SUPPORTING INFORMATION

Organocatalytic Enantioselective [2 + 2] Cycloadditions towards Chiral Fused α-Trifluoromethyl Azetidines

Song Zhang^{†,a}, Xingjie Luo^{†, a}, Siqiang Fang^{†, a}, Jia-Hong Wu^a, Jianke Pan^a, Zhipeng Xu^{*,b}, and Tianli Wang^{*,a}

^a Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China. E-mail: *wangtl@scu.edu.cn*

^b College of Water Resource and Hydropower, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China. E-mail: *zpxu@scu.edu.cn*

⁺ These authors contributed equally to this work.

Table of Contents

1. General information	2
2. Optimization of reaction conditions	3
3. Preparation of phosphonium salt catalysts	5
4. Preparation of both types of substrates	7
5. General procedure for the asymmetric [2 + 2] Cycloaddition	14
6. Gram-scale preparations and transformations	
7. Determination of absolute configuration of products	65
8. Mechanistic studies	67
9. References	69
11. NMR spectra	70

1. General information

All the starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III HD (400 MHz) spectrometer in CDCl₃. Chemical shifts (δ) are reported in ppm, and the residual solvent peak was used as an internal reference CDCl₃ $[\delta(^{1}H) = 7.26 \text{ ppm}, \delta(^{13}C) = 77.16 \text{ ppm}], CD_{3}OD [\delta(^{1}H) = 2.05 \text{ ppm}, \delta(^{13}C) = 206.26,$ 29.84 ppm], (CD₃)₂CO [δ (¹H) = 3.31 ppm, δ (¹³C) = 49.00 ppm]. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). Coupling constants (J) were reported in Hertz (Hz). All high resolution mass spectra were obtained on a Thermo LTQ mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine, followed by heating on a hot plate. Flash chromatographic separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. Enantiomeric excesses were determined by HPLC analysis using chiral column described below in detail. Optical rotations were measured with polarimeter.

All the phosphonium salt catalysts **P1-P8** used in this study were prepared via a P-alkylation reaction of our previously reported organophosphines according to the known procedures.^[1] All the cyclic trifluoroketimines **1** and Allene **2** were synthesized following the methods reported in the literature.^[2-3] The structure and absolute configurations of chiral fused Azetidines scaffolds were assigned by X-ray crystallographic analysis of the single crystal of chiral product **3f** (Table S5).

2. Optimization of reaction conditions

Table S1. Screening of the chiral phosphonium salt catalysts.^[a]

[a] Reaction condition: substrates **1a** (0.1 mmol), **2a** (0.11 mmol), Cs_2CO_3 (0.2 mmol) and **P** (0.001 mmol) in 1 mL xylene at room temperature for 12 h. [b] Isolated yields based on **1a**. [c] The ee values were determined by chiral HPLC analysis. *dr* values were analyzed by ¹H NMR spectroscopy. TBDPS = *tert*-butyldiphenylsilyl.

CI	$ \begin{array}{c} CF_3 \\ N \\ N \\ PMB \\ 1a \\ CF_3 \\ Me \\ EtO_2C \\ CF_3 \\ Me \\ EtO_2C \\ 2a \\ 2a \\ CF_3 \\ CF$	CO ₂ ^t Bu CS ₂ CO ₃ (2 solvent, r >20:1	$\begin{array}{c} \text{mol\%}) \\ \text{2 equiv.}) \\ \text{t., th} \\ dr \\ Cl \\ \textbf{3a} \end{array} \begin{array}{c} \text{O} \\ \text{PMBN} \\ \text{N} \\ \text{F}_3 \text{C} \\ \textbf{C} \\ \textbf{3a} \end{array}$	Me CO₂Et ►H O₂ ^t Bu
Entry	solvent	t (h)	yield (%) ^[b]	ee (%) ^[c]
1	xylene	12	80	52
2	toluene	12	72	37
3	CH_2Cl_2	12	81	6
4	CHCl ₃	12	77	3
5	Et ₂ O	12	79	21
6	<i>n</i> -hexane	72	82	72
7	PE	72	83	82
8	<i>n</i> -pentane	72	80	86
9	<i>c</i> -pentane	72	87	78
10	<i>n</i> -heptane	72	92	91
11	<i>n</i> -octane	72	96	98

Table S2. Screening of the solvents.^[a]

[a] Reaction condition: substrates **1a** (0.1 mmol), **2a** (0.11 mmol), Cs_2CO_3 (0.2 mmol) and **P8** (0.001 mmol) in 1 mL solvent at room temperature for 12-72 h. [b] Isolated yields based on **1a**. [c] The ee values were determined by chiral HPLC analysis. *dr* values were analyzed by ¹H NMR spectroscopy.

Table S3. Screening of the bases.^[a]

CF ₃ CI N PMB 1a	$\begin{array}{c} & \overset{\text{Me}}{\longrightarrow} & \overset{\text{CO}_2 ^{t}\text{Bu}}{\longrightarrow} \\ & \overset{\text{CO}_2 \text{CO}_2 ^{t}\text{Bu}}{\longrightarrow} \\ & \overset{\text{CO}_2 \text{CO}$	P8 (10 mol%) base (2 equiv.) <i>n</i> -octane, r.t., 72 h >20:1 <i>dr</i>	$ \begin{array}{c} $
Entry	base	yield (%) ^[b]	ee (%) ^[c]
1	Cs ₂ CO ₃	96	98
2	Na ₂ CO ₃	trace	-
3	K ₂ CO ₃	86	82

4	K ₃ PO ₄	76	16
5	K ₃ PO ₄ •7H ₂ O	81	26
6	NaOH	73	32
7	КОН	65	0
8	DBU	78	0
9 ^[d]	Cs ₂ CO ₃	56	92
10 ^[e]	Cs ₂ CO ₃	94	96
$11^{[f]}$	Cs_2CO_3	91	86

[a] Reaction condition: substrates **1a** (0.1 mmol), **2a** (0.11 mmol), base (0.2 mmol) and **P8** (0.001 mmol) in 1 mL *n*-octane at room temperature for 72 h. [b] Isolated yields based on **1a**. [c] The ee values were determined by chiral HPLC analysis. *dr* values were analyzed by ¹H NMR spectroscopy. [d] Cs₂CO₃ (0.1 mmol) was used. [e] Cs₂CO₃ (0.4 mmol). [f] Cs₂CO₃ (0.8 mmol).

Fable S4 . Screening	of the	catalyst	loading	and	temperature.	[a]
-----------------------------	--------	----------	---------	-----	--------------	-----

CI CI PI 1a	F_{3} $N + Me + CO_{2}^{CO_{2}^{t}Bu}$ $HB + EtO_{2}C + 2a$	$\begin{array}{c} \textbf{P8} (x \text{ mol\%}) \\ \textbf{Cs}_2 \textbf{CO}_3 (2 \text{ equiv.}) \\ \hline n \text{-octane, r.t., 72 h} \\ > 20:1 \ dr \\ \hline C \end{array}$	$ \begin{array}{c} O \\ BN \\ F_3C \\ \hline CO_2^tBu \\ \hline 3a \end{array} $
Entry	P8 (mol%)	yield (%) ^[b]	ee (%) ^[c]
1	10	96	98
2 ^[d]	10	trace	-
3	5	95	98
4	2.5	96	98
5	1	96	98

[a] Reaction condition: substrates **1a** (0.1 mmol), **2a** (0.11 mmol), Cs_2CO_3 (0.2 mmol) and **P8** (x mmol) in 1 mL *n*-octane at room temperature for 72 h. [b] Isolated yields based on **1a**. [c] The ee values were determined by chiral HPLC analysis. *dr* values were analyzed by ¹H NMR spectroscopy. [d] At 0 °C.

3. Preparation of phosphonium salt catalysts

All the phosphonium salt catalysts in this study were listed in Figure S1, which

Figure S1. Bifunctional phosphonium salt catalysts in this study.

Characterization of the unknown phosphonium salts:

(3,5-bis(trifluoromethyl)benzyl)((2S,3R)-2-((R)-2-((tertbutoxycarbonyl)(methyl)amino)-3-methylbutanamido)-3-((tertbutyldiphenylsilyl)oxy)butyl)diphenylphosphonium bromide (P8-1)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 8.4 Hz, 1H), 7.90-7.79 (m, 3H), 7.76-7.70 (m, 1H), 7.67-7.45 (m, 11H), 7.42 (d, J = 7.2 Hz, 1H), 7.39-7.21 (m, 7H), 6.18 (t, J = 16.0 Hz, 1H), 5.53 (t, J = 14.4 Hz, 1H), 5.21-5.07 (m, 1H), 4.18-4.01 (m, 3H), 2.99 (s, 3H), 2.90 (t, J = 14.0 Hz, 2H), 1.48 (s, 9H), 1.19 (d, J = 6.2 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.81 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.50, 157.52, 135.70, 135.59, 135.32 (d, J = 26.9 Hz), 133.55 (d, J = 9.3 Hz), 132.83, 131.04, 130.67 (d, J = 12.2 Hz), 130.20 (d, J = 12.1 Hz), 129.83, 127.71 (d, J = 9.8 Hz), 122.70 (q, J = 272.7 Hz), 115.69, 114.88, 79.78, 69.45 (d, J = 13.7 Hz), 65.05, 49.91, 31.56, 28.39, 28.00, 27.01, 20.96, 20.11, 19.22, 17.65; ³¹P NMR (162 MHz, CDCl₃) δ 31.16; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.90; HRMS (ESI) *m*/*z* calcd for C₅₂H₆₂BrF₆N₂O₄PSi [M-Br]⁺ = 951.4115, found = 951.4108.

(3,5-bis(trifluoromethyl)benzyl)((2S,3R)-2-((R)-2-((tert-butoxycarbonyl)amino)-N,3-dimethylbutanamido)-3-((tertbutyldiphenylsilyl)oxy)butyl)diphenylphosphonium bromide (P8-2)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 12.8, 7.8 Hz, 2H), 7.78-7.68 (m, 2H), 7.67-7.43 (m, 13H), 7.41-7.26 (m, 6H), 5.96 (t, J = 15.2 Hz, 1H), 5.25-5.05 (m, 2H), 4.88 (t, J = 14.8 Hz, 1H), 4.58 (p, J = 12.3 Hz, 1H), 3.87 (dd, J = 8.4, 3.4 Hz, 2H), 3.02 (t, J = 15.4 Hz, 1H), 2.79 (s, 3H), 1.78-1.67 (m, 1H), 1.49 (s, 9H), 0.98 (s, 9H), 0.96 (s, 3H), 0.83 (d, J = 6.8 Hz, 3H), 0.59 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.87, 155.58, 135.83 (d, J = 6.1 Hz), 135.63, 135.42, 134.22 (d, J = 10.1 Hz), 133.61 (d, J = 8.9 Hz), 133.10, 132.81, 131.84 (d, J = 34.8 Hz), 131.46 (d, J = 8.8 Hz), 131.07, 130.23 (d, J = 12.1 Hz), 130.06 (d, J = 4.3 Hz), 129.93 (d, J = 13.0 Hz), 128.01, 127.82, 122.69 (q, J = 273.1 Hz), 121.86, 116.31 (d, J = 11.8 Hz), 115.43, 79.65, 72.28 (d, J = 14.2 Hz), 55.21, 52.01, 32.44, 30.33, 29.26 (d, J = 46.3 Hz), 28.39, 27.12, 20.00, 19.44, 19.22, 15.77; ³¹P NMR (162 MHz, CDCl₃) δ 31.16; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.93; HRMS (ESI) *m*/*z* calcd for C₅₂H₆₂BrF₆N₂O₄PSi [M-Br]⁺ = 951.4115, found = 951.4110.

