniline (**1i**, 19.2 μ L, 0.2 mmol) and 1,4-dioxane (1.5 mL). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **5e** as red solid (9.9 mg, 34%), mp 246.5-249.3 °C

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.72 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 8.4 Hz, 2H), 7.82-7.76 (m, 4H), 7.31 (t, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.3 (d, J =248.4 Hz), 156.8, 148.9 (d, J = 12.7 Hz), 136.7, 129.6 (d, J = 9.8 Hz), 125.5, 118.8 (d, J = 2.5 Hz), 117.5 (d, J = 25.3 Hz), 113.5 (d, J = 20.1 Hz); HRMS (maldi, m/z): calcd. for C₁₈H₁₀F₂N₂Na [M+Na]⁺ 315.0710, found 315.0716.

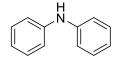
6, 6'-difluoro-2, 2'-biquinoline (5f)^[2]



The reaction was conducted with 4-fluoroaniline (**1h**, 19.0 μ L, 0.2 mmol) and 1,4-dioxane (1.5 mL). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **5f** as red solid (9.9 mg, 34%)

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.76 (d, J = 8.4 Hz, 2H), 8.20 (d, J = 8.8 Hz, 2H), 8.15 (dd, J = 9.2, 5.2 Hz, 2H), 7.49-7.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.8 (d, J = 247.5 Hz), 155.4, 145.0, 136.1 (d, J = 5.3 Hz), 132.4 (d, J = 9.2 Hz), 129.1 (d, J = 10.1 Hz), 120.0, 19 / 55

119.7, 110.7 (d, J = 21.6 Hz); HRMS (maldi, m/z): calcd. for C₁₈H₁₁F₂N₂ [M+H]⁺ 293.0890, found 293.0884.


6, 6', 8, 8'-tetramethyl-2, 2'-biquinoline (5g)

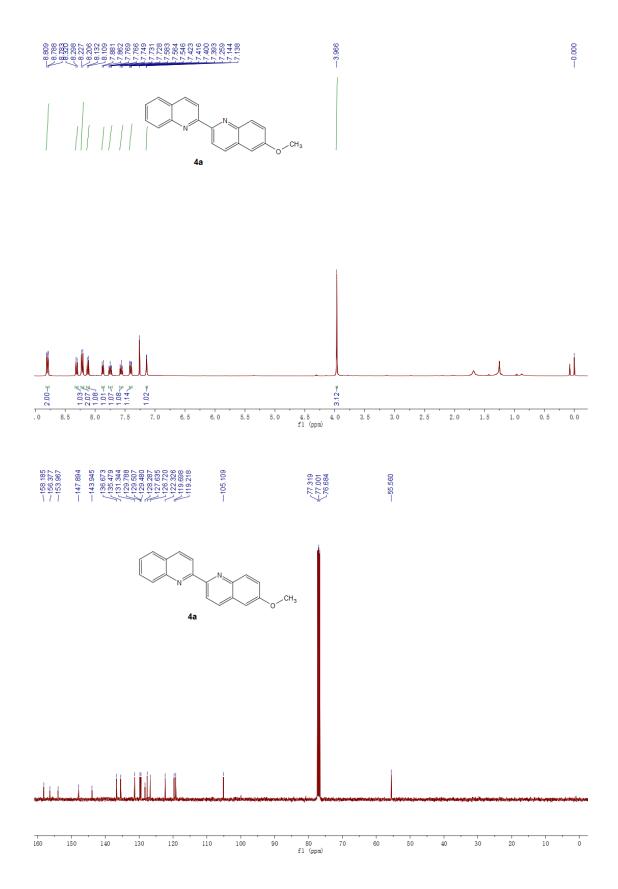
The reaction was conducted with 2,4-dimethylaniline (**1e**, 24.7 μ L, 0.2 mmol) and 1,4-dioxane (1.5 mL). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1) afforded the product **5g** as yellow solid (20.3 mg, 65%), mp 233.1-236.2 °C

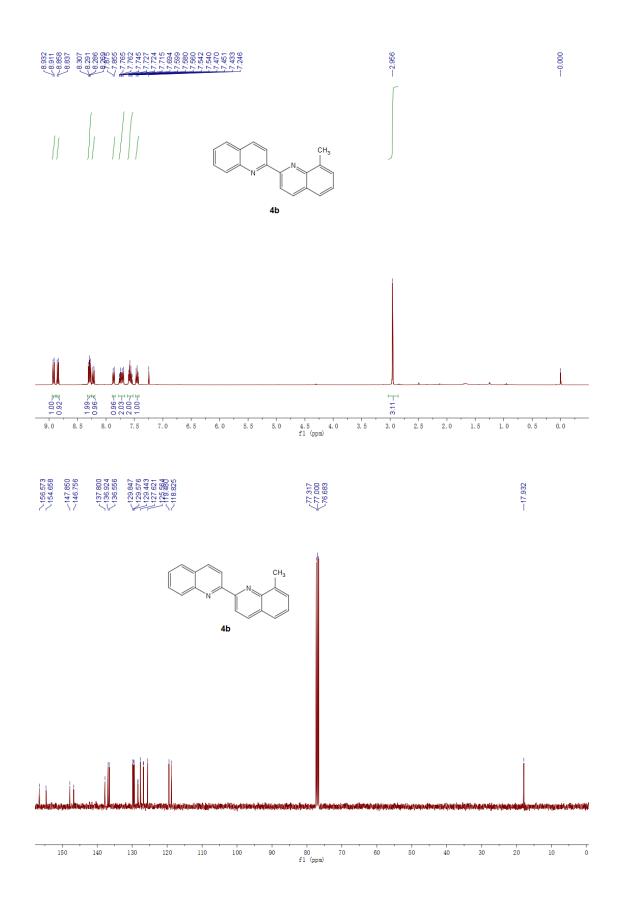
¹H NMR (400 MHz, CDCl₃, ppm) δ 8.87 (d, *J* = 8.8 Hz, 2H), 8.17 (d, *J* = 8.8 Hz, 2H), 7.47 (s, 2H), 7.44 (s, 2H), 2.92 (s, 6H), 2.52 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 154.5, 145.4, 137.3, 136.3, 136.0, 131.8, 128.4, 124.5, 118.9, 21.7, 17.8; HRMS (maldi, m/z): calcd. for C₂₂H₂₁N₂ [M+H]⁺ 313.1705, found 313.1706.

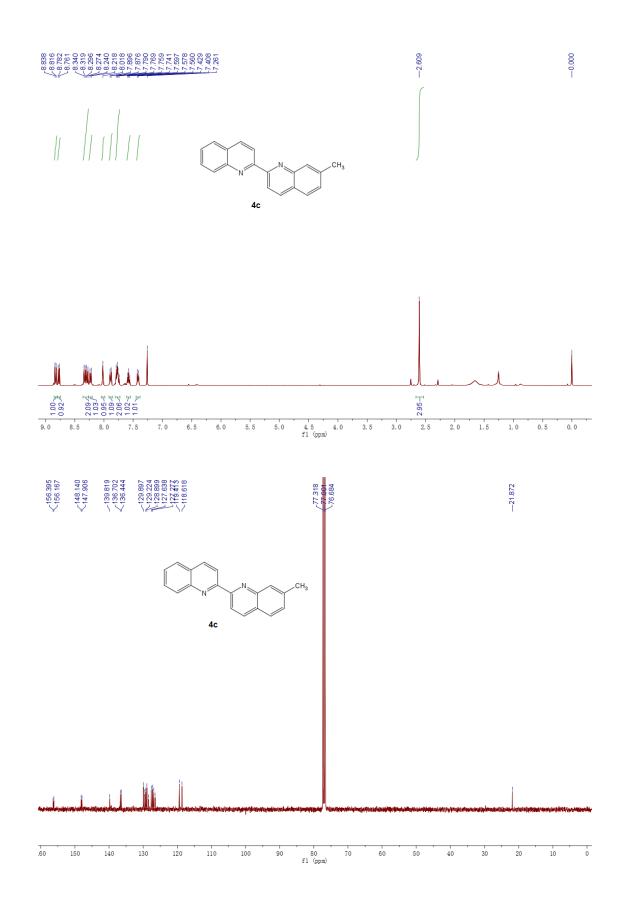
Diphenylamine (**Y**)^[1]

