General considerations:

Reagent information: All reactions were carried out under air atmosphere in screw cap reaction tubes. All the solvents were bought from Sigma-Aldrich and Merck in sealed bottles and were used as received. Copper iodide was obtained from S.D. Fine-Chem Limited. Anilines were purchased from Aldrich and Alfa-Aesar. For column chromatography, silica (100–200 mesh) from SRL. A gradient elution using pet–ether and ethyl acetate were performed, based on Merck aluminum TLC sheets (silica gel 60 F₂₅₄).

Analytical Information: All isolated compounds were characterized by ¹H NMR, ¹³C NMR spectroscopy, and mass spectrometry (MS). The supporting information can include copies of the 1H NMR and 13C NMR. Unless otherwise stated, all Nuclear Magnetic Resonance spectra were recorded on a Bruker 400 MHz instrument. All ¹H NMR experiments were reported in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) and DMSO (2.50 ppm) in the deuterated solvent unless otherwise stated. All ¹³C NMR spectra were reported in ppm relative to deuterochloroform (77.23 ppm) and deuterated DMSO (40.2 ppm). Various temperature single crystal X-ray diffraction data for 3m was collected on Bruker Smart Apex Duo diffractometer using CuK α radiation ($\lambda = 1.5406$ Å). Using Olex2 ¹, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the XL² refinement package using Least Squares minimisation. All the non-hydrogen atoms were refined anisotropically³. The structural parameters were retrieved by using mercury software.

[1] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & amp; Puschmann, H. (2009), *J. Appl. Cryst.* **42**, 339-341.

- [2] G. M. Sheldrick, Acta Crystallogr. A: Found. Adv. 2015, 71, 3-8.
- [3] A. L. Spek, Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.

	$1 + 2 \times 1$	= S. Se	talyst (20 mol%) kidant (2 equiv) ent (2 mL), 80 °C 2 h	X=S, Se	
—	Catalant	Orident	C - 14	T ime (b)	Tesleted
Entry	Catalyst	Oxidant	Solvent	1 ime (n)	Isolated Vield
1	CuCl	H ₂ O ₂	MeCN	2	45%
2	CuBr	H_2O_2	MeCN	2	57%
3	CuI	H_2O_2	MeCN	2	80%
4	Cu(OAc) ₂ . H ₂ O	H_2O_2	MeCN	2	n.d
5	CuBr ₂	H_2O_2	MeCN	2	n.d
6	CuCl ₂ , 2H ₂ O	H ₂ O ₂	MeCN	2	n.d
7	Cu(OTf) ₂	H_2O_2	MeCN	2	n.d
8	CuSO ₄ . 5H ₂ O	H_2O_2	MeCN	2	n.d
9	CuPc	H_2O_2	MeCN	2	n.d
10	CuO	H_2O_2	MeCN	2	n.d
11	Fe(OAc) ₂	H2O2	MeCN	2	n.d
12	FeCl ₃	H2O2	MeCN	2	n.d
13	TBAI	H ₂ O ₂	MeCN	2	50%
14	TBAB	H ₂ O ₂	MeCN	2	n.d
15	I ₂	H ₂ O ₂	MeCN	2	n.d
16	CuI	TBHP	MeCN	2	n.d
17	CuI	DTBP	MeCN	2	65%
18	CuI	BZ2O2	MeCN	2	n.d
19	CuI	K2S2O8	MeCN	2	n.d
20	CuI	$(NH_4)_2S_2O_8$	MeCN	2	n.d
21	CuI	Cumene	MeCN	2	n.d
		hvdroperoxide			
22	CuI	Tert-butvl per	MeCN	2	n.d
		benzoate			
23	CuI	Oxone	MeCN	2	n.d
24	CuI	H_2O_2	Toluene	2	n.d
25	CuI	H_2O_2	DMSO	2	30%
26	CuI	H ₂ O ₂	DMF	2	n.d
27	CuI	H_2O_2	DMA	2	25%
28	CuI	H_2O_2	NMP	2	n.d
29	CuI	H_2O_2	t-AmOH	2	n.d
30	CuI	H_2O_2	H ₂ O	2	n.d
31	CuI	H_2O_2	DCE	2	n.d
32	CuI	H ₂ O ₂	1,4 Dioxane	2	n.d
33	CuI	H_2O_2	THF	2	n.d
34	-	H_2O_2	MeCN	2	n.d
35	CuI	_	MeCN	2	n.d
36	-	_	MeCN	2	n.d