4. Preparation of both types of substrates

A. Preparation of cyclic trifluoroketimines 1

The all of cyclic trifluoroketimines **1** were synthesized according to the literature reports.^[2]

The **1a-1d** are known compounds.

B. Preparation of Allene 2

Allene **2** were prepared from corresponding benzyl bromide in quantitative yields following the literature procedure.^[3]

Unknown compounds 2c, 2f-2g, 2l, 2n-2u, 2r, 2s, 2x were fully characterized.

5-(tert-butyl) 1-ethyl 2-isopropylpenta-2,3-dienedioate (2c)

¹H NMR (400 MHz, CDCl₃) δ 5.86 (d, *J* = 2.2 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.84-2.72 (m, 1H), 1.47 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.12 (d, *J* = 6.8 Hz, 3H), 1.08 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 217.41, 165.28, 163.69, 111.30, 94.70, 81.59, 61.40, 28.18, 21.93, 21.85, 14.32, 1.16; HRMS (ESI⁺) *m/z* calcd for C₁₄H₂₂O₄ [M+Na]⁺ = 277.1416, found = 277.1407.

5-(tert-butyl) 1-ethyl 2-(2-methylbenzyl)penta-2,3-dienedioate (2f)

¹H NMR (400 MHz, CDCl₃) δ 7.23-7.16 (m, 1H), 7.15-7.07 (m, 3H), 5.68 (t, *J* = 3.0 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.65 (ddd, *J* = 47.8, 15.8, 3.0 Hz, 2H), 2.32 (s, 3H), 1.43 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.38, 165.29, 163.12, 136.68, 135.84, 130.25, 129.74, 126.99, 125.99, 104.14, 93.99, 81.75, 61.71, 32.31, 28.12, 19.59, 14.30; HRMS (ESI) *m/z* calcd for C₁₉H₂₄O₄ [M+Na]⁺ = 339.1572, found = 339.1574.

5-(tert-butyl) 1-ethyl 2-(2-fluorobenzyl)penta-2,3-dienedioate (2g)

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.24 (m, 1H), 7.21-7.16 (m, 1H), 7.06-6.97 (m, 2H), 5.74 (t, J = 2.7 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.68 (ddd, J = 45.2, 15.5, 2.3 Hz, 2H), 1.43 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.26, 164.83, 162.85, 161.04 (d, J = 245.0 Hz), 131.15 (d, J = 4.2 Hz), 128.50 (d, J = 8.0 Hz), 124.62 (d, J = 15.5 Hz), 123.84 (d, J = 3.6 Hz), 115.20 (d, J = 21.7 Hz), 103.25, 94.00, 81.61, 61.57, 27.96, 14.13; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.47; HRMS (APCI⁺): calcd for C₁₈H₂₁FO₄ [M+H]⁺ = 321.1502, found = 321.1508.

5-(tert-butyl) 1-ethyl 2-(2-chlorobenzyl)penta-2,3-dienedioate (2h)

¹H NMR (400 MHz, CDCl₃) δ 7.35-7.31 (m, 2H), 7.20-7.11 (m, 2H), 5.73 (t, *J* = 2.8 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.79 (ddd, *J* = 38.1, 15.6, 2.7 Hz, 2H), 1.42 (s, 9H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 218.34, 164.89, 162.84, 135.37, 134.33, 130.98, 129.39, 128.14, 126.65, 103.07, 94.07, 81.62, 61.60, 32.33, 27.98, 14.15; HRMS (APCI⁺): calcd for C₁₈H₂₁ClO₄ [M+H]⁺ = 337.1207, found = 337.1202.

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.32 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 5.73 (t, *J* = 2.8 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.80 (ddd, *J* = 34.8, 15.7, 2.8 Hz, 2H), 1.42 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.35, 164.86, 162.81, 137.14, 132.72, 130.94, 128.35, 127.30, 124.78, 103.17, 94.19, 81.63, 61.62, 34.89, 28.00, 14.16; HRMS (APCI⁺): calcd for C₁₈H₂₁BrO₄ [M+H]⁺ = 381.0701, found = 381.0703.

5-(tert-butyl) 1-ethyl 2-(3-bromobenzyl)penta-2,3-dienedioate (2j)

¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 7.8 Hz, 1H), 7.10-7.05 (m, 2H), 7.02 (d, J = 7.4 Hz, 1H), 5.77 (t, J = 2.5 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.61 (ddd, J = 34.0, 15.2, 2.5 Hz, 2H), 2.32 (s, 3H), 1.47 (s, 9H), 1.24 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.63, 165.19, 163.22, 137.97, 137.73, 129.85, 128.30, 127.53, 126.05, 104.48, 93.74, 81.78, 61.66, 34.92, 28.16, 21.52, 14.27; HRMS (ESI) *m/z* calcd for C₁₉H₂₄O₄ [M+Na]⁺ = 339.1572, found = 339.1575.

5-(tert-butyl) 1-ethyl 2-(3-bromobenzyl)penta-2,3-dienedioate (21)

¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.23-7.11 (m, 2H), 5.79 (s, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.60 (ddd, *J* = 40.4, 15.2, 2.2 Hz, 2H), 1.47 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.27, 164.75, 162.80, 139.97, 138.35, 133.08, 131.89, 130.15, 129.83, 129.81, 128.61, 127.63, 122.32,

122.28, 103.71, 93.92, 81.89, 61.66, 39.48, 34.49, 28.01, 14.12; HRMS (APCI⁺): calcd for $C_{18}H_{21}BrO_4 [M+H]^+ = 381.0701$, found = 381.0705.

5-(tert-butyl) 1-ethyl 2-(4-fluorobenzyl)penta-2,3-dienedioate (2n)

¹H NMR (400 MHz, CDCl₃) δ 7.26-7.20 (m, 2H), 6.95 (t, J = 8.7 Hz, 2H), 5.78 (t, J = 2.5 Hz, 1H), 4.20 (qd, J = 7.1, 1.2 Hz, 2H), 3.61 (ddd, J = 41.6, 15.2, 2.6 Hz, 2H), 1.46 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.31, 164.87, 162.90, 161.74 (d, J = 243.0 Hz), 133.40 (d, J = 3.2 Hz), 130.44 (d, J = 7.9 Hz), 115.08 (d, J = 21.2 Hz), 104.29, 93.76, 81.79, 61.58, 34.17, 28.04, 14.12; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.48; HRMS (APCI⁺): calcd for C₁₈H₂₁FO₄ [M+H]⁺ = 321.1502, found = 321.1503.

5-(tert-butyl) 1-ethyl 2-(4-chlorobenzyl)penta-2,3-dienedioate (20)

¹H NMR (400 MHz, CDCl₃) δ 7.26-7.19 (m, 4H), 5.79 (t, *J* = 2.4 Hz, 1H), 4.20 (qd, *J* = 7.1, 1.1 Hz, 2H), 3.61 (ddd, *J* = 41.3, 15.2, 2.6 Hz, 2H), 1.47 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.29, 164.81, 162.85, 136.25, 132.48, 130.30, 128.43, 103.94, 93.81, 81.87, 61.63, 34.33, 28.05, 14.13; HRMS (APCI⁺): calcd for C₁₈H₂₁ClO₄ [M+H]⁺ = 337.1207, found = 337.1205.

5-(tert-butyl) 1-ethyl 2-(4-(tert-butyl)benzyl)penta-2,3-dienedioate (2p)

¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 5.78 (t, J = 2.4 Hz, 1H), 4.21 (q, J = 7.0 Hz, 2H), 3.62 (ddd, J = 37.1, 18.6, 2.4 Hz, 2H), 1.46

(s, 9H), 1.30 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.54, 165.06, 163.07, 149.38, 134.74, 128.57, 125.19, 104.32, 93.53, 81.59, 61.48, 34.40, 34.36, 31.36, 28.05, 14.15; HRMS (APCI⁺): calcd for C₂₂H₃₁O₄ [M+H]⁺ = 359.2222, found = 359.2225.

5-(tert-butyl) 1-ethyl 2-(3,5-dimethoxybenzyl)penta-2,3-dienedioate (2r)

¹H NMR (400 MHz, CDCl₃) δ 6.43 (d, J = 2.2 Hz, 2H), 6.31 (t, J = 2.2 Hz, 1H), 5.79 (t, J = 2.5 Hz, 1H), 4.21 (q, J = 7.0 Hz, 1H), 3.76 (s, 6H), 3.58 (ddd, J = 36.3, 15.2, 2.6 Hz, 2H), 1.45 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 218.55, 165.01, 163.02, 160.72, 139.99, 107.03, 104.22, 98.70, 93.74, 81.75, 61.57, 55.24, 35.05, 27.98, 14.15; HRMS (APCI⁺): calcd for C₂₀H₂₆O₆ [M+H]⁺ = 363.1808, found = 363.1813.

5-(tert-butyl) 1-ethyl 2-(3,5-difluorobenzyl)penta-2,3-dienedioate (2s)

¹H NMR (400 MHz, CDCl₃) δ 6.91-6.73 (m, 2H), 6.65 (t, J = 9.0 Hz, 1H), 5.82 (t, J = 2.3 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.61 (ddd, J = 49.5, 15.3, 2.2 Hz, 2H), 1.47 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.24, 164.63, 162.97 (d, J = 246.7 Hz), 162.84 (d, J = 246.6 Hz), 162.69, 141.68 (t, J = 9.2 Hz), 111.78 (d, J = 11.6 Hz), 111.78 (d, J = 24.9 Hz), 103.11, 102.21 (t, J = 25.2 Hz), 94.02, 82.14, 61.74, 34.64, 27.97, 14.11; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.22; HRMS (APCI⁺): calcd for C₁₈H₂₁F₂O₄ [M+H]⁺ = 339.1408, found = 339.1405.

5-(tert-butyl) 1-isopropyl 2-methylpenta-2,3-dienedioate (2t)

¹H NMR (400 MHz, CDCl₃) δ 5.78 (q, *J* = 2.9 Hz, 1H), 5.13-4.98 (m, 1H), 1.95 (d, *J* = 2.9 Hz, 3H), 1.47 (s, 9H), 1.25 (d, *J* = 2.7 Hz, 3H), 1.24 (d, *J* = 2.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.10, 165.38, 163.60, 100.38, 92.46, 81.69, 69.13, 28.18, 21.89, 21.85, 14.37; HRMS (ESI) *m*/*z* calcd for C₁₃H₂₀O₄ [M+Na]⁺ = 263.1259, found = 263.1259.