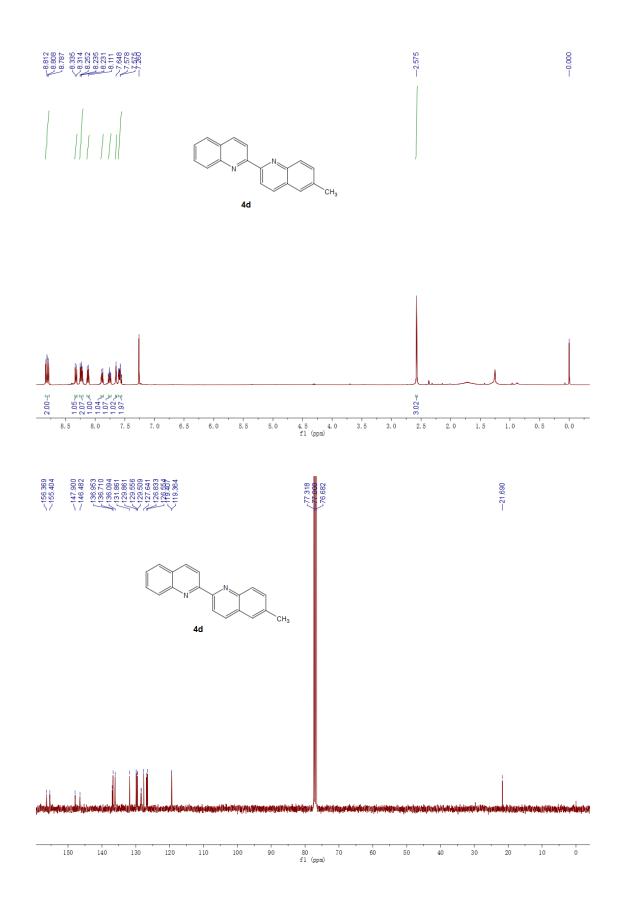
The reaction was conducted with nitrobenzene (**W**, 0.2 mmol) and cyclohexanone (**X**, 0.4 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 98:2) afforded the product **Y** as white solid (23.7 mg, 70%, **4w** as ligand), mp 52.7-54.0 °C.

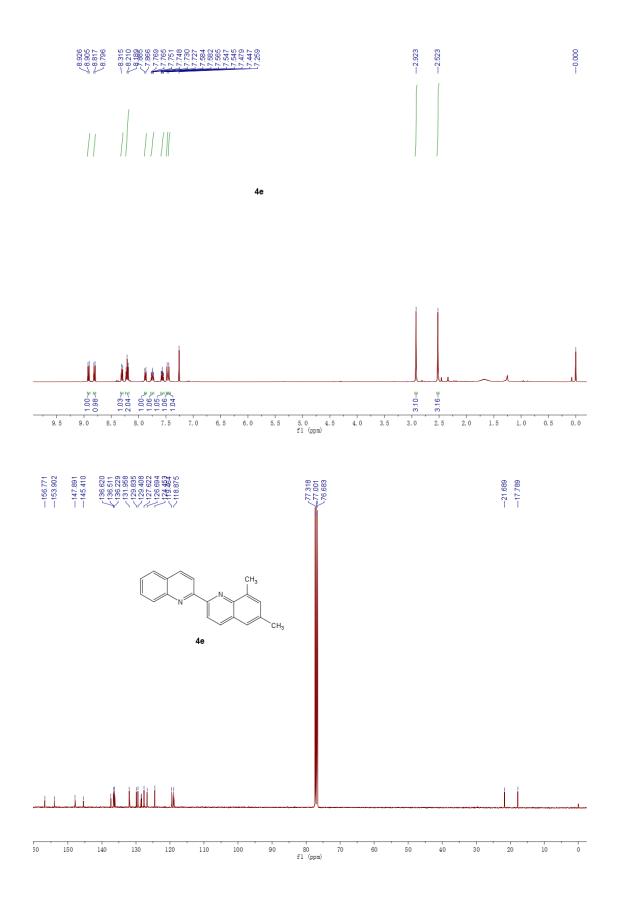
¹H NMR (400 MHz, CDCl₃, ppm) δ 7.28-7.24 (m, 4H), 7.07 (d, *J* = 8.4 Hz, 4H), 6.92 (td, *J* = 7.2 Hz, 0.8 Hz, 4H), 5.68 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.1, 129.3, 120.9, 117.7; HRMS (maldi, m/z): calcd. for C₁₂H₁₂N [M+H]⁺ 170.0964, found 170.0972. The experimental data of **Y** matched with those reported in the literature.¹

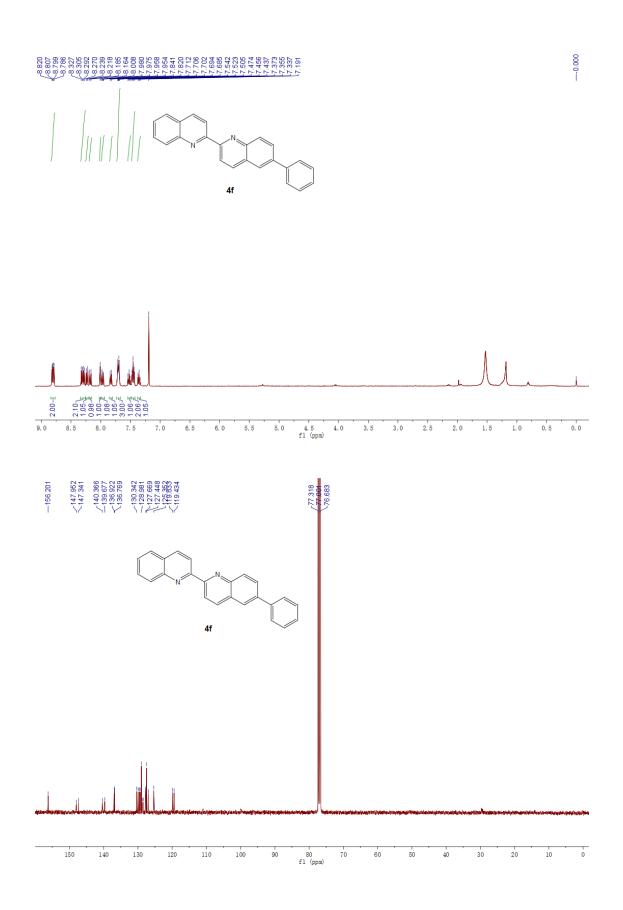

7. References

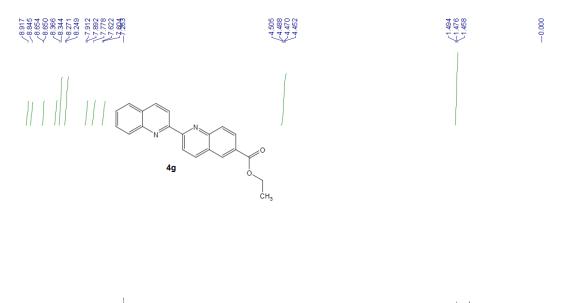

- [1] Y. Xie, S. Liu, Y. Liu, Y. Wen, and G.-J. Deng, Org. Lett., 2012, 14, 1692-1695.
- [2] W. Ma, J. Zhang, C. Xu, F. Chen, Y.-M. He, Q.-H. Fan, Angew. Chem. 2016, 128, 20/55

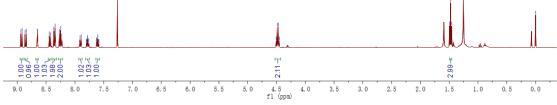

13083-13086,4; Angew. Chem. Int. Ed. 2016, 55, 12891-12894.