Table 1: Optimization of reaction conditions

Table 4: Catalyst Amount Screening

Entry	Catalyst Amount	Time (h)	Isolated Yield
1	5 mol%	2	25%
2	10 mol%	2	40%

Table 5: Temperature Screening

Entry	Temperature (°C)	Time (h)	Isolated Yield
1	rt	2	7%
2	50	2	55%
3	60	2	62%
4	70	2	71%
5	80	2	80%

General synthesis procedure for N-S/N-Se bond formation:

A clean, oven-dried screw cap reaction tube with a previously placed magnetic stir bar was charged with aniline (0.2 mmol), 1,2 diphenyl disulfide (0.1 mmol), or diphenyl diselenide (0.1 mmol), copper iodide (20 mol %) and H₂O₂ (2 equiv) followed by addition of MeCN (2 mL). The reaction mixture was vigorously stirred for 2 h in a preheated oil bath at 80 °C. After the stipulated time, the reaction mixture was cooled to room temperature and filtered through a celite bed using ethyl acetate as the eluent (25 mL). The ethyl acetate layer was dried under a vacuum. The crude reaction mixture was purified by column chromatography using silica gel and petroleum-ether/ethyl acetate as the eluent to give the desired product.

CRYSTAL DATA

TRY_a

Table 1 Crystal data and structure refinement for TRY_a.

Identification code	TRY_a
Empirical formula	$C_{12}H_{10}N_2O_2S$
Formula weight	246.291
Temperature/K	150.15
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.244(3)
b/Å	20.111(7)
c/Å	7.539(2)
α/°	90
β/°	113.061(15)
$\gamma/^{\circ}$	90
Volume/Å ³	1150.2(6)
Z	4
$\rho_{calc}g/cm^3$	1.422
μ/mm^{-1}	2.438
F(000)	515.0

Crystal size/mm ³	$0.421\times0.384\times0.215$		
Radiation	Cu Ka ($\lambda = 1.54178$)		
2Θ range for data collection/° 8.8 to 133.02			
Index ranges	$-9 \le h \le 9, -23 \le k \le 23, -8 \le l \le 8$		
Reflections collected	6376		
Independent reflections	1990 [$R_{int} = 0.1523$, $R_{sigma} = 0.1441$]		
Data/restraints/parameters	1990/0/130		
Goodness-of-fit on F ²	1.092		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1=0.1145,wR_2=0.1807$		
Final R indexes [all data]	$R_1 = 0.2053, wR_2 = 0.2219$		
Largest diff. peak/hole / e Å ⁻³ 1.08/-0.98			

Characterization data of synthesized compounds:

N, *S*-diphenylthiohydroxylamine (Table 2, Entry 3a): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (32 mg, isolated yield: 80%); ¹H NMR (400 MHz, CDCl₃) δ 3.70 (s, 1H), 6.56 (d, *J* = 8.5 Hz, 2H), 7.06 – 7.14 (m, 4H), 7.21 (d, *J* = 6.8 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.88, 137.19, 134.15, 130.11, 129.08, 126.06, 116.39, 116.06. HRMS (ESI) calcd. for C₁₂H₁₂NS ([M+H]+) is 202.0690 and found 202.0681.

N-(4-chlorophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3b): eluted in (1% ethyl acetate/petroleum ether, v/v); dark brown liquid (37 mg, isolated yield: 78%) ¹H NMR (400 MHz, CDCl₃) δ 6.60 (d, J = 8.7 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.18 – 7.26 (m, 2H), 7.27 – 7.33 (m, 3H), 7.47 – 7.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.21, 155.82, 142.85, 137.86, 128.37, 119.58, 119.50, 115.76, 115.01, 114.78. HRMS (ESI) calcd. for C₁₂H₁₁ClNS ([M+H]+) is 236.0300 and found 236.0302.

N-(4-bromophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3c): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (43 mg, isolated yield: 76%) ¹H NMR (400 MHz, CDCl₃) δ 5.59 (s, 1H), 6.82 – 6.91 (m, 3H), 6.97 (d, *J* = 7.6 Hz, 2H), 7.20 (dd, *J* = 7.2, 8.5 Hz, 2H), 7.26 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 112.63, 118.31, 119.04, 121.68, 129.49, 132.21, 142.42, 142.45. HRMS (ESI) calcd. for C₁₂H₁₁BrNS ([M+H]+) is 279.9795 and found 279.9750.