1-benzyl 5-(tert-butyl) 2-methylpenta-2,3-dienedioate (2u)

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.29 (m, 5H), 5.82 (q, J = 2.9 Hz, 1H), 5.22 (dd, J = 12.7, 19.3 Hz, 2H), 1.98 (d, J = 3.0 Hz, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 218.36, 165.70, 163.38, 136.00, 128.63, 128.23, 127.76, 99.87, 92.78, 81.88, 66.93, 28.16, 14.37; HRMS (ESI) m/z calcd for C₁₇H₂₀O₄ [M+Na]⁺ = 311.1259, found = 311.1252.

1-ethyl 5-phenyl 2-methylpenta-2,3-dienedioate (2x)

¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, *J* = 7.9 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 2H), 6.08 (q, *J* = 3.0 Hz, 1H), 4.26 (qd, *J* = 7.1, 1.3 Hz, 2H), 2.03 (d, *J* = 2.9 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 219.19, 165.21, 162.63, 150.57, 129.42, 126.01, 121.46, 100.77, 90.49, 61.77, 14.32, 14.20; HRMS (APCI⁺): calcd for C₁₄H₂₄O₄ [M+H]⁺ = 247.0970, found = 247.0978.

5. General procedure for the asymmetric [2 + 2] cycloaddition.

Representative procedure for the fused azetidines 3a: To a round bottle flask with a magnetic stirring bar were added **1a** (36.8 mg, 0.1 mmol) and Cs_2CO_3 (65.2 mg, 0.2 mmol) and catalyst **P8** (1.0 mg, 0.001 mmol), followed by the addition of **2a** (24.9 mg, 0.11 mmol) in *n*-octane (1 mL). The reaction mixture was stirred at rt for 72 h, and TLC show that the reaction was completed. Then, the residue was purified by column chromatography on silica gel (PE/EtOAc = 20:1-10:1) to afford the corresponding products **3a** (57 mg, 96% yield, 98% ee) as a white solid.

tert-butyl (*1S*,*9bR*,*E*)-8-chloro-2-(1-ethoxy-1-oxopropan-2-ylidene)-5-(4-meth oxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3a)

A white solid; 96% yield; m.p. = 153-156 °C; $[\alpha]^{25}_{D}$ = -67.5 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.10 (m, 2H), 7.07 (d, *J* = 8.7 Hz, 2H), 6.79-6.74 (m, 2H), 6.72 (d, *J* = 9.4 Hz, 1H), 4.97 (dd, *J* = 53.7, 16.4 Hz, 2H), 4.44 (s, 1H), 4.24-3.99 (m, 2H), 3.70 (s, 3H), 2.26 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.17 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.70, 164.84, 158.95, 148.90, 148.78, 137.65, 130.82, 128.32, 127.56, 127.41, 126.26, 116.94, 116.15, 114.35, 109.47, 83.07, δ 68.58 (q, *J* = 31.9 Hz)60.80, 58.87, 55.24, 46.65, 27.62, 14.26, 14.04; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.00; HRMS (ESI⁺): calcd for C₂₉H₃₀ClF₃N₂O₆ [M+H]⁺ = 595.1823, found = 595.1823; The ee value was 98%, t_R (major) = 7.2 min, t_R (minor) = 11.1 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3a

Enantiomerically enriched 3a

tert-butyl (*1S*,*9bR*,*E*)-8-chloro-2-(1-ethoxy-1-oxobutan-2-ylidene)-5-(4-meth oxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3b)

A white solid; 90% yield; m.p. = 136-138 °C; $[\alpha]^{25}_{D}$ = -57.6 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.18 (m, 2H), 7.13 (d, *J* = 8.7 Hz, 2H), 6.85-6.77 (m, 3H), 5.05 (dd, *J* = 21.4, 16.6 Hz, 2H), 4.48 (s, 1H), 4.28-4.10 (m, 2H), 3.01-2.70 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.20 (s, 9H), 1.10 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.41, 164.73, 158.94, 148.88, 148.38, 137.60, 130.81, 128.44, 127.54, 127.44, 126.32, 116.89, 116.32, 115.22, 114.33, 82.77, 68.49 (q, *J* = 43.7 Hz), 60.72, 58.57, 55.29, 46.78, 27.53, 21.43, 15.53, 14.28; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.02; HRMS (ESI⁺): calcd for C₃₀H₃₂ClF₃N₂O₆ [M+Na]⁺ = 631.1799, found = 631.1802; The ee value was 96%, t_R (major) = 12.1 min, t_R (minor) = 16.2 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3b

Enantiomerically enriched 3b

tert-butyl (*1S*,9*bR*,*E*)-8-chloro-2-(1-ethoxy-3-methyl-1-oxobutan-2-ylidene)-5- (4methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3c)

A white solid; 95% yield; m.p. = 129-131 °C; $[\alpha]^{25}_{D}$ = -103.2 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.16 (m, 2H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 9.6 Hz, 1H), 5.05 (dd, *J* = 69.3, 16.4 Hz, 2H), 4.50 (s, 1H), 4.29-4.08 (m, 2H), 4.06-3.97 (m, 1H), 3.76 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.26 (d, *J* = 6.9 Hz, 3H), 1.23 (d, *J* = 7.0 Hz, 3H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.73, 164.73, 158.96, 148.70, 148.15, 137.57, 130.79, 128.31, 127.56, 127.47, 126.35, 119.88, 116.78, 116.01, 114.33, 82.82, 68.44 (q, *J* = 32.0 Hz), 60.33, 59.35, 55.25, 46.76, 28.40, 27.49, 22.05, 20.80, 14.20; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.92; HRMS (ESI⁺): calcd for C₃₁H₃₄ClF₃N₂O₆ [M+Na]⁺ = 645.1955, found = 645.1956; The ee value was 94%, t_R (major) = 10.6 min, t_R (minor) = 12.3 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3c

Enantiomerically enriched 3c

```
tert-butyl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxoheptan-2-ylidene)-5-(4-meth
oxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-
c]quinazoline-1-carboxylate (3d)
```


A white solid; 90% yield; m.p. = 138-142 °C; $[\alpha]^{25}_{D}$ = -91.5 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.16 (m, 2H), 7.14 (d, *J* = 8.7 Hz, 2H), 6.86-6.76 (m, 3H), 5.04 (dd, *J* = 16.4, 34.2 Hz, 2H), 4.49 (s, 1H), 4.28-4.09 (m, 2H), 3.77 (s, 3H), 3.01-2.71 (m, 2H), 1.57-1.42 (m, 4H), 1.34-1.27 (m, 7H), 1.19 (s, 9H), 0.87 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.59, 164.76, 158.92, 148.93, 148.26, 137.66, 130.77, 128.42, 127.56, 126.29, 116.93, 116.49, 114.29, 113.77, 82.82, 68.22 (q, *J* = 32.2 Hz), 60.70, 58.40, 55.27, 46.90, 31.39, 30.39, 27.55, 22.65, 14.27, 14.09; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.06; HRMS (ESI⁺): calcd for C₃₃H₃₈ClF₃N₂O₆ [M+Na]⁺ = 673.2268, found = 673.2263; The ee value was 89%, t_R (major) = 5.1 min, t_R (minor) = 8.1 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3d

Enantiomerically enriched 3d

<u>tert-butyl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxo-3-phenylpropan-2-ylidene)-5 -</u> (4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3e)

A white solid; 91% yield; m.p. = 138-140 °C; $[\alpha]^{25}_{D}$ = -72.8 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.20 (m, 6H), 7.18-7.12 (m, 1H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.82 (t, *J* = 8.4 Hz, 3H), 5.01 (dd, *J* = 76.2, 16.3 Hz, 2H), 4.59 (s, 1H), 4.47 (d, *J* = 14.9 Hz, 1H), 4.20-4.02 (m, 3H), 3.78 (s, 3H), 1.21 (s, 9H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.13, 163.48, 157.87, 148.91, 147.12, 140.10, 136.54, 129.85, 127.61, 127.45, 126.93, 126.57, 126.40, 125.31, 124.63, 115.99, 115.46, 113.25, 110.28, 82.14, 67.28 (q, *J* = 49.20 Hz), 59.78, 57.27, 54.24, 46.05, 32.23, 26.39, 12.87; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.06; HRMS (ESI⁺): calcd for C₃₅H₃₃Cl₂F₃N₂O₆ [M+Na]⁺ = 693.1955, found = 693.1955; The ee value was 97%, t_R (major) = 12.6 min, t_R (minor) = 23.2 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3e

Enantiomerically enriched 3e

tert-butyl (*1S*,*9bR*,*E*)-8-chloro-2-(1-ethoxy-1-oxo-3-(o-tolyl)propan-2-ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3f)

A white solid; 96% yield; m.p. = 148-152 °C; $[\alpha]^{25}_{D}$ = -55.7 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.24 (m, 1H), 7.22 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.15-7.10 (m, 1H), 7.06 (d, *J* = 3.2 Hz, 3H), 7.00 (d, *J* = 8.6 Hz, 2H), 6.83-6.73 (m, 3H), 4.94 (dd, *J* = 16.3, 104.3 Hz, 2H), 4.65 (s, 1H), 4.25 (dd, *J* = 89.7, 15.7 Hz, 2H), 4.24-3.97 (m, 2H), 3.77 (s, 3H), 2.39 (s, 3H), 1.25 (s, 9H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.30, 164.55, 158.88, 150.47, 147.98, 139.68, 137.63, 136.03, 130.89, 129.8, 128.63, 127.59, 127.52, 127.24, 126.36, 125.49, 125.37, 117.04, 116.53, 114.28, 110.68, 83.37, 68.34(q, J = 30.3 Hz), 60.83, 58.18, 55.27, 47.09, 30.48, 27.72, 19.83, 14.08; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.72; HRMS (ESI⁺): calcd for C₃₆H₃₆ClF₃N₂O₆ [M+Na]⁺ = 707.2112, found = 707.2111; The ee value was >99.9%, t_R (major) = 8.5 min, t_R (minor) = 12.9 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3f

Enantiomerically enriched 3f

<u>tert-butyl</u> (1S,9bR,E)-8-chloro-2-(1-ethoxy-3-(2-fluorophenyl)-1-oxopropan-2ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3g)

A white solid; 86% yield; m.p. = 99-102 °C; $[\alpha]^{25}_{D}$ = 15.7 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.21 (m, 2H), 7.20-7.10 (m, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.03-6.94 (m, 2H), 6.83 (d, J = 8.8 Hz, 1H), 6.80 (d, J = 8.7 Hz, 2H), 5.00 (dd, J = 66.6, 16.3 Hz, 2H), 4.63 (s, 1H), 4.35 (dd, J = 69.4, 15.5 Hz, 2H), 4.17-3.97 (m, 2H), 3.77 (s, 3H), 1.24 (s, 9H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.00, 164.46, 160.88 (d, J = 244.2 Hz), 158.95, 150.80, 148.16, 137.65, 130.90, 130.05 (d, J = 4.6 Hz), 128.66, 128.18 (d, J = 15.2 Hz), 127.64, 127.46, 127.20 (d, J = 8.0 Hz), 126.36, 123.42 (d, J = 3.5 Hz), 117.09, 116.52, 114.96 (d, J = 22.1 Hz), 114.31, 109.76, 83.25, 68.46 (q, J = 32.5 Hz), 60.81, 58.23, 55.27, 47.04, 27.67, 26.67, 26.63, 13.98; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.98, -118.22; HRMS (ESI⁺): calcd for C₃₅H₃₃ClF₄N₂O₆ [M+Na]⁺ = 711.1861, found = 711.1858; The ee value was 91%, t_R (major) = 10.2 min, t_R (minor) = 14.6 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate

= 1.0 mL/min).