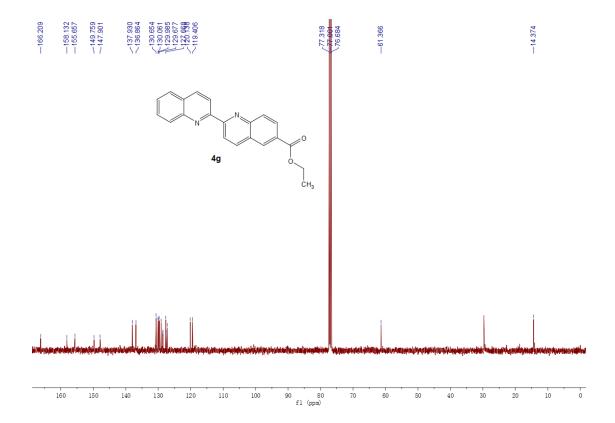

[3] W.-W. Xie, Y. Liu, R. Yuan, D. Zhao, T.-Z. Yu, J. Zhang, and C.-S. Da, *Adv. Synth. Catal.* 2016, 358, 994-1002.

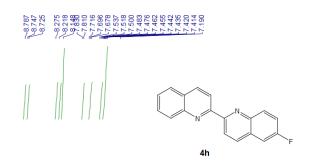

8. Copies of ¹H and ¹³C NMR spectra of all products

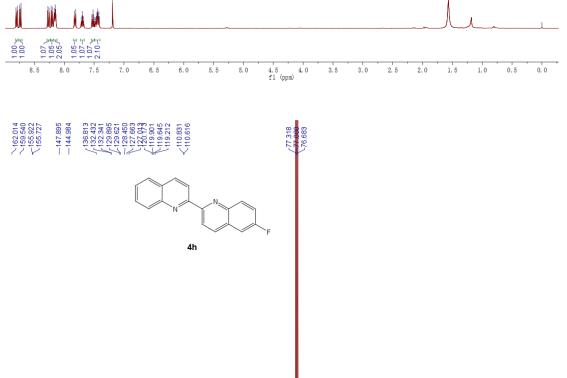


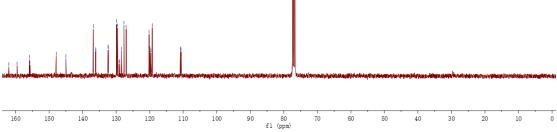


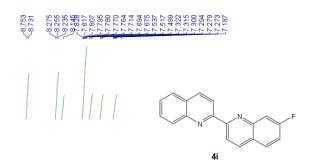


