Electronic Supplementary Information for Brønsted Acid-Catalyzed Solvent-Controlled Regioselective Thiolation of 2-Furylcarbinols

Chunyu Zhang, Tianyu Lin, Qing Liu, Rui Hu and Weidong Rao*

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest

Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing,

210037, China

*Corresponding author, Email: weidong@njfu.edu.cn

Table of Contents

	Page
1. General information	S1
2. Preparation and characterization of the starting materials	S2
3. General procedure for the C5-selective thiolation of 2-furylcarbinols	<mark>S10</mark>
4. General procedure for the synthesis of lactone-based sulfides	<mark>S26</mark>
5. Gram-scale synthesis and further transformations	<mark>S59</mark>
6. Control experiments 3aa and 4aa	<mark>S62</mark>
7. ¹ H, ¹³ C and ¹⁹ F NMR spectra	<mark>S64</mark>
8. IR Spectra of 5aa , 5aa' , ¹⁸ O- 5aa , and ¹⁸ O- 5aa'	<mark>S225</mark>
9. X-Ray crystal structure of 4jf, 5bf and 5bf	<mark>S227</mark>
10. References	<mark>S233</mark>

1. General information

1,2-dichloroethane, acetonitrile, and all thiols were purchased from commercial sources and used directly without further purification. An oil bath was used as the heating source for reactions that required heating. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and gradient solvent system (Petroleum ether: EtOAc as eluent). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded in CDCl₃ or DMSO- d_6 on a 400 or 600 MHz NMR spectrometer. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are shown as the abbreviations: s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet), or m (multiplet). The number of protons (*n*) for a given resonance is indicated by *n*H and coupling constants are reported as a *J* value in Hz. High resolution mass spectra (HRMS) were obtained on a LC/HRMS TOF spectrometer using simultaneous electrospray (ESI). Melting points were determined using a digital melting point apparatus.

2. Preparation and characterization of starting materials

2.1. Synthesis of 2-furylcarbinols

Scheme S1. 2-furylcarbinols used in this work are listed.

2-furylcarbinols **1a**,^{S1} **1b**,^{S1} **1r**,^{S2} **1s**,^{S3} **1t**,^{S4} **1u**,^{S4} **1v**^{S2} and **1w**^{S5} are known compounds and prepared according to the literature procedures. 2-furylcarbinol **1c** used in this work as shown in Scheme S1 was prepared according to the general procedure A. Perfluoroalkylated 2-furyl(3-indolyl)methanols **1d-1q** used in this work as shown in Scheme S1 were prepared according to the general procedure B. **General procedure A for the preparation of starting materials 1c**:

To a solution of 2-furylcarbinols **1a^{S1}** (1 mmol, 1 equiv), tetrabutylammonium hydrogen sulfate (TBAHS) (0.1 mmol, 0.1 equiv), and sodium hydroxide (3 mmol, 3 equiv) in DCM (10 mL), was added 2,4,6-Triisopropylbenzenesulfonyl chloride (1.5 mmol, 1.5 equiv) at room temperature. The resulting mixture was stirred at room temperature for 1 h until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated brine solution and extracted with DCM (10 mL x 2), the combined organic layers were dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford **1c**. **General procedure B for the preparation of starting materials 1d-1p:**

To a solution of indole or its derivatives **S1** (3 mmol, 1 equiv) and perfluoroalkyl ketones **S2** (3.3 mmol, 1.1 equiv) in anhydrous CH₃CN (3 mL) was added Cs₂CO₃ (0.6 mmol, 0.2 equiv). The reaction mixture was stirred at room temperature for appropriate time until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated brine and extracted with EtOAc twice, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica to afford **1d-1p**.

2,2,2-trifluoro-1-(furan-2-yl)-1-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1*H*-indol-<mark>3-yl)ethan-1-ol (1c)</mark>

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford 1c in 90% yield (492.9 mg, 1 mmol scale); colorless solid, mp 133–135 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (s, 1H), 7.44–7.43 (m, 2H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.21 (s, 2H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.54 (d, *J* = 3.2 Hz, 1H), 6.42 (dd, *J* = 3.2,

1.8 Hz, 1H), 4.21–4.12 (m, 2H), 3.33 (s, 1H), 2.95–2.89 (m, 1H), 1.26 (d, J = 6.9 Hz, 6H), 1.16 (d, J = 6.9 Hz, 6H), 1.15 (d, J = 6.9 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 154.9, 151.5, 149.4, 143.5, 135.1, 131.1, 127.4, 125.6, 124.3, 124.2 (q, J = 286.0 Hz), 122.8, 121.6, 115.7, 112.3, 110.7, 110.4, 74.0 (q, J = 32.1 Hz), 34.2, 29.5, 24.4, 24.3, 23.4; ¹⁹FNMR (376 MHz, CDCl₃) δ -77.34 (s, 3F); HRMS (ESI) calcd for C₂₉H₃₃F₃NO₄S [M+H]⁺: 548.2077, found: 548.2058.

2,2,2-trifluoro-1-(4-fluoro-1*H*-indol-3-yl)-1-(furan-2-yl)ethan-1-ol (1d)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1d** in 91% yield (272.3 mg, 1 mmol scale); yellow solid, mp 87–89 °C; **¹H NMR (600 MHz, CDCl**₃) δ 8.51 (s, 1H), 7.46 (s, 1H), 7.24 (s, 1H), 7.21–7.10 (m, 2H), 6.81 (dd, *J* = 12.0, 7.7 Hz, 1H), 6.42 (d, *J* = 8.4 Hz, 2H), 4.07 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 155.4 (d, *J* = 244.1 Hz), 150.6, 143.1, 139.0 (d, *J* = 11.0 Hz), 124.6, 124.4 (q, *J* = 286.0 Hz), 123.4 (d, *J* = 8.6 Hz), 114.0 (d, *J* = 19.8 Hz), 110.7 (d, *J* = 4.1 Hz), 110.7, 110.1, 107.9 (d, *J* = 3.5 Hz), 106.1 (d, *J* = 22.1 Hz), 73.9 (q, *J* = 31.6 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -77.18 (d, *J* = 6.1 Hz, 3F), -115.33 – -115.44 (m, 1F); HRMS (ESI) calcd for C₁₄H₁₀F₄NO₂ [M+H]⁺: 300.0642, found: 300.0655.

2,2,2-trifluoro-1-(furan-2-yl)-1-(5-methyl-1*H*-indol-3-yl)ethan-1-ol (1e)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1e** in 96% yield (425.2 mg, 1.5 mmol scale); yelllow solid, mp: 70–72 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.17 (s, 1H), 7.49–7.45 (m, 1H), 7.2–7.23 (m, 3H), 7.04 (dd, *J* = 8.3, 0.6 Hz, 1H), 6.52 (d, *J* = 3.3 Hz, 1H), 6.43 (dd, *J* = 3.3, 1.8 Hz, 1H), 3.26 (s, 1H), 2.39 (s, 3H); **¹³C NMR (150 MHz, CDCl₃)** δ 150.5, 143.2, 134.6, 129.7, 125.5, 124.6 (q, *J* = 286.8)

Hz), 124.3, 124.2, 120.3, 111.0, 110.5, 110.2, 74.4 (q, *J* = 31.4 Hz), 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -77.35 (s, 3F); HRMS (ESI) calcd for C₁₅H₁₂F₃NNaO₂ [M+Na]⁺: 318.0712, found: 318.0698.

1-(5-chloro-1*H*-indol-3-yl)-2,2,2-trifluoro-1-(furan-2-yl)ethan-1-ol (1f)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **If** in 94% yield (445.1 mg, 1.5 mmol scale); yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 7.49–7.43 (m, 2H), 7.37 (d, *J* = 2.6 Hz, 1H), 7.29 (d, *J* = 8.7 Hz, 1H), 7.16 (dd, *J* = 8.7, 2.0 Hz, 1H), 6.52 (d, *J* = 3.3 Hz, 1H), 6.44 (dd, *J* = 3.4, 1.8 Hz, 1H), 3.22 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 149.9, 143.4, 134.6, 126.2, 126.0, 125.7, 124.5 (q, *J* = 285.6 Hz), 122.8, 120.1, 112.4, 111.0, 110.7, 110.3, 74.1 (q, *J* = 31.7 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -77.40 (s, 3F); HRMS (ESI) calcd for C₁₄H₉ClF₃NNaO₂ [M+Na]⁺: 338.0166, found: 338.0185.

2,2,2-trifluoro-1-(furan-2-yl)-1-(5-iodo-1*H*-indol-3-yl)ethan-1-ol (1g)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1g** in 96% yield (394 mg, 1.3 mmol scale); yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.34 (s, 1H), 7.84 (s, 1H), 7.49–7.42 (m, 2H), 7.27 (d, *J* = 2.4 Hz, 1H), 7.13 (d, *J* = 8.6 Hz, 1H), 6.50 (d, *J* = 3.3 Hz, 1H), 6.44 (dd, *J* = 3.2, 1.8 Hz, 1H), 3.27 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 150.0, 143.4, 135.3, 131.0, 129.7, 127.8, 125.0, 124.5 (q, *J* = 286.2 Hz), 113.2, 111.0, 110.7, 110.3, 84.2, 74.2 (q, *J* = 31.5 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -77.53 (s, 3F); HRMS (ESI) calcd for C₁₄H₁₀ClF₃NO₂ [M+H]⁺: 316.0347, found: 316.0327.

2,2,2-trifluoro-1-(furan-2-yl)-1-(5-nitro-1*H*-indol-3-yl)ethan-1-ol (1h)

Column chromatography (petroleum ether/EtOAc = 12:1 to 5:1) to afford **1h** in 78% yield (381.7 mg, 1.5 mmol scale); yellow solid, mp 120–122 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.03 (s, 1H), 8.48 (s, 1H), 8.08 (dd, *J* = 9.0, 1.9 Hz, 1H), 7.51 (s, 1H), 7.46 (s, 1H), 7.43 (d, *J* = 9.0 Hz, 1H), 6.55 (d, *J* = 3.2 Hz, 1H), 6.48–6.41 (m, 1H), 3.57 (s, 1H); ¹³C NMR (**150 MHz, CDCl₃**) δ 149.7, 143.6, 142.2, 139.3, 127.5, 124.9, 124.4 (q, *J* = 286.0 Hz), 118.4, 118.1, 114.0, 111.6, 110.8, 110.4, 74.1 (q, *J* = 32.1 Hz); ¹⁹F NMR (**565 MHz, CDCl₃**) δ -77.74 (s, 3F); **HRMS (ESI)** calcd for C₁₄H₁₀F₃N₂O₄ [M+H]⁺: 327.0587, found: 327.0560.

Methyl 3-(2,2,2-trifluoro-1-(furan-2-yl)-1-hydroxyethyl)-1*H*-indole-5-carboxylate
(1)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1i** in 83% yield (422.4 mg, 1.5 mmol scale); colorless solid, mp 209–211 °C; **¹H NMR (600 MHz, DMSO-***d*₆) δ 11.68 (s, 1H), 8.16 (s, 1H), 7.77–7.70 (m, 2H), 7.50 (d, *J* = 8.6 Hz, 1H), 7.47 (d, *J* = 2.3 Hz, 1H), 7.39 (s, 1H), 6.60–6.52 (m, 2H), 3.82 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 167.6, 152.0, 143.9, 139.4, 127.2, 125.6, 125.6 (q, *J* = 288.0 Hz), 123.9, 122.7, 121.1, 113.2, 112.2, 111.0, 109.8, 73.7 (q, *J* = 32.1 Hz), 52.2; ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -77.28 (s, 3F); HRMS (ESI) calcd for C₁₆H₁₂F₃NNaO₄ [M+Na]⁺: 362.0611, found: 362.0623.

2,2,2-trifluoro-1-(6-fluoro-1*H*-indol-3-yl)-1-(furan-2-yl)ethan-1-ol (1j)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1j** in 95% yield (284.3 mg, 1 mmol scale); pale-yellow solid, mp 79–81 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.29 (s, 1H), 7.46 (s, 1H), 7.38 (dd, *J* = 8.7, 5.4 Hz, 1H), 7.29 (s, 1H), 7.01 (dd, *J* = 9.2, 2.3 Hz, 1H), 6.85 (td, *J* = 9.4, 2.0 Hz, 1H), 6.52 (d, *J* = 2.9 Hz, 1H), 6.46–6.40 (m, 1H), 3.31 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 156.0 (d, *J* = 239.0 Hz), 150.2, 143.3, 136.3 (d, *J* = 12.3 Hz), 124.6, 124.5 (q, *J* = 286.4 Hz), 121.9, 121.7 (d, *J* = 9.5 Hz), 111.7, 110.6, 110.2, 109.3 (d, *J* = 24.3 Hz), 97.5 (d, *J* = 26.0 Hz), 74.2 (q, *J* = 31.9 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -77.49 (d, *J* = 5.2 Hz, 3F), -120.23 – 120.31 (m, 1F); HRMS (ESI) calcd for C₁₄H₁₀F₄NO₂ [M+H]⁺: 300.0642, found: 300.0630.

1-(6-bromo-1*H*-indol-3-yl)-2,2,2-trifluoro-1-(furan-2-yl)ethan-1-ol (1k)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1k** in 88% yield (380.3 mg, 1.2 mmol scale); yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.33 (s, 1H), 7.45 (s, 2H), 7.30 (d, *J* = 8.6 Hz, 1H), 7.26 (d, *J* = 2.5 Hz, 1H), 7.17 (dd, *J* = 8.6, 1.6 Hz, 1H), 6.51 (d, *J* = 3.2 Hz, 1H), 6.43 (dd, *J* = 3.2, 1.8 Hz, 1H), 3.39 (s, 1H); ¹³C **NMR (150 MHz, CDCl₃)** δ 150.1, 143.4, 137.0, 124.9, 124.5 (q, *J* = 286.1 Hz), 124.2, 123.7, 122.0, 116.1, 114.3, 111.7, 110.6, 110.3, 74.1 (q, *J* = 32.0 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -77.47 (s, 3F); HRMS (ESI) calcd for C₁₄H₉BrF₃NNaO₂ [M+Na]⁺: 381.9661, found: 381.9677.

Methyl 3-(2,2,2-trifluoro-1-(furan-2-yl)-1-hydroxyethyl)-1*H*-indole-6-carboxylate

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **11** in 81% yield (274.8 mg, 1 mmol scale); white solid, mp 156–158 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.71 (s, 1H), 8.09 (s, 1H), 7.71 (s, 1H), 7.63 (d, *J* = 1.7 Hz, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.37 (d, *J* = 8.6 Hz, 2H), 6.58 (d, *J* = 3.0 Hz, 1H), 6.54 (s, 1H), 3.85 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 167.5, 152.1, 143.9, 136.1, 129.5, 129.2, 125.6 (q, *J* = 287.3 Hz), 122.8, 120.6, 120.1, 114.2, 112.5, 110.9, 109.8, 73.6 (q, *J* = 30.9 Hz), 52.3; ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -76.30 (s, 3F); HRMS (ESI) calcd for C₁₆H₁₂F₃NNaO₄ [M+Na]⁺: 362.0611, found: 362.0629.

1-(5,6-dichloro-1*H*-indol-3-yl)-2,2,2-trifluoro-1-(furan-2-yl)ethan-1-ol (1m)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **Im** in 88% yield (400.5 mg, 1.3 mmol scale); pale-yellow solid, mp 110–112 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.35 (s, 1H), 7.57 (s, 1H), 7.47 (s, 1H), 7.42 (s, 1H), 7.32 (d, *J* = 2.4 Hz, 1H), 6.50 (d, *J* = 3.3 Hz, 1H), 6.44 (dd, *J* = 3.2, 1.8 Hz, 1H), 3.33 (s, 1H); ¹³C NMR (**150 MHz, CDCl₃**) δ 149.8, 143.5, 135.0, 126.6, 126.1, 125.0, 124.6, 124.4 (q, *J* = 286.1 Hz), 121.9, 112.7, 111.4, 110.8, 110.4, 74.1 (q, *J* = 32.0 Hz); ¹⁹F NMR (**565 MHz, CDCl₃**) δ -77.64 (s, 3F); **HRMS (ESI)** calcd for C₁₄H₉C₁₂F₃NO₂ [M+H]⁺: 349.9957, found: 349.9975.

2,2,2-trifluoro-1-(furan-2-yl)-1-(7-methyl-1*H*-indol-3-yl)ethan-1-ol (1n)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford $\frac{1n}{1n}$ in 96% yield (340.1 mg, 1.2 mmol scale); yellow solid, mp: 71–73 °C; ¹H NMR (600 MHz,

CDCl₃) δ 8.22 (s, 1H), 7.45 (s, 1H), 7.36 (d, J = 2.3 Hz, 1H), 7.32–7.27 (m, 1H), 7.05– 6.99 (m, 2H), 6.54 (d, J = 3.3 Hz, 1H), 6.43 (dd, J = 3.1, 1.8 Hz, 1H), 3.24 (s, 1H), 2.48 (s, 3H); ¹³**C NMR (150 MHz, CDCl**₃) δ 150.5, 143.2, 135.9, 124.8, 123.9, 123.0, 120.6, 120.5, 118.4, 112.1, 110.5, 110.2, 16.5; ¹⁹**F NMR (565 MHz, CDCl**₃) δ -77.37 (s, 3F); **HRMS (ESI)** calcd for C₁₅H₁₂F₃NNaO₂ [M+Na]⁺: 318.0712, found: 318.0721. **1-(7-chloro-1***H***-indol-3-yl)-2,2,2-trifluoro-1-(furan-2-yl)ethan-1-ol (10)**

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **10** in 91% yield (430.9 mg, 1.5 mmol scale); yellow solid, mp 84–86 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.54 (s, 1H), 7.46 (d, *J* = 1.0 Hz, 1H), 7.42 (d, *J* = 2.4 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.9 Hz, 1H), 6.53 (d, *J* = 3.3 Hz, 1H), 6.43 (dd, *J* = 3.3, 1.8 Hz, 1H), 3.27 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 150.2, 143.4, 133.6, 126.7, 124.9, 124.5 (q, *J* = 286.1 Hz), 121.9, 121.2, 119.5, 116.7, 112.9, 110.6, 110.3, 74.3 (q, *J* = 28.1 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -77.53 (s, 3F); HRMS (ESI) calcd for C₁₄H₉ClF₃NNaO₂ [M+Na]⁺: 338.0166, found: 338.0183.

2,2,3,3,3-pentafluoro-1-(furan-2-yl)-1-(1*H*-indol-3-yl)propan-1-ol (1p)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1p** in 93% yield (616.1 mg, 2 mmol scale); light-green solid, mp: 69–71 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.26 (s, 1H), 7.57 (d, *J* = 8.1 Hz, 1H), 7.45 (s, 1H), 7.42 (s, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.57 (d, *J* = 3.0 Hz, 1H), 6.42 (s, 1H), 3.30 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 150.6, 143.1, 136.3, 125.3, 124.4, 122.5, 120.9 (d, *J* = 3.2 Hz), 120.4, 111.8, 111.3, 110.6, 110.2, 74.6 (q, *J* = 26.1 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -78.50 (s, 3F), -118.55 (d, *J* = 276.9 Hz, 1F), -

119.17 (d, *J* = 276.9 Hz, 1F); **HRMS (ESI)** calcd for C₁₅H₁₁F₅NO₂ [M+H]⁺: 332.0704, found: 332.0717.