Racemic **3g**

Enantiomerically enriched 3g

```
tert-butyl (1S,9bR,E)-8-chloro-2-(3-(2-chlorophenyl)-1-ethoxy-1-oxopropan-2-
ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-
2H-azeto[1,2-c]quinazoline-1-carboxylate (3h)
```


A white solid; 88% yield; m.p. = 110-116 °C; $[\alpha]^{25}_{D}$ = -81.7 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.31 (m, 1H), 7.25-7.06 (m, 5H), 7.01 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.9 Hz, 1H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.95 (dd, *J* = 63.5, 16.3 Hz, 2H), 4.66 (s, 1H), 4.41 (dd, J = 63.5, 16.2 Hz, 2H), 4.16-4.00 (m, 2H), 3.77 (s, 3H), 1.27 (s, 9H), 1.13 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.02, 164.46, 158.93, 151.26, 148.00, 139.16, 137.60, 133.86, 130.93, 129.18, 128.95, 128.65, 127.67, 127.44, 126.80, 126.37, 126.16, 117.08, 116.38, 114.28, 109.74, 83.34, 68.52 (q, *J* = 32.1 Hz), 60.85, 58.27, 55.26, 47.00, 31.19, 27.73, 14.02; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.95; HRMS (ESI⁺): calcd for C₃₅H₃₃Cl₂F₃N₂O₆ [M+Na]⁺ = 727.1565, found = 727.1568; The evalue was 85%, t_R (major) = 7.9 min, t_R (minor) = 13.5 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3h

Enantiomerically enriched 3h

<u>tert-butyl</u> (1S,9bR,E)-2-(3-(2-bromophenyl)-1-ethoxy-1-oxopropan-2-ylidene)- 8chloro-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2Hazeto[1,2-c]quinazoline-1-carboxylate (3i)

A white solid; 91% yield; m.p. = 100-105 °C; $[\alpha]^{25}_{D}$ = -103.5 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.26-7.12 (m, 4H), 7.07-6.96 (m, 3H), 6.81 (d, *J* = 8.9 Hz, 1H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.95 (dd, *J* = 63.8, 16.4 Hz, 2H), 4.67 (s, 1H), 4.40 (dd, *J* = 86.4, 16.2 Hz, 2H), 4.19-3.98 (m, 2H), 3.77 (s, 3H), 1.27 (s, 9H), 1.14 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.01, 164.44, 158.93, 151.32, 147.97, 140.90, 137.59, 132.50, 130.93, 128.87, 128.65, 127.68, 127.45, 127.08, 126.81, 126.37, 124.55, 117.08, 116.36, 114.27, 109.86, 83.35, 68.65 (q, J = 32.3 Hz), 60.86, 58.27, 55.26, 46.99, 34.04, 27.73, 14.05; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.94; HRMS (ESI⁺): calcd for C₃₅H₃₃BrClF₃N₂O₆ [M+Na]⁺ = 771.1060, found =

771.1060; The ee value was 97%, t_R (major)= 8.6 min, t_R (minor) = 14.7 min (Chiralcel ID, $\lambda = 254$ nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3i

Enantiomerically enriched 3i

<u>tert-butyl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxo-3-(m-tolyl)propan-2-ylidene)- 5-</u> (4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3j)

A white solid; 93% yield; m.p. = 118-122 °C; $[\alpha]^{25}_{D}$ = -57.3 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.20 (m, 2H), 7.16-7.06 (m, 4H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.4 Hz, 1H), 6.87-6.78 (m, 3H), 5.02 (dd, *J* = 80.0, 16.4 Hz, 2H), 4.59 (s, 1H), 4.29 (dd, *J* = 81.4, 14.8 Hz, 2H), 4.25-3.98 (m, 2H), 3.78 (s, 3H), 2.30 (s, 3H), 1.21 (s, 9H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.13, 163.49, 157.86, 148.74, 147.20, 139.82, 136.56, 136.33, 129.83, 128.35, 127.56, 126.75, 126.56, 126.45, 125.41, 125.28, 124.49, 115.97, 115.37, 113.25, 110.64, 82.05, 67.31 (q, *J* = 32.2 Hz), 59.76, 57.45, 54.21, 46.00, 32.26, 26.57, 20.46, 13.03; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.07; HRMS (ESI⁺): calcd for C₃₆H₃₆ClF₃N₂O₆ [M+Na]⁺ = 707.2112, found = 707.2119; The ee value was >99.9%, t_R (major) = 12.1 min, t_R (minor) = 23.1 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3j

Enantiomerically enriched 3j

tert-butyl (*1S*,9*bR*,*E*)-8-chloro-2-(3-(3-chlorophenyl)-1-ethoxy-1-oxopropan-2ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3k)

A white solid; 90% yield; m.p. = 138-141 °C; $[\alpha]^{25}_{D}$ = -95.4 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.20 (m, 3H), 7.13 (m, 5H), 6.84 (d, *J* = 8.7 Hz, 3H), 5.02 (dd, *J* = 103.2, 16.4 Hz, 2H), 4.58 (s, 1H), 4.30 (dd, *J* = 175.0, 15.0 Hz, 2H), 4.24-3.99 (m, 2H), 3.78 (s, 3H), 1.21 (s, 9H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.86, 163.29, 157.91, 149.42, 147.20, 142.19, 136.47, 132.75, 129.92, 128.17, 127.72, 127.42, 126.51, 126.28, 125.93, 125.29, 124.88, 116.04, 115.25, 113.35, 109.63, 82.26, 67.35 (q, *J* = 32.1 Hz), 59.92, 57.58, 54.22, 46.13, 32.28, 26.53, 13.03; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.07; HRMS (ESI⁺): calcd for C₃₅H₃₃Cl₂F₃N₂O₆ [M+Na]⁺ = 727.1565, found = 727.1566; The ee value was 94%, t_R (major) = 9.7 min, t_R (minor) = 17.9 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3k

Enantiomerically enriched 3k

tert-butyl (*1S*,*9bR*,*E*)-2-(3-(3-bromophenyl)-1-ethoxy-1-oxopropan-2-ylidene)-8chloro-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2Hazeto[1,2-c]quinazoline-1-carboxylate (3l)

A white solid; 87% yield; m.p. = 138-141 °C; $[\alpha]^{25}_{D}$ = -67.5 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.31-7.16 (m, 3H), 7.14-7.07 (m, 4H), 6.85 (d, *J* = 8.7 Hz, 3H), 5.02 (dd, *J* = 87.6, 16.4 Hz, 2H), 4.58 (s, 1H), 4.30 (dd, *J* = 151.5, 15.0 Hz, 2H), 4.21-3.98 (m, 2H), 3.77 (s, 3H), 1.22 (s, 9H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.89, 164.33, 159.00, 150.46, 148.29, 143.53, 137.57, 131.46, 130.97, 129.54, 128.86, 128.76, 127.60, 127.43, 127.37, 126.35, 122.20, 117.09, 116.33, 114.44, 110.77, 83.31, 68.46 (q, *J* = 32.5 Hz), 60.95, 58.58, 55.28, 47.16, 33.29, 27.68, 14.09; HRMS (ESI⁺): calcd for C₃₅H₃₃BrClF₃N₂O₆ [M+Na]⁺ = 771.1060, found = 771.1061; The ee value was 88%, t_R (major) = 10.8 min, t_R (minor) = 21.4 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 31

Enantiomerically enriched 31

<u>tert-butyl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxo-3-(p-tolyl)propan-2-ylidene)- 5-</u> (4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3m)

A white solid; 90% yield; m.p. = 119-122 °C; $[\alpha]^{25}_{D}$ = -77.6 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.20 (m, 2H), 7.16-7.01 (m, 6H), 6.82 (t, *J* = 8.0 Hz, 3H), 5.01 (dd, *J* = 73.3, 16.6 Hz, 2H), 4.59 (s, 1H), 4.42 (dd, *J* = 116.9, 14.9 Hz, 2H), 4.22-3.96 (m, 2H), 3.78 (s, 3H), 2.30 (s, 3H), 1.21 (s, 9H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.14, 163.51, 157.86, 148.76, 147.09, 136.96, 136.55, 133.86, 129.82, 127.65, 127.56, 127.30, 126.59, 126.43, 125.29, 115.97, 115.43, 113.23, 110.49, 82.10, 67.26 (q, *J* = 32.2 Hz), 59.77, 57.32, 54.22, 45.96, 31.87, 26.58, 20.04, 13.05; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.72; HRMS (ESI⁺): calcd for C₃₆H₃₆ClF₃N₂O₆ [M+Na]⁺ = 707.2112, found = 707.2113; The ee value was 94%, t_R (major) = 9.0 min, t_R (minor) = 17.9 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3m

Enantiomerically enriched 3m

tert-butyl (*1S*,*9bR*,*E*)-8-chloro-2-(1-ethoxy-3-(4-fluorophenyl)-1-oxopropan- 2ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3n)

A white solid; 82% yield; m.p. = 103-108 °C; $[\alpha]^{25}_{D}$ = -112.8 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.18 (m, 4H), 7.07 (d, *J* = 8.7 Hz, 2H), 6.95-6.88 (m, 2H), 6.86-6.79 (m, 3H), 5.02 (dd, *J* = 67.3, 16.4 Hz, 2H), 4.59 (s, 1H), 4.27 (dd, *J* = 123.1, 14.9 Hz, 2H), 4.19-4.01 (m, 2H), 3.78 (s, 3H), 1.22 (s, 9H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.05, 164.48, 161.22 (d, *J* = 241.3 Hz), 159.03, 150.09, 148.16, 137.59, 136.80, 136.77, 130.96, 129.91, 129.83, 128.72, 127.57, 127.34, 126.37, 117.10, 116.44, 114.70 (d, *J* = 21.0 Hz), 114.33, 111.23, 83.26, 68.37 (q, *J* = 32.2 Hz), 60.87, 58.29, 55.27, 47.05, 32.55, 27.64, 14.09; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.98, -118.22; HRMS (ESI⁺): calcd for C₃₅H₃₃ClF₄N₂O₆ [M+Na]⁺ = 711.1861, found = 711.1868; The ee value was 84%, t_R (major) = 8.9 min, t_R (minor) = 15.7 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3n