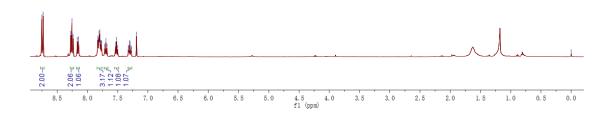


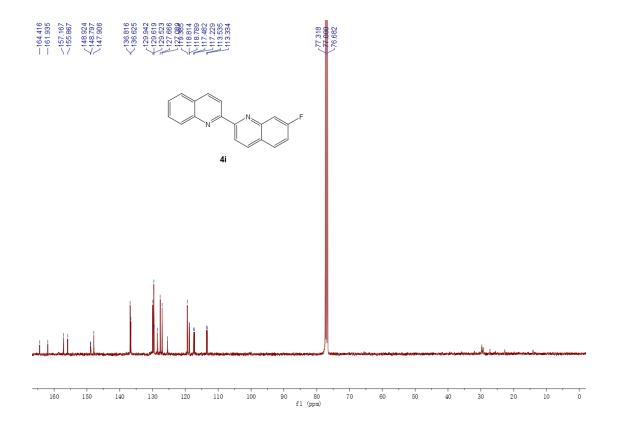




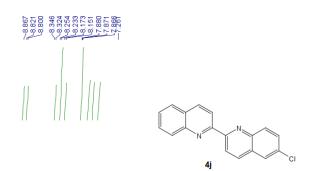


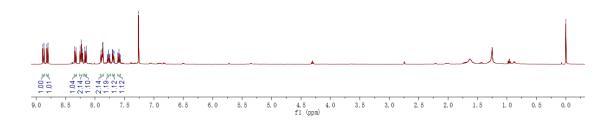


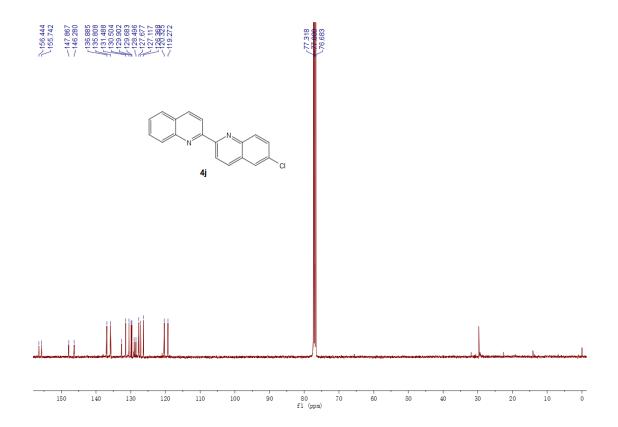


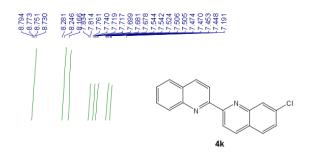


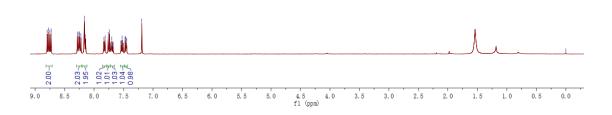
0.000

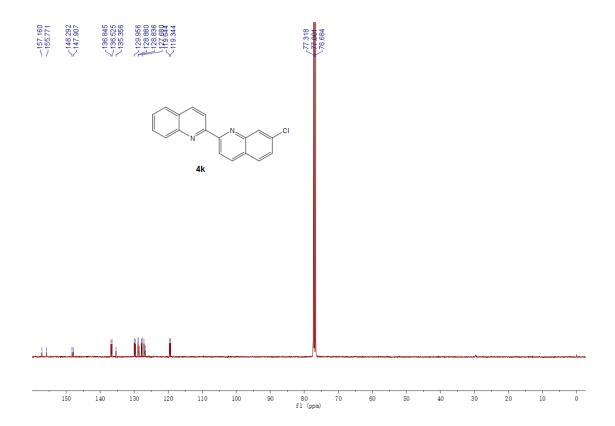

29 / 55