N-(4-iodophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3d): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (50 mg, isolated yield: 77%) ¹H NMR (400 MHz, CDCl₃) δ 5.20 (s, 1H), 6.82 (d, *J* = 8.8 Hz, 2H), 7.12 – 7.19 (m, 3H), 7.28 (dd, *J* = 7.2, 8.2 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.62, 140.73, 137.99, 129.02, 127.53, 125.80, 122.58, 116.93, 82.17. HRMS (ESI) calcd. for C₁₂H₁₁INS ([M+H]+) is 327.9656 and found 327.9651.

methyl 4-((phenylthio)amino) benzoate (Table 2, Entry 3e): eluted in (7% ethyl acetate/petroleum ether, v/v); light brown solid (35 mg, isolated yield: 68%), Mp. 115-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.85 (s, 3H), 5.66 (s, 1H), 7.00 – 7.07 (m, 2H), 7.10 – 7.21 (m, 3H), 7.23 – 7.30 (m, 2H), 7.90 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.00, 151.19, 140.34, 131.40, 129.03, 125.90, 122.71, 122.12, 114.07, 51.79. HRMS (ESI) calcd. for C₁₄H₁₄NO₂S ([M+H]+) is 260.0745 and found 260.0743.

1-(4-((phenylthio)amino)phenyl)ethan-1-one (Table 2, Entry 3f): eluted in (8% ethyl acetate/petroleum ether, v/v); brown solid (34 mg, isolated yield: 70%) Mp. 108-109 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 2.51 (s, 3H), 5.80 (s, 1H), 7.03 – 7.08 (m, 2H), 7.11 – 7.19 (m, 3H), 7.25 – 7.30 (m, 2H), 7.84 – 7.87 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.82, 151.51, 140.25, 130.54, 130.03, 129.47, 129.10, 126.00, 123.25, 122.80, 114.16, 26.29. **HRMS (ESI)** calcd. for C₁₄H₁₄NOS ([M+H]+) is 244.0796 and found 244.0804.

4-((phenylthio)amino) benzonitrile (Table 2, Entry 3g): eluted in (10% ethyl acetate/petroleum ether, v/v); brown solid (29 mg, isolated yield: 63%) Mp. 105-106 °C ¹H

NMR (400 MHz, CDCl₃) δ 5.67 (s, 1H), 7.08 (d, J = 8.8 Hz, 2H), 7.15 – 7.19 (m, 3H), 7.28 – 7.33 (m, 2H), 7.49 (d, J = 8.9 Hz, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 150.90, 139.58, 133.72, 133.37, 129.17, 126.25, 123.75, 122.89, 119.55, 114.94. **HRMS** (**ESI**) calcd. for C₁₃H₁₁N₂S ([M+H]+) is 227.0642 and found 227.0641.

N-(3-chlorophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3h): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (35 mg, isolated yield: 74%) ¹H NMR (400 MHz, CDCl₃) δ 5.14 (s, 1H), 6.79 (dd, *J* = 7.4, 21.9 Hz, 2H), 6.97 (t, *J* = 2.2, 2.2 Hz, 1H), 7.02 – 7.13 (m, 4H), 7.19 – 7.24 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.13, 140.72, 135.16, 130.34, 129.06, 125.84, 122.57, 120.67, 114.69, 113.00. HRMS (ESI) calcd. for C₁₂H₁₁ClNS ([M+H]+) is 236.0300 and found 236.0302.

N-(**3**-bromophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3i): eluted in (2% ethyl acetate/petroleum ether, v/v); yellow liquid (40 mg, isolated yield: 72%) ¹H NMR (400 MHz, CDCl₃) δ 5.11 (s, 1H), 6.82 – 6.94 (m, 2H), 6.98 (t, *J* = 7.9, 7.9 Hz, 1H), 7.05 – 7.13 (m, 4H), 7.21 (t, *J* = 7.6, 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.27, 140.72, 130.64, 129.08, 125.86, 123.59, 122.61, 117.61, 113.43. HRMS (ESI) calcd. for C₁₂H₁₁BrNS ([M+H]+) is 279.9795 and found 279.9750.