Enantiomerically enriched 3n

<u>tert-butyl</u> (1S,9bR,E)-8-chloro-2-(3-(4-chlorophenyl)-1-ethoxy-1-oxopropan-2ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (30)

A white solid; 93% yield; m.p. = 125-130 °C; $[\alpha]^{25}_{D}$ = -21.5 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 1H), 7.25-7.15 (m, 5H), 7.05 (d, *J* = 8.7 Hz, 2H), 6.83 (t, *J* = 9.3 Hz, 3H), 5.00 (dd, *J* = 85.9, 16.4 Hz, 2H), 4.60 (s, 1H), 4.28 (dd, *J* = 146.9, 15.1 Hz, 2H), 4.20-4.01 (m, 2H), 3.79 (s, 3H), 1.23 (s, 9H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.00, 164.44, 159.05, 150.41, 148.07, 139.82, 137.60, 131.39, 131.32, 130.98, 129.80, 128.76, 128.50, 128.11, 127.59, 127.32, 126.36, 117.12, 116.44, 114.36, 110.64, 83.32, 68.36 (q, *J* = 32.2 Hz), 60.92, 58.20, 55.31, 47.12, 32.74, 27.67, 14.10; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.99; HRMS (ESI⁺): calcd for C₃₅H₃₃Cl₂F₃N₂O₆ [M+Na]⁺ = 727.1565, found = 727.1561; The ee value was 98%,

 t_R (major) = 7.3 min, t_R (minor) = 14.4 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 30

Enantiomerically enriched 30

tert-butyl (*1S*,9*bR*,*E*)-2-(3-(4-(*tert*-butyl)phenyl)-1-ethoxy-1-oxopropan-2-ylidene) -8-chloro-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3p)

A white solid; 94% yield; m.p. = 108-113 °C; $[\alpha]^{25}_{D}$ = -127.3 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.10 (m, 8H), 6.88-6.79 (m, 3H), 5.04 (dd, *J* = 63.1, 16.4 Hz, 2H), 4.59 (s, 1H), 4.29 (dd, *J* = 75.8, 14.4 Hz, 2H), 4.24-3.98 (m, 2H), 3.77 (s, 3H), 1.29 (s, 9H), 1.21 (s, 9H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.25, 164.60, 158.99, 149.67, 148.21, 148.18, 137.88, 137.67, 130.89, 128.61, 128.18, 127.67, 127.52, 126.36, 124.87, 117.07, 116.52, 114.33, 111.81, 83.12, 68.33 (d, *J* = 32.2 Hz), 60.80, 58.39, 55.25, 47.02, 34.30, 32.80, 31.46, 27.63, 14.08; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.93; HRMS (ESI⁺): calcd for C₃₉H₄₂ClF₃N₂O₆ [M+Na]⁺ = 749.2581, found = 749.2582; The ee value was 98%, t_R (major) = 6.9 min, t_R (minor) = 12.0 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3p

Enantiomerically enriched 3p

tert-butyl (*1S*,9*bR*,*E*)-8-chloro-2-(3-(2,4-dichlorophenyl)-1-ethoxy-1-oxopropan-2-ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3q)

A white solid; 95% yield; m.p. = 115-117 °C; $[\alpha]^{25}_{D}$ = -123.5 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 1.4 Hz, 1H), 7.25-7.20 (m, 2H), 7.12-7.09 (m, 2H), 6.97 (d, J = 8.6 Hz, 2H), 6.83-6.75 (m, 3H), 4.93 (dd, J = 90.7, 16.3 Hz, 2H), 4.67 (s, 1H), 4.33 (dd, J = 95.5, 16.4 Hz, 2H), 4.18-4.01 (m, 2H), 3.78 (s, 3H), 1.28 (s, 9H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.85, 164.42, 159.02, 151.67, 147.88, 138.14, 137.58, 134.47, 131.69, 131.02, 129.72, 128.95, 128.74, 127.63, 127.31, 126.50, 126.35, 117.14, 116.31, 114.31, 108.97, 83.50, 68.53 (q, J = 33.3 Hz), 60.98, 58.06, 55.30, 47.13, 30.88, 27.76, 14.06; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.73; HRMS (ESI⁺): calcd for C₃₅H₃₂Cl₃F₃N₂O₆ [M+Na]⁺ = 761.1176, found = 761.1176; The ee value was 95%, t_R (major) = 14.3 min, t_R (minor) = 19.8 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3q

Enantiomerically enriched 3q

<u>tert-butyl</u> (1S,9bR,E)-8-chloro-2-(3-(3,5-dimethoxyphenyl)-1-ethoxy-1oxopropan-2-ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9btetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3r)

A white solid; 84% yield; m.p. = 113-117 °C; $[\alpha]^{25}_{D}$ = -91.3 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.18 (m, 3H), 7.10 (d, *J* = 8.7 Hz, 2H), 6.86-6.78 (m, 3H), 6.45 (d, *J* = 2.2 Hz, 2H), 6.27 (t, *J* = 2.3 Hz, 1H), 5.01 (dd, *J* = 94.1, 16.3 Hz, 2H), 4.60 (s, 1H), 4.27 (dd, *J* = 50.7, 15.3 Hz, 2H), 4.25-4.00 (m, 2H), 3.77 (s, 3H), 3.73 (s, 6H), 1.24 (s, 9H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.13, 164.61, 160.55, 158.95, 150.11, 148.22, 143.43, 137.65, 130.89, 128.57, 127.60, 127.43, 126.31, 117.04, 116.44, 114.37, 111.28, 106.62, 97.87, 83.35, 68.40 (q, *J* = 28.2 Hz), 60.81, 58.37, 55.24, 55.15, 47.09, 33.50, 27.65, 14.13; HRMS (ESI⁺): calcd for C₃₇H₃₈ClF₃N₂O₈ [M+Na]⁺ = 753.2166, found = 753.2160; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.93; The ee value was 86%, t_R (major) = 10.8 min, t_R (minor) = 19.1 min (Chiralcel IA, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3r

Enantiomerically enriched 3r

<u>tert-butyl (1S,9bR,E)-8-chloro-2-(3-(3,5-difluorophenyl)-1-ethoxy-1-oxopropan- 2-</u> ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3s)

A white solid; 90% yield; m.p. = 83-88 °C; $[\alpha]^{25}_{D}$ = -36.0 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.22 (m, 2H), 7.10 (d, *J* = 8.7 Hz, 2H), 6.88-6.83 (m, 3H), 6.83-6.73 (m, 2H), 6.60 (tt, *J* = 9.0, 2.3 Hz, 1H), 5.02 (dd, *J* = 118.9, 16.4 Hz, 2H), 4.60 (s, 1H), 4.29 (dd, *J* = 220.4, 14.9 Hz, 2H), 4.26-4.04 (m, 2H), 3.78 (s, 3H), 1.21 (s, 9H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.75, 164.21, 162.91 (d, *J* = 245.5 Hz), 162.78 (d, *J* = 245.5 Hz), 159.06, 150.92, 148.14, 145.48 (t, *J* = 18.0 Hz), 137.48, 131.02, 128.89, 127.44, 126.79 (d, *J* = 76.6 Hz), 116.71 (d, *J* = 86.71 Hz), 114.41, 111.29 (d, *J* = 24.7 Hz), 111.29 (d, *J* = 12.0 Hz), 109.92, 101.17 (t, *J* = 51.0 Hz), 83.48, 68.57, 68.25, 61.05, 58.45, 55.25, 47.20, 33.44, 27.61, 14.08; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.00, -111.20; HRMS (ESI⁺): calcd for C₃₅H₃₂ClF₅N₂O₆ [M+Na]⁺ = 729.1767, found = 729.1770; The ee value was 89%, t_R (major) = 7.3 min, t_R (minor) =

9.3 min (Chiralcel ID, $\lambda = 254$ nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3s

Enantiomerically enriched 3s

```
tert-butyl (1S,9bR,E)-8-chloro-2-(1-isopropoxy-1-oxopropan-2-ylidene)-5- (4-
methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-
c]quinazoline-1-carboxylate (3t)
```


A white solid; 89% yield; m.p. = 132-135 °C; $[\alpha]^{25}_{D}$ = -123.7 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.11 (m, 2H), 7.14 (d, *J* = 8.6 Hz, 2H), 6.86-6.76 (m, 3H), 5.22-4.87 (m, 3H), 4.51 (s, 1H), 3.76 (s, 3H), 2.30 (s, 3H), 1.26 (d, *J* = 6.3 Hz, 6H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.30, 164.86, 158.93, 148.86, 148.76, 137.67, 130.83, 128.33, 127.57, 127.44, 126.29, 116.85, 116.12, 114.34, 109.85, 83.07, 68.73 (q, *J* = 32.2 Hz), 68.39, 59.00, 55.27, 46.67, 27.50, 21.91, 14.09; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.44; HRMS (ESI⁺): calcd for C₃₀H₃₂ClF₃N₂O₆ [M+Na]⁺ = 631.1799, found = 631.1795; The ee value was 97%, t_R (major) = 5.8 min, t_R (minor) = 7.8 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3j

Enantiomerically enriched 3t

<u>tert-butyl (1S,9bR,E)-2-(1-(benzyloxy)-1-oxopropan-2-ylidene)-8-chloro-5- (4-</u> <u>methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-</u> c]quinazoline-1-carboxylate (3u)

A white solid; 94% yield; m.p. = 111-114 °C; $[\alpha]^{25}_{D}$ = -85.2 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 7.22-7.17 (m, 2H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.86-6.81 (m, 2H), 6.79 (d, *J* = 9.6 Hz, 1H), δ 5.17 (dd, *J* = 63.5, 12.5 Hz, 2H), δ 5.04 (dd, *J* = 58.4, 16.6 Hz, 2H), 4.54 (s, 1H), 3.77 (s, 3H), 2.36 (s, 3H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.63, 164.74, 158.97, 149.53, 148.71, 137.62, 136.06, 130.85, 128.55, 128.37, 128.19, 128.15, 127.57, 127.37, 126.26, 117.00, 116.22, 114.37, 108.91, 83.17, 68.70(q, *J* = 32.0 Hz), 66.29, 58.64, 55.27, 46.67, 27.64, 13.96; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.72; HRMS (ESI⁺): calcd for C₂₉H₃₀ClF₃N₂O₆ [M+H]⁺ = 595.1823, found = 595.1825; The ee value was 98%, t_R (major) = 7.8 min, t_R (minor) = 14.8 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3u

Enantiomerically enriched 3u

<u>methyl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxopropan-2-ylidene)-5-(4-methoxy</u> <u>benzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-</u> <u>c]quinazoline-1-carboxylate (3y)</u>