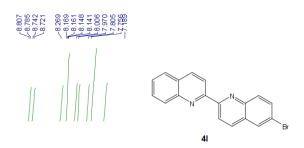


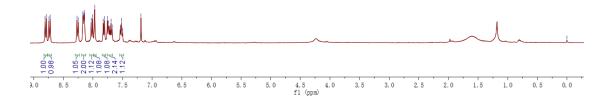


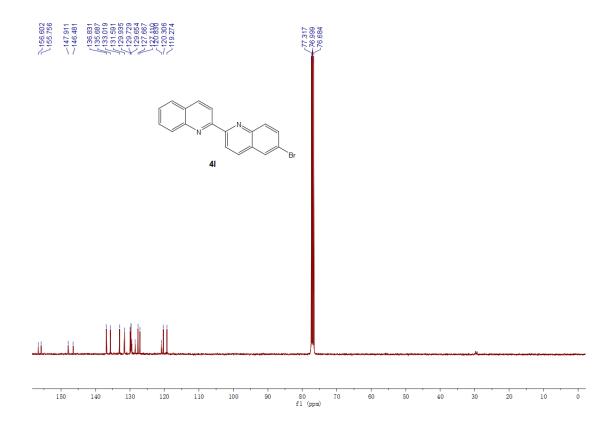


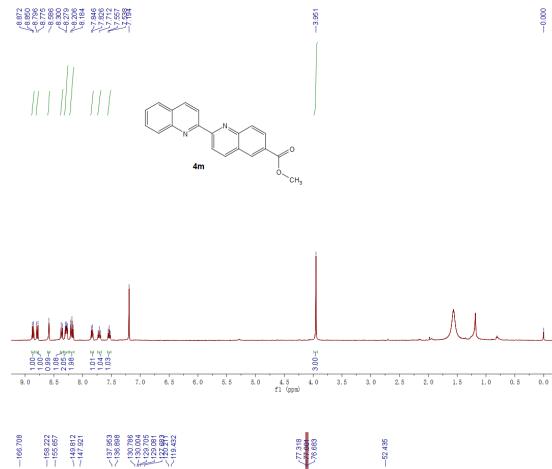

000.0-----

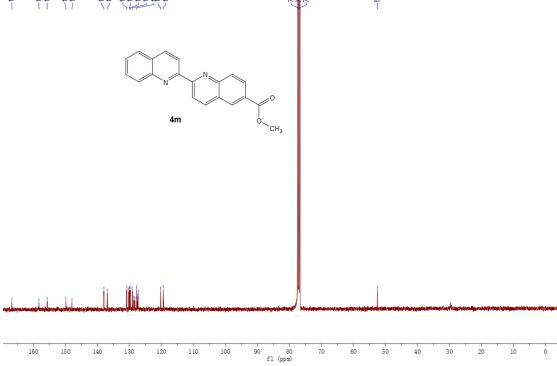


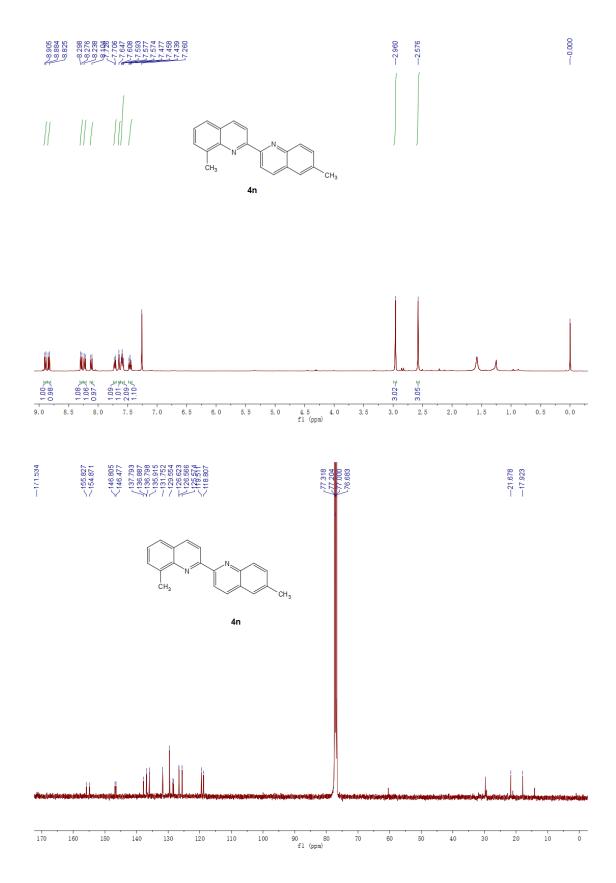


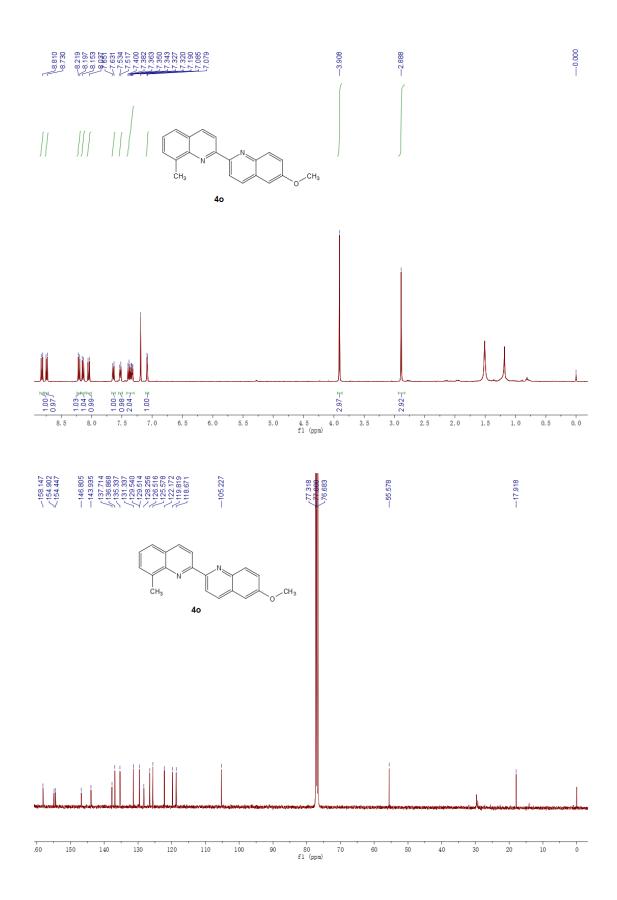


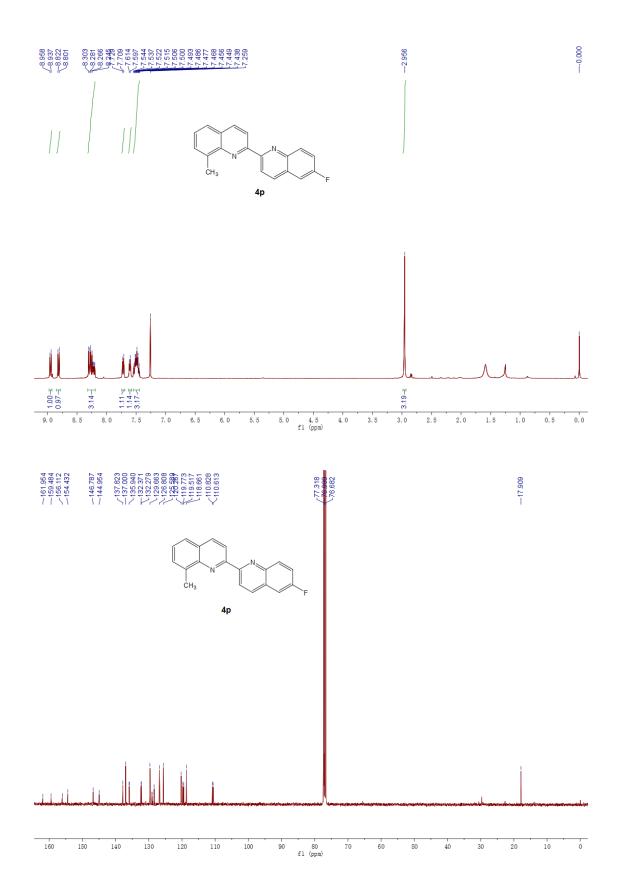


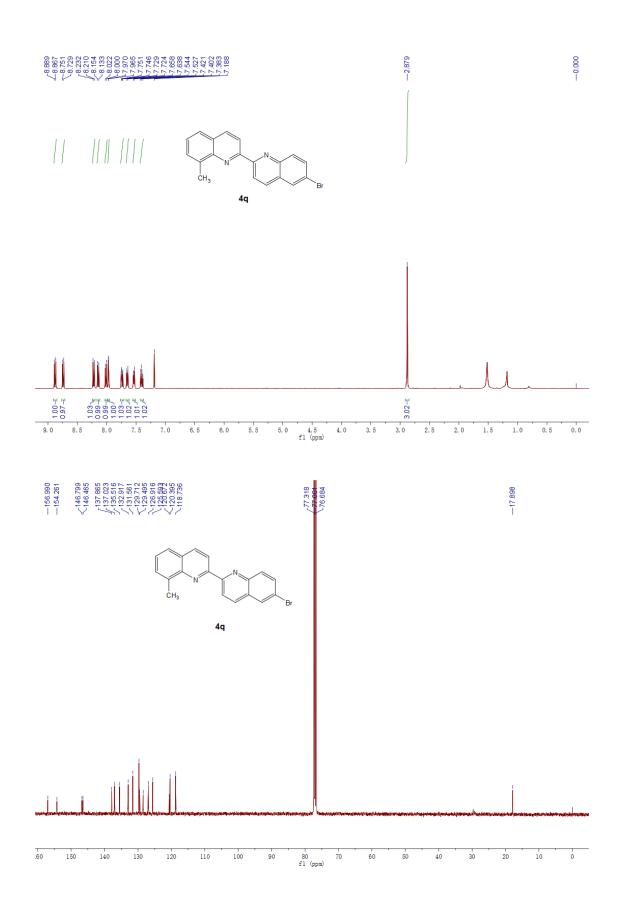