2,2,3,3,4,4,4-heptafluoro-1-(furan-2-yl)-1-(1*H*-indol-3-yl)butan-1-ol (1q)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1q** in 90% yield (686.3 mg, 2 mmol scale); yellow oil; ¹H NMR (600 MHz, CDCl₃) 8.28 (s, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.46 (s, 1H), 7.41 (d, J = 2.4 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.55 (d, J = 3.3 Hz, 1H), 6.42 (dd, J = 3.0, 1.7 Hz, 1H), 3.33 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 150.7, 143.1, 136.3, 125.4, 124.5, 122.5, 121.1, 120.4, 111.8, 111.3, 110.6, 110.1, 75.6 (d, J = 28.0 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -80.85 (t, J = 10.9 Hz, 3F), -114.90 – -115.17 (m, 2F), -122.77 (dd, J = 288.5, 4.7 Hz, 1F), -124.12 (dd, J = 288.7, 4.4 Hz, 1F); HRMS (ESI) calcd for C₁₆H₁₁F₇NO₂ [M+H]⁺: 382.0673, found: 382.0689.

3. General procedure for the C5-selective thiolation of 2-furylcarbinols

HO

$$R^{1}$$
 + RSH PTSA (20 mol %)
 R^{2} + RSH CH₃CN, 80 °C, 12 h R^{2} + R^{2

To a solution of 2-furylcarbinol 1 (0.3 mmol) and thiol 2 (0.6 mmol, 2 equiv) in anhydrous CH₃CN was added TsOH·H₂O (11.4 mg, 0.2 equiv.). The reaction mixture was stirred at 80 °C for 12 h until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with EA (10 mL x 2). The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to give the products 4.

3-(1-(dodecylthio)-2,2,2-trifluoro-1-(furan-2-yl)ethyl)-1H-indole (3aa)

Table 1, entry 2 in main text. Column chromatography (petroleum ether/EtOAc = 50:1 to 25:1) to afford **3aa** as colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 8.21 (s, 1H), 7.43 (s, 1H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.53 (d, *J* = 2.9 Hz, 1H), 6.42 (dd, *J* = 3.1, 1.7 Hz, 1H), 2.42–2.31 (m, 2H), 1.41–1.33 (m, 2H), 1.30–1.14 (m, 18H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 149.0, 142.9, 136.1, 126.4 (q, *J* = 283.3 Hz), 125.7, 125.0, 122.5, 121.2, 120.1, 111.2, 110.3, 110.3, 55.7 (q, *J* = 29.8 Hz), 31.9, 30.8, 29.6, 29.6, 29.4, 29.4, 29.1, 28.8, 28.6, 22.7, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -69.42 (s, 3F); HRMS (ESI) calcd for C₂₆H₃₅F₃NOS [M+H]⁺: 466.2386, found: 466.2375.

3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1H-indole (4aa)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **4aa** in 92% yield (128.5 mg); pale-yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.18 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 1.4 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 6.47 (d, J = 3.1 Hz, 1H), 6.35 (d, J = 3.0 Hz, 1H), 5.08 (q, J = 8.8 Hz, 1H), 2.75 (t, J = 7.4 Hz, 2H), 1.61–1.54 (m, 2H), 1.36–1.23 (m, 18H), 0.92 (t, J = 6.9 Hz, 3H); ¹³C NMR (**150** MHz, CDCl₃) δ 151.1, 146.4, 135.8, 126.5, 125.3 (q, J = 280.7 Hz), 124.0, 122.6, 120.2, 118.7, 117.3, 111.3, 110.9, 107.4, 42.0 (q, J = 31.0 Hz), 36.1, 31.9, 29.7, 29.6 (d, J = 1.8 Hz), 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (**565** MHz, CDCl₃) δ -68.47 (d, J = 8.7 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₅F₃NOS [M+H]⁺: 466.2386, found: 466.2396.

3-(2,2,2-trifluoro-1-(5-(phenethylthio)furan-2-yl)ethyl)-1H-indole (4ab)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **4ab** in 96% yield (115.6 mg); pale-yellow solid, mp 73–75 °C; ¹H NMR (**600 MHz, CDCl**₃) δ 8.16 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.34–7.17 (m, 6H), 7.13 (d, *J* = 7.2 Hz, 2H), 6.53 (d, *J* = 3.2 Hz, 1H), 6.41 (d, *J* = 3.0 Hz, 1H), 5.13 (q, *J* = 8.8 Hz, 1H), 3.01 (dd, *J* = 9.0, 6.7 Hz, 1H), 2.88 (dd, *J* = 9.0, 6.7 Hz, 1H); ¹³C NMR (**150 MHz, CDCl**₃) δ 151.3, 145.8, 139.9, 135.8, 128.5, 128.4, 126.4, 126.4, 125.3 (q, *J* = 280.7 Hz), 124.1, 122.6, 120.2, 118.7, 117.7, 111.4, 111.0, 107.1, 42.0 (q, *J* = 30.8 Hz), 37.1, 36.3; ¹⁹F NMR (**565 MHz, CDCl**₃) δ -68.17 (d, *J* = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₂H₁₈F₃NNaOS [M+Na]⁺: 424.0953, found: 424.0966.

Methyl 3-((5-(2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)furan-2-yl)thio)propanoate (4ac)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **4ac** in 83% yield (95.5 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.34 (s, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.31 (s, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.16 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 3.1 Hz, 1H), 6.36 (d, J = 3.0 Hz, 1H), 5.08 (q, J = 8.8 Hz, 1H), 3.68 (s, 3H), 2.97 (t, J = 7.0 Hz, 2H), 2.60 (t, J = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 151.8, 144.9, 135.8, 126.4, 125.2 (q, J = 280.7 Hz), 124.2, 122.5, 120.1, 118.6, 118.6, 111.4, 111.0, 107.0, 51.8, 42.0 (q, J = 30.8 Hz), 34.6, 30.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.35 (d, J = 8.5 Hz, 3F); HRMS (ESI) calcd for C₁₈H₁₇F₃NO₃S [M+H]⁺: 384.0876, found: 384.0885.

3-(1-(5-(cyclohexylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (4ad)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **4ad** in 92% yield (104.7 mg); pale-yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.20 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.32 (d, J = 2.2 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 6.50 (d, J = 3.2 Hz, 1H), 6.36 (d, J = 3.1 Hz, 1H), 5.08 (q, J = 8.9 Hz, 1H), 2.95–2.86 (m, 1H), 1.95–1.85 (m, 2H), 1.78–1.69 (m, 2H), 1.63–1.54 (m, 1H), 1.34–1.23 (m, 4H), 1.20–1.11 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 151.4, 145.3, 135.8, 126.5, 125.3 (q, J = 280.7 Hz), 124.0, 122.5, 120.2, 119.1, 118.7, 111.3, 110.9, 107.3, 48.1, 42.1 (q, J = 30.7 Hz), 33.4, 26.0, 25.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.38 (d, J = 8.8 Hz, 3F); HRMS (ESI) calcd for C₂₀H₂₀F₃NNaOS [M+Na]⁺: 402.1110, found: 402.1123.

3-(1-(5-(adamantan-1-ylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (4ae)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4ae** in 99% yield (128.2 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 1.7 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 6.53 (d, J = 3.1 Hz, 1H), 6.39 (d, J = 3.1 Hz, 1H), 5.09 (q, J = 8.8 Hz, 1H), 2.00 (s, 3H), 1.80 (d, J = 1.8 Hz, 6H), 1.65 (d, J = 12.3 Hz, 3H), 1.58 (d, J = 11.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 151.8, 144.0, 135.8, 126.5, 125.3 (q, J = 281.1 Hz), 124.0, 122.5, 120.9, 120.1, 118.7, 111.3, 110.9, 107.2, 50.0, 43.5, 42.1 (q, J = 30.6 Hz), 36.0, 30.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.27 (d, J = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₄H₂₅F₃NOS [M+H]⁺: 432.1603, found: 432.1615.

3-(2,2,2-trifluoro-1-(5-((4-methoxyphenyl)thio)furan-2-yl)ethyl)-1*H*-indole (4af)

Column chromatography (petroleum ether/EtOAc = 16:1 to 8:1) to afford **4af** in 90% yield (108.9 mg); pale-yellow solid, mp 76–78 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.13 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.28–7.20 (m, 4H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.64 (d, *J* = 3.2 Hz, 1H), 6.43 (d, *J* = 3.2 Hz, 1H), 5.09 (q, *J* = 8.8 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 152.0, 144.9, 135.8, 130.7, 126.4, 125.9, 125.2 (q, *J* = 280.7 Hz), 124.1, 122.5, 120.2, 118.7, 114.7, 111.3, 111.2, 107.0, 55.3, 42.1 (q, *J* = 30.8 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -68.29 (d, *J* = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₇F₃NO₂S [M+H]⁺: 404.0927, found: 404.0941.

3-(2,2,2-trifluoro-1-(5-(p-tolylthio)furan-2-yl)ethyl)-1*H*-indole (4ag)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **4ag** in 93% yield (108.1 mg); pale-yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.15 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.29–7.22 (m, 2H), 7.20–7.13 (m, 1H), 7.09 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 6.72–6.64 (m, 1H), 6.45 (d, J = 3.0 Hz, 1H), 5.09 (q, J = 8.8 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (**150** MHz, CDCl₃) δ 152.32, 143.89, 136.42, 135.78, 132.35, 129.81, 127.89, 126.39, 125.22 (q, J = 280.7 Hz), 124.11, 122.56, 120.22, 119.80, 118.69, 111.35, 111.29, 107.02, 42.09 (q, J = 30.9 Hz), 20.91; ¹⁹F NMR (**565** MHz, CDCl₃) δ -68.35 (d, J = 8.2 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₇F₃NOS [M+H]⁺: 388.0977, found: 388.0957.

3-(1-(5-((4-(tert-butyl)phenyl)thio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (4ah)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4ah** in 86% yield (110.8 mg); pale-yellow solid, mp 116–118 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.31–7.23 (m, 4H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.72 (d, *J* = 3.2 Hz, 1H), 6.49 (d, *J* = 3.2 Hz, 1H), 5.12 (q, *J* = 8.8 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 152.4, 149.6, 143.6, 135.8, 132.6, 127.3, 126.4, 126.1, 125.2 (q, *J* = 280.4 Hz), 124.2, 122.5, 120.2, 120.1, 118.7, 111.4, 111.3, 106.9, 42.2 (q, *J* = 30.9 Hz), 34.4, 31.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.25 (d, *J* = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₄H₂₂F₃NNaOS [M+Na]⁺: 452.1266, found: 452.1275.

3-(1-(5-((4-bromophenyl)thio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (4ai)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4ai** in 98% yield (133.0 mg); yellow solid, mp 84–86 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.34–7.30 (m, 2H), 7.28 (s, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 2H), 6.73 (d, *J* = 3.2 Hz, 1H), 6.48 (d, *J* = 3.2 Hz, 1H), 5.10 (q, *J* = 8.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 152.9, 142.4, 135.8, 135.4, 132.0, 128.8, 126.3, 125.16 (q, *J* = 280.7 Hz), 124.1, 122.7, 120.7, 120.3, 120.1, 118.6, 111.4, 106.9, 42.2 (q, *J* = 30.8 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -68.26 (d, *J* = 8.8 Hz, 3F); HRMS (ESI) calcd for C₂₀H₁₄BrF₃NOS [M+H]⁺: 451.9926, found: 451.9940.

3-(2,2,2-trifluoro-1-(5-((4-fluorophenyl)thio)furan-2-yl)ethyl)-1H-indole (4aj)

S15

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **4aj** in 98% yield (115.1 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.29–7.23 (m, 2H), 7.20–7.11 (m, 3H), 6.92 (t, J = 8.6 Hz, 2H), 6.70 (d, J = 3.1 Hz, 1H), 6.46 (d, J = 2.9 Hz, 1H), 5.10 (q, J = 8.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 161.8 (d, J = 246.3 Hz), 152.6, 143.6, 135.8, 130.8, 129.9 (d, J = 8.0 Hz), 126.3, 125.2 (d, J = 280.5 Hz), 124.1, 122.6, 120.2, 119.9, 118.7, 116.1 (d, J = 22.2 Hz), 111.4 (d, J = 9.4 Hz), 106.9, 42.2 (q, J = 30.9 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -68.30 (d, J = 8.8 Hz, 3F), -115.37 – -115.63 (m, 1F); HRMS (ESI) calcd for C₂₀H₁₄F₄NOS [M+H]⁺: 392.0727, found: 392.0745

3-(2,2,2-trifluoro-1-(5-(m-tolylthio)furan-2-yl)ethyl)-1*H*-indole (4ak)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **4ak** in 89% yield (103.4mg); pale-yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.11 (s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 3.0 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.04–6.95 (m, 3H), 6.75 (d, J = 3.2 Hz, 1H), 6.49 (d, J = 3.2 Hz, 1H), 5.14 (q, J = 8.8 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (**150** MHz, CDCl₃) δ 152.5, 143.2, 139.0, 136.0, 135.7, 128.9, 127.7, 127.1, 126.3, 125.2 (q, J = 280.8 Hz), 124.2, 124.1, 122.6, 120.36, 120.2, 118.6, 111.4, 106.9, 42.1 (q, J = 30.9 Hz), 21.2; ¹⁹F NMR (**565** MHz, CDCl₃) δ -68.29 (d, J = 8.7 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₇F₃NOS [M+H]⁺: 388.0977, found: 388.0989.

1-tosyl-3-(2,2,2-trifluoro-1-(5-(phenylthio)furan-2-yl)ethyl)-1*H*-indole (4bf)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **4bf** in 92% yield (153.9 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.75–7.71 (m, 3H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.24–7.16 (m, 5H), 6.78 (d, *J* = 8.6 Hz, 2H), 6.60 (d, *J* = 3.1 Hz, 1H), 6.39 (d, *J* = 3.0 Hz, 1H),

4.98 (q, J = 8.4 Hz, 1H), 3.76 (s, 3H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 149.9, 145.9, 145.2, 134.8, 134.7, 131.1, 129.9, 129.3, 126.8, 125.9, 125.3, 125.1, 124.6 (q, J = 280.9 Hz), 123.5, 119.3, 118.4, 114.8, 113.7, 113.5, 111.7, 55.3, 41.8 (q, J = 31.1 Hz), 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.06 (d, J = 8.5 Hz, 3F); HRMS (ESI) calcd for C₂₈H₂₂F₃NNaO₄S₂ [M+Na]⁺: 580.0835, found: 580.0820.

3-(2,2,2-trifluoro-1-(5-((4-methoxyphenyl)thio)furan-2-yl)ethyl)-1-((2,4,6-triisopropylphenyl)sulfonyl)-1*H*-indole (4cf)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **4cf** in 88% yield (176.8 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.70 (s, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.25–7.15 (m, 6H), 6.80 (d, J = 8.6 Hz, 2H), 6.61 (d, J = 3.1 Hz, 1H), 6.43 (d, J = 3.0 Hz, 1H), 5.03 (q, J = 8.5 Hz, 1H), 4.20–4.10 (m, 2H), 3.77 (s, 3H), 2.95–2.87 (m, 1H), 1.25 (d, J = 6.9 Hz, 6H), 1.12 (d, J = 6.7 Hz, 6H), 1.09 (d, J = 6.7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 154.8, 151.4, 150.3, 145.9, 134.7, 131.2, 128.6, 125.4, 125.2, 124.7 (q, J = 279.9 Hz), 124.6, 124.3, 122.8, 119.4, 118.4, 114.8, 112.4, 111.5, 111.4, 55.3, 41.9 (q, J = 31.1 Hz), 34.2, 29.5, 24.3, 23.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.06 (d, J = 8.5 Hz, 3F); HRMS (ESI) calcd for C₃₆H₃₉F₃NO₄S₂ [M+H]⁺: 670.2267, found: 670.2284.

3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-4-fluoro-1*H***-indole (**4da)

Column chromatography (petroleum ether/EtOAc = 50:1 to 25:1) to afford **4da** in 90% yield (130.6 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 7.36 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 7.14–7.09 (m, 1H), 6.84–6.76 (m, 1H), 6.44 (d, *J* = 3.1

Hz, 1H), 6.32 (d, J = 3.0 Hz, 1H), 5.41 (q, J = 8.8 Hz, 1H), 2.75 (t, J = 7.3 Hz, 2H), 1.60–1.53 (m, 2H), 1.33–1.21 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 156.8 (d, J = 246.1 Hz), 151.1, 146.5, 138.1 (d, J = 11.0 Hz), 125.1 (q, J = 280.6 Hz), 124.1, 123.1 (d, J = 8.0 Hz), 117.3, 115.7 (d, J = 18.7 Hz), 110.9, 107.5 (d, J = 3.7 Hz), 105.9, 105.5 (d, J = 19.5 Hz), 42.0 (qd, J = 30.2, 3.0 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -69.14 (dd, J = 8.7, 2.1 Hz, 3F), -124.69 (d, J = 8.9 Hz, 1F); HRMS (ESI) calcd for C₂₆H₃₄F₄NOS [M+H]⁺: 484.2292, found: 484.2285.

3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-5-methyl-1*H*-indole (4ea)

Column chromatography (petroleum ether/EtOAc = 50:1 to 25:1) to afford **4ea** in 93% yield (133.8 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.13 (s, 1H), 7.34 (s, 1H), 7.28 (d, *J* = 8.7 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.44 (d, *J* = 3.2 Hz, 1H), 6.32 (d, *J* = 3.1 Hz, 1H), 5.03 (q, *J* = 8.9 Hz, 1H), 2.73 (t, *J* = 7.4 Hz, 2H), 2.45 (s, 3H), 1.61–1.51 (m, 3H), 1.33–1.21 (m, 17H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 151.2, 146.3, 134.1, 129.5, 126.8, 125.3 (q, *J* = 280.6 Hz), 124.2, 124.1, 118.3, 117.3, 111.0, 110.9, 106.8, 41.9 (q, *J* = 30.8 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 21.5, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.51 (d, *J* = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₇H₃₆F₃NNaOS [M+Na]⁺: 502.2362, found: 502.2343. 5-chloro-3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (4fa)

Column chromatography (petroleum ether/EtOAc = 50:1 to 12:1) to afford **4fa** in 88% yield (132.0 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, 1H), 7.51 (s, 1H), 7.33 (d, *J* = 1.7 Hz, 1H), 7.29 (d, *J* = 8.6 Hz, 1H), 7.17 (dd, *J* = 8.6, 1.7 Hz, 1H), 6.46 (d, *J* = 3.2 Hz, 1H), 6.34 (d, *J* = 3.1 Hz, 1H), 4.98 (q, *J* = 8.8 Hz, 1H), 2.73 (t, *J* =

7.4 Hz, 2H), 1.60–1.49 (m, 2H), 1.29–1.22 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.5, 146.7, 134.2, 127.6, 126.1, 125.5, 123.0, 118.4, 117.3, 112.4, 111.0, 107.1, 42.0 (q, J = 31.9 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.5, 29.3, 29.1, 28.3, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.45 (d, J = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₄ClF₃NOS [M+H]⁺: 500.1996, found: 500.2009

3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-5-iodo-1*H*-indole (4ga)

Column chromatography (petroleum ether/EtOAc = 50:1 to 12:1) to afford **4ga** in 88% yield (156.2 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.27 (s, 1H), 7.88 (s, 1H), 7.47 (dd, J = 8.5, 1.5 Hz, 1H), 7.28 (s, 1H), 7.15 (d, J = 8.5 Hz, 1H), 6.46 (d, J = 3.2 Hz, 1H), 6.33 (d, J = 3.2 Hz, 1H), 4.97 (q, J = 8.8 Hz, 1H), 2.74 (t, J = 7.4 Hz, 2H), 1.58–1.52 (m, 2H), 1.32–1.20 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.4, 146.7, 134.9, 131.0, 129.0, 127.7, 125.1 (q, J = 281.0 Hz), 124.9, 117.3, 113.3, 111.0, 106.8, 83.8, 41.9 (q, J = 30.7 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.47 (d, J = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₃F₃₁NNaOS [M+Na]⁺: 614.1172, found: 614.1147. 3-(1-(5-(dodecylthio)furan-2-vl)-2,2,2-trifluoroethyl)-5-nitro-1*H*-indole (4ha)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **4ha** in 81% yield (124.1 mg); colorless solid, mp 71–73 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.84 (s, 1H), 8.57 (d, *J* = 1.7 Hz, 1H), 8.16 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.54 (d, *J* = 2.2 Hz, 1H), 7.48 (d, *J* = 9.0 Hz, 1H), 6.49 (d, *J* = 3.2 Hz, 1H), 6.42 (d, *J* = 3.2 Hz, 1H), 5.10 (q, *J* = 8.7 Hz, 1H), 2.76 (t, *J* = 7.4 Hz, 2H), 1.60–1.50 (m, 2H), 1.31–1.20 (m, 18H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 149.7, 147.2, 142.3, 138.8, 127.5, 126.1, 124.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, *J* = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, J = 282.1 Hz), 118.3, 117.3, 116.3, 111.6, 111.3, 110.0, 41.9 (q, J = 282.1 Hz), 118.3, 117.3, 116.3, 110.0, 110.3, 110.0, 41.9 (q, J = 282.1 Hz), 118.3, 117.3, 116.3, 110.0, 110.3

31.3 Hz), 36.1, 31.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.50 (d, *J* = 8.6 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₄F₃N₂O₃S [M+H]⁺: 511.2237, found: 511.2255.