A white solid; 92% yield; m.p. = 129-132 °C; $[\alpha]^{25}_{D}$ = -91.5 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, J = 8.9, 2.4 Hz, 1H), 7.16-7.08 (m, 3H), 6.87-6.77 (m, 3H), 5.05 (dd, J = 108.0, 16.5 Hz, 2H), 4.70 (s, 1H), 4.24-4.10 (m, 2H), 3.76 (s, 3H), 3.61 (s, 3H), 2.34 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.81, 166.64, 158.95, 148.71, 147.91, 137.57, 131.01, 128.52, 127.61, 127.17, 125.28, 117.35, 116.31, 114.37, 109.79, 68.56 (q, J = 32.5 Hz), 60.91, 57.45, 55.26, 52.64, 46.50, 14.20, 13.97; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.07; HRMS (ESI⁺): calcd for C₂₆H₂₄ClF₃N₂O₆ [M+Na]⁺ = 575.1173, found = 575.1176; The ee value was 77%, t_R (major) = 8.7 min, t_R (minor) = 11.6 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3v

Enantiomerically enriched 3v

<u>ethyl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxopropan-2-ylidene)-5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3w)</u>

A white solid; 92% yield; m.p. = 132-134 °C; $[\alpha]^{25}_{D}$ = -83.4 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, J = 8.9, 2.4 Hz, 1H), 7.12 (d, J = 8.8 Hz, 3H), 6.87-6.81 (m, 2H), 6.79 (d, J = 8.9 Hz, 1H), 5.05 (dd, J = 83.6, 16.5 Hz, 2H), 4.65 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 4.12-4.01 (m, 2H), 3.76 (s, 3H), 2.34 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.74, 166.09, 158.94, 148.73, 148.13, 137.60, 130.97, 128.43, 127.57, 127.20, 125.59, 117.23, 116.17, 114.36, 109.87, 68.57 (q, J = 32.3 Hz), 62.00, 60.87, 57.75, 55.27, 46.53, 14.22, 14.07, 13.87; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.72; HRMS (ESI⁺): calcd for C₂₇H₂₆ClF₃N₂O₆ [M+Na]⁺ = 589.1329, found = 589.1329; The ee value was 97%, t_R (major) = 8.9 min, t_R (minor) = 11.8 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3w

Enantiomerically enriched 3w

phenyl (*1S*,*9bR*,*E*)-8-chloro-2-(1-ethoxy-1-oxopropan-2-ylidene)-5-(4-methoxy benzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (3x)

A white solid; 86% yield; m.p. = 134-136 °C; $[\alpha]^{25}_{D}$ = -101.9 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.29 (m, 3H), 7.28-7.25 (m, 1H), 7.24-7.18 (m, 1H), 7.09 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.9 Hz, 1H), 6.79-6.71 (m, 4H), 5.07 (dd, J = 61.9, 16.5 Hz, 2H), 4.88 (s, 1H), 4.32-4.20 (m, 2H), 3.73 (s, 3H), 2.38 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.89, 164.69, 158.84, 149.89, 148.67, 147.85, 137.57, 131.17, 129.52, 128.63, 127.42, 126.89, 126.39, 125.73, 121.09, 117.45, 115.94, 114.29, 109.94, 68.71 (q, J = 32.2 Hz), 61.03, 57.56, 55.16, 46.47, 14.25, 13.95; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.72; HRMS (ESI⁺): calcd for C₃₁H₂₆ClF₃N₂O₆ [M+Na]⁺ = 637.1329, found = 637.1328; The ee value was 92%, t_R (major) = 10.3 min, t_R (minor) = 27.3 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3x

Enantiomerically enriched 3x

<u>9H-fluoren-9-yl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxopropan-2-ylidene)-5- (4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3y)</u>

A white solid; 92% yield; m.p. = 171 175 °C; $[\alpha]^{25}_{D}$ = -71.1 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.59 (m, 2H), 7.43-7.37 (m, 2H), 7.33 (m, 2H), 7.25-7.22 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 7.02-6.93 (m, 3H), 6.78-6.72 (m, 3H), 6.68 (s, 1H), 4.99 (dd, *J* = 31.7, 16.6 Hz, 2H), 4.84 (s, 1H), 4.31-4.08 (m, 2H), 3.77 (s, 3H), 2.31 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.94, 167.00, 158.80, 148.34, 148.30, 140.99, 140.88, 137.79, 131.22, 129.68, 128.77, 128.08, 127.75, 127.24, 126.96, 125.99, 125.82, 120.00, 117.30, 115.90, 114.42, 109.62, 76.62, 68.80 (q, *J* = 31.9 Hz), 60.96, 57.97, 55.28, 46.61, 14.27, 13.94; ¹⁹F NMR (376 MHz, CDCl₃) δ - 81.07; HRMS (ESI⁺): calcd for C₃₈H₃₀ClF₃N₂O₆ [M+Na]⁺ = 725.1642, found = 725.1648; The ee value was 92%, t_R (major) = 9.8 min, t_R (minor) = 15.1 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3i

Enantiomerically enriched 3i

phenyl (1S,9bR,E)-8-chloro-5-(4-methoxybenzyl)-4-oxo-2-(2-oxo-2-phenoxye thylidene)-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylate (3z)

A white solid; 81% yield; m.p. = 168-171 °C; $[\alpha]^{25}_{D}$ = -103.6 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 7.9 Hz, 2H), 7.34-7.25 (m, 4H), 7.25-7.16 (m, 2H), 7.15-7.09 (m, 4H), 6.89 (d, J= 9.0 Hz, 1H), 6.82 (d, J= 8.7 Hz, 2H), 6.72-6.65 (m, 2H), 6.43 (d, J = 1.5 Hz, 1H), 5.10 (dd, J = 103.3, 16.5 Hz, 2H), 5.04 (d, J = 1.6 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.08, 163.26, 159.10, 154.24, 150.40, 149.83, 148.64, 137.60, 131.56, 129.59, 129.47, 129.21, 127.52, 126.62, 126.57, 126.07, 125.96, 121.60, 121.10, 117.97, 115.59, 114.52, 98.39, 69.36 (q, J = 32.9 Hz), 55.79, 55.27, 46.24; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.72; HRMS (ESI⁺): calcd for C₃₄H₂₄ClF₃N₂O₆ [M+Na]⁺ = 671.1173, found = 671.1175; The ee value was 97%, t_R (major) = 12.7 min, t_R (minor) = 28.7 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 3z

Enantiomerically enriched 3z

<u>tert-butyl (1S,9bR,E)-2-(1-ethoxy-1-oxo-3-(o-tolyl)propan-2-ylidene)-8-methoxy -</u> <u>5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-</u> azeto[1,2-c]quinazoline-1-carboxylate (4a)

A white solid; 84% yield; m.p. = 134-136 °C; $[\alpha]^{25}_{D}$ = -81.7 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.13-6.99 (m, 6H), 6.86-6.70 (m, 5H), 4.93 (dd, *J* = 119.6, 16.3 Hz, 2H), 4.62 (s, 1H), 4.27 (dd, *J* = 100.3, 9.9 Hz, 2H), 4.18-3.98 (m, 2H), 3.76 (s, 3H), 3.73 (s, 3H), 2.39 (s, 3H), 1.18 (s, 9H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.42, 164.78, 158.75, 155.24, 150.91, 148.23, 139.86, 136.05, 132.35, 129.76, 128.25, 127.69, 127.31, 125.38, 125.25, 116.80, 116.45, 115.93, 114.17, 111.69, 110.06, 82.74, 68.64 (q, 32.3 Hz), 60.71, 58.46, 55.61, 55.24, 47.03, 30.56, 27.64, 19.80, 14.09; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.79; HRMS (ESI⁺): calcd for C₃₇H₃₉F₃N₂O₇ [M+Na]⁺ = 703.2607, found = 703.2603; The ee value was 99.7%, t_R (major) = 9.3 min, t_R (minor) = 20.0 min (Chiralcel IG, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 4a

Enantiomerically enriched 4a

<u>tert-butyl (1S,9bR,E)-2-(1-ethoxy-1-oxo-3-(o-tolyl)propan-2-ylidene)-8-fluoro-5-</u> (4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (4b)

A white solid; 92% yield; m.p. = 131 137 °C; $[\alpha]^{25}_{D}$ = -124.3 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.21-6.92 (m, 8H), 6.87 (dd, J = 9.1, 4.3 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 4.98 (dd, J = 107.9, 16.7 Hz, 2H), 4.68 (s, 1H), 4.29 (dd, J = 87.3, 15.7 Hz, 2H), 4.19-4.01 (m, 2H), 3.80 (s, 3H), 2.43 (s, 3H), 1.27 (s, 9H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.30, 164.55, 158.91, 158.13 (d, J = 245.0 Hz), 150.49, 148.08, 139.65, 136.02, 135.35, 129.78, 127.67, 127.29, 125.39 (d, J = 12.3 Hz), 117.65 (d, J = 22.3 Hz), 117.16 (d, J = 7.6 Hz), 116.45 (d, J = 7.6 Hz), 114.29, 113.77 (d, J = 24.6 Hz), 110.61, 83.11, 68.39 (q, J = 32.2 Hz), 60.76, 58.31, 55.24, 47.19, 30.54, 27.69, 19.77, 14.07; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.94, -119.20; The evalue was 99.5%, t_R (major) = 9.2 min, t_R (minor) = 12.0 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 0.5 mL/min).

Racemic 4b

Enantiomerically enriched 4b

tert-butyl (*1S*,9*bR*,*E*)-2-(1-ethoxy-1-oxo-3-(o-tolyl)propan-2-ylidene)-5-(4-metho xybenzyl)-4-oxo-8,9b-bis(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylate (4c)

A white solid; 92% yield; m.p. = 151 154 °C; $[\alpha]^{25}_{D}$ = -108.9 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.1 Hz, 2H), 7.13-6.97 (m, 7H), 6.79 (d, J = 8.7 Hz, 2H), 5.00 (dd, J = 95.7, 16.3 Hz, 2H), 4.69 (s, 1H), 4.25 (dd, J = 70.1, 16.0 Hz, 2H), 4.21-4.01 (m, 2H), 3.77 (s, 3H), 2.40 (s, 3H), 1.20 (s, 9H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.11, 164.46, 159.01, 150.28, 147.87, 141.90, 139.53, 136.03, 129.83, 128.21 (q, J = 31.9 Hz), 127.70, 127.30, 127.24, 125.54, 125.34, 123.74, 115.88, 115.24, 114.37, 111.47, 83.31, 69.37-67.79 (q, J = 32.5 Hz), 60.90, 58.63, 55.26, 47.17, 30.68, 27.60, 19.78, 14.04; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.28, -81.13; HRMS (ESI⁺): calcd for C₃₇H₃₆F₆N₂O₆ [M+H]⁺ = 719.2556, found = 719.2555; The ee value was 81%, t_R (major) = 5.4 min, t_R (minor) = 6.9 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 4c

Enantiomerically enriched 4c

<u>tert-butyl (1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxo-3-(o-tolyl)propan-2-ylidene)-5-</u> (naphthalen-1-ylmethyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2Hazeto[1,2-c]quinazoline-1-carboxylate (4d)

A white solid; 89% yield; m.p. = 121 123 °C; $[\alpha]^{25}_{D}$ = -91.4 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 1H), 7.93-7.87 (m, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.62-7.50 (m, 2H), 7.36-7.25 (m, 2H), 7.17-7.01 (m, 5H), 6.97 (d, J = 7.1 Hz, 1H), 6.59 (d, J = 8.9 Hz, 1H), 5.49 (dd, J = 29.2, 17.3 Hz, 2H), 4.72 (s, 1H), 4.26 (dd, J = 53.7, 15.8 Hz, 2H), 4.18-3.99 (m, 2H), 2.36 (s, 3H), 1.34 (s, 9H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.27, 164.63, 150.30, 147.91, 139.40, 137.73, 136.01, 133.88, 130.99, 130.32, 129.80, 129.42, 129.13, 128.78, 127.92, 127.36, 126.53, 126.43, 126.00, 125.54, 125.39, 122.63, 122.06, 117.21, 116.46, 111.13, 83.36, 68.53 (q, J = 32.5 Hz), 60.82, 58.33, 45.38, 30.50, 27.80, 19.77, 14.06; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.72; HRMS (ESI⁺): calcd for C₃₉H₃₆ClF₃N₂O₆ [M+Na]⁺ = 727.2163, found = 727.2168; The ee value was 92%, t_R (major) = 7.8 min, t_R (minor) = 18.2 min (Chiralcel ID, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min).