0.000.0----

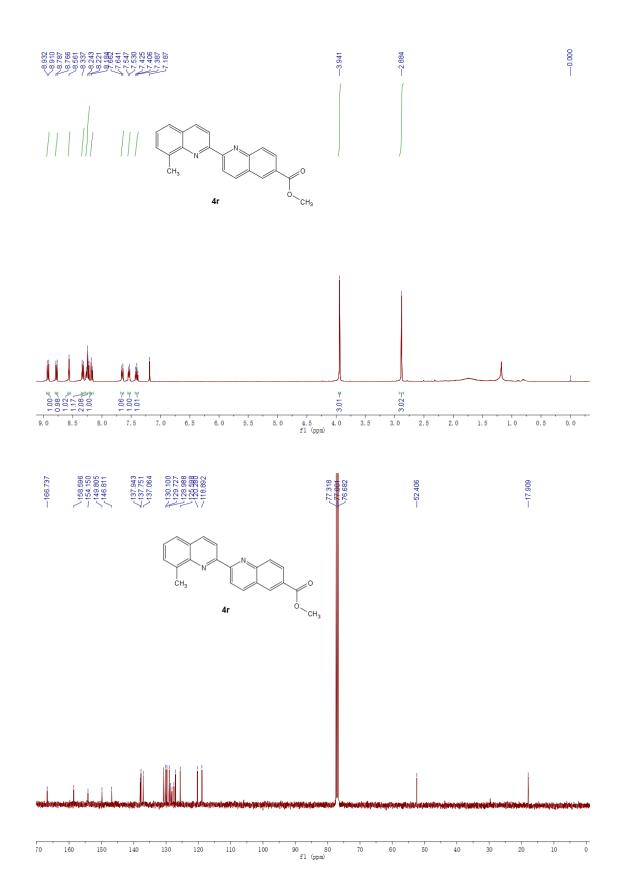


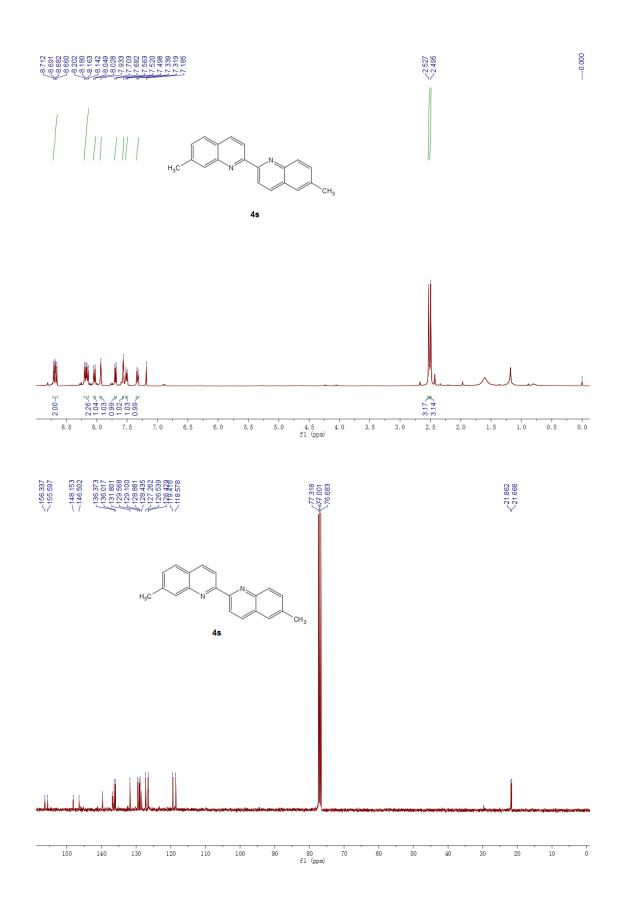


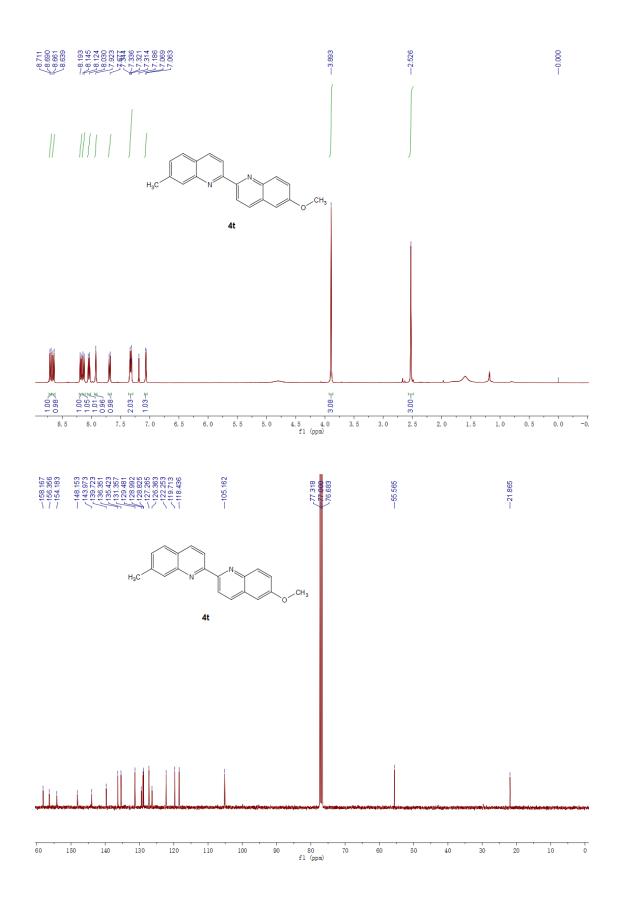

000.0---

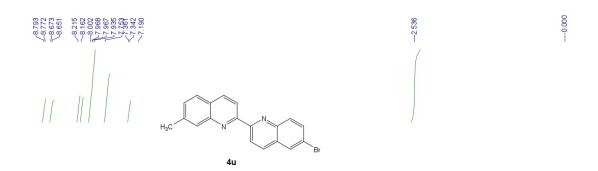


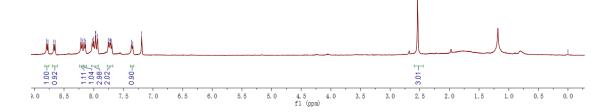


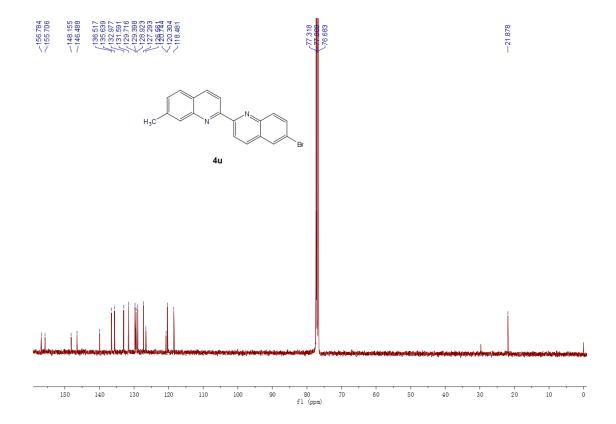


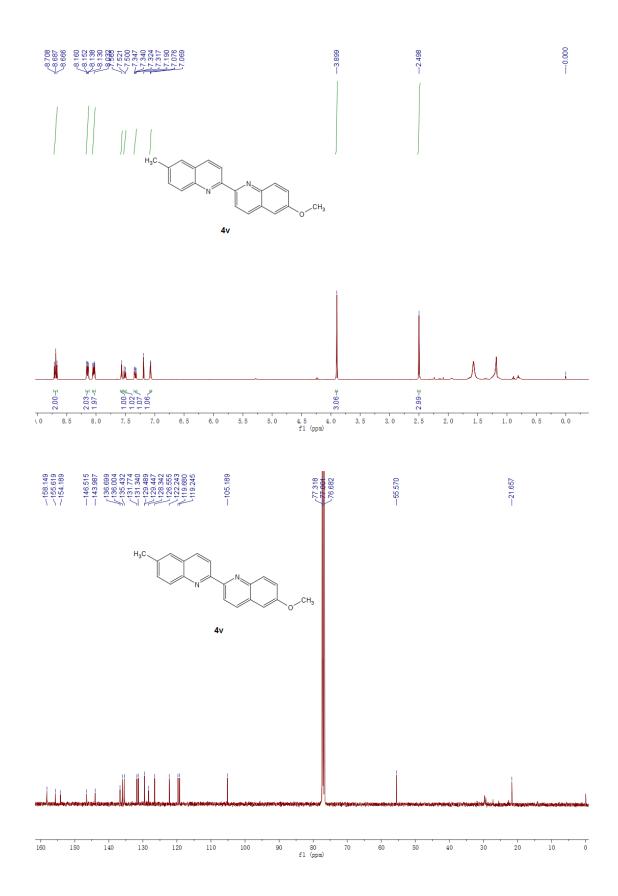


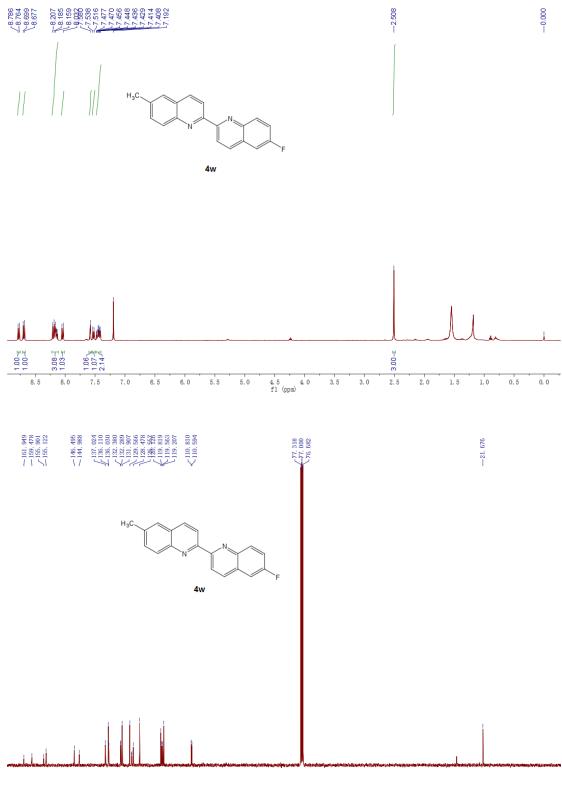

37 / 55