Methyl 3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole-5carboxylate (4ia)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4ia** in 87% yield (136.7 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.58 (s, 1H), 8.35 (s, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.45–7.36 (m, 2H), 6.44 (d, *J* = 3.2 Hz, 1H), 6.35 (d, *J* = 3.1 Hz, 1H), 5.10 (q, *J* = 8.8 Hz, 1H), 3.94 (s, 3H), 2.73 (t, *J* = 7.4 Hz, 2H), 1.57–1.49 (m, 2H), 1.29–1.20 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 150.5, 146.8, 138.4, 126.3, 125.5, 125.1 (q, *J* = 280.7 Hz), 124.0, 122.4, 121.6, 117.3, 111.1, 111.1, 108.8, 52.0, 41.7 (q, *J* = 30.7 Hz), 36.0, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 28.3, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.59 (d, *J* = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₈H₃₇F₃NO₃S [M+H]⁺: 524.2441, found: 524.2457. 3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-6-fluoro-1*H*-indole (4ja)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4ja** in 99% yield (143.6 mg); pale-yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.21 (s, 1H), 7.45 (dd, *J* = 8.8, 5.2 Hz, 1H), 7.29 (d, *J* = 2.3 Hz, 1H), 7.07 (dd, *J* = 9.4, 2.2 Hz, 1H), 6.91 (td, *J* = 9.2, 2.3 Hz, 1H), 6.45 (d, *J* = 3.2 Hz, 1H), 6.33 (d, *J* = 3.2 Hz, 1H), 5.01 (q, *J* = 8.8 Hz, 1H), 2.72 (t, 2H), 1.53 (dt, *J* = 15.0, 7.4 Hz, 2H), 1.36–1.20 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (**150** MHz, CDCl₃) δ 160.1 (d, *J* = 239.0 Hz), 150.7, 146.6, 135.8 (d, *J* = 12.4 Hz), 125.2 (q, *J* = 280.9 Hz), 124.4 (d, *J* = 3.0 Hz), 123.1, 119.7 (d, *J* = 10.2 Hz), 117.3, 110.9, 109.1 (d, *J* = 24.7 Hz), 107.6, 97.6 (d, *J* = 26.1 Hz), 42.1 (q,

J = 30.9 Hz), 36.1, 31.9, 29.7, 29.64, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.47 (d, J = 8.7 Hz, 3F), -120.29 - -120.36 (m, 1F); HRMS (ESI) calcd for C₂₆H₃₃F₄NNaOS [M+Na]⁺: 506.2111, found: 506.2130.

6-fluoro-3-(2,2,2-trifluoro-1-(5-((4-methoxyphenyl)thio)furan-2-yl)ethyl)-1*H*indole (4jf)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **4jf** in 88% yield (111.3 mg); colorless solid, mp 109–111 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.41 (dd, J = 8.7, 5.2 Hz, 1H), 7.23–7.16 (m, 3H), 7.03 (dd, J = 9.4, 2.0 Hz, 1H), 6.88 (td, J = 9.2, 2.2 Hz, 1H), 6.78 (d, J = 8.8 Hz, 2H), 6.62 (d, J = 3.2 Hz, 1H), 6.41 (d, J = 3.2 Hz, 1H), 5.01 (q, J = 8.8 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 160.1 (d, J = 239.0 Hz), 159.0, 151.6, 145.2, 135.8 (d, J = 12.4 Hz), 130.9, 125.7, 125.1 (q, J = 280.6 Hz), 124.5 (d, J = 3.1 Hz), 122.9, 119.7 (d, J = 10.0 Hz), 118.6, 114.7, 111.2, 109.1 (d, J = 24.6 Hz), 107.3, 97.6 (d, J = 8.5 Hz, 3F), -109.39 – 127.94 (m, 1F); HRMS (ESI) calcd for C₂₁H₁₅F₄NNaO₂S [M+Na]⁺: 444.0652, found: 444.0635.

6-bromo-3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (4ka)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4ka** in 88% yield (143.8 mg); yellow solid, mp 70–72 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.26 (s, 1H), 7.54 (s, 1H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.30 (d, *J* = 2.0 Hz, 1H), 7.24 (dd, *J* = 8.6, 1.4 Hz, 1H), 6.44 (d, *J* = 3.2 Hz, 1H), 6.33 (d, *J* = 3.1 Hz, 1H), 5.00 (q, *J* = 8.8 Hz, 1H), 2.71 (t, *J* = 7.4 Hz, 2H), 1.57–1.49 (m, 2H), 1.31–1.21 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.6, 146.7, 136.6, 125.4, 125.1 (d, *J* = 282.4 Hz), 124.7, 123.6, 120.2, 117.3, 116.2, 114.3, 111.0, 107.7, 42.0 (q, *J* = 31.0 Hz), 36.1,

31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.34, 29.1, 28.4, 22.7, 14.1; ¹⁹**F NMR (565 MHz, CDCl₃)** δ -68.47 (d, *J* = 8.7 Hz, 3F); **HRMS (ESI)** calcd for C₂₆H₃₄BrF₃NOS [M+H]⁺: 544.1491, found: 544.1505.

Methyl 3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole-6carboxylate (41a)

Column chromatography (petroleum ether/EtOAc = 20:1 to 8:1) to afford **41a** in 97% yield (152.4 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 8.16 (d, J = 0.7 Hz, 1H), 7.83 (dd, J = 8.5, 1.4 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 2.6 Hz, 1H), 6.45 (d, J = 3.2 Hz, 1H), 6.34 (d, J = 3.2 Hz, 1H), 5.06 (q, J = 8.8 Hz, 1H), 3.94 (s, 3H), 2.71 (t, 2H), 1.56–1.48 (m, 2H), 1.31–1.19 (m, 18H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 150.5, 146.7, 135.2, 130.0, 127.4, 124.3, 123.7 (q, J = 158.3 Hz), 121.2, 118.4, 117.3, 113.8, 111.0, 107.8, 52.0, 42.0 (q, J = 31.0 Hz), 36.0, 31.9, 29.7, 29.6, 29.6, 29.5, 29.3, 29.1, 28.3, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.54 (d, J = 8.7 Hz, 3F); HRMS (ESI) calcd for C₂₈H₃₆F₃NNaO₃S [M+Na]⁺: 546.2260, found: 546.2240.

5,6-dichloro-3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (4ma)

Column chromatography (petroleum ether/EtOAc = 50:1 to 12:1) to afford **4ma** in 85% yield (136.3 mg); pale-yellow solid, mp 81–83 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.28 (s, 1H), 7.60 (s, 1H), 7.49 (s, 1H), 7.34 (d, *J* = 2.3 Hz, 1H), 6.46 (d, *J* = 3.2 Hz, 1H), 6.34 (d, *J* = 3.2 Hz, 1H), 4.95 (q, *J* = 8.7 Hz, 1H), 2.72 (t, *J* = 7.2 Hz, 2H), 1.56–1.49 (m, 2H), 1.33–1.21 (m, 18H), 0.88 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.1, 146.9, 134.6, 126.7, 126.2, 126.1, 125.0 (q, *J* = 280.3 Hz), 124.6, 120.1, 117.3, 112.8, 111.1, 107.3, 42.0 (q, *J* = 31.1 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3,

29.1, 28.3, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.48 (d, J = 8.8 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₃C₁₂F₃NOS [M+H]⁺: 534.1607, found: 534.1623.

3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-7-methyl-1*H***-indole (4na)**

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4na** in 96% yield (138.1 mg); pale-yellow solid, mp 50–52 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.33 (d, *J* = 2.3 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 7.1 Hz, 1H), 6.45 (d, *J* = 3.2 Hz, 1H), 6.34 (d, *J* = 3.2 Hz, 1H), 5.06 (q, *J* = 8.9 Hz, 1H), 2.74 (t, *J* = 7.4 Hz, 2H), 2.49 (s, 3H), 1.60–1.50 (m, 2H), 1.33–1.25 (m, 18H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 151.1, 146.4, 135.4, 126.1, 125.3 (d, *J* = 280.5 Hz), 123.7, 123.1, 120.5, 120.4, 117.3, 116.4, 110.9, 107.8, 42.1 (q, *J* = 30.5 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 16.5, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.41 (d, *J* = 8.9 Hz, 3F);HRMS (ESI) calcd for C₂₇H₃₇F₃NOS [M+H]⁺: 480.2542, found: 480.2560.

7-chloro-3-(1-(5-(dodecylthio)furan-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole (40a)

Column chromatography (petroleum ether/EtOAc = 50:1 to 25:1) to afford **40a** in 99% yield (148.5 mg); pale-yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.46 (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 6.44 (d, J = 3.2 Hz, 1H), 6.33 (d, J = 3.2 Hz, 1H), 5.02 (q, J = 8.8 Hz, 1H), 2.71 (t, J = 7.4 Hz, 2H), 1.56–1.47 (m, 2H), 1.30–1.20 (m, 18H), 0.88 (t, J = 7.0 Hz, 3H); **¹³C NMR (150 MHz, CDCl₃)** δ 150.5, 146.7, 133.2, 127.9, 124.7, 121.9, 121.0, 117.5, 117.3, 116.9, 111.0, 108.6, 42.2 (q, J = 30.9 Hz), 36.0, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.48 (d, J = 8.8 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₃ClF₃NNaOS [M+Na]⁺: 522.1816, found: 522.1800. **3-(1-(5-(dodecylthio)furan-2-yl)-2,2,3,3,3-pentafluoropropyl)-1H-indole (4pa)**

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4pa** in 83% yield (128.4 mg); pale-yellow solid, mp 69–71 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.23 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.42 (s, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.44 (d, *J* = 2.9 Hz, 1H), 6.36 (d, *J* = 2.9 Hz, 1H), 5.08 (t, *J* = 16.3 Hz, 1H), 2.75 (t, *J* = 7.4 Hz, 2H), 1.63–1.52 (m, 2H), 1.42–1.20 (m, 18H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.5, 146.5, 135.6, 126.6, 124.5, 122.6, 120.2, 118.6, 117.4, 111.3, 106.6, 39.2 (t, *J* = 23.4 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ - 81.97 (s, 3F), -115.68 (dd, *J* = 267.6, 15.0 Hz, 1F), -116.85 (dd, *J* = 267.5, 17.8 Hz, 1F); HRMS (ESI) calcd for C₂₇H₃₅F₅NOS [M+H]⁺: 516.2354, found: 516.2373.

3-(1-(5-(dodecylthio)furan-2-yl)-2,2,3,3,4,4,4-heptafluorobutyl)-1*H***-indole** (4qa)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **4qa** in 87% yield (147.6 mg); yellow oil; **¹H NMR** (**600 MHz, CDCl₃**) δ 8.23 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.42 (s, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.44 (d, *J* = 3.0 Hz, 1H), 6.36 (d, *J* = 3.0 Hz, 1H), 5.17 (t, *J* = 15.6 Hz, 1H), 2.75 (t, *J* = 7.4 Hz, 2H), 1.61–1.53 (m, 2H), 1.33–1.23 (m, 18H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (**150 MHz, CDCl₃**) δ 150.4, 146.5, 135.6 126.6, 124.7, 122.6, 120.3, 118.6, 117.4, 111.4, 111.3, 106.6, 39.2 (t, *J* = 23.8 Hz), 36.1, 31.9, 29.7, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; ¹⁹F NMR (**565 MHz, CDCl₃**) δ -80.59 (t, *J* = 10.6 Hz, 3F), -111.81 – -112.57 (m, 1F), -113.10 – -113.90 (m, 1F), -124.52 (dd, *J* = 289.7, 10.2 Hz, 1F), -125.18 (dd, *J* = 289.8, 9.9 Hz, 1F); **HRMS (ESI)** calcd for C₂₈H₃₅F₇NOS [M+H]⁺: 566.2322, found: 566.2337.

2-benzhydryl-5-(dodecylthio)furan (4ra)

Column chromatography (petroleum ether/EtOAc = 100:1 to 50:1) to afford **4ra** in 99% yield (129.1 mg); colorless oil; **¹H NMR (600 MHz, CDCl₃)** δ 7.34–7.29 (m, 4H), 7.28–7.23 (m, 2H), 7.21–7.17 (m, 4H), 6.44 (d, *J* = 1.9 Hz, 1H), 5.90 (d, *J* = 3.1 Hz, 1H), 5.47 (s, 1H), 2.71 (t, *J* = 7.4 Hz, 2H), 1.61–1.53 (m, 2H), 1.35–1.22 (m, 18H), 0.92 (t, *J* = 6.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.4, 145.2, 141.5, 128.7, 128.4, 126.7, 117.3, 110.2, 51.1, 36.2, 31.9, 29.7, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; HRMS (ESI) calcd for C₂₉H₃₈NaOS [M+Na]⁺: 457.2536, found: 457.2540.

2-(di-p-tolylmethyl)-5-(dodecylthio)furan (4sa)

Column chromatography (petroleum ether/EtOAc = 100:1 to 50:1) to afford **4sa** in 99% yield (137.4 mg); colorless oil; **¹H NMR (600 MHz, CDCl₃)** δ 7.14 (d, *J* = 8.0 Hz, 4H), 7.09 (d, *J* = 8.1 Hz, 4H), 6.45 (d, *J* = 3.1 Hz, 1H), 5.91 (d, *J* = 3.0 Hz, 1H), 5.41 (s, 1H), 2.73 (t, *J* = 7.8 Hz, 2H), 2.37 (s, 6H), 1.63–1.55 (m, 2H), 1.40–1.26 (m, 18H), 0.95 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 145.0, 138.7, 136.1, 129.0, 128.5, 117.3, 109.9, 50.4, 36.2, 31.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.3, 29.2, 28.4, 22.7, 21.0, 14.1; HRMS (ESI) calcd for C₃₁H₄₂NaOS [M+Na]⁺: 485.2849, found: 485.2835. 2-(dodecylthio)-5-(9*H*-fluoren-9-yl)furan (4ta)

Column chromatography (petroleum ether/EtOAc = 100:1 to 50:1) to afford **4ta** in 85% yield (110.3 mg); pale-yellow solid, mp 59–61 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.63 (d, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.33 (td, *J* = 7.4, 0.9 Hz, 2H), 6.39 (d, *J* = 3.1 Hz, 1H), 5.91 (dd, *J* = 3.1, 0.7 Hz, 1H), 5.22 (s, 1H), 2.76

(t, J = 7.4, 2H), 1.65–1.57 (m, 2H), 1.33–1.23 (m, 18H), 0.90 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 156.8, 145.4, 143.7, 140.9, 127.8, 127.3, 125.4, 120.1, 117.6, 107.2, 47.6, 36.3, 31.9, 29.9, 29.7, 29.6, 29.60, 29.5, 29.3, 29.2, 28.5, 22.7, 14.1; HRMS (ESI) calcd for C₂₉H₃₇OS₂ [M+H]⁺: 433.2560, found: 433.2553.

2-(dodecylthio)-5-(9*H*-thioxanthen-9-yl)furan (4ua)

Column chromatography (petroleum ether) to afford **4ua** in 47% yield (65.5 mg); paleyellow solid, mp 60–62 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.44–7.39 (m, 4H), 7.28– 7.23 (m, 4H), 6.29 (d, *J* = 3.1 Hz, 1H), 5.66 (d, *J* = 3.1 Hz, 1H), 5.36 (s, 1H), 2.62 (t, *J* = 7.4 Hz, 2H), 1.49–1.44 (m, 2H), 1.29–1.20 (m, 18H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C **NMR (150 MHz, CDCl₃)** δ 155.5, 145.3, 134.4, 132.8, 129.4, 127.2, 126.8, 126.6, 117.2, 108.8, 48.0, 36.1, 31.9, 29.8, 29.7, 29.6, 29.6, 29.5, 29.3, 29.1, 28.4, 22.7, 14.1; **HRMS (ESI)** calcd for C₂₉H₃₇OS₂ [M+H]⁺: 465.2280, found: 465.2298.

2-benzyl-5-(dodecylthio)furan (4va)

Column chromatography (petroleum ether) to afford **4va** in 61% yield (65.6 mg); paleyellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.33–7.28 (m, 2H), 7.25–7.21 (m, 3H), 6.40 (d, *J* = 3.1 Hz, 1H), 5.95 (d, *J* = 3.1 Hz, 1H), 3.96 (s, 2H), 2.71 (t, *J* = 7.8 Hz, 2H), 1.58–1.53 (m, 2H), 1.33–1.22 (m, 18H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR (150 MHz, CDCl₃)** δ 157.6, 144.5, 137.7, 128.7, 128.5, 126.6, 117.8, 108.2, 36.3, 34.9, 31.9, 29.8, 29.7, 29.7, 29.6, 29.5, 29.4, 29.2, 28.4, 22.7, 14.1; **HRMS (ESI)** calcd for C₂₃H₃₄NaOS [M+Na]⁺: 381.2223, found: 381.2233

4. General procedure for the synthesis of lactone-based sulfides

To a solution of 2-furylcarbinol 1 (0.3 mmol) and thiol 2 (0.6 mmol, 2 equiv) in anhydrous DCE was added TsOH·H₂O (11.4 mg, 0.2 equiv.). The reaction mixture was stirred at 80 °C for 24 h until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with EA (10 mL x 2). The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to give the products **5** and **5'**.

(4*S**,5*R**)-4-(dodecylthio)-5-((*R**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5aa)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5aa** in 42% yield (60.9 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.55 (s, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.36 (d, J = 2.1 Hz, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 4.89 (d, J = 7.7 Hz, 1H), 4.20 (q, J = 9.7 Hz, 1H), 2.98 (q, J = 8.9 Hz, 1H), 2.52–2.47 (m, 2H), 2.45 (d, J = 9.1 Hz, 2H), 1.56–1.46 (m, 2H), 1.31–1.20 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 135.3, 128.0, 125.7 (q, J = 281.8 Hz), 125.6, 122.8, 120.6, 117.4, 111.7, 102.1, 80.7, 42.6 (q, J = 28.4 Hz), 41.7, 36.7, 31.9, 31.6, 29.6, 29.5, 29.4, 29.3, 29.1, 28.7, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.35 (d, J = 9.7 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₇F₃NO₂S [M+H]⁺: 484.2492, found: 484.2477.