Racemic 4d

Enantiomerically enriched 4d

6. Gram-scale preparations and transformations

A. Procedure for the scale-up synthesis and transformations of 3f

To a round bottle flask with a magnetic stirring bar were added cyclic trifluoroketimine **1a** (1 mmol), phosphonium salt **P8** (10.2 mg, 0.01 mmol) and Cs₂CO₃ (65.2 mg, 2 mmol), allene **2p** was dissolved by *n*-octane (8.0 mL) and added in. The reaction mixture was stirred at room temperature for 5 d and TLC show that the reaction was completed. Purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to afforded product **3f** (96% yield, 656.9 mg, >20:1*dr*, >99% ee).

(1S,9bR,E)-8-chloro-2-(1-hydroxy-3-(o-tolyl)propan-2-ylidene)-1-(hydroxyl methyl)-5-(4-methoxybenzyl)-9b-(trifluoromethyl)-1,2,5,9b-tetrahydro-4Hazeto[1,2-c]quinazolin-4-one (5a)

Under nitrogen atmosphere, a round bottle flask with a magnetic stirring bar were added **3f** (>20:1*dr*, >99% ee, 68.5 mg, 0.1 mmol), and dry DCM (2 mL), (*i*Bu)₂AlH (0.7 mL, 0.7 mmol), after stired for 12 h at 0 °C. H₂O (3 mL) was added, the mixture was extracted with DCM (5 mL × 3), dried over Na₂SO₄, and the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2 : 1) to give **5a** (>20:1 *dr*, 81% yield, 46.4 mg) as a white solid; m.p. = 132-136 °C; $[\alpha]^{25}_{D}$ = -94.2 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CD₃OD) δ 7.55 (s, 1H), 7.28 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.25-7.21 (m, 1H), 7.19-7.09 (m, 5H), 6.90 (d, *J* = 9.0 Hz, 1H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.06 (s, 2H), 4.79-4.48 (m, 1H), 3.99-3.89 (m, 3H), 3.87 (t, *J* = 4.6 Hz, 1H), 3.81 (m, 1H), 3.76 (s, 3H), 3.70 (m, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 158.95, 150.11, 138.33, 138.03, 137.70, 136.67, 129.85, 129.61, 129.31, 127.96, 127.35, 127.31, 126.76, 125.76, 125.34, 119.91, 116.80, 115.90, 113.76, 68.61 (q, *J* = 24.6 Hz), 58.88, 58.06, 54.30, 52.57, 45.71, 31.91, 18.30; ¹⁹F NMR (376 MHz, CD₃OD) δ -82.01. HRMS (ESI⁺): calcd for C₃₀H₂₈ClF₃N₂O₄ [M+H]⁺ = 573.1768, found = 573.1776.

<u>(1S,9bR,E)-8-chloro-2-(1-ethoxy-1-oxo-3-(o-tolyl)propan-2-ylidene)-5-(4-</u> methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2c]quinazoline-1-carboxylic acid (5b)

A round bottle flask with a magnetic stirring bar were added **3f** (>20:1*dr*, >99% ee, 68.5 mg, 0.1 mmol), and dry DCM (2 mL), FeCl₃ (32.4 mg, 0.2 mmol), after stired for 1 h at room temperature, the mixture was filtrated and purified by column chromatography on silica gel (ethyl acetate) to give **5b** (>20:1*dr*, 56.6 mg, 91% yield) as a white solid; m.p. = 181-183 °C; $[\alpha]^{25}_{D}$ = -61.2 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CD₃OD) δ 7.36

(s, 1H), 7.35-7.29 (m, 1H), 7.14-6.94 (m, 7H), 6.77 (d, J = 8.6 Hz, 2H), 5.11-4.78 (m, 2H), 4.24 (dd, J = 70.6, 15.9 Hz, 3H), 4.13-4.06 (m, 2H), 3.73 (s, 3H), 3.37 (s, 1H), 2.36 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 167.57, 167.34, 158.96, 150.50, 147.92, 139.19, 137.67, 135.63, 130.74, 129.28, 128.32, 127.43, 126.87, 125.33, 125.27, 125.22, 117.68, 116.58, 113.84, 110.29, 67.95 (q, J = 32.3 Hz), 60.59, 56.82, 54.28, 46.25, 30.03, 18.45, 12.99; ¹⁹F NMR (376 MHz, CD₃OD) δ -82.01; HRMS (ESI⁺): calcd for C₃₂H₂₈ClF₃N₂O₆ [M+Na]⁺ = 651.1486, found = 651.1486.

(*1S*,9*bR*,*E*)-8-chloro-2-(1-ethoxy-1-oxo-3-(o-tolyl)propan-2-ylidene)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-azeto[1,2-c]quinazoline-1-carboxylic acid (5c)

5c (>20:1 *dr*, 44.3 mg, 87% yield) was gained under similar condition of **5b**, by used FeCl₃ (64.8 mg, 0.4 mmol). As a white solid; m.p. = 173-176 °C; $[\alpha]^{25}_{D}$ = -84.6 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CD₃OD) δ 7.40 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.31 (s, 1H), 7.10-6.98 (m, 4H), 6.94 (d, *J* = 8.6 Hz, 1H), 4.76 (s, 1H), 4.21 (dd, *J* = 71.2, 15.6 Hz, 1H), 4.09-4.03 (m, 2H), 2.35 (s, 3H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 167.63, 167.29, 150.45, 148.04, 138.90, 137.19, 135.64, 131.10, 129.22, 127.76, 127.27, 125.68, 125.23, 116.89, 114.01, 110.84, 69.30 (q, *J* = 32.2 Hz), 60.50, 57.01, 30.45, 30.17, 18.44, 12.94; ¹⁹F NMR (376 MHz, CD₃OD) δ -82.82. HRMS (ESI⁺): calcd for C₂₄H₂₀ClF₃N₂O₅ [M+Na]⁺ = 509.1091, found = 509.1093.

<u>tert-butyl (1S,9bR,E)-8-chloro-2-(1-methoxy-1-oxo-3-(o-tolyl)propan-2-ylidene) -</u> <u>5-(4-methoxybenzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydro-2H-</u> <u>azeto[1,2-c]quinazoline-1-carboxylate (5d)</u>

A round bottle flask with a magnetic stirring bar were added **3f** (>20:1 *dr*, >99% ee, 68.5 mg, 0.1 mmol), and MeOH (1 mL), NaOH (32 mg, 0.2 mmol), after stired for 4 h at ambient temperature, H₂O (3 mL) was added, methanol was removed by evaporation under reduced pressure, the mixture was extracted with DCM (3 mL × 3), dried over Na₂SO₄, the solvent was removed by evaporation under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give **5d** (>20:1*dr*, 46.5 mg, 80% yield) as a white solid; m.p. = 115-117 °C; $[\alpha]^{25}_{D}$ = -95.8 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 1H), 7.22 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.16-7.05 (m, 4H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 1H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.93 (dd, *J* = 107.3, 16.3 Hz, 2H), 4.66 (s, 1H), 4.25 (dd, *J* = 86.0, 15.8 Hz, 2H), 3.77 (s, 3H), 3.64 (s, 3H), 2.39 (s, 3H), 1.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.11, 164.89, 158.96, 149.11, 148.75, 137.62, 130.85, 128.35, 127.56, 127.36, 126.19, 117.02, 116.19, 114.36, 109.19, 83.14, 68.66 (q, *J* = 31.9 Hz), 58.72, 55.27, 51.68, 46.65, 27.66, 14.07; ¹⁹F NMR (376 MHz, CDCl₃) δ - 81.04; HRMS (ESI⁺): calcd for C₃₅H₃₄ClF₃N₂O₆ [M+H]⁺ = 671.2136, found = 671.2133.

(*S*,*Z*)-2-((*R*)-6-chloro-1-(4-methoxybenzyl)-2-oxo-4-(trifluoromethyl)-1,2,3,4tetrahydroquinazolin-4-yl)-5-ethoxy-4-(2-methylbenzyl)-5-oxopent-3-enoic acid (5e)

Under nitrogen atmosphere, a round bottle flask with a magnetic stirring bar were added **3f** (>20:1 *dr*, >99% ee, 68.5 mg, 0.1 mmol), and DCE (2 mL), TsOH·H₂O (5.2 mg, 0.02 mmol), after stired for 3 h at 60 °C. H₂O (3 mL) was added, the mixture was extracted with DCM (3 mL × 3), dried over Na₂SO₄, and the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2 : 1) to give **5e** (>20:1 *dr*, 94% yield, 59.2 mg). ¹H NMR (400 MHz, CD₃OD) δ 7.35 (s, 1H), 7.32-7.21 (m, 1H), 7.18-6.98 (m, 4H), 6.97-6.87 (m, 3H), 6.81-6.67 (m, 2H), 4.98-4.80 (m, 6H), 4.23 (dd, *J* = 69.5, 16.0 Hz, 2H), 4.14-3.98 (m, 1H), 3.68 (s, 3H), 2.32 (s, 3H), 1.13 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 171.51, 171.28, 162.90, 154.44, 151.86, 143.14, 141.60, 139.58, 134.68, 133.23,

132.26, 131.38, 131.36, 130.81, 129.27, 129.17, 121.62, 120.51, 117.78, 114.24, 71.89 (q, *J* = 32.5 Hz), 64.53, 60.76, 58.22, 50.17, 33.99, 22.42, 16.94; ¹⁹F NMR (376 MHz, CD₃OD) δ -82.49.