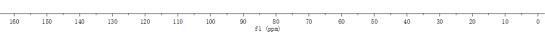


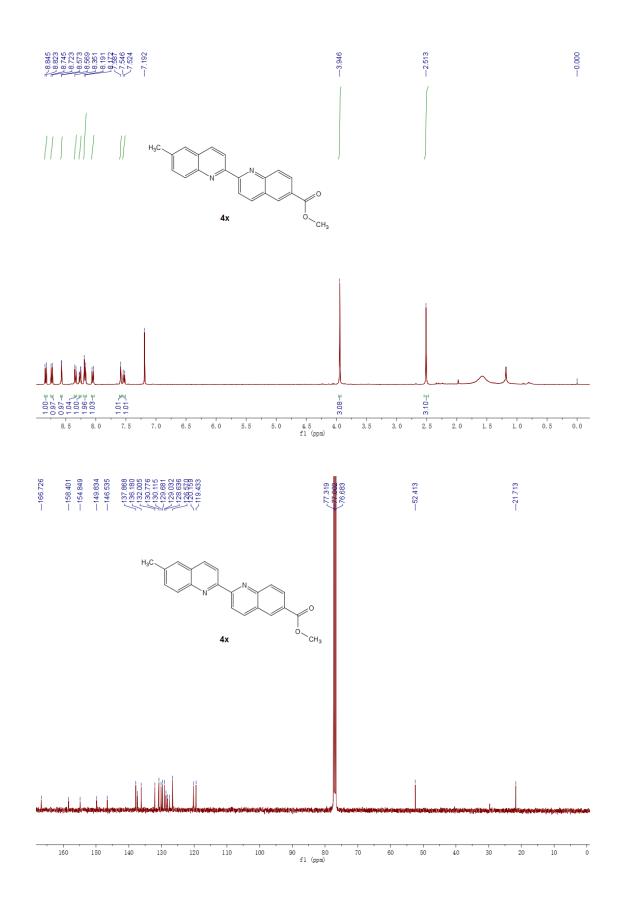


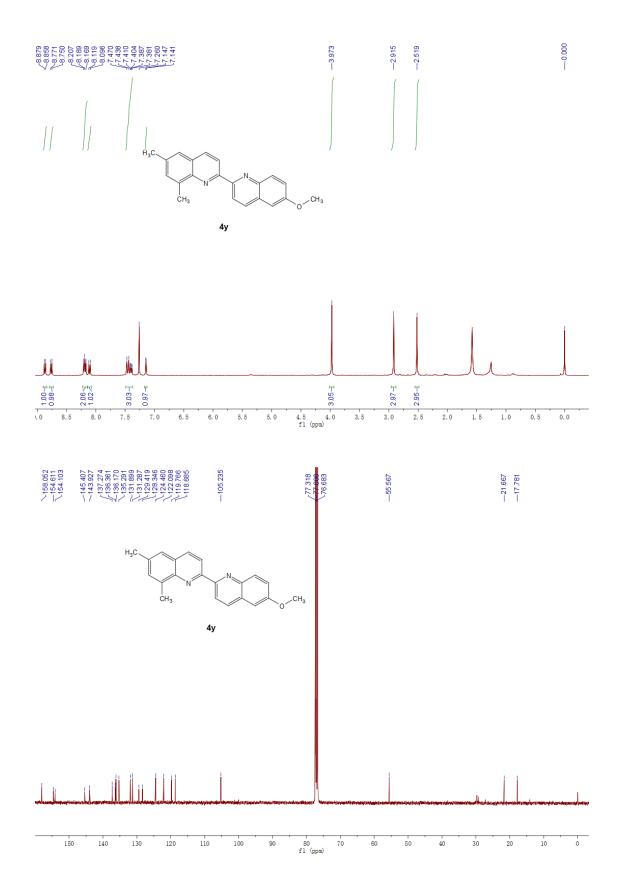

39 / 55

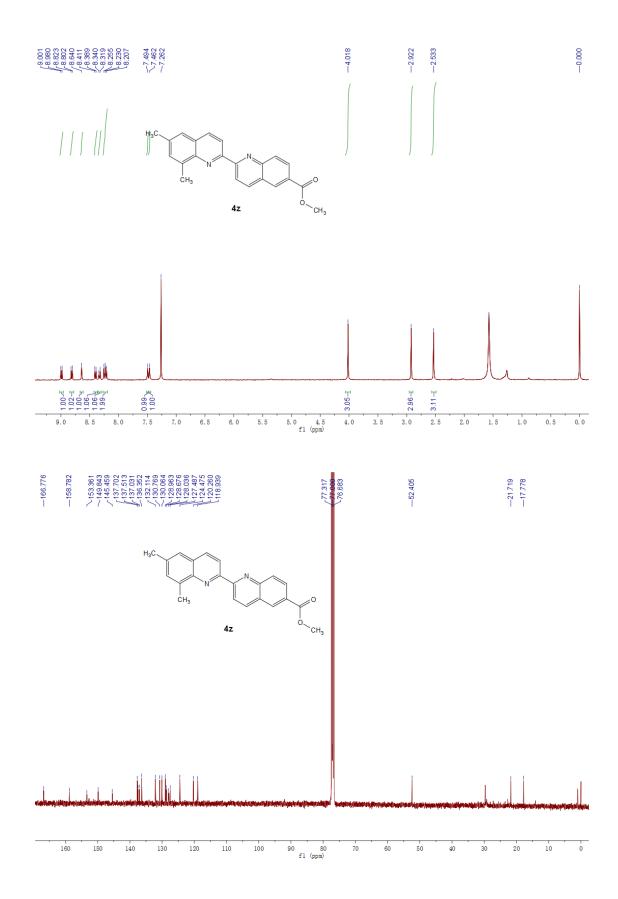


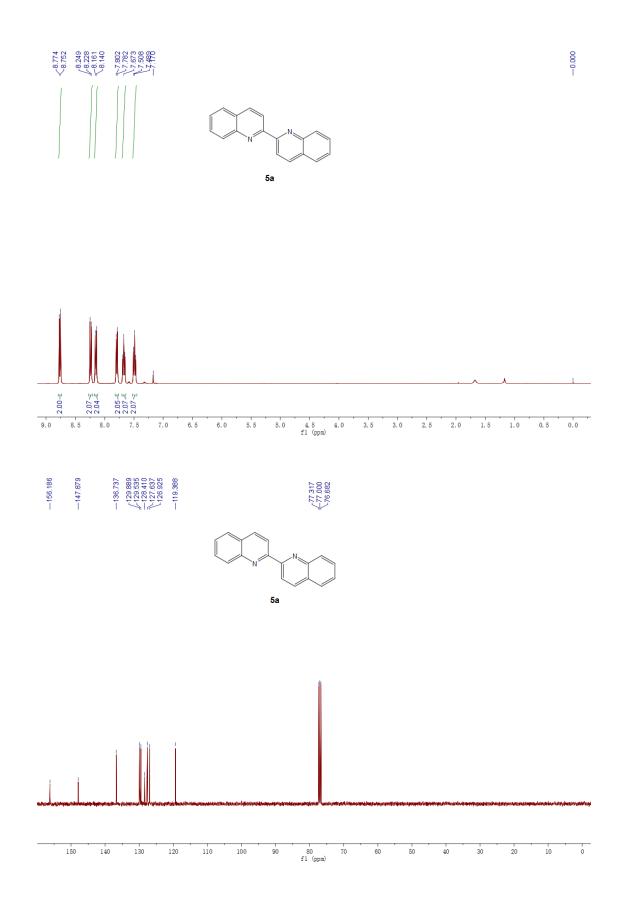


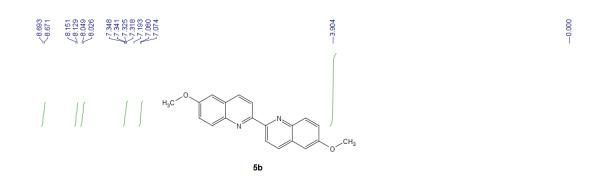


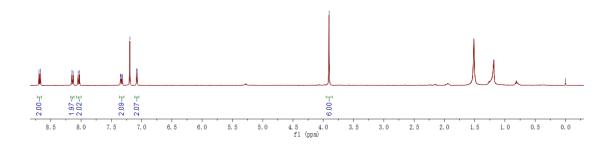


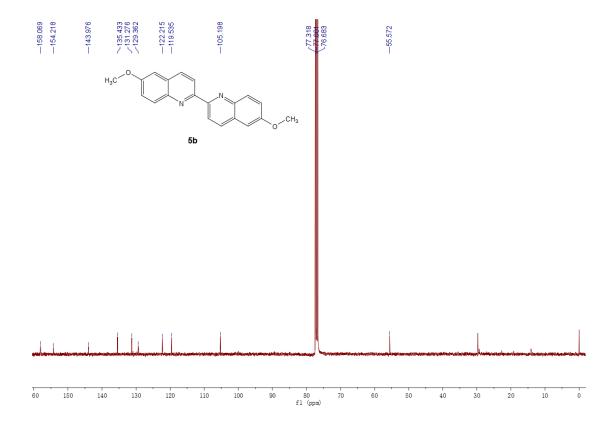


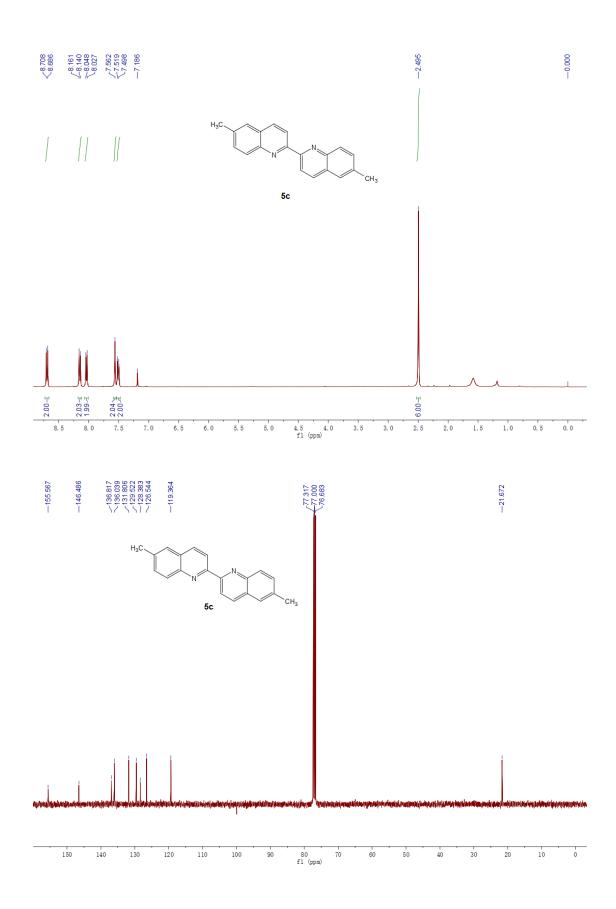