N-(**3-iodophenyl**)-*S*-phenylthiohydroxylamine (Table 2, Entry 3j): eluted in (1% ethyl acetate/petroleum ether, v/v); light yellow liquid (47 mg, isolated yield: 72%) ¹H NMR (400 MHz, CDCl₃) δ 5.10 (s, 1H), 6.85 (t, *J* = 7.9, 7.9 Hz, 1H), 6.93 (ddd, *J* = 1.0, 2.3, 8.2 Hz, 1H), 7.06 – 7.15 (m, 4H), 7.22 (dd, *J* = 7.1, 8.3 Hz, 3H), 7.31 (dd, *J* = 1.6, 2.3 Hz, 1H). ¹³C NMR

(101 MHz, CDCl₃) δ 144.04, 141.77, 129.85, 129.59, 122.36, 119.73, 119.03, 116.91, 113.19. **HRMS (ESI)** calcd. for C₁₂H₁₁INS ([M+H]+) is 327.9656 and found 327.9651.

N-(3,5-dichlorophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3k): eluted in (2% ethyl acetate/petroleum ether, v/v); brown liquid (35 mg, isolated yield: 66 %) ¹H NMR (400 MHz, CDCl₃) δ 5.28 (s, 1H), 6.85 (t, *J* = 1.8, 1.8 Hz, 1H), 6.93 (d, *J* = 1.8 Hz, 2H), 7.14 – 7.20 (m, 3H), 7.28 – 7.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.01, 139.98, 135.68, 129.17, 126.17, 122.80, 120.65, 113.22. HRMS (ESI) calcd. for C₁₂H₁₀Cl₂NS ([M+H] +) is 269.9911 and found 269.9909.

N-(3,5-dibromophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3l): eluted in (2% ethyl acetate/petroleum ether, v/v); yellow liquid (49 mg, isolated yield: 68 %) ¹H NMR (400 MHz, CDCl₃) δ 5.26 (s, 1H), 6.24 (tt, *J* = 2.3, 2.3, 9.0, 9.0 Hz, 1H), 6.49 (dd, *J* = 2.1, 9.3 Hz, 2H), 7.05 – 7.15 (m, 3H), 7.20 – 7.30 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.45, 142.42, 132.21, 129.49, 121.68, 119.04, 118.31, 112.63. HRMS (ESI) calcd. for C₁₂H₁₀Br₂NS ([M+H]+) is 357.8900 and found 357.8902.

N-(3-nitrophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3m): eluted in (2% ethyl acetate/petroleum ether, v/v); yellow solid (35 mg, isolated yield: 71%) Mp. 102-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.51 (s, 1H), 7.14 – 7.24 (m, 3H), 7.28 – 7.37 (m, 4H), 7.71 (dt, *J* = 2.2, 2.2, 7.1 Hz, 1H), 7.88 (td, *J* = 0.7, 1.9, 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

148.60, 138.64, 138.57, 131.69, 131.07, 129.37, 129.25, 126.21, 118.85, 115.05, 112.77. **HRMS (ESI)** calcd. for C₁₂H₁₁N₂O₂S ([M+H]+) is 247.0536 and found 247.0533.

S-phenyl-*N*-(m-tolyl)thiohydroxylamine (Table 2, Entry 3n): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (28 mg, isolated yield: 66%) ¹H NMR (400 MHz, CDCl₃) δ 2.23 (s, 3H), 5.57 (s, 1H), 6.67 (d, J = 7.5 Hz, 1H), 6.80 – 6.86 (m, 3H), 6.98 (ddd, J = 1.0, 2.1, 8.6 Hz, 2H), 7.06 (d, J = 8.6 Hz, 1H), 7.16 – 7.22 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.25, 139.26, 129.36, 129.22, 121.91, 120.89, 118.51, 117.84, 114.94, 21.59. HRMS (ESI) calcd. for C₁₃H₁₄NS ([M+H]+) is 216.0846 and found 216.0838.

N-(4-ethylphenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 30): eluted in (petroleum ether); orange liquid (28 mg, isolated yield: 62%) ¹H NMR (400 MHz, CDCl₃) δ 1.22 (t, J = 7.6, 7.6 Hz, 3H), 2.59 (q, J = 7.6, 7.6, 7.6 Hz, 2H), 5.57 (s, 1H), 6.86 (tt, J = 1.1, 1.1, 7.3, 7.3 Hz, 1H), 6.98 – 7.01 (m, 4H), 7.07 – 7.11 (m, 2H), 7.19 – 7.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.97, 140.60, 137.47, 129.38, 128.74, 120.39, 118.88, 117.03, 28.24, 15.87. HRMS (ESI) calcd. for C₁₄H₁₆NS ([M+H]+) is 230.1003 and found 230.1009.