<u>1-(*tert*-butyl) 3'-ethyl (1*R*,3'S,9*bS*)-8-chloro-5-(4-methoxybenzyl)-3'-(2-methyl benzyl)-4-oxo-9b-(trifluoromethyl)-1,4,5,9b-tetrahydrospiro[azeto[1,2c]quinazoline-2,2'-oxirane]-1,3'-dicarboxylate (5f)</u>

A round bottle flask with a magnetic stirring bar were added **3f** (>20:1 *dr*, >99% ee, 68.5 mg, 0.1 mmol), and DCE (2 mL), *m*-CPBA (121.8 mg, 0.6 mmol), after stired for 3 h at room temperature. H₂O (3 mL) was added, the mixture was extracted with DCM (3 mL × 3), dried over Na₂SO₄, and the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10 : 1) to give **5f** (>20:1 *dr*, 96% ee, 83% yield, 59.1 mg). m.p. = 91-96 °C; $[\alpha]^{25}_{D} = -103.1$ (c 0.8, CHCl₃); ¹H NMR (400 MHz, Acetone-d6) δ 7.55-7.41 (m, 2H), 7.32-7.10 (m, 7H), 6.93 (d, *J* = 8.7 Hz, 2H), 5.13 (dd, *J* = 37.1, 16.4 Hz, 2H), 4.20 (s, 1H), 4.07 (dd, *J* = 201.9, 16.2 Hz, 2H), 4.11-4.02 (m, 2H), 3.81 (s, 3H), 2.43 (s, 3H), 1.33 (s, 9H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Acetone-d6) δ 166.70, 164.53, 159.14, 149.38, 138.10, 136.53, 135.72, 131.20, 130.01, 128.03, 127.93, 127.72, 126.35, 125.72, 117.96, 116.06, 114.09, 84.15, 83.96, 66.34, 62.01, 57.03, 54.62, 45.65, 31.79, 26.91, 19.27, 12.96; ¹⁹F NMR (376 MHz, Acetone-d6) δ -82.06; The ee value was 96%, t_R (major) = 11.3 min, t_R (minor) = 15.0 min (Chiralcel IA, λ = 254 nm, hexane/2-propanol = 90/10, flow rate = 0.5 mL/min).

Enantiomerically enriched 5f

7. Determination of absolute configuration of products

Figure S2. X-ray structure of 3f.

Identification code	wtl-zs-1429
Empirical formula	C36H36C1F3N2O6
Formula weight	685.12
Temperature/K	294.5(7)
Crystal system	monoclinic
Space group	P21
a/Å	8.08272(16)
b/Å	9.84747(16)
c/Å	21.8501(4)
$\alpha/^{\circ}$	90
β/°	95.1500(19)
$\gamma^{/\circ}$	90
Volume/Å3	1732.13(6)
Z	2
pcalcg/cm3	1.314
μ/mm-1	1.520
F(000)	716.0
Crystal size/mm3	0.5 imes 0.3 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.126 to 143.836
Index ranges	$-6 \le h \le 9, -12 \le k \le 12, -26 \le l \le 24$
Reflections collected	11907
Independent reflections	6345 [Rint = 0.0424, Rsigma =
	0.0539]
Data/restraints/parameters	6345/1/439

Table S5. Crystal data and structure refinement for 3f.

Carlinger of fit an E2	1.076
Goodness-of-fit on F2	1.076
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0627, wR2 = 0.1616
Final R indexes [all data]	R1 = 0.0681, wR2 = 0.1711
Largest diff. peak/hole / e Å-3	0.28/-0.29
Flack parameter	0.003(17)

Figure S3. X-ray structure of racemic 5f.

Identification code	wtl-zs-4-O
Empirical formula	C36H36C1F3N2O7
Formula weight	701.12
Temperature/K	295.2(4)
Crystal system	triclinic
Space group	P-1
a/Å	12.0254(7)
b/Å	12.2134(8)
c/Å	13.7083(7)
$\alpha/^{\circ}$	104.703(5)
β/°	91.687(5)
$\gamma^{/\circ}$	116.424(6)
Volume/Å3	1720.23(19)
Ζ	2
pcalcg/cm3	1.354
μ/mm-1	1.566
F(000)	732.0
Crystal size/mm3	0.3 imes 0.2 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.758 to 143.03
Index ranges	$-13 \le h \le 14, -14 \le k \le 14, -16 \le l \le$
	16

Table S6. Crystal data and structure refinement for 5f.

Reflections collected	18459
Independent reflections	6584 [Rint = 0.0372, Rsigma = 0.0315]
Data/restraints/parameters	6584/0/469
Goodness-of-fit on F2	1.035
Final R indexes [I>= 2σ (I)]	R1 = 0.0575, wR2 = 0.1629
Final R indexes [all data]	R1 = 0.0695, wR2 = 0.1793
Largest diff. peak/hole / e Å-3	0.25/-0.25

8. Mechanistic studies

A. Reaction catalyzed by different phosphonium salts

Table S7. Reaction catalyzed by different phosphonium salts^[a]

Reaction condition: [a] **1a** (0.05 mmol), **2f** (0.055 mmol), **P** (0.0005 mmol) and Cs_2CO_3 (0.1 mmol) in *n*-octane (0.5 mL) at room temperature for 36 h. All >20:1 *dr*, and *dr* values were analyzed by ¹H NMR spectroscopy. [b] Isolated yields. [c] The ee values were determined by HPLC. [d] Solvent is MeOH.

We also prepared the methylated phosphonium salt catalysts **P8-1** and **P8-2**. When methylated phosphonium salts **P8-1** and **P8-2** was used, the racemic product was

obtained with loss of yield (Table S7, entries 2-3). Of note, when the reaction was performed in methanol, we did not obtain the expected product. These preliminary results indicated the importance of both hydrogen-bonding and ion-pair interactions and steric hindrance provide by phosphonium salt catalysts (Table S7).

B. Proposed mechanism

Figure S4. Proposed catalytic cycle.

9. References

- a) J. Pan, J.-H. Wu, H. Zhang, X. Ren, J.-P. Tan, L. Zhu, H.-S. Zhang, C. Jiang, T. Wang, *Angew. Chem. Int. Ed.* 2019, *58*, 7425-7430; b) H. Zhang, J. He, Y. Chen, C. Zhuang, C. Jiang, K.Xiao, Z. Su, X. Ren, T. Wang, *Angew. Chem. Int. Ed.* 2021, *60*, 19860-19870.
- [2] L.-J. Yang, S. Li, S. Wang, J. Nie, J.-A. Ma, J. Org. Chem. 2014, 79, 3547-3558.
- [3] T. Hashimoto, K. Sakata, F. Tamakuni, M. J. Dutton, K. Maruoka, *Nat. Chem.* **2013**, *5*, 240-244.

11. NMR spectra

NMR of P8-1 (CDCl₃)

^{210 200 190 190 170 160 150 140 120 110 100 90 80 70 60 50 40 20 20 10 0 -10} f1 (ppa)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (spm) NMR of **P8-2** (CDCl₃)

210 200 180 180 170 180 150 140 180 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -60 -10 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

NMR of **2c** (CDCl₃)

NMR of 2f (CDCl₃)

NMR of 2g (CDCl₃)

NMR of **2h** (CDCl₃)

NMR of 2i (CDCl₃)

NMR of 2j (CDCl₃)

NMR of 2l (CDCl₃)

NMR of 2n (CDCl₃)

NMR of 20 (CDCl₃)

NMR of 2r (CDCl₃)

NMR of 2s (CDCl₃)

NMR of 2t (CDCl₃)

NMR of 2u (CDCl₃)

NMR of 2x (CDCl₃)

NMR of **3a** (CDCl₃)

NMR of **3b** (CDCl₃)

NMR of **3c** (CDCl₃)

NMR of **3e** (CDCl₃) WTL-20200116-ZS-Bn PMBN CO₂Et ĒO₂^tBu зĆ -7.0992 -7.0776 -6.8413 -6.8206 -6.7992 1401 241 CI 3e 6 4 8 7.2 7.1 7.0 f1 (ppm) 7.3 6.9 2:05 3:05 9.00 03~ 440.1 3.00 156. 6.0 5.5 fl (ppm) 1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 5.0 4.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 3.5

NMR of 3g (CDCl₃)

NMR of **3h** (CDCl₃)

NMR of 3i (CDCl₃)

NMR of 3k (CDCl₃)

NMR of 3m (CDCl₃)

NMR of **3o** (CDCl₃)

NMR of 3s (CDCl₃)

NMR of **3w** (CDCl₃) WTL=20200117=ZS=ethyl=ester 77.2134 77.1815 77.1815 77.1815 77.1815 77.1815 6.8570 6.8570 6.8533 6.8330 6.8333 7.1308 7.1008 7.5017 7.5 $\sum_{\substack{l=2848\\l=2669\\l=2491\\l=034\\l=0855\\l=0677}$ PMBN[·] CO₂Et Ή ′F₃Ĉ ĒO₂Et CI 6.8570 6.8502 6.8454 6.8330 6.8330 6.8330 6.8033 6.8003 6.7780 7.191 7.191 7.131 7.1099 ~5.1712 4.0943 4.0851 10801 4.0672 0621 0492 4.921 4.653 3w .96 ШIJ -00.H -03-00-1-00 2.97-9 ģ 7.0 6.7 5.2 4.4 4.6 fl (ppm) 3.00-₹ 5 3.00-₹ 5 ° - 2:00-1.00 2.97 2.03 1.01 2.03₹ 2.00Å 1.00-1 3.02₌ 6.0 5.5 fl (ppm) 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.5 4.0 3.5 3.0 2, 5 2.0 1.5 0.5

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

NMR of **3x** (CDCl₃)

7.33260年 7.33260年 7.7.2916年 7.7.2916年 7.7.2916年 7.7.2916年 7.7.2916年 7.7.2916年 7.7.2916年 7.7.2012

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (psm)

NMR of 3z (CDCl₃)

NMR of 4a (CDCl₃) 7.0628 7.0590 7.0590 7.0381 7.0381 6.7901 6.7901 6.7738 6.7738 6.7738 6.7738 6.7738 6.7738 6.7738 6.7738 6.7738 6.7738 6.77370 6.7738 6.7747 WTL-20200402-ZS 1.1820 1.1682 1.1504 1.1326 1200 0824 8 PMBN CO₂Et [∕]_H ĈO₂^tBu °₃Ĉ MeÓ 7.0070 -6.8077 6.7738 6.7688 6.7570 6.7901 4.1110 4.0410 4.0232 4.0139 5.9961 6.7520 1.1383 3.7634 82 062 090 038 6.786 6 062 165 .148 805 374 4a 615 413 uuuuu M. 5 8 8 g á 5 5 g 7.1 7.0 6.9 fl (ppm) 6.6 5.2 4.6 f1 6.7 5.0 4.8 H⁺ 1.05 ± 0.00 ± 0. 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5

NMR of **5a**(CD₃OD)

NMR of **5b** (CD₃OD)

NMR of 5d (CDCl₃)

NMR of 5e (CD₃OD)

NMR of 5f (Acetone-d6)