(4*S**,5*R**)-4-(dodecylthio)-5-((*S**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5aa')

S27

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5aa'** in 37% yield (53.7 mg); pale-yellow solid, mp 70–72 °C; ¹H NMR (**600 MHz, CDCl**₃) δ 8.50 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.29 (s, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 4.97 (dd, *J* = 6.3, 2.9 Hz, 1H), 4.05–3.97 (m, 1H), 3.43 (dt, *J* = 8.6, 3.1 Hz, 1H), 2.58 (dd, *J* = 18.4, 8.9 Hz, 1H), 2.38–2.24 (m, 3H), 1.34–1.18 (m, 20H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 135.8, 126.6, 125.7 (q, *J* = 280.6 Hz), 123.8, 123.2, 120.8, 118.4, 111.6, 104.9, 83.9, 45.3 (q, *J* = 27.3 Hz), 40.8, 35.5, 31.9, 31.0, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 287, 22.7, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.38 (d, *J* = 9.2 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₇F₃NO₂S [M+H]⁺: 484.2492, found: 484.2485.

(4*S**,5*R**)-4-(phenethylthio)-5-((*R**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ab)

Column chromatography (petroleum ether/EtOAc = 25:1 to 6:1) to afford **5ab** in 32% yield (40.3 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.53 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.33 (s, 1H), 7.30–7.24 (m, 3H), 7.24–7.19 (m, 2H), 7.06 (d, J = 7.3 Hz, 2H), 4.86 (d, J = 8.1 Hz, 1H), 4.15 (q, J = 9.7 Hz, 1H), 2.93 (q, J = 8.9 Hz, 1H), 2.84–2.73 (m, 4H), 2.38 (dd, J = 17.8, 9.4 Hz, 1H), 2.32 (dd, J = 17.9, 8.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 139.3, 135.3, 128.6, 128.4, 127.9, 126.7, 125.6, 122.9, 120.7, 117.4, 111.7, 102.0, 80.8, 42.5 (q, J = 28.7 Hz), 42.1, 36.5, 36.2, 33.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.28 (d, J = 9.6 Hz, 3F); HRMS (ESI) calcd for C₂₂H₂₀F₃NNaO₂S [M+Na]⁺: 442.1059, found: 442.1049.

(4*S**,5*R**)-4-(phenethylthio)-5-((*S**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ab')

Column chromatography (petroleum ether/EtOAc = 25:1 to 5:1) to afford **5ab'** in 43% yield (54.1 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.42 (s, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.31–7.19 (m, 6H), 7.00 (d, J = 7.2 Hz, 2H), 4.94 (dd, J = 6.5, 3.1 Hz, 1H), 4.04–3.94 (m, 1H), 3.39 (dt, J = 8.8, 3.3 Hz, 1H), 2.67–2.49 (m, 5H), 2.32 (dd, J = 18.5, 3.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 139.5, 135.7, 128.5, 128.3, 126.6, 126.6, 123.8, 123.2, 120.9, 118.3, 111.7, 104.8, 84.0, 45.3 (q, J = 27.5 Hz), 41.2, 35.6, 35.5, 32.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.44 (d, J = 9.2 Hz, 3F); HRMS (ESI) calcd for C₂₂H₂₀F₃NNaO₂S [M+Na]⁺: 442.1059, found: 442.1040.

Column chromatography (petroleum ether/EtOAc = 25:1 to 5:1) to afford **5ac** in 21% yield (25.3 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.54 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.36 (s, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 4.90 (d, J = 7.7 Hz, 1H), 4.21 (q, J = 9.6 Hz, 1H), 3.69 (s, 3H), 3.06 (q, J = 8.4 Hz, 1H), 2.78 (t, J = 6.9 Hz, 2H), 2.55 (td, J = 6.8, 2.8 Hz, 2H), 2.42 (d, J = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.1, 171.7, 135.3, 127.9, 125.7 (q, J = 280.6 Hz), 125.7, 122.9, 120.7, 117.4, 111.7, 102.0, 80.7, 52.0, 42.8 (q, J = 28.4 Hz), 42.0, 36.5, 34.5, 26.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.30 (d, J = 9.7 Hz, 3F); HRMS (ESI) calcd for C₁₈H₁₈F₃NNaO₄S [M+Na]⁺: 424.0801, found: 424.0790.

 $\label{eq:methyl} Methyl \ 3-(((2R^*, 3S^*)-5-oxo-2-((S^*)-2, 2, 2-trifluoro-1-(1H-indol-3-yl)ethyl) tetrahydrofuran-3-yl) thio) propanoate \ (5ac')$

Column chromatography (petroleum ether/EtOAc = 25:1 to 4:1) to afford **5ac'** in 22% yield (26.5 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.54 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.31 (d, J = 2.1 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 4.96 (dd, J = 6.6, 3.0 Hz, 1H), 4.06–3.96 (m, 1H), 3.65 (s, 3H), 3.46 (dt, J = 8.8, 3.3 Hz, 1H), 2.65–2.49 (m, 3H), 2.40–2.20 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.8, 171.8, 135.8 126.6, 123.9, 123.2, 120.9, 118.3, 111.7, 104.7, 83.7, 51.9, 45.3 (q, J = 27.3 Hz), 41.1, 35.4, 33.8, 25.9; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.20 (d, J = 9.7 Hz, 3F); HRMS (ESI) calcd for C₁₈H₁₈F₃NNaO₄S [M+Na]⁺: 424.0801, found: 424.0811.

(4*S**,5*R**)-4-(cyclohexylthio)-5-((*R**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ad)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5ad** in 25% yield (29.8 mg); yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.58 (s, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.36 (d, *J* = 2.3 Hz, 1H), 7.29–7.23 (m, 1H), 7.23–7.17 (m, 1H), 4.84 (dd, *J* = 8.7, 1.0 Hz, 1H), 4.22 (q, *J* = 9.6 Hz, 1H), 3.03 (q, *J* = 8.9 Hz, 1H), 2.61–2.42 (m, 3H), 1.88–1.82 (m, 1H), 1.80–1.65 (m, 3H), 1.62–1.52 (m, 1H), 1.35–1.10 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 135.3, 128.0, 125.8 (q, *J* = 280.2 Hz), 125.6, 122.76, 120.4, 117.5, 111.7, 102.1, 80.9, 44.7, 42.3 (q, *J* = 28.3

Hz), 40.4, 38.0, 34.4, 33.6, 25.8, 25.7, 25.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.40 (d, J = 9.7 Hz, 3F); HRMS (ESI) calcd for C₂₀H₂₃F₃NO₂S [M+H]⁺: 398.1396, found: 398.1410.

(4*S**,5*R**)-4-(cyclohexylthio)-5-((*S**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ad')

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5ad'** in 33% yield (39.3 mg); pale-yellow solid, mp 78–80 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.54 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.1 Hz, 1H), 7.30 (d, *J* = 1.5 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.3 Hz, 1H), 4.94 (dd, *J* = 6.9, 3.3 Hz, 1H), 4.03–3.92 (m, 1H), 3.53–3.42 (m, 1H), 2.70 (dd, *J* = 18.4, 8.9 Hz, 1H), 2.37 (dd, *J* = 18.4, 3.8 Hz, 1H), 2.33–2.23 (m, 1H), 1.74–1.43 (m, 6H), 1.15–1.01 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 135.8, 126.5, 125.7 (q, *J* = 280.4 Hz), 123.9, 123.1, 120.8, 118.3, 111.7, 105.0, 84.3, 45.3 (q, *J* = 27.6 Hz), 43.4, 39.5, 36.2, 33.6, 32.8, 25.8, 25.6, 25.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.26 (d, *J* = 9.1 Hz, 3F); HRMS (ESI) calcd for C₂₀H₂₃F₃NO₂S [M+H]⁺: 398.1396, found: 398.1408.

 $(4S^*,5R^*)-4-((4-methoxyphenyl)thio)-5-((R^*)-2,2,2-trifluoro-1-(1H-indol-3-yl)-ethyl)dihydrofuran-2(3H)-one~(5af)$

Column chromatography (petroleum ether/EtOAc = 25:1 to 5:1) to afford **5af** in 42% yield (53.1 mg); pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.56 (s, 1H), 7.47–7.37 (m, 4H), 7.30 (s, 1H), 7.28–7.23 (m, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 8.6

Hz, 2H), 4.96 (d, J = 8.0 Hz, 1H), 4.11 (q, J = 9.7 Hz, 1H), 3.85 (s, 3H), 3.18 (q, J = 8.9 Hz, 1H), 2.43–2.29 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 161.0, 137.6, 135.2, 127.9, 125.8 (q, J = 280.3 Hz), 125.7, 122.7, 120.5, 119.8, 117.5, 115.3, 111.6, 101.9, 80.7, 55.4, 44.8, 42.4 (q, J = 28.6 Hz), 34.4; ¹⁹F NMR (565 MHz, CDCl₃) δ - 68.50 (d, J = 9.8 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₈F₃NNaO₃S [M+Na]⁺: 444.0852, found: 444.0866.

 $(4S^*, 5R^*) - 4 - ((4 - methoxyphenyl)thio) - 5 - ((S^*) - 2, 2, 2 - trifluoro - 1 - (1H - indol - 3 - yl) - ethyl)dihydrofuran - 2(3H) - one (5af')$

Column chromatography (petroleum ether/EtOAc = 25:1 to 4:1) to afford **5af** in 36% yield (45.4 mg); yellow solid, mp 81–83 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.40 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.22–7.14 (m, 3H), 7.02 (d, *J* = 2.0 Hz, 1H), 6.78 (d, *J* = 8.7 Hz, 2H), 4.95 (dd, *J* = 6.8, 2.9 Hz, 1H), 3.97–3.88 (m, 1H), 3.80 (s, 3H), 3.64 (dt, *J* = 8.4, 3.2 Hz, 1H), 2.56 (dd, *J* = 18.5, 8.6 Hz, 1H), 2.39 (dd, *J* = 18.5, 3.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 160.6, 136.6, 135.7, 126.6, 125.6 (q, *J* = 281.0 Hz), 123.6, 123.0, 121.3, 120.7, 118.2, 114.9, 111.6, 104.8, 82.7, 55.4, 45.2, 44.9 (q, *J* = 27.4 Hz), 34.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.68 (d, *J* = 9.1 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₈F₃NNaO₃S [M+Na]⁺: 444.0852, found: 444.0870.

 $(4S^*, 5R^*)$ -4-(p-tolylthio)-5-((R^*) -2,2,2-trifluoro-1-(1H-indol-3-yl)ethyl)dihydro-furan-2(3H)-one (5ag)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5ag** in 28% yield (34.1 mg); pale-yellow solid, mp 77–79 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.52 (s, 1H), 7.44–7.34 (m, 4H), 7.30 (d, *J* = 2.0 Hz, 1H), 7.25 (t, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.17 (t, *J* = 7.4 Hz, 1H), 4.97 (d, *J* = 7.9 Hz, 1H), 4.10 (q, *J* = 9.7 Hz, 1H), 3.24 (q, *J* = 8.9 Hz, 1H), 2.44–2.31 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 140.0, 136.0, 135.2, 130.5, 127.9, 126.2, 125.7 (q, *J* = 280.4 Hz), 125.7, 122.7, 120.5, 117.5, 111.6, 101.9, 80.8, 44.6, 42.5 (q, *J* = 28.6 Hz), 34.6, 21.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.48 (d, *J* = 9.7 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₉F₃NO₂S [M+H]⁺: 406.1083, found: 406.1070.

 $(4S^*, 5R^*)$ -4-(p-tolylthio)-5-((S^*) -2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydro-furan-2(3*H*)-one (5ag')

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5ag'** in 28% yield (34.1 mg); pale-yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.40 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 7.9 Hz, 3H), 4.95 (dd, J = 6.5, 2.8 Hz, 1H), 3.98–3.90 (m, 1H), 3.75–3.68 (m, 1H), 2.57 (dd, J = 18.5, 8.6 Hz, 1H), 2.40 (dd, J = 18.5, 3.6 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 139.3, 135.7, 134.3, 130.1, 127.4, 126.6, 123.7, 123.0, 120.7, 118.2, 111.6, 82.8, 44.0 (q, J = 28.0

Hz), 44.8, 34.8, 21.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.61 (d, J = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₉F₃NO₂S [M+H]⁺: 406.1083, found: 406.1073. (4*S**,5*R**)-4-((4-(tert-butyl)phenyl)thio)-5-((*R**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)-ethyl)dihydrofuran-2(3*H*)-one (5ah)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5ah** in 32% yield (43.0 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 7.45–7.39 (m, 5H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.32 (s, 1H), 7.25 (t, *J* = 7.3 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 4.98 (d, *J* = 8.1 Hz, 1H), 4.09 (q, *J* = 9.7 Hz, 1H), 3.25 (q, *J* = 9.0 Hz, 1H), 2.40 (dd, *J* = 9.4, 3.1 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 153.1, 135.2, 135.2, 127.9, 126.8, 126.2, 125.8, 125.7 (q, *J* = 279.9 Hz), 122.7, 120.5, 117.5, 111.6, 101.9, 80.8, 44.5, 42.5 (q, *J* = 28.2 Hz), 34.8, 34.7, 31.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.53 (d, *J* = 9.5 Hz, 3F); HRMS (ESI) calcd for C₂₄H₂₄F₃NNaO₂S [M+Na]⁺: 470.1372, found: 470.1360.

(4*S**,5*R**)-4-((4-(tert-butyl)phenyl)thio)-5-((*S**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ah')

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5ah'** in 31% yield (41.6 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.32 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.31–7.25 (m, 3H), 7.20 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 2.1 Hz, 1H), 4.94 (dd, J = 6.4, 3.2 Hz, 1H), 4.01–
3.90 (m, 1H), 3.80–3.70 (m, 1H), 2.56 (dd, J = 18.5, 8.5 Hz, 1H), 2.41 (dd, J = 18.5, 3.8 Hz, 1H), 1.31 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 173.8, 152.4, 135.6, 134.0, 127.6, 126.7, 126.4, 123.6, 123.1, 120.8, 118.2, 111.6, 82.8, 44.9 (q, J = 27.1 Hz), 44.7, 34.9, 34.7, 31.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.67 (d, J = 9.1 Hz, 3F); HRMS (ESI) calcd for C₂₄H₂₄F₃NNaO₂S [M+Na]⁺: 470.1372, found: 470.1382. (4*S**,5*R**)-4-((4-bromophenyl)thio)-5-((*R**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)-

ethyl)dihydrofuran-2(3H)-one (5ai)

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5ai** in 30% yield (42.3 mg); yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.32 (s, 1H), 7.26 (t, *J* = 8.6 Hz, 3H), 7.17 (t, *J* = 7.5 Hz, 1H), 4.96 (d, *J* = 7.8 Hz, 1H), 4.08 (q, *J* = 9.6 Hz, 1H), 3.30 (q, *J* = 8.6 Hz, 1H), 2.39 (d, *J* = 9.1 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 173.5, 135.7, 135.3, 132.9, 129.6, 125.7, 125.6 (q, *J* = 279.6 Hz), 123.9, 122.9, 120.7, 117.3, 111.7, 101.8, 80.6, 44.7, 42.7 (q, *J* = 28.5 Hz), 35.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.40 (d, *J* = 8.7 Hz, 3F); HRMS (ESI) calcd for C₂₀H₁₆BrF₃NO₂ [M+H]⁺: 470.0032, found: 470.0046.

(4*S**,5*R**)-4-((4-bromophenyl)thio)-5-((*S**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ai')

Column chromatography (petroleum ether/EtOAc = 25:1 to 6:1) to afford **5ai'** in 33% yield (46.6 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.35–7.23 (m, 3H), 7.19 (t, J = 7.5 Hz, 1H), 7.04 (s, 1H), 6.94 (d, J = 8.4 Hz, 2H), 4.92 (dd, J = 7.5, 2.5 Hz, 1H), 3.98–3.86 (m, 1H), 3.73 (dt, J = 8.4, 2.5 Hz, 1H), 2.69 (dd, J = 18.5, 8.6 Hz, 1H), 2.41 (dd, J = 18.5, 3.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 173.7, 135.7, 134.9, 132.3, 130.5, 126.4, 123.7, 123.1, 120.8, 118.0, 111.7, 104.4, 82.8, 45.1 (q, J = 27.4 Hz), 45.0, 34.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.49 (d, J = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₀H₁₆BrF₃NO₂ [M+H]⁺: 470.0032, found: 470.0050.

(4S,*5R*)-4-((4-fluorophenyl)thio)-5-((R*)-2,2,2-trifluoro-1-(1H-indol-3-yl)-ethyl)dihydrofuran-2(3H)-one~(5aj)

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5aj** in 24% yield (29.5 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.46 (s, 1H), 7.47–7.38 (m, 4H), 7.33 (s, 1H), 7.26 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 8.5 Hz, 2H), 4.95 (d, *J* = 7.8 Hz, 1H), 4.08 (q, *J* = 9.6 Hz, 1H), 3.25 (q, *J* = 8.9 Hz, 1H), 2.37 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 163.6 (q, *J* = 251.3 Hz), 137.2 (d, *J* = 8.5 Hz), 135.9 (d, *J* = 8.4 Hz), 135.3, 127.8, 125.7, 125.3, 122.8, 120.6, 117.3, 117.0 (d, *J* = 21.9 Hz), 116.7 (d, *J* = 22.1 Hz), 111.7, 101.8, 80.6, 44.9, 42.6 (q, *J* = 28.1 Hz), 34.9 (d, *J* = 19.8 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -68.45 (d, *J* = 9.7 Hz, 3F), -110.35 – -110.45 (m, 1F); HRMS (ESI) calcd for C₂₀H₁₆F₄NO₂S [M+H]⁺: 410.0832, found: 410.0839.

(4*S**,5*R**)-4-((4-fluorophenyl)thio)-5-((*S**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5aj')

Column chromatography (petroleum ether/EtOAc = 25:1 to 6:1) to afford **5aj'** in 21% yield (25.8 mg); pale-yellow oil;¹HNMR (**600** MHz, CDCl₃) δ 8.47 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.2 Hz, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.21–7.13 (m, 3H), 7.04 (s, 1H), 6.92 (t, *J* = 8.4 Hz, 2H), 4.93 (d, *J* = 7.0 Hz, 1H), 3.97–3.88 (m, 1H), 3.69 (d, *J* = 8.5 Hz, 1H), 2.60 (dd, *J* = 18.5, 8.6 Hz, 1H), 2.39 (dd, *J* = 18.5, 2.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 173.7, 163.2 (d, *J* = 250.2 Hz), 136.4 (d, *J* = 8.5 Hz), 135.7, 126.5, 126.3 (d, *J* = 3.3 Hz), 125.5 (q, *J* = 280.8 Hz), 123.6, 123.1, 120.8, 118.1, 116.5 (d, *J* = 21.9 Hz), 111.7, 104.5, 82.7, 45.3, 45.1 (q, *J* = 27.4 Hz), 34.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.63 (d, *J* = 9.0 Hz, 3F), -111.16 – -111.26 (m, 1F); HRMS (ESI) calcd for C₂₀H₁₆F₄NO₂S [M+H]⁺: 410.0832, found: 410.0850.