N-(4-(tert-butyl)phenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3p): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (32 mg, isolated yield: 63%) ¹H NMR (400 MHz, CDCl₃) δ 1.49 (s, 9H), 7.94 (dd, *J* = 2.2, 9.2 Hz, 3H), 8.15 (d, *J* = 2.6 Hz, 5H), 8.18 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.32, 143.30, 142.30, 130.11, 128.73, 123.96, 35.47, 30.79. HRMS (ESI) calcd. for C₁₆H₂₀NS ([M+H]+) is 258.1316 and found 258.1318.

N-(4-methoxyphenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3q): eluted in (5% ethyl acetate/petroleum ether, v/v); brown liquid (28 mg, isolated yield: 60%) ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H), 5.42 (s, 1H), 6.79 (d, *J* = 8.9 Hz, 3H), 6.83 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 7.14 (t, *J* = 7.7, 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.28, 145.18, 135.72, 129.33, 122.23, 119.57, 115.63, 114.67, 55.60. HRMS (ESI) calcd. for C₁₃H₁₄NOS ([M+H]+) is 232.0796 and found 232.0790.

N-methyl-*N*,*S*-diphenylthiohydroxylamine (Table 2, Entry 3r) : eluted in (petroleum ether); light yellow liquid (25 mg, isolated yield: 59%) ¹H NMR (400 MHz, CDCl₃) δ 2.82 (s, 3H), 6.65 – 6.72 (m, 2H), 7.01 – 7.06 (m, 2H), 7.07 – 7.13 (m, 1H), 7.20 (dd, *J* = 7.0, 8.3 Hz, 3H), 7.35 (ddd, *J* = 1.7, 7.4, 8.1 Hz, 1H), 7.47 (dd, *J* = 1.6, 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.50, 133.95, 132.77, 119.79, 116.58, 111.90, 109.99, 29.83. HRMS (ESI) calcd. for C₁₃H₁₄NS ([M+H]+) is 216.0846 and found 216.0838.

N-(**naphthalen-1-yl**)-*S*-**phenylthiohydroxylamine** (**Table 2, Entry 3s**): eluted in (2% ethyl acetate/petroleum ether, v/v); red solid (33 mg, isolated yield: 65%) ¹**H NMR** (400 MHz, CDCl₃) δ 4.15 (s, 1H), 6.88 – 6.94 (m, 1H), 7.08 – 7.12 (m, 2H), 7.16 (dd, *J* = 2.4, 8.8 Hz, 1H), 7.23 (dddd, *J* = 1.5, 4.9, 6.9, 8.1 Hz, 3H), 7.33 (ddd, *J* = 1.3, 6.8, 8.2 Hz, 1H), 7.37 (d, *J* = 2.3 Hz, 1H), 7.57 (d, *J* = 8.2 Hz, 1H), 7.67 (d, *J* = 8.9 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.76, 137.11, 135.03, 133.63, 128.99, 128.63, 126.97, 126.35, 125.39, 125.33, 123.18, 121.53, 118.60, 108.11. **HRMS** (**ESI**) calcd. for C₁₆H₁₄NS ([M+H]+) is 252.0847 and found 252.0856.

N, *N*'-(naphthalene-1,5-diyl) bis(*S*-phenylthiohydroxylamine) (Table 2, Entry 3t): eluted in (10% ethyl acetate/petroleum ether, v/v); black liquid (41 mg, isolated yield: 55%) ¹H NMR (400 MHz, CDCl₃) δ 6.65 – 6.73 (m, 2H), 6.93 – 7.02 (m, 3H), 7.07 (ddd, *J* = 1.4, 6.5, 7.4 Hz, 2H), 7.13 – 7.21 (m, 4H), 7.22 – 7.29 (m, 3H), 7.53 (dd, *J* = 5.9, 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.32, 149.90, 137.66, 137.53, 129.90, 120.07, 119.87, 117.47, 111.86, 109.62. HRMS (ESI) calcd. for C₂₂H₁₉N₂S₂ ([M+H]+) is 375.0989 and found 375.0981.