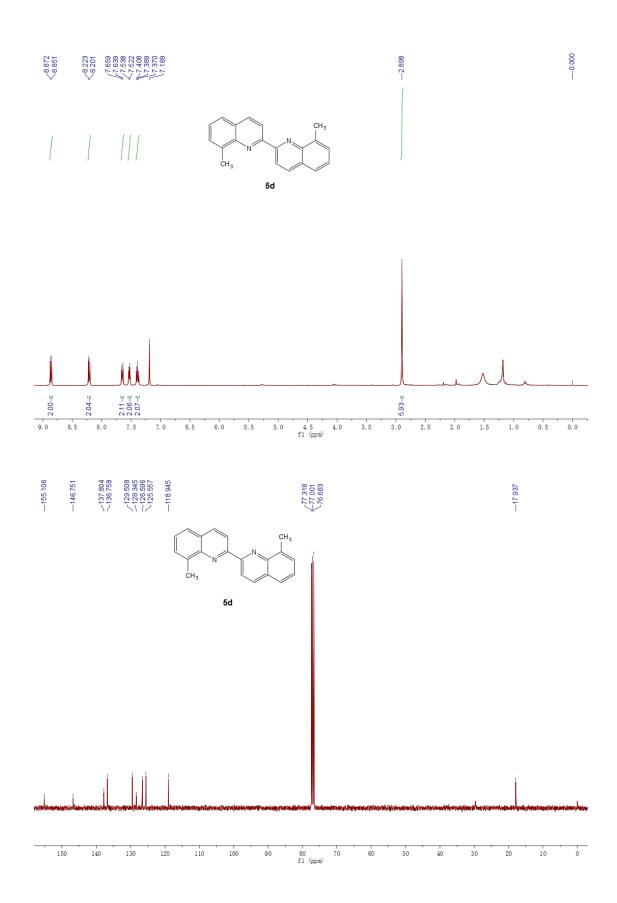


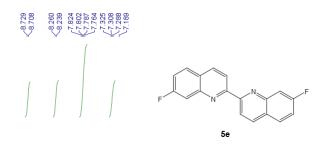


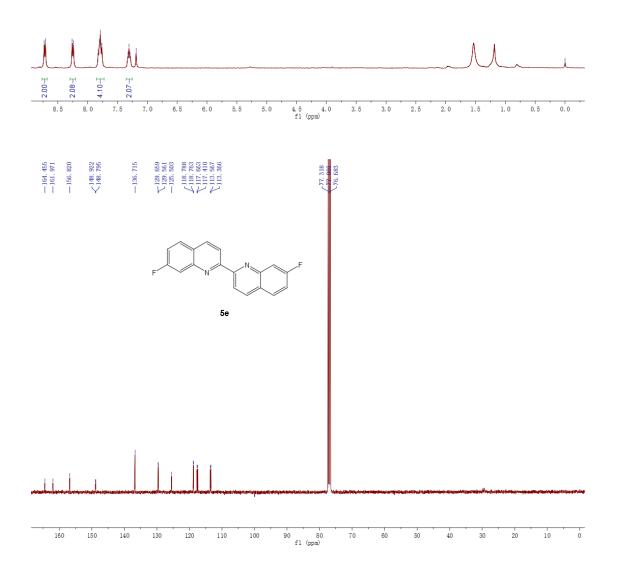


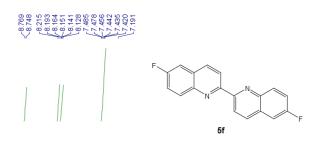


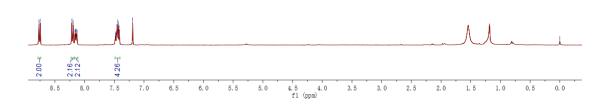


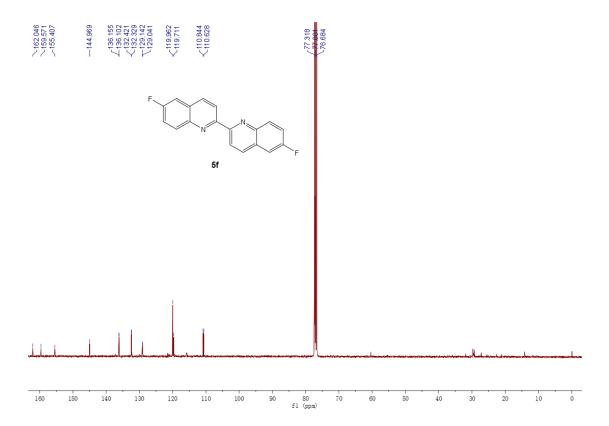


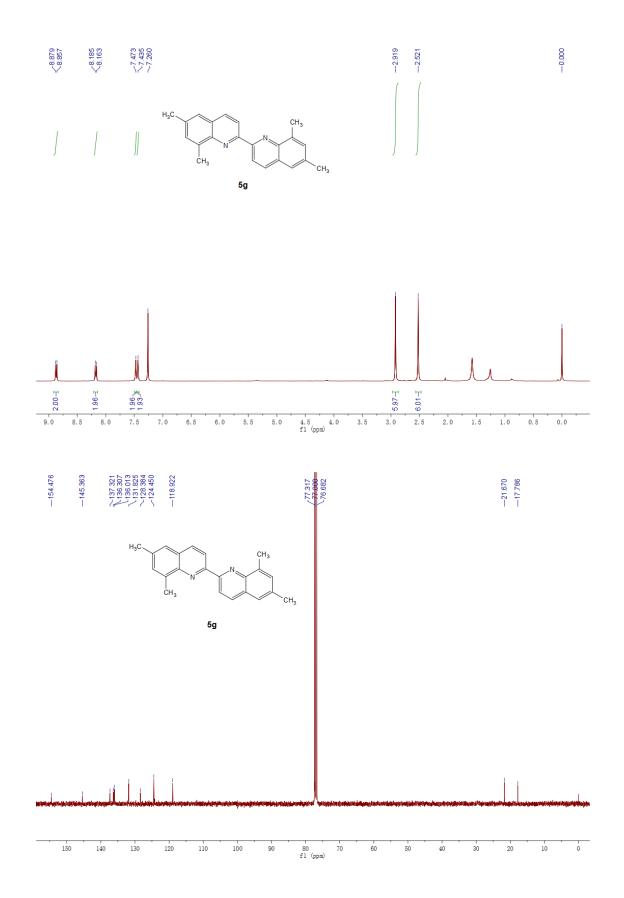


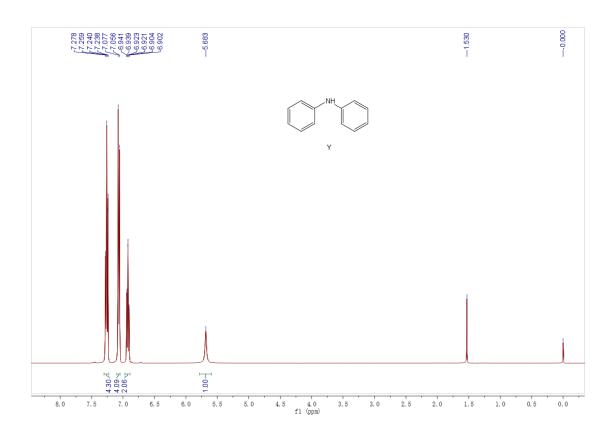











0.00.0-----