(4*S**,5*R**)-4-(m-tolylthio)-5-((*R**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ak)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5ak** in 29% yield (35.3 mg); pale-yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 8.54 (s, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.31 (s, 1H), 7.30–7.21 (m, 5H), 7.16 (t, J = 7.4 Hz, 1H), 5.00 (d, J = 8.0 Hz, 1H), 4.06 (q, J = 9.7 Hz, 1H), 3.29 (q, J = 8.9 Hz, 1H), 2.41 (dd, J = 9.3, 2.6 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (**150** MHz, CDCl₃) δ 174.0, 140.0, 135.5, 135.2, 131.8, 130.3, 129.8, 129.5, 127.9, 125.7, 125.7 (q, J = 279.5 Hz), 122.7, 120.5, 117.4, 111.6, 101.9, 80.9, 44.5, 42.6 (q, J = 28.5 Hz), 34.9, 21.2; ¹⁹F NMR

(**565 MHz, CDCl**₃) δ -68.52 (d, *J* = 8.2 Hz, 3F); **HRMS** (**ESI**) calcd for C₂₁H₁₉F₃NO₂S [M+H]⁺: 406.1083, found: 406.1070.

(4*S**,5*R**)-4-(m-tolylthio)-5-((*S**)-2,2,2-trifluoro-1-(1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ak')

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5ak'** in 22% yield (26.8 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.37 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.16–7.10 (m, 2H), 7.04 (d, J = 2.2 Hz, 1H), 7.01 (d, J = 5.7 Hz, 2H), 4.94 (dd, J = 6.8, 3.0 Hz, 1H), 3.98–3.90 (m, 1H), 3.76 (dt, J = 8.4, 3.3 Hz, 1H), 2.61 (dd, J = 18.5, 8.5 Hz, 1H), 2.42 (dd, J = 18.5, 3.6 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 139.3, 135.6, 134.5, 131.0, 130.8, 129.6, 129.2, 126.7, 123.6, 123.1, 120.8, 118.1, 111.6, 104.7, 82.8, 77.2, 44.9 (q, J = 27.5 Hz), 44.8, 34.9, 21.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.71 (d, J = 9.1 Hz, 3F); HRMS (ESI) calcd for C₂₁H₁₉F₃NO₂S [M+H]⁺: 406.1083, found: 406.1077.

(4*S**,5*R**)-4-((4-methoxyphenyl)thio)-5-((*R**)-2,2,2-trifluoro-1-(1-tosyl-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5bf)

Column chromatography (petroleum ether/EtOAc = 15:1 to 8:1) to afford **5bf** in 62% yield (107.1 mg); colorless solid, mp 159–161 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, *J* = 8.3 Hz, 1H), 7.78–7.68 (m, 3H), 7.36 (t, *J* = 8.3 Hz, 3H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 4.86 (d,

J = 8.5 Hz, 1H), 4.04 (q, J = 9.0 Hz, 1H), 3.83 (s, 3H), 2.91 (q, J = 9.0 Hz, 1H), 2.40– 2.21 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 172.7, 161.1, 145.3, 137.7, 134.6, 134.3, 130.4, 130.0 127.7, 126.9, 125.4, 123.8, 119.2, 118.4, 115.3, 113.9, 108.8, 79.7, 55.4, 44.7, 42.0 (q, J = 31.4 Hz), 34.0, 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.00 (d, J =8.9 Hz, 3F); HRMS (ESI) calcd for C₂₈H₂₅F₃NO₅S₂ [M+H]⁺: 576.1121, found: 576.1108.

 $(4S^*, 5R^*)$ -4-((4-methoxyphenyl)thio)-5- $((S^*)$ -2,2,2-trifluoro-1-(1-tosyl-1H-indol-3-yl)ethyl)dihydrofuran-2(3H)-one (5bf')

Column chromatography (petroleum ether/EtOAc = 15:1 to 7:1) to afford **5bf**' in 22% yield (38.0 mg); colorless solid, mp 160–162 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.55 (s, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.10 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.86 (dd, *J* = 6.4, 3.7 Hz, 1H), 3.88–3.78 (m, 4H), 3.52–3.46 (m, 1H), 2.42–2.31 (m, 2H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.1, 160.7, 145.5, 136.5, 134.7, 134.6, 130.0, 129.4, 126.8, 125.7, 124.0, 120.7, 119.0, 115.1, 113.9, 111.5, 81.8, 55.3, 45.1, 44.8 (d, *J* = 28.2 Hz), 34.5, 21.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -65.40 (d, *J* = 8.7 Hz, 3F); HRMS (ESI) calcd for C₂₈H₂₅F₃NO₅S₂ [M+H]⁺: 576.1121, found: 576.1110.

(4*S**,5*R**)-4-((4-methoxyphenyl)thio)-5-((*R**)-2,2,2-trifluoro-1-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5cf)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **5cf** in 60% yield (123.8 mg); colorless solid, mp 154–156 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.62 (s, 1H), 7.44–7.35 (m, 4H), 7.25–7.20 (m, 2H), 7.20 (s, 2H), 6.91 (d, *J* = 8.7 Hz, 2H), 4.85 (d, *J* = 9.1 Hz, 1H), 4.17–4.06 (m, 3H), 3.84 (s, 3H), 3.10 (dd, *J* = 19.7, 9.1 Hz, 1H), 2.98–2.86 (m, 1H), 2.53 (dd, *J* = 17.8, 8.6 Hz, 1H), 2.42 (dd, *J* = 17.8, 11.1 Hz, 1H), 1.25 (d, *J* = 6.9 Hz, 6H), 1.12 (d, *J* = 6.7 Hz, 6H), 1.07 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 172.3, 161.1, 155.0, 151.4, 137.6, 134.4, 130.8, 129.6, 126.6, 125.3 (q, *J* = 280.6 Hz), 124.8, 124.3, 123.0, 119.3, 118.8, 115.3, 112.6, 106.8, 79.8, 55.4, 44.7, 41.9 (d, *J* = 29.4 Hz), 34.2 (d, *J* = 5.8 Hz), 29.5, 24.3 (d, *J* = 9.6 Hz), 23.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.96 (s, 3F); HRMS (ESI) calcd for C₃₆H₄₁F₃NO₅S₂ [M+H]⁺: 688.2373, found: 688.2361.

propylphenyl)sulfonyl)-1H-indol-3-yl)ethyl)dihydrofuran-2(3H)-one (5cf')

 6H), 1.02 (d, J = 6.7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 173.2, 160.7, 155.0, 151.5, 136.7, 134.5, 130.9, 128.6, 125.1 (q, J = 280.4 Hz), 125.1, 124.9, 124.4, 123.2, 120.6, 119.1, 115.2, 112.5, 109.7, 82.0, 55.3, 45.2, 44.6 (q, J = 26.8 Hz), 34.3 (d, J =34.0 Hz), 29.6, 24.3 (d, J = 6.8 Hz), 23.4 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -64.98 (d, J = 8.6 Hz, 3F); HRMS (ESI) calcd for C₃₆H₄₁F₃NO₅S₂ [M+H]⁺: 688.2373, found: 688.2390.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*) -2,2,2-trifluoro-1-(4-fluoro-1*H*-indol-3-yl)ethyl)-dihydrofuran-2(3*H*)-one (5da)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5da** in 25% yield (37.6 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.89 (s, 1H), 7.32 (d, J = 1.9 Hz, 1H), 7.23 (d, J = 8.2 Hz, 1H), 7.18–7.11 (m, 1H), 6.84 (dd, J = 11.7, 7.8 Hz, 1H), 4.96 (d, J = 6.7 Hz, 1H), 4.57 (q, J = 9.6 Hz, 1H), 3.19 (q, J = 8.9 Hz, 1H), 2.55 (t, J = 7.4 Hz, 2H), 2.45–2.34 (m, 2H), 1.57–1.48 (m, 2H), 1.37–1.21 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.0, 156.6 (d, J = 244.3 Hz), 137.9 (d, J = 10.6 Hz), 126.2, 125.6 (q, J = 280.8 Hz), 123.1 (d, J = 8.0 Hz), 116.6 (d, J = 17.4 Hz), 108.1 (d, J = 3.4 Hz), 105.7 (d, J = 19.3 Hz), 100.1, 81.7, 44.32–43.69 (m), 41.6, 36.5, 31.9, 31.7, 29.6, 29.5, 29.5, 29.4, 29.3, 29.1, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.74 (d, J = 9.7 Hz, 3F), -125.78 (s, 1F); HRMS (ESI) calcd for C₂₆H₃₆F₄NO₂S [M+H]⁺: 502.2397, found: 502.2385.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*) -2,2,2-trifluoro-1-(4-fluoro-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5da')

Column chromatography (petroleum ether/EtOAc = 25:1 to 9:1) to afford **5da'** in 40% yield (60.2 mg); yellow solid, mp 58–60 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.87 (s,

1H), 7.30 (s, 1H), 7.22 (d, J = 8.2 Hz, 1H), 7.18–7.12 (m, 1H), 6.84 (dd, J = 11.6, 7.8 Hz, 1H), 4.84 (dd, J = 8.2, 3.0 Hz, 1H), 4.36–4.25 (m, 1H), 3.46 (dt, J = 8.6, 3.4 Hz, 1H), 3.00 (dd, J = 18.4, 8.8 Hz, 1H), 2.48 (dd, J = 18.4, 3.6 Hz, 1H), 2.32–2.23 (m, 1H), 2.23–2.15 (m, 1H), 1.34–1.12 (m, 20H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 156.5 (d, J = 244.3 Hz), 138.13 (d, J = 10.8 Hz), 125.6 (q, J = 280.6 Hz), 123.8, 123.4 (d, J = 8.1 Hz), 115.9 (d, J = 18.2 Hz), 108.0 (d, J = 3.4 Hz), 105.8 (d, J = 19.4 Hz), 103.6, 84.5, 45.1 (q, J = 29.1 Hz), 40.9, 35.3, 31.9, 31.0, 29.6, 29.5, 29.4, 29.3, 29.0, 28.9, 28.6, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.78 (d, J = 8.7 Hz, 3F), -125.16 (s, 1F); HRMS (ESI) calcd for C₂₆H₃₆F₄NO₂S [M+H]⁺: 502.2397, found: 502.2383.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*)-2,2,2-trifluoro-1-(5-methyl-1H-indol-3-yl)ethyl)-dihydrofuran-2(3H)-one ($\overline{5ea}$)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5ea** in 32% yield (47.8 mg); colorless solid, mp 86–88 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.46 (s, 1H), 7.37 (s, 1H), 7.35–7.28 (m, 2H), 7.09 (d, *J* = 8.3 Hz, 1H), 4.88 (d, *J* = 8.1 Hz, 1H), 4.17 (q, *J* = 9.7 Hz, 1H), 3.00 (q, *J* = 8.8 Hz, 1H), 2.53–2.47 (m, 5H), 2.44 (d, *J* = 9.1 Hz, 2H), 1.57–1.47 (m, 2H), 1.38–1.20 (m, 18H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 133.6, 129.9, 128.3, 125.8 (q, *J* = 279.7 Hz), 125.7, 124.4, 116.9, 111.4, 101.5, 80.8, 42.6 (q, *J* = 28.8 Hz), 41.7, 36.7, 31.9, 31.6, 29.7, 29.6, 29.5, 29.4, 29.3, 29.1, 28.8, 22.7, 21.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.35 (d, *J* = 9.6 Hz, 3F); HRMS (ESI) calcd for C₂₇H₃₈F₃NNaO₂S [M+Na]⁺: 520.2468, found: 520.2480.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*) -2,2,2-trifluoro-1-(5-methyl-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ea')

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5ea'** in 36% yield (53.7 mg); colorless solid, mp 84–86 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.40 (s, 1H), 7.38 (s, 1H), 7.30 (d, *J* = 8.3 Hz, 1H), 7.24 (d, *J* = 2.3 Hz, 1H), 7.09 (d, *J* = 8.3 Hz, 1H), 4.96 (dd, *J* = 6.7, 2.9 Hz, 1H), 4.00–3.92 (m, 1H), 3.42 (dt, *J* = 8.8, 3.1 Hz, 1H), 2.63 (dd, *J* = 18.4, 8.9 Hz, 1H), 2.47 (s, 3H), 2.38–2.33 (m, 1H), 2.32–2.23 (m, 2H), 1.33–1.18 (m, 20H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 134.1, 130.2, 126.9, 124.8, 123.8, 117.8, 111.31, 104.3, 84.0, 45.3 (q, *J* = 27.2 Hz), 40.9, 35.5, 31.9, 30.9, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.7, 22.7, 21.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.49 (d, *J* = 9.2 Hz, 3F); HRMS (ESI) calcd for C₂₇H₃₈F₃NNaO₂S [M+Na]⁺: 520.2468, found: 520.2485.

 $(4S^*, 5R^*)$ -5- $((R^*)$ -1-(5-chloro-1H-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecyl-thio)dihydrofuran-2(3H)-one (5fa)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5fa** in 32% yield (49.7 mg); colorless solid, mp 82–84 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.88 (s, 1H), 7.58 (d, *J* = 1.4 Hz, 1H), 7.38–7.33 (m, 2H), 7.21 (dd, *J* = 8.6, 1.8 Hz, 1H), 4.87 (d, *J* = 8.6 Hz, 1H), 4.14 (q, *J* = 9.6 Hz, 1H), 2.95 (q, *J* = 9.0 Hz, 1H), 2.55–2.45 (m, 4H), 1.55–1.48 (m, 2H), 1.32–1.22 (m, 18H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 133.7, 129.1, 127.0, 126.5, 123.2, 116.9, 112.9, 101.7, 80.6, 42.4 (q, *J* = 28.6 Hz), 41.8, 36.9, 31.9, 31.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.0, 28.8, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.34 (d, *J* = 9.7 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₅ClF₃NNaO₂S [M+Na]⁺: 540.1921, found: 540.1908.

 $(4S^*, 5R^*)$ -5- $((S^*)$ -1-(5-chloro-1H-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecyl-thio)-dihydrofuran-2(3H)-one (5fa')

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5fa'** in 31% yield (48.2 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.73 (s, 1H), 7.59 (d, J = 1.6 Hz, 1H), 7.37–7.31 (m, 2H), 7.21 (dd, J = 8.7, 1.9 Hz, 1H), 4.91 (dd, J = 6.5, 3.5 Hz, 1H), 3.98–3.89 (m, 1H), 3.45–3.37 (m, 1H), 2.68 (dd, J = 18.5, 8.9 Hz, 1H), 2.41 (dd, J = 18.5, 4.1 Hz, 1H), 2.36–2.25 (m, 2H), 1.36–1.15 (m, 20H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 134.2, 127.7, 126.6, 125.5 (q, J = 280.5 Hz), 125.5, 123.5, 117.8, 112.8, 104.7, 83.7, 45.1 (q, J = 27.4 Hz), 41.0, 35.7, 31.9, 31.1, 29.6, 29.5, 29.4, 29.3, 29.0, 29.0, 28.6, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.31 (d, J = 9.1 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₅ClF₃NNaO₂S [M+Na]⁺: 540.1921, found: 540.1902.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*) -2,2,2-trifluoro-1-(5-iodo-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ga)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5ga** in 33% yield (60.3 mg); pale-yellow solid, mp 77–79 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.77 (s, 1H), 7.94 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.31 (s, 1H), 7.22 (d, *J* = 8.5 Hz, 1H), 4.84 (d, *J* = 8.6 Hz, 1H), 4.14 (q, *J* = 9.5 Hz, 1H), 2.92 (q, *J* = 9.0 Hz, 1H), 2.56–2.43 (m, 4H), 1.59–1.46 (m, 2H), 1.33–1.19 (m, 18H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 134.4, 131.2, 130.6, 126.4, 126.3, 113.7, 101.4, 84.1, 80.5, 42.2 (q, *J* = 28.6 Hz), 41.9, 37.0, 32.0, 31.9, 29.8, 29.60, 29.5, 29.4, 29.3, 29.1, 28.8, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.31 (d, *J* = 9.5 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₆F₃₁NO₂S [M+H]⁺: 610.1458, found: 610.1474.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*)-2,2,2-trifluoro-1-(5-iodo-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ga')

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5ga'** in 28% yield (51.2 mg); yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.68 (s, 1H), 7.95 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.27 (s, 1H), 7.20 (d, *J* = 8.5 Hz, 1H), 4.93–4.87 (m, 1H), 3.97–3.87 (m, 1H), 3.43–3.36 (m, 1H), 2.70 (dd, *J* = 18.4, 8.9 Hz, 1H), 2.42 (dd, *J* = 18.4, 3.7 Hz, 1H), 2.38–2.24 (m, 2H), 1.36–1.17 (m, 20H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.1, 134.9, 131.5, 129.1, 127.1, 125.5 (q, *J* = 281.8 Hz), 124.8, 113.6, 104.4, 84.3, 83.7, 45.0 (q, *J* = 27.5 Hz), 41.0, 35.7, 31.9, 31.1, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.34 (d, *J* = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₆F₃₁NO₂S [M+H]⁺: 610.1458, found: 610.1477.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*) -2,2,2-trifluoro-1-(5-nitro-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5ha)

Column chromatography (petroleum ether/EtOAc = 18:1 to 8:1) to afford **5ha** in 46% yield (73.0 mg); yellow solid, mp 107–109 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.04 (s, 1H), 8.62 (d, *J* = 2.0 Hz, 1H), 8.20 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.58 (d, *J* = 2.3 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 4.87 (dd, *J* = 9.0, 1.0 Hz, 1H), 4.28 (q, *J* = 9.4 Hz, 1H), 2.89 (q, *J* = 9.0 Hz, 1H), 2.62–2.52 (m, 2H), 2.50 (t, *J* = 7.5 Hz, 2H), 1.55–1.43 (m, 2H), 1.31–1.19 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 142.5, 138.4, 129.0, 127.6, 125.4 (q, *J* = 281.4 Hz), 118.4, 114.8, 112.1, 104.7, 80.3, 42.3 (q, *J* = 29.0 Hz), 42.0, 36.9, 31.9, 31.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 22.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.42 (d, *J* = 9.5 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₆F₃N₂O₄S [M+H]⁺: 529.2342, found: 529.2332.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*) -2,2,2-trifluoro-1-(5-nitro-1*H*-indol-3-yl)ethyl)dihy-drofuran-2(3*H*)-one (5ha')

Column chromatography (petroleum ether/EtOAc = 18:1 to 7:1) to afford **5ha'** in 38% yield (60.3 mg); pale-yellow solid, mp 88–90 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.44 (s, 1H), 8.64 (s, 1H), 8.15 (d, *J* = 9.0 Hz, 1H), 7.55 (s, 1H), 7.51 (d, *J* = 9.0 Hz, 1H), 4.93 (d, *J* = 1.8 Hz, 1H), 4.20–4.09 (m, 1H), 3.53–3.44 (m, 1H), 2.78 (dd, *J* = 18.4, 8.9 Hz, 1H), 2.49 (dd, *J* = 18.4, 4.8 Hz, 1H), 2.43–2.33 (m, 2H), 1.33–1.13 (m, 20H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 142.4, 138.8, 127.6, 126.3, 118.5, 115.8, 112.1, 107.6, 83.6, 44.6 (q, *J* = 30.1 Hz), 41.1, 36.1, 31.9, 31.2, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.7, 22.6, 14.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -65.09 (d, *J* = 9.1 Hz, 3F); HRMS (ESI) calcd for C₂₆H₃₆F₃N₂O4S [M+H]⁺: 529.2342, found: 529.2355.