2-((phenylthio)amino) benzamide (Table 2, Entry 3u): eluted in (15% ethyl acetate/petroleum ether, v/v); brown solid (27 mg, isolated yield: 55%) Mp. 110-111 °C; ¹H **NMR** (401 MHz, CDCl₃) δ 5.86 (s, 1H), 6.61 – 6.70 (m, 2H), 7.08 – 7.14 (m, 1H), 7.19 – 7.25 (td, J = 2.0, 7.0, 7.7 Hz, 2H), 7.27 – 7.33 (dd, J = 6.7, 8.4 Hz, 1H), 7.34 – 7.37 (m, 1H), 7.47 – 7.52 (dd, J = 1.8, 7.5 Hz, 1H), 7.54 – 7.60 (m, 1H). ¹³C **NMR** (101 MHz, CDCl₃) δ 197.86, 152.65, 140.07, 139.00, 138.47, 131.95, 129.21, 128.60, 119.13, 118.70, 112.10, 106.80. **HRMS (ESI)** calcd. for C₁₃H₁₃N₂OS ([M+H]+) is 245.0748 and found 245.0743.

S-phenyl-*N*-(pyridin-2-yl)thiohydroxylamine (Table 2, Entry 3v): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (19 mg, isolated yield: 47%) ¹H NMR (400 MHz, CDCl₃) δ 4.40 (s, 1H), 6.72 – 6.75 (d, *J* = 8.3 Hz, 1H), 7.15 – 7.25 (m, 5H), 7.28 – 7.32 (m, 1H), 7.42 – 7.47 (dd, *J* = 2.0, 8.3 Hz, 1H), 7.85 – 7.89 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.13, 137.91, 135.47, 116.28, 114.63, 111.22, 108.77. HRMS (ESI) calcd. for C₁₁H₁₁N₂S ([M+H]+) is 203.0642 and found 203.0635.

N-(**benzo**[**d**]**thiazol-2-yl**)-*S*-**phenylthiohydroxylamine** (**Table 2, Entry 3w**): eluted in (petroleum ether,); light yellow liquid (26 mg, isolated yield: 51%) ¹**H NMR** (401 MHz, CDCl₃) δ 7.29 – 7.61 (m, 8H), 7.69 – 7.74 (m, 1H).¹³**C NMR** (101 MHz, CDCl₃) δ 167.74, 136.61, 133.64, 132.32, 131.43, 130.93, 129.45, 128.85, 128.81, 127.86, 127.58. **HRMS (ESI)** calcd. for C₁₃H₁₁N₂S₂ ([M+H]+) is 259.0358 and found 259.0363.

N-(4-chlorophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3x): eluted in (petroleum ether); dark brown liquid (33 mg, isolated yield: 71%) ¹H NMR (401 MHz, CDCl₃) δ 5.16 (s, 1H), 6.86 – 6.91 (td, *J* = 1.1, 7.2 Hz, 1H), 6.98 – 7.02 (d, *J* = 8.1 Hz, 2H), 7.11 – 7.14 (d, *J* = 8.5 Hz, 2H), 7.22 – 7.25 (d, *J* = 8.6 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 146.26, 140.07, 131.26, 129.39, 129.05, 123.83, 120.84, 114.68. HRMS (ESI) calcd. for C₁₂H₁₁ClNS ([M+H]+) is 236.0300 and found 236.0302.

N-(**4**-bromophenyl)-*S*-phenylthiohydroxylamine (Table 2, Entry 3y): eluted in (petroleum ether); brown liquid (40 mg, isolated yield: 73%) ¹H NMR (401 MHz, CDCl₃) δ 5.15 (s, 1H), 6.86 – 6.92 (t, *J* = 7.3 Hz, 1H), 6.98 – 7.02 (m, 2H), 7.05 – 7.09 (m, 2H), 7.20 – 7.25 (m, 2H), 7.36 – 7.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.20, 140.79, 131.92, 129.40, 124.05, 120.87, 118.98, 114.67. HRMS (ESI) calcd. for C₁₂H₁₁BrNS ([M+H]+) is 279.9795 and found 279.9750.

N, *Se*-diphenylselenohydroxylamine (Table 3, Entry 5a): eluted in (1% ethyl acetate/petroleum ether, v/v); yellow liquid (39 mg, isolated yield: 78 %) ¹H NMR (400 MHz, CDCl₃) δ 4.21 (s, 1H), 6.63 (td, *J* = 1.3, 7.5, 7.5 Hz, 1H), 6.72 (dd, *J* = 1.3, 8.0 Hz, 1H), 7.06 – 7.19 (m, 7H), 7.50 (dd, *J* = 1.6, 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.60, 138.64, 138.57, 131.69, 131.07, 129.37, 126.21, 118.85, 115.05, 112.77. HRMS (ESI) calcd. for C₁₂H₁₂NSe ([M+H]+) is 250.0134 and found 250.0136.