Methyl $3-((R^*)-1-((2R^*,3S^*)-3-(dodecylthio)-5-oxotetrahydrofuran-2-yl)-2,2,2-tri-fluoroethyl)-1H-indole-5-carboxylate (5ia)$

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **5ia** in 30% yield (48.8 mg); pale-yellow solid, mp 82–84 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.17 (s, 1H), 8.39 (s, 1H), 7.97 (dd, *J* = 8.6, 0.9 Hz, 1H), 7.47 (d, *J* = 8.6 Hz, 1H), 7.43 (d, *J* = 1.7 Hz, 1H), 4.89 (d, *J* = 8.3 Hz, 1H), 4.28 (q, *J* = 9.5 Hz, 1H), 3.95 (s, 3H), 2.95 (q, *J* = 8.9 Hz, 1H), 2.54–2.43 (m, 4H), 1.55–1.43 (m, 2H), 1.33–1.15 (m, 18H), 0.87 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 167.7, 137.9, 127.7, 127.1, 125.6 (q, *J* = 280.0 Hz), 124.1, 122.7, 120.2, 111.6, 103.4, 80.6, 52.0, 42.3 (q, *J* = 28.8 Hz), 41.9, 36.9, 31.9, 31.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 22.6, 14.1;¹⁹F NMR (565

MHz, CDCl₃) δ -68.38 (d, *J* = 9.6 Hz, 3F); **HRMS** (**ESI**) calcd for C₂₈H₃₈F₃NNaO₄S [M+Na]⁺: 564.2366, found: 564.2380.

Methyl 3-((S^*)-1-(($2R^*$, $3S^*$)-3-(dodecylthio)-5-oxotetrahydrofuran-2-yl)-2,2,2-trifluoroethyl)-1*H*-indole-5-carboxylate ($\overline{5ia'}$)

Column chromatography (petroleum ether/EtOAc = 20:1 to 7:1) to afford **5ia'** in 30% yield (48.8 mg); yellow solid, mp 132–134 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.06 (s, 1H), 8.39 (s, 1H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.41 (d, *J* = 2.2 Hz, 1H), 4.92 (dd, *J* = 6.7, 3.6 Hz, 1H), 4.11–4.02 (m, 1H), 3.94 (s, 3H), 3.47–3.37 (m, 1H), 2.74 (dd, *J* = 18.4, 8.9 Hz, 1H), 2.42 (dd, *J* = 18.4, 4.1 Hz, 1H), 2.36–2.23 (m, 2H), 1.32–1.13 (m, 20H), 0.87 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 167.8, 138.4, 126.4, 125.5, 124.3, 122.9, 121.1, 111.5, 106.4, 83.7, 52.1, 44.9 (q, *J* = 27.3 Hz), 41.0, 35.7, 31.9, 31.1, 29.6, 29.5, 29.4, 29.3, 29.0, 29.0, 28.6, 22.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.41 (d, *J* = 8.9 Hz, 3F); HRMS (ESI) calcd for C₂₈H₃₈F₃NNaO₄S [M+Na]⁺: 564.2366, found: 564.2355.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*) -2,2,2-trifluoro-1-(6-fluoro-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one ($\overline{5ja}$)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5ja** in 35% yield (52.7 mg); pale-yellow solid, mp 87–89 °C; **¹H NMR (600 MHz, CDCl**₃) δ 8.59 (s, 1H), 7.52 (dd, *J* = 8.7, 5.0 Hz, 1H), 7.33 (s, 1H), 7.12 (dd, *J* = 9.3, 2.1 Hz, 1H), 6.97 (td, *J* = 9.2, 2.2 Hz, 1H), 4.86 (d, *J* = 8.5 Hz, 1H), 4.14 (q, *J* = 9.5 Hz, 1H), 2.95 (q, *J* = 8.9 Hz, 1H), 2.53–2.41 (m, 4H), 1.55–1.45 (m, 2H), 1.33–1.24 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 160.2 (d, *J* = 239.5 Hz), 135.3 (d, *J* = 12.3 Hz), 125.9, 124.5, 118.4 (d, *J* = 11.0 Hz), 109.6, 109.5, 102.4, 98.0 (d, *J* = 26.2

Hz), 80.5, 42.6 (q, *J* = 28.9 Hz), 41.7, 36.7, 31.9, 31.6, 29.7, 29.6, 29.5, 29.4, 29.3, 29.1, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.35 (d, *J* = 9.5 Hz, 3F), -119.90 – - 120.03 (m, 1F); HRMS (ESI) calcd for C₂₆H₃₆F₄NO₂S [M+H]⁺: 502.2397, found: 502.2384.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*) -2,2,2-trifluoro-1-(6-fluoro-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one ($\overline{5ja'}$)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5**ja' in 34% yield (51.2 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.69 (s, 1H), 7.54 (dd, J = 8.8, 5.0 Hz, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.09 (dd, J = 9.2, 2.1 Hz, 1H), 6.96 (td, J = 9.1, 2.1 Hz, 1H), 4.97 (dd, J = 6.2, 3.1 Hz, 1H), 4.04–3.95 (m, 1H), 3.44 (dt, J = 8.7, 3.3 Hz, 1H), 2.57 (dd, J = 18.5, 8.9 Hz, 1H), 2.39–2.26 (m, 3H), 1.37–1.14 (m, 20H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 160.3 (q, J = 239.8 Hz), 135.9 (d, J = 12.5 Hz), 125.6 (q, J = 280.8 Hz), 124.3, 123.1, 119.4 (d, J = 10.1 Hz), 109.7 (d, J = 24.8 Hz), 104.9, 98.0 (d, J = 26.1 Hz), 83.9, 45.3 (q, J = 27.5 Hz), 40.8, 35.6, 31.9, 31.0, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.6, 22.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.36 (d, J = 9.2 Hz, 3F), -119.35 – -119.44 (m, 1F); HRMS (ESI) calcd for C₂₆H₃₆F₄NO₂S [M+H]⁺: 502.2397, found: 502.2386. (4*S**,5*R**)-4-((4-methoxyphenyl)thio)-5-((*R**)-2,2,2-trifluoro-1-(6-fluoro-1*H*-

indol-3-yl)ethyl)dihydrofuran-2(3H)-one (5jf)

Column chromatography (petroleum ether/EtOAc = 25:1 to 7:1) to afford **5jf** in 40% yield (52.7 mg); yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.64 (s, 1H), 7.41 (d, *J* =

8.6 Hz, 2H), 7.29 (dd, J = 8.7, 5.0 Hz, 1H), 7.26 (s, 1H), 7.08 (dd, J = 9.3, 1.8 Hz, 1H), 6.95–6.89 (m, 3H), 4.94 (d, J = 8.2 Hz, 1H), 4.05 (q, J = 9.8 Hz, 1H), 3.84 (s, 3H), 3.14 (q, J = 9.1 Hz, 1H), 2.40 (d, J = 9.5 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 161.0, 160.1 (d, J = 239.3 Hz), 137.5, 135.3 (d, J = 12.6 Hz), 126.0, 125.7 (q, J = 280.1Hz), 124.4, 119.8, 118.5 (d, J = 10.6 Hz), 115.3, 109.4 (d, J = 24.7 Hz), 102.1, 97.9 (d, J = 26.1 Hz), 80.7, 55.4, 44.9, 42.4 (q, J = 29.3 Hz), 34.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -68.49 (d, J = 8.8 Hz, 3F), -119.85 – -120.15 (m, 1F); HRMS (ESI) calcd for C₂₁H₁₈F₄NO₃S [M+H]⁺: 440.0938, found: 440.0920.

 $(4S^*, 5R^*)$ -4-((4-methoxyphenyl)thio)-5-((S^*)-2,2,2-trifluoro-1-(6-fluoro-1Hindol-3-yl)ethyl)dihydrofuran-2(3H)-one (5jf')

Column chromatography (petroleum ether/EtOAc = 25:1 to 5:1) to afford **5jf** in 31% yield (40.9 mg); yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.45–7.38 (m, 1H), 7.20 (d, J = 8.4 Hz, 2H), 7.07 (dd, J = 9.2, 2.0 Hz, 1H), 7.04 (s, 1H), 6.93 (t, J = 9.1 Hz, 1H), 6.78 (d, J = 8.5 Hz, 2H), 4.94 (dd, J = 6.4, 2.5 Hz, 1H), 3.93–3.84 (m, 1H), 3.80 (s, 3H), 3.63 (dt, J = 8.3, 3.2 Hz, 1H), 2.59–2.50 (m, 1H), 2.39 (dd, J = 18.5, 3.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 160.6, 160.2 (d, J = 239.3 Hz), 136.6, 135.7 (d, J = 13.1 Hz), 124.1, 123.1, 121.2, 119.3 (d, J = 10.0 Hz), 114.9, 109.7, 109.6, 105.0, 97.9 (d, J = 26.3 Hz), 82.7, 55.4, 45.2, 45.0 (q, J = 27.3 Hz), 34.5;¹⁹F NMR (565 MHz, CDCl₃) δ -65.51 (d, J = 8.8 Hz, 3F), -119.36 – -119.61 (m, 1F); HRMS (ESI) calcd for C₂₁H₁₈F₄NO₃S [M+H]⁺: 440.0938, found: 440.0928.

 $(4S^*, 5R^*)$ -5- $((S^*)$ -1-(6-bromo-1H-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecyl-thio)dihydrofuran-2(3H)-one (5ka)

Column chromatography (petroleum ether/EtOAc = 25:1 to 9:1) to afford **5ka** in 30% yield (50.6 mg); pale-yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.78 (s, 1H), 7.60 (s, 1H), 7.47 (d, *J* = 8.5 Hz, 1H), 7.35–7.28 (m, 2H), 4.86 (d, *J* = 8.5 Hz, 1H), 4.15 (q, *J* = 9.6 Hz, 1H), 2.93 (q, *J* = 9.0 Hz, 1H), 2.53–2.44 (m, 4H), 1.53–1.45 (m, 2H), 1.37–1.19 (m, 18H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 136.1, 126.9, 126.2, 125.6 (q, *J* = 280.2 Hz), 123.9, 118.7, 116.3, 114.7, 102.4, 80.5, 42.4 (q, *J* = 28.3 Hz), 41.7, 36.7, 31.9, 31.6, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.35 (d, *J* = 9.5 Hz); HRMS (ESI) calcd for C₂₆H₃₅BrF₃NNaO₂S [M+Na]⁺: 584.1416, found: 584.1405.

 $(4S^*, 5R^*)$ -5- $((S^*)$ -1-(6-bromo-1H-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecyl-thio)dihydrofuran-2(3H)-one (5ka')

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5ka'** in 30% yield (50.6 mg); yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.69 (s, 1H), 7.58 (s, 1H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.29 (d, *J* = 10.3 Hz, 2H), 4.94 (dd, *J* = 5.9, 3.2 Hz, 1H), 4.03–3.94 (m, 1H), 3.45–3.37 (m, 1H), 2.58 (dd, *J* = 18.5, 8.9 Hz, 1H), 2.40–2.27 (m, 3H), 1.32–1.15 (m, 20H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 136.6, 125.5, 124.6, 124.2, 119.7, 116.7, 114.6, 105.1, 83.8, 45.2 (q, *J* = 27.7 Hz), 40.8, 35.7, 31.9, 31.0, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.31 (d, *J* = 9.1 Hz); HRMS (ESI) calcd for C₂₆H₃₅BrF₃NNaO₂S [M+Na]⁺: 584.1416, found: 584.1408.

Methyl $3-((R^*)-1-((2R^*,3S^*)-3-(dodecylthio)-5-oxotetrahydrofuran-2-yl)-2,2,2-tri-fluoroethyl)-1H-indole-6-carboxylate (51a)$

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to afford **5la** in 39% yield (63.4 mg); colorless solid, mp 60–62 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.64 (s, 1H), 8.24 (s, 1H), 7.89 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.55 (d, *J* = 2.5 Hz, 1H), 4.89 (dd, *J* = 8.5, 0.9 Hz, 1H), 4.23 (q, *J* = 9.5 Hz, 1H), 3.96 (s, 3H), 2.95 (q, *J* = 9.1 Hz, 1H), 2.54–2.43 (m, 4H), 1.53–1.43 (m, 2H), 1.32–1.17 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 168.0, 134.8, 131.5, 129.2, 125.6 (q, *J* = 280.2 Hz), 124.3, 121.5, 117.0, 114.3, 102.3, 80.6, 52.1, 42.4 (q, *J* = 28.1 Hz), 41.8, 36.7, 31.9, 31.7, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 22.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.37 (d, *J* = 9.5 Hz); HRMS (ESI) calcd for C₂₈H₃₈F₃NNaO₄S [M+Na]⁺: 564.2366, found: 564.2381.

Methyl $3-((S^*)-1-((2R^*,3S^*)-3-(dodecylthio)-5-oxotetrahydrofuran-2-yl)-2,2,2-trifluoroethyl)-1H-indole-6-carboxylate (51a')$

Column chromatography (petroleum ether/EtOAc = 20:1 to 8:1) to afford **5la'** in 35% yield (56.8 mg); colorless solid, mp 102–104 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.45 (s, 1H), 8.22 (s, 1H), 7.87 (dd, *J* = 8.5, 1.2 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 4.96 (dd, *J* = 6.2, 3.4 Hz, 1H), 4.13–4.02 (m, 1H), 3.94 (s, 3H), 3.49–3.38 (m, 1H), 2.62 (dd, *J* = 18.5, 8.9 Hz, 1H), 2.43–2.23 (m, 3H), 1.31–1.14 (m, 20H), 0.87 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 167.9, 135.2, 130.1, 127.5, 124.6, 121.5, 118.1, 114.2, 105.0, 83.8, 52.1, 45.1 (q, *J* = 27.4 Hz), 40.9, 35.7, 31.8, 31.0, 29.6 (d, *J* = 0.9 Hz), 29.5, 29.4, 29.3, 29.0, 29.0, 28.6, 22.6, 14.0;¹⁹F NMR (565 MHz, CDCl₃) δ -65.23 (d, *J* = 9.1 Hz); HRMS (ESI) calcd for C₂₈H₃₈F₃NNaO4S [M+Na]⁺: 564.2366, found: 564.2353.

 $(4S^*, 5R^*)$ -5- $((R^*)$ -1-(5, 6-dichloro-1*H*-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecyl-thio)dihydrofuran-2(3H)-one (5ma)

Column chromatography (petroleum ether/EtOAc = 25:1 to 16:1) to afford **5ma** in 42% yield (69.6 mg); pale-yellow solid, mp 77–79 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.06 (s, 1H), 7.69 (s, 1H), 7.55 (s, 1H), 7.36 (d, *J* = 2.2 Hz, 1H), 4.86 (d, *J* = 8.8 Hz, 1H), 4.13 (q, *J* = 9.5 Hz, 1H), 2.93 (q, *J* = 9.1 Hz, 1H), 2.60–2.45 (m, 4H), 1.57–1.46 (m, 2H), 1.33–1.21 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 134.1, 127.8, 127.6, 126.8, 125.5 (q, *J* = 281.4 Hz), 125.0, 118.5, 113.4, 101.8, 80.4, 42.3 (q, *J* = 29.1 Hz), 41.8, 36.9, 31.9, 31.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 22.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.32 (d, *J* = 8.9 Hz); HRMS (ESI) calcd for C₂₆H₃₅Cl₂F₃NO₂S [M+H]⁺: 552.1712, found: 552.1721.

 $(4S^*, 5R^*)$ -5- $((S^*)$ -1-(5, 6-dichloro-1H-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecylthio)dihydrofuran-2(3H)-one (5ma')

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **5ma'** in 36% yield (59.7 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.86 (s, 1H), 7.71 (s, 1H), 7.53 (s, 1H), 7.34 (d, *J* = 1.9 Hz, 1H), 4.91 (dd, *J* = 6.1, 3.8 Hz, 1H), 4.01–3.88 (m, 1H), 3.47–3.34 (m, 1H), 2.69 (dd, *J* = 18.5, 8.9 Hz, 1H), 2.43 (dd, *J* = 18.5, 4.3 Hz, 1H), 2.39–2.27 (m, 2H), 1.33–1.17 (m, 20H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 134.6, 127.1, 126.3, 126.1, 125.1, 119.5, 113.3, 104.7, 83.6, 45.0 (q, *J* = 27.2 Hz), 41.0, 35.8, 31.9, 31.1, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.7, 22.6, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.25 (d, *J* = 9.0 Hz); HRMS (ESI) calcd for C₂₆H₃₅Cl₂F₃NO₂S [M+H]⁺: 552.1712, found: 552.1715.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*) -2,2,2-trifluoro-1-(7-methyl-1*H*-indol-3-yl)ethyl)-dihydrofuran-2(3*H*)-one (5na)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **5na** in 30% yield (44.8 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.40 (s, 1H), 7.44 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 2.4 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 7.1 Hz, 1H), 4.87 (dd, J = 8.2, 1.2 Hz, 1H), 4.17 (q, J = 9.6 Hz, 1H), 2.98 (q, J = 8.9 Hz, 1H), 2.52 (s, 3H), 2.51–2.46 (m, 2H), 2.44 (d, J = 9.1 Hz, 2H), 1.53–1.47 (m, 2H), 1.35–1.22 (m, 18H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 134.9, 127.6, 125.3, 123.3, 121.0, 120.8, 115.00, 102.5, 80.8, 42.8 (q, J = 29.5 Hz), 41.7, 36.7, 31.9, 31.6, 29.6, 29.6, 29.4, 29.3, 29.1, 28.7, 22.7, 16.5, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.36 (d, J = 9.0 Hz); HRMS (ESI) calcd for C₂₇H₃₈F₃NNaO₂S [M+Na]⁺: 520.2468, found: 520.2480.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*) -2,2,2-trifluoro-1-(7-methyl-1*H*-indol-3-yl)ethyl)dihydrofuran-2(3*H*)-one (5na')

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5na'** in 34% yield (50.8 mg); pale-yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.51 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 2.4 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.1 Hz, 1H), 4.98 (dd, J = 6.6, 2.8 Hz, 1H), 4.03–3.94 (m, 1H), 3.45 (dt, J = 8.8, 3.1 Hz, 1H), 2.66–2.58 (m, 1H), 2.50 (s, 3H), 2.35 (dd, J = 18.5, 3.4 Hz, 1H), 2.32–2.24 (m, 2H), 1.35–1.11 (m, 20H), 0.90 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 135.4, 126.2, 125.7 (q, J = 280.9 Hz), 123.6, 123.5, 121.0, 120.9, 116.0, 105.3, 84.0, 45.4 (q, J = 26.9 Hz), 40.8, 35.5, 31.9, 30.9, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0,

28.6, 22.7, 16.5, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -65.36 (d, J = 9.1 Hz); HRMS (ESI) calcd for C₂₇H₃₈F₃NNaO₂S [M+Na]⁺: 520.2468, found: 520.2483. (4S*,5R*)-5-((R*)-1-(7-chloro-1H-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecyl-thio)dihydrofuran-2(3H)-one (50a)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **50a** in 34% yield (52.8 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.92 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 2.3 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 4.87 (d, J = 8.6 Hz, 1H), 4.18 (q, J = 9.5 Hz, 1H), 2.94 (q, J = 9.0 Hz, 1H), 2.57–2.44 (m, 4H), 1.53–1.45 (m, 2H), 1.33–1.23 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 132.7, 129.4, 126.4, 125.6 (q, J = 279.3 Hz), 122.2, 121.4, 117.3, 116.2, 103.3, 80.4, 42.6 (q, J = 28.4 Hz), 41.7, 36.7, 31.9, 31.6, 29.7, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -68.33 (d, J = 9.5 Hz); HRMS (ESI) calcd for C₂₆H₃₅ClF₃NNaO₂S [M+Na]⁺: 540.1921, found: 540.1912.

 $(4S^*, 5R^*)$ -5- $((S^*)$ -1-(7-chloro-1H-indol-3-yl)-2,2,2-trifluoroethyl)-4-(dodecyl-thio)dihydrofuran-2(3H)-one (50a')

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **50a'** in 31% yield (48.2 mg); pale-yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.76 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 4.95 (dd, J = 6.3, 3.3 Hz, 1H), 4.05–3.96 (m, 1H), 3.42 (dt, J = 8.5, 3.5 Hz, 1H), 2.61 (dd, J = 18.5, 8.9 Hz, 1H), 2.38 (dd, J = 18.5, 3.8 Hz, 1H), 2.35–2.26 (m, 2H), 1.31–1.14 (m, 20H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 133.1, 128.0, 126.4, 124.6, 122.5, 121.6, 117.2, 106.1, 83.6, 45.4 (q, J = 27.6 Hz), 40.8,

35.6, 31.9, 31.0, 29.6, 29.5, 29.4, 29.3, 29.1, 29.0, 28.6, 22.7, 14.1;¹⁹**F NMR (565 MHz, CDCl₃)** δ -65.34 (d, *J* = 9.1 Hz); **HRMS (ESI)** calcd for C₂₆H₃₅ClF₃NNaO₂S [M+Na]⁺: 540.1921, found: 540.1909.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*) -2,2,3,3,3-pentafluoro-1-(1H-indol-3-yl)propyl)dihydrofuran-2(3H)-one (5pa)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5pa** in 27% yield (43.2 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.63 (s, 1H), 7.56 (s, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.34 (s, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 5.00 (d, *J* = 8.2 Hz, 1H), 4.21 (d, *J* = 25.5 Hz, 1H), 2.94 (q, *J* = 8.6 Hz, 1H), 2.54–2.35 (m, 4H), 1.57–1.43 (m, 2H), 1.32–1.24 (m, 18H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 135.2, 127.7, 126.2, 122.8, 120.6, 116.9, 111.7, 101.2, 80.1, 41.7, 40.0–39.2 (m), 36.6, 31.9, 31.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -82.03 (s, 3F), -114.73 (d, *J* = 267.0 Hz, 1F), -119.90 (dd, *J* = 267.3, 24.6 Hz, 1F); HRMS (ESI) calcd for C₂₇H₃₆F₅NNaO₂S [M+Na]⁺: 556.2279, found: 556.2296.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*) -2,2,3,3,3-pentafluoro-1-(1H-indol-3-yl)propyl)dihydrofuran-2(3H)-one (5pa')

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5pa'** in 23% yield (36.8 mg); pale-yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 8.63 (s, 1H), 7.56 (s, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.34 (s, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 5.00 (d, *J* = 8.2 Hz, 1H), 4.21 (d, *J* = 25.5 Hz, 1H), 2.94 (q, *J* = 8.6 Hz, 1H), 2.54–2.35 (m, 4H), 1.57–1.43 (m, 2H), 1.32–1.24 (m, 18H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C **NMR (150 MHz, CDCl₃)** δ 174.6, 135.2, 127.7, 126.2, 122.8, 120.6, 116.9, 111.7,

101.2, 80.1, 41.7, 39.8–39.2 (m), 36.6, 31.9, 31.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 22.7, 14.1;¹⁹**F NMR** (**565 MHz**, **CDCl**₃) δ -81.63 (s, 3F), -111.12 (d, *J* = 271.3 Hz, 1F), -118.71 (d, *J* = 208.4 Hz, 1F); **HRMS** (**ESI**) calcd for C₂₇H₃₆F₅NNaO₂S [M+Na]⁺: 556.2279, found: 556.2290.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((R^*)-2,2,3,3,4,4,4-heptafluoro-1-(1H-indol-3-yl)butyl)dihydrofuran-2(3H)-one ($\frac{5qa}{9}$)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **5qa** in 27% yield (47.3 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.59 (s, 1H), 7.56 (s, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.36 (s, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.21 (t, *J* = 7.2 Hz, 1H), 5.00 (d, *J* = 8.2 Hz, 1H), 4.38–4.25 (m, 1H), 2.94 (dd, *J* = 17.2, 8.6 Hz, 1H), 2.54–2.35 (m, 4H), 1.53–1.46 (m, 2H), 1.34–1.23 (m, 18H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 135.1, 127.8, 126.3, 122.8, 120.7, 117.0, 111.7, 101.2, 80.1, 41.7, 39.9–39.4 (m), 36.6, 31.9, 31.6, 29.6, 29.6, 29.6, 29.4, 29.3, 29.1, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -80.56 (s, 3F), -112.15 (d, *J* = 275.3 Hz, 1F), -115.14 (d, *J* = 272.8 Hz, 1F), -123.31 – -124.09 (m, 1F), -124.84 (dd, *J* = 289.6, 11.9 Hz, 1F); HRMS (ESI) calcd for C₂₈H₃₆F₇NNaO₂S [M+Na]⁺: 606.2247, found: 606.2230.

 $(4S^*, 5R^*)$ -4-(dodecylthio)-5-((S^*) -2,2,3,3,4,4,4-heptafluoro-1-(1H-indol-3-yl)-butyl)-dihydrofuran-2(3H)-one (5qa')

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **5qa'** in 19% yield (33.3 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.26 (t, J = 7.3 Hz, 2H), 7.23–7.18 (m, 1H), 5.09 (dd, J = 5.5, 2.3 Hz, 1H), 4.18–4.05 (m, 1H), 3.44 (dt, J = 8.6, 2.8 Hz, 1H), 2.45

(dd, J = 18.5, 8.9 Hz, 1H), 2.37–2.25 (m, 3H), 1.32–1.18 (m, 20H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 135.7, 126.5, 124.7, 123.2, 121.0, 118.4, 111.6, 103.6, 83.7, 43.5–42.3 (m), 41.0, 35.6, 31.9, 31.0, 29.6, 29.6, 29.6, 29.4, 29.3, 29.1, 29.0, 28.7, 22.7, 14.1;¹⁹F NMR (565 MHz, CDCl₃) δ -80.35 – -80.72 (m, 3F), -108.42 – -109.33 (m, 1F), -114.18 (d, J = 184.9 Hz, 1F), -122.35 (d, J = 289.8 Hz, 1F), -125.42 (d, J = 287.6 Hz, 1F); HRMS (ESI) calcd for C₂₈H₃₆F₇NNaO₂S [M+Na]⁺: 606.2247, found: 606.2228.

(4S*,5R*)-5-benzhydryl-4-(dodecylthio)dihydrofuran-2(3H)-one (5ra)

Column chromatography (petroleum ether/EtOAc = 50:1 to 16:1) to afford **5ra** in 75% yield (101.9 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.39 (d, *J* = 7.5 Hz, 2H), 7.36–7.29 (m, 6H), 7.28–7.22 (m, 2H), 5.07 (t, *J* = 5.0 Hz, 1H), 4.28 (d, *J* = 4.7 Hz, 1H), 3.28 (dt, *J* = 8.6, 5.8 Hz, 1H), 2.55 (dd, *J* = 18.1, 8.6 Hz, 1H), 2.51–2.41 (m, 3H), 1.54–1.43 (m, 2H), 1.35–1.26 (m, 18H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 140.7, 138.6, 129.4, 128.7, 128.6, 128.4, 127.2, 127.0, 86.5, 54.0, 41.6, 36.3, 31.8, 31.1, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 29.1, 28.7, 22.6, 14.1; HRMS (ESI) calcd for C₂₉H₄₁O₂S [M+H]⁺: 453.2822, found: 453.2802.

(4*S**,5*R**)-5-(di-p-tolylmethyl)-4-(dodecylthio)dihydrofuran-2(3*H*)-one (5sa)

Column chromatography (petroleum ether/EtOAc = 100:1 to 25:1) to afford **5sa** in 77% yield (111.1 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.16–7.10 (m, 4H), 5.04 (t, *J* = 4.9 Hz, 1H), 4.21 (d, *J* = 4.7 Hz, 1H), 3.30 (dt, *J* = 8.6, 5.8 Hz, 1H), 2.54 (dd, *J* = 18.1, 8.7 Hz, 1H), 2.49–2.41

(m, 3H), 2.33 (s, 3H), 2.32 (s, 3H), 1.55–1.45 (m, 2H), 1.40–1.25 (m, 18H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.7, 137.9, 136.7, 136.5, 135.8, 129.3, 129.3, 129.2, 128.2, 86.8, 53.3, 41.5, 36.2, 31.8, 31.0, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 28.7, 22.6, 20.9, 20.9, 14.1; HRMS (ESI) calcd for C₃₁H₄₅O₂S [M+H]⁺: 481.3135, found: 481.3122.

(4S*,5R*)-4-(dodecylthio)-5-(9H-fluoren-9-yl)dihydrofuran-2(3H)-one (5ta)

Column chromatography (petroleum ether/EtOAc = 100:1 to 33:1) to afford **5ta** in 61% yield (82.5 mg); pale-yellow solid, mp 57–59 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (t, *J* = 7.0 Hz, 2H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.44 (td, *J* = 7.5, 2.8 Hz, 2H), 7.35 (td, *J* = 7.4, 0.8 Hz, 1H), 7.30 (td, *J* = 7.5, 0.8 Hz, 1H), 5.21 (dd, *J* = 4.3, 3.0 Hz, 1H), 4.51 (d, *J* = 4.3 Hz, 1H), 2.32–2.16 (m, 3H), 1.99–1.92 (m, 1H), 1.90–1.81 (m, 1H), 1.36–1.19 (m, 14H), 1.11–0.97 (m, 6H), 0.89 (t, *J* = 4.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.4, 142.0, 141.7, 141.3, 140.7, 128.4, 128.3, 127.7, 127.4, 125.8, 125.1, 120.3, 120.2, 88.4, 50.4, 37.6, 37.2, 31.9, 31.0, 29.6, 29.6, 29.5, 29.4, 29.3, 28.9, 28.7, 28.5, 22.6, 14.1; HRMS (ESI) calcd for C₂₉H₃₈NaO₂S [M+Na]⁺: 473.2485, found: 473.2500.

(4S*,5R*)-4-(dodecylthio)-5-(9H-thioxanthen-9-yl)dihydrofuran-2(3H)-one (5ua)

Column chromatography (petroleum ether/EtOAc = 50:1 to 12:1) to afford **5ua** in 66% yield (95.5 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.37 (m, 2H), 7.36–7.23 (m, 6H), 4.82 (dd, *J* = 7.0, 2.0 Hz, 1H), 4.29 (d, *J* = 7.0 Hz, 1H), 3.64 (dt, *J* = 8.9, 2.3 Hz, 1H), 2.45 (dd, *J* = 18.5, 9.1 Hz, 1H), 2.23 (dd, *J* = 18.5, 2.8 Hz, 1H),

2.07–1.99 (m, 1H), 1.98–1.89 (m, 1H), 1.31–1.10 (m, 20H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) 175.0, 132.7, 132.0, 131.9, 130.9, 130.6, 130.6, 128.1, 127.77, 127.0, 126.9, 126.8, 126.7, 87.0, 52.2, 39.6, 35.4, 31.9, 30.8, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 29.1, 28.8, 22.7, 14.1; HRMS (ESI) calcd for C₂₉H₃₈NaO₂S₂ [M+H]⁺: 483.2386, found: 483.2400.

(4*S**,5*R**)-5-benzyl-4-(dodecylthio)dihydrofuran-2(3*H*)-one (5va)

Column chromatography (petroleum ether/EtOAc = 100:1 to 33:1) to afford **5va** in 54% yield (61.0 mg); pale-yellow oil; **¹H NMR (600 MHz, CDCl₃)** δ 7.32 (t, *J* = 7.4 Hz, 2H), 7.27–7.23 (m, 3H), 4.54 (dd, *J* = 11.4, 6.1 Hz, 1H), 3.21 (dd, *J* = 14.8, 7.6 Hz, 1H), 3.11 (dd, *J* = 14.4, 4.9 Hz, 1H), 2.99 (dd, *J* = 14.4, 6.3 Hz, 1H), 2.76 (dd, *J* = 17.9, 8.6 Hz, 1H), 2.50–2.42 (m, 3H), 1.53–1.46 (m, 2H), 1.33–1.24 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 135.4, 129.6, 128.6, 127.1, 85.4, 42.2, 39.4, 36.7, 31.8, 31.3, 29.6, 29.6, 29.5, 29.5, 29.4, 29.3, 29.1, 28.7, 22.6, 14.1; HRMS (ESI) calcd for C₂₃H₃₇O₂S [M+H]⁺: 377.2509, found: 377.2499.

5. Gram-scale synthesis and further transformations

5.1 Gram-scale synthesis of 4ra

To a solution of **1r** (1.0 g, 4 mmol), C₁₂H₂₅SH (1.916 mL, 8 mmol) in anhydrous CH₃CN (40 mL) was added TsOH·H₂O (152.2 mg, 0.2 equiv). The reaction mixture was stirred at 80 °C for 12 h until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with EA (50 mL x 2). The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc= 100:1 to 50:1) to give the products **4ra** (1.565 g, 90%)

yield).

5.2 Gram-scale synthesis of 5ra

To a solution of **1r** (1.001 g, 4 mmol), C_{12H25}SH (1.916 mL, 8 mmol) in anhydrous CH₃CN (40 mL) was added TsOH·H₂O (152.2 mg, 0.2 equiv). The reaction mixture was stirred at 80 °C for 12 h until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with EA (100 mL x 2). The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc= 50:1 to 16:1) to give the products **5ra** (1.195 g, 66% yield).

5.3 Synthetic transformation of 4ra

Following literature procedure,^{**S6**} to a solution of **4ra** (87 mg, 0.2 mmol) in H₂O (2 mL) was added NFSI (95 mg, 0.3 mmol). The reaction mixture was stirred at room temperature for 2 h until full consumption of the starting material based on TLC analysis. Upon completion, the reaction mixture was extracted with EtOAc (10 mL x 2), the combined organic layers were washed with brine, and dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 25:1 to 6:1) to afford the sulfoxide product **6** (57.7 mg) in 64% yield as pale-yellow oil; ¹H NMR (**600 MHz, CDCl**₃) δ 7.33–7.28 (m, 4H), 7.27–7.23 (m, 2H), 7.18–7.13 (m, 4H), 6.87 (d, *J* = 3.4 Hz, 1H), 6.02 (dd, *J* = 3.4, 0.7 Hz, 1H), 5.52 (s, 1H), 3.15 (ddd, *J* = 12.6, 9.5, 5.6 Hz, 1H), 3.06 (ddd, *J* = 12.8, 9.6, 6.2 Hz, 1H), 1.62–1.55 (m, 1H), 1.54–1.45 (m, 1H), 1.35–1.23 (m, 18H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (**150 MHz, CDCl**₃) δ 161.7, 150.7, 140.6,

140.4, 128.6, 128.5, 128.5, 127.0, 127.0, 117.1, 110.1, 52.4, 50.9, 31.8, 29.5, 29.5, 29.4, 29.2, 29.0, 28.5, 22.6, 22.4, 14.0; **HRMS (ESI)** calcd for C₂₉H₃₉O₂S [M+H]⁺: 451.2665, found: 451.2650.

5.4 Synthetic transformation of 4ra

Following literature procedure.⁸⁷ to a solution of 4ra (87 mg, 0.2 mmol) and NH₂CO₂NH₄ (31 mg, 0.4 mmol) in MeOH (2 mL) was added PhI(OAc)₂ (161 mg, 0.5 mmol). The reaction mixture was stirred at room temperature for 3 h until full consumption of the starting material based on TLC analysis. Upon completion, the reaction mixture was quenched with NaHCO3 and extracted with EtOAc, the combined organic layers were washed with brine, and dried over MgSO4. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 25:1 to 5:1) to afford 7 (79.2 mg) in 85% yield as pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.28 (m, 4H), 7.28–7.23 (m, 2H), 7.16–7.13 (m, 4H), 6.88 (d, J = 3.4 Hz, 1H), 6.02 (d, J = 3.3 Hz, 1H), 5.51 (s, 1H), 3.12 (ddd, J = 12.9, 9.5, 5.6 Hz, 1H), 3.04 (ddd, J = 12.8, 9.6, 6.2 Hz, 1H), 1.67 (s, 1H), 1.67 (s, 100)1.60-1.55 (m, 1H), 1.50-1.45 (m, 1H), 1.34-1.18 (m, 18H), 0.89 (t, J = 7.0 Hz, 3H);¹³C NMR (150 MHz, CDCl₃) δ 161.8, 150.7, 140.7, 140.5, 128.7, 128.6, 128.6, 127.1, 127.1, 117.2, 110.2, 52.5, 51.0, 31.9, 29.6, 29.5, 29.3, 29.12, 28.6, 22.7, 22.5, 14.1; **HRMS (ESI)** calcd for C₂₉H₄₀NO₂S [M+H]⁺: 466.2774, found: 466.2793.

5.5 Synthetic transformation of 5ra

To a solution of **5ra** (91 mg, 0.2 mmol) and NH₂CO₂NH₄ (31 mg, 0.4 mmol) in MeOH (2 mL) at room temperature was added PhI(OAc)₂ (161 mg, 0.5 mmol). The resulting

reaction mixture was stirred at room temperature for 3 h until full consumption of the starting material based on TLC analysis. Upon completion, the reaction mixture was quenched with NaHCO₃ and extracted with EtOAc, the combined organic layers were washed with brine, and dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 25:1 to 5:1) to afford **8** (36.0 mg) in 72% yield as colorless solid, mp: 72–74 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.26 (m, 10H), 7.25–7.21 (m, 1H), 6.05 (dd, *J* = 5.8, 2.0 Hz, 1H), 5.73 (dt, *J* = 7.7, 1.7 Hz, 1H), 4.13 (d, *J* = 7.7 Hz, 1H);¹³C NMR (150 MHz, CDCl₃) δ 172.6, 155.6, 139.9, 139.1, 128.9, 128.5, 128.4, 128.3, 127.4, 127.2, 122.2, 84.5, 54.9; HRMS (ESI) calcd for C₁₇H₁₅O₂ [M+H]⁺: 251.1067, found: 251.1080.

6. Control experiments with 3aa and 4aa

6.1 Control experiment with 3aa

To a solution of **3aa** (46.6 mg, 0.1 mmol) in anhydrous CH₃CN (1 mL) was added TsOH·H₂O (3.8 mg, 0.02 mmol). The reaction mixture was stirred at 80 °C for 12 h until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with EA (5 mL x 2). The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc= 25:1 to 8:1) to give the products **4aa** (44.1 mg, 95% yield).

6.2 Control experiment with 4aa

To a solution of **4aa** (93 g, 0.2 mmol) in anhydrous DCE (2 mL) was added H₂O¹⁸ (8 μ L, 0.4 mmol) and TsOH·H₂O (7.6 mg, 0.04 mmol). The reaction mixture was stirred at 80 °C for 20 h until full consumption of the starting material (as indicated by TLC). Upon completion, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with EA (10 mL x 2). The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc= 50:1 to 16:1) to give the products ¹⁸O-**5aa** in 33% yield (31 mg) as yellow oil and ¹⁸O-**5aa'** in 36% yield (34 mg) as pale-yellow solid, mp 68–70 °C.

7. ¹H, ¹³C and ¹⁹F NMR spectra

Figure S2 ¹³C NMR (150 MHz, CDCl₃) of 1c

~ 154.46 ~ 154.26 135.16 135.12 135.12 135.12 135.12 135.12 135.12 141.12 124.19 110.12 110.12 110.12 110.12 124.19 12

Figure <mark>85</mark>¹³C NMR (150 MHz, CDCl₃) of 1d

S67

Figure <mark>S13</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>1g</mark>

S72

S81

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fi (ppm)

Figure S41 ¹³C NMR (150 MHz, CDCl₃) of 1p

Figure <mark>S45</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>1q</mark>

Figure S46 ¹H NMR (600 MHz, CDCl₃) of 3aa

2.3916 2.3916 2.3916 2.3916 2.3916 2.3916 2.3918 2.3408

Figure S47 ¹³C NMR (150 MHz, CDCl₃) of 3aa

Figure S48 ¹⁹F NMR (376 MHz, CDCl₃) of 3aa

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 f1 (ppm)

Figure <mark>S49</mark> ¹H NMR (600 MHz, CDCl₃) of 4aa

Figure <mark>S56</mark>¹³C NMR (150 MHz, CDCl₃) of 4ac

Figure <mark>S55</mark> ¹H NMR (600 MHz, CDCl₃) of 4ac

Figure <mark>S58</mark> ¹H NMR (600 MHz, CDCl₃) of 4ad

Figure <mark>S60</mark>¹⁹F NMR (565 MHz, CDCl₃) of 4ad

Figure <mark>859</mark>¹³C NMR (150 MHz, CDCl₃) of 4ad

S93

Figure S61¹H NMR (600 MHz, CDCl₃) of 4ae

Figure <mark>865</mark>¹³C NMR (150 MHz, CDCl₃) of 4af

Figure S67 ¹H NMR (600 MHz, CDCl₃) of 4ag

Figure <mark>S68</mark>¹³C NMR (150 MHz, CDCl₃) of 4ag

10

Figure 871 ¹³C NMR (150 MHz, CDCl₃) of 4ah

Figure <mark>872</mark> ¹⁹F NMR (565 MHz, CDCl₃) of 4ah

Figure S73 ¹H NMR (600 MHz, CDCl₃) of 4ai

.1829 .1.1829 .1.28214 .1.282147 .1.28124 .1.2829 .

Figure S74¹³C NMR (150 MHz, CDCl₃) of 4ai

Figure <mark>S76</mark> ¹H NMR (600 MHz, CDCl₃) of 4aj

Figure S78 ¹⁹F NMR (565 MHz, CDCl₃) of 4aj

110 100 90 f1 (ppm) 80 70

60

50 40 30

200 190

180

170

160

150

140 130 120

20

10 0

Figure <mark>S82</mark> ¹H NMR (600 MHz, CDCl₃) of 4bf

Figure <mark>883</mark> ¹³C NMR (150 MHz, CDCl₃) of 4bf

Figure <mark>S84</mark>¹⁹F NMR (565 MHz, CDCl₃) of 4bf

Figure S85 ¹H NMR (600 MHz, CDCl₃) of 4cf

Figure S86 ¹³C NMR (150 MHz, CDCl₃) of 4cf

- 153.10 - 1

Figure S87 ¹⁹F NMR (376 MHz, CDCl₃) of 4cf

Figure <mark>S89</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>4da</mark>

S111

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ft (ppm)

S115

S124

Figure <mark>S131</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>4qa</mark>

Figure <mark>S132</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>4qa</mark>

00.569 00.6076 00.6

Figure <mark>S133</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>4ra</mark>

Figure <mark>S135</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>4sa</mark>

Figure <mark>S136</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>4sa</mark>

Figure <mark>S138</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>4ta</mark>

Figure <mark>S139</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>4ua</mark>

Figure <mark>S140</mark>¹³C NMR (600 MHz, CDCl₃) of <mark>4ua</mark>

Figure S146 ¹H NMR (600 MHz, CDCl₃) of 5aa'

Figure S148¹⁹F NMR (565 MHz, CDCl₃) of 5aa'

Figure <mark>S149</mark> ¹H NMR (600 MHz, CDCl₃) of 5ab

Figure S150¹³C NMR (150 MHz, CDCl₃) of 5ab

Figure S152 ¹H NMR (600 MHz, CDCl₃) of 5ab'

Figure S153 ¹³C NMR (150 MHz, CDCl₃) of 5ab'

Figure S154 ¹⁹F NMR (565 MHz, CDCl₃) of 5ab'

Figure S155 ¹H NMR (600 MHz, CDCl₃) of 5ac

Figure S156¹³C NMR (150 MHz, CDCl₃) of 5ac

Figure S158 ¹H NMR (600 MHz, CDCl₃) of 5ac'

Figure S159¹³C NMR (150 MHz, CDCl₃) of 5ac'

Figure S160¹⁹F NMR (565 MHz, CDCl₃) of 5ac'

Figure <mark>S161</mark> ¹H NMR (600 MHz, CDCl₃) of 5ad

Figure <mark>S162</mark>¹³C NMR (150 MHz, CDCl₃) of 5ad

Figure S164 ¹H NMR (600 MHz, CDCl₃) of 5ad'

Figure S165 ¹³C NMR (150 MHz, CDCl₃) of 5ad'

Figure S166¹⁹F NMR (565 MHz, CDCl₃) of 5ad'

Figure <mark>S167</mark> ¹H NMR (600 MHz, CDCl₃) of 5af

Figure S168¹³C NMR (150 MHz, CDCl₃) of 5af

Figure S170¹³H NMR (600 MHz, CDCl₃) of 5af

Figure S171¹³C NMR (150 MHz, CDCl₃) of 5af

Figure S172¹⁹F NMR (565 MHz, CDCl₃) of 5af

Figure <mark>S173</mark> ¹H NMR (600 MHz, CDCl₃) of 5ag

Figure S176 ¹H NMR (600 MHz, CDCl₃) of 5ag'

Figure **S177**¹³C NMR (150 MHz, CDCl₃) of 5ag'

Figure S178¹⁹F NMR (565 MHz, CDCl₃) of 5ag'

Figure <mark>S179</mark> ¹H NMR (600 MHz, CDCl₃) of 5ah

Figure S180¹³C NMR (150 MHz, CDCl₃) of 5ah

Figure S182 ¹H NMR (600 MHz, CDCl₃) of 5ah'

Figure S183 ¹³C NMR (150 MHz, CDCl₃) of 5ah'

Figure <mark>S184</mark>¹⁹F NMR (565 MHz, CDCl₃) of 5ah'

-10 -20 -30 -40 -50 -60 -70 -160 -170 0 -80 -90 -90 f1 (ppm) -100 -110 -120 -130 -140 -150

Figure S186 ¹³C NMR (150 MHz, CDCl₃) of 5ai

Figure S187¹⁹F NMR (565 MHz, CDCl₃) of 5ai

Figure S188 ¹H NMR (600 MHz, CDCl₃) of 5ai'

Figure S189¹³C NMR (150 MHz, CDCl₃) of 5ai'

Figure <mark>S190</mark>¹⁹F NMR (565 MHz, CDCl₃) of 5ai'

Figure S192 ¹³C NMR (150 MHz, CDCl₃) of 5aj

Figure <mark>S193</mark>¹⁹F NMR (565 MHz, CDCl₃) of 5aj

Figure <mark>S194</mark> ¹H NMR (600 MHz, CDCl₃) of 5aj'

Figure S195¹³C NMR (150 MHz, CDCl₃) of 5aj'

Figure S196 ¹⁹F NMR (565 MHz, CDCl₃) of 5aj'

Figure S198¹³C NMR (150 MHz, CDCl₃) of 5ak

Figure S200¹H NMR (600 MHz, CDCl₃) of 5ak'

77.5373 77.2015 77.2015 77.2015 77.2015 77.2015 77.2015 77.2015 77.1910 77.1910 77.1910 77.1910 77.1910 77.1910 77.1910 77.1910 77.1910 77.1910 77.1910 77.1910 77.0121 77.012

Figure S202¹⁹F NMR (565 MHz, CDCl₃) of 5ak'

Figure S203 ¹H NMR (600 MHz, CDCl₃) of 5bf

Figure S204 ¹³C NMR (150 MHz, CDCl₃) of 5bf

Figure S207¹³C NMR (150 MHz, CDCl₃) of 5bf

Figure S208 ¹⁹F NMR (565 MHz, CDCl₃) of 5bf

Figure S209 ¹H NMR (600 MHz, CDCl₃) of 5cf

7.6178 7.74139 7.74139 7.74139 7.74139 7.74066 7.73853 7.73853 7.73854 7.73854 7.73854 7.73254 7.73254 7.73254 7.73254 7.72254

Figure S210 ¹³C NMR (150 MHz, CDCl₃) of 5cf

Figure S211 ¹⁹F NMR (376 MHz, CDCl₃) of 5cf

Figure S213 ¹³C NMR (150 MHz, CDCl₃) of 5cf'

Figure S214 ¹⁹F NMR (376 MHz, CDCl₃) of 5cf'

) -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 f1 (ppm)

Figure <mark>S215</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5da</mark>

110 f1 (ppm)

90

80

70 60

40

50

30 20

10

120

130

190 180

170

160 150

140

Figure <mark>S218</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5da'</mark>

Figure <mark>S219</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5da'</mark>

Figure <mark>S220</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5da'</mark>

Figure <mark>S222</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ea</mark>

Figure <mark>S224</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ea'</mark>

Figure <mark>S228</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5fa</mark>

S177

Figure <mark>S230</mark>¹H NMR (600 MHz, CDCl₃) of <mark>5fa'</mark>

Figure S231 ¹³C NMR (150 MHz, CDCl₃) of 5fa'

Figure <mark>S232</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5fa'</mark>

Figure <mark>S236</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ga'</mark>

Figure <mark>S237</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ga'</mark>

Figure <mark>S238</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5ga'</mark>

Figure <mark>S239</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ha</mark>

Figure <mark>S243</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ha'</mark>

Figure <mark>S244</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5ha'</mark>

Figure <mark>S245</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ia</mark>

Figure <mark>S246</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ia</mark>

Figure <mark>S248</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ia'</mark>

Figure <mark>S250</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5ia'</mark>

Figure <mark>S254</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ja'</mark>

Figure S256¹⁹F NMR (565 MHz, CDCl₃) of 5ja'

4,6330 7,14100 7,14100 7,14100 7,12016 7,12016 7,12016 7,12016 7,12016 7,12016 6,90218

Figure <mark>S258</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5jf</mark>

Figure <mark>S259</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5jf</mark>

Figure <mark>S261</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5jf'</mark>

Figure <mark>S262</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5jf'</mark>

Figure <mark>S263</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ka</mark>

Figure <mark>S266</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ka'</mark>

Figure <mark>S267</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ka'</mark>

Figure S268 ¹⁹F NMR (565 MHz, CDCl₃) of <mark>5ka'</mark>

Figure <mark>S269</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>51a</mark>

Figure <mark>S270</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>51a</mark>

Figure <mark>S273</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>51a'</mark>

Figure <mark>S274</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>51a'</mark>

Figure <mark>S278</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5na'</mark>

Figure S280¹⁹F NMR (565 MHz, CDCl₃) of 5na'

Figure <mark>S281</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5na</mark>

Figure <mark>S284</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5na'</mark>

4,9700 4,9700 4,9700 4,9700 5,9936 5,9936 5,9936 5,9936 5,9936 5,9936 5,9936 5,29397 5,203975557 5,20397557575

Figure <mark>S285</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5na'</mark>

Figure <mark>S286</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5na'</mark>

Figure <mark>S287</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>50a</mark>

Figure <mark>S290</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>50a'</mark>

Figure <mark>S291</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>50a'</mark>

Figure <mark>S292</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>50a'</mark>

Figure <mark>S295</mark>¹⁹F NMR (565 MHz, CDCl₃) of <mark>5pa</mark>

Figure <mark>S296</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5pa'</mark>

Figure <mark>S300</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5qa</mark>

Figure <mark>S302</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5qa'</mark>

Figure <mark>S305</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ra</mark>

Figure <mark>S306</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ra</mark>

Figure <mark>S307</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5sa</mark>

Figure <mark>S308</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5sa</mark>

Figure <mark>S309</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ta</mark>

667/77 666/2 6

Figure <mark>S310</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ta</mark>

Figure <mark>S311</mark> ¹H NMR (600 MHz, CDCl₃) of <mark>5ua</mark>

7,10,00 7,1

Figure <mark>S312</mark>¹³C NMR (150 MHz, CDCl₃) of <mark>5ua</mark>

Figure <mark>S314¹³C NMR (150 MHz, CDCl₃) of </mark>5va

Figure <mark>S315</mark> ¹H NMR (600 MHz, CDCl₃) of 6

Reference 2016/2

Figure <mark>S316</mark>¹³C NMR (150 MHz, CDCl₃) of 6

Figure **S317** ¹H NMR (600 MHz, CDCl₃) of 7

Figure <mark>S318</mark>¹³C NMR (150 MHz, CDCl₃) of 7

Figure <mark>S319</mark> ¹H NMR (600 MHz, CDCl₃) of 8

Figure <mark>S320</mark>¹³C NMR (150 MHz, CDCl₃) of 8

Figure **S321** ¹³C NMR (150 MHz, CDCl₃) of ¹⁸O-5aa

8. IR Spectra of 5aa, 5aa', ¹⁸O-5aa, and ¹⁸O-5aa'

Figure S324. IR spectra of ¹⁸O-5aa

Figure S325. IR spectra of ¹⁸O-5aa

Figure S326. IR spectra of ¹⁸O-5aa'

9. X-ray crystal structure

Crystal preparation: Compounds **4jf**, **5bf** and **5bf'** (30-40 mg) were dissolved in hexane/EA = 10:1 (10 mL) in 25 mL round bottom flask and the resultant solution were allowed to slowly evaporate at room temperature to get pure crystals suitable for X-ray diffraction analysis. The intensity data were collected at 100 K or 150 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. More information on crystal structures can also be obtained from the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers 2377410 (**4jf**), 2377411 (**5bf**) and 2377412 (**5bf'**).

Figure S327. ORTEP Drawing of 4jf with Thermal Ellipsoids at 30% Probability Levels (CCDC 2377410).

Table S1 Crystal data and structure refinement for 4jf

Identification code	<mark>4jf</mark>
Empirical formula	$C_{21}H_{15}F_4NO_2S$
Formula weight	421.40
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1

a/Å	9.8008(3)
b/Å	10.0875(3)
c/Å	10.4732(3)
$\alpha/^{\circ}$	97.214(3)
β/°	115.227(3)
$\gamma/^{\circ}$	91.614(3)
Volume/Å3	925.41(5)
Z	2
pcalcg/cm3	1.512
µ/mm-1	2.084
F(000)	432.0
Crystal size/mm3	$0.16 \times 0.13 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.874 to 146.728
Index ranges	$-12 \le h \le 11, -12 \le k \le 12, -12 \le l \le 13$
Reflections collected	10236
Independent reflections	3557 [Rint = 0.0286, Rsigma = 0.0274]
Data/restraints/parameters	3557/299/309
Goodness-of-fit on F2	1.013
Final R indexes [I>= 2σ (I)]	R1 = 0.0545, wR2 = 0.1309
Final R indexes [all data]	R1 = 0.0590, wR2 = 0.1340
Largest diff. peak/hole / e Å-3	0.71/-0.44

Figure S328. ORTEP Drawing of 5bf with Thermal Ellipsoids at 30% Probability Levels (CCDC 2377411).

Table S2 Crystal data and structure refinement for 5bf

Identification code	5bf
Empirical formula	C28H24F3NO5S2
Formula weight	575.60
Temperature/K	273.15
Crystal system	monoclinic
Space group	P21/n
a/Å	16.4884(12)
b/Å	9.0946(7)
c/Å	19.7391(14)
α/°	90
β/°	113.211(2)
$\gamma/^{\circ}$	90
Volume/Å3	2720.4(3)
Z	4
pcalcg/cm3	1.405
μ/mm-1	2.303
F(000)	1192.0

Crystal size/mm3	$0.14 \times 0.12 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	5.946 to 136.734
Index ranges	$\text{-19} \le h \le 19, \text{-10} \le k \le 10, \text{-23} \le l \le 23$
Reflections collected	50355
Independent reflections	4963 [Rint = 0.0485, Rsigma = 0.0357]
Data/restraints/parameters	4963/0/355
Goodness-of-fit on F2	1.033
Final R indexes [I>= 2σ (I)]	R1 = 0.0562, wR2 = 0.1517
Final R indexes [all data]	R1 = 0.0601, wR2 = 0.1533
Largest diff. peak/hole / e Å-3	0.60/-0.49

Figure <mark>S329</mark>. ORTEP Drawing of **5bf'** with Thermal Ellipsoids at 30% Probability

Levels (CCDC 2377412).

Table S3 Crystal data and structure refinement for 5bf'.

Identification code	5bf'
Empirical formula	C28H24F3NO5S2
Formula weight	575.60
Temperature/K	293.15
Crystal system	monoclinic
Space group	P21/n
a/Å	9.99630(10)
b/Å	10.71180(10)
c/Å	25.1874(2)
$\alpha/^{\circ}$	90
β/°	95.0420(10)
$\gamma/^{\circ}$	90
Volume/Å3	2686.59(4)
Z	4
pcalcg/cm3	1.423
µ/mm-1	2.332
F(000)	1192.0
Crystal size/mm3	$0.15\times0.13\times0.12$
Radiation	Cu Ka ($\lambda = 1.54184$)
2 Θ range for data collection/°	7.046 to 152.52
Index ranges	$-12 \le h \le 12, -12 \le k \le 13, -26 \le l \le 31$
Reflections collected	18656
Independent reflections	5399 [Rint = 0.0146, Rsigma = 0.0119]
Data/restraints/parameters	5399/0/374
Goodness-of-fit on F2	1.062

Final R indexes [I>= 2σ (I)]	R1 = 0.0376, wR2 = 0.0976
Final R indexes [all data]	R1 = 0.0387, wR2 = 0.0983
Largest diff. peak/hole / e Å-3	0.34/-0.30

10. References

S1. L. Feng, Y. Teng, X. Yu, Z. Wang and W. Rao, Brønsted Acid-Catalyzed Dehydrative Nazarov-Type Cyclization/C2–N1 Cleavage Cascade of Perfluoroalkylated 3-Indolyl(2-benzothienyl)methanols, *Org. Lett.*, 2023, **25**, 4956–4961.

S2. M. B. Plutschack, P. H. Seeberger and K. Gilmore, Visible-Light-Mediated Achmatowicz Rearrangement, *Org. Lett.*, 2017, **19**, 30–33.

S3. P.-C. Guan, R. Ma, M.-H. Liu, L.-K. Kong, Y. Han, C. Wang, AlCl₃-catalyzed Chemoselective Cascade Reactions of 4-anilinocoumarins with 2-furylcarbinols: An Access to Densely Functionalized Chromeno[4,3-b]pyrrol-4(1H)-one Derivatives, *Org. Biomol. Chem.*, 2023, **21**, 1379–1383.

S4. P. R. Solanke, R. Cinsani, K. Nayani, P. R. Mainka and S. Chandrasekhar. Quaternary Carbon Construction Through Piancatelli Rearrangement: Easy Access to Spirocyclopentenones, *Chem. Commun.*, 2022, **58**, 5530–5533.

S5. Q. Xing, Z. Hao, J. Hou, G. Li, Z. Gao, J. Gou, C. Li and B. Yu, Manganese-Catalyzed Achmatowicz Rearrangement Using Green Oxidant H₂O₂, *J. Org. Chem.*, 2021, **86**, 9563–9586.

S6. X. Xu, L. Yan, S. Wang, P. Wang, A. Yang, X. Li, H. Lu and Z. Cao, Selective Synthesis of Sulfoxides and sulfones via controllable oxidation of sulfides with *N*-fluorobenzenesulfonimide, *Org. Biomol. Chem.*, 2021, **19**, 8691–8695.

S7. A. Tota, M. Zenzola, S. J. Chawner, S. S. John-Campbel, C. Carlucci, G. Romanazzi,
L. Degennaro, J. A. Bull and R. Luisi, Synthesis of NH-sulfoximines from Sulfides by
Chemoselective One-pot N- and O-transfers, *Chem. Commun.*, 2017, 53, 348–350.