N-(4-chlorophenyl)-*Se*-phenylselenohydroxylamine (Table 2, Entry 5b): eluted in (2% ethyl acetate/petroleum ether, v/v); yellow liquid (42 mg, isolated yield: 75%) ¹H NMR (400 MHz, CDCl₃) δ 5.61 (s, 1H), 6.85 – 6.89 (m, 1H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.97 (dd, *J* = 1.2, 8.5 Hz, 2H), 7.13 (d, *J* = 8.8 Hz, 2H), 7.17 – 7.23 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.67, 141.89, 129.46, 129.28, 125.48, 121.51, 118.81, 118.11. HRMS (ESI) calcd. for C₁₂H₁₁ClNSe ([M+H]+) is 283.9745 and found 283.9743.

N-(4-bromophenyl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 5c): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (50 mg, isolated yield: 77 %) ¹H NMR (400 MHz, CDCl₃) δ 4.29 (s, 1H), 6.67 (d, *J* = 8.6 Hz, 1H), 7.18 – 7.30 (m, 7H), 7.69 (d, *J* = 2.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.54, 139.97, 133.64, 130.85, 129.76, 129.43, 126.68, 116.34, 114.47, 109.38. HRMS (ESI) calcd. for C₁₂H₁₁BrNSe ([M+H]+) is 327.9154 and found 327.9159.

N-(**4**-iodophenyl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 5d): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (55 mg, isolated yield: 73 %) ¹H NMR (400 MHz, CDCl₃) δ 5.58 (s, 1H), 6.70 – 6.75 (m, 2H), 6.85 – 6.91 (m, 1H), 6.95 – 6.99 (m, 2H), 7.15 – 7.22 (m, 2H), 7.40 – 7.44 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.07, 141.12, 137.01, 128.40, 120.75, 118.22, 117.48, 81.05. HRMS (ESI) calcd. for C₁₂H₁₁INSe ([M+H]+) is 375.9101 and found 375.9103.

1-(4-((phenylselanyl)amino)phenyl)ethan-1-one (Table 3, Entry 5e): eluted in (12% ethyl acetate/petroleum ether, v/v); brown liquid (34 mg, isolated yield: 58 %) ¹**H NMR** (400 MHz, CDCl₃) δ 2.41 (s, 3H), 4.78 (s, 1H), 6.68 (d, *J* = 8.5 Hz, 1H), 7.07 – 7.19 (m, 6H), 7.78 (dd, *J* = 2.1, 8.5 Hz, 1H), 8.16 (d, *J* = 2.2 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 194.87, 151.77, 139.31, 139.25, 139.18, 130.85, 129.77, 128.36, 127.06, 125.53, 112.78, 110.48, 25.04. **HRMS** (**ESI**) calcd. for C₁₄H₁₄NOSe ([M+H]+) is 292.0240 and found 292.0246.

methyl 4-((phenylselanyl)amino)benzoate (Table 3, Entry 5f): eluted in (8% ethyl acetate/petroleum ether, v/v); dark yellow solid (43 mg, isolated yield: 71%) Mp. 115-116 °C; 1H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 4.77 (s, 1H), 6.74 (d, J = 8.4 Hz, 1H), 7.13 – 7.25 (m, 6H), 7.89 (dd, J = 2.1, 8.5 Hz, 1H), 8.31 (d, J = 2.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.54, 152.56, 140.95, 140.88, 140.81, 132.89, 130.92, 129.40, 126.48, 119.92, 113.72, 111.57, 51.74. HRMS (ESI) calcd. for C₁₄H₁₄NO₂Se ([M+H]+) is 308.0189 and found 308.0187.

ethyl 4-((phenylselanyl)amino)benzoate (Table 3, Entry 5g): eluted in (8% ethyl acetate/petroleum ether, v/v); brown solid (47 mg, isolated yield: 74%) Mp. 122-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, *J* = 7.1, 7.1 Hz, 3H), 4.23 (q, *J* = 7.1, 7.1, 7.1 Hz, 2H), 4.68 (s, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 7.01 – 7.21 (m, 6H), 7.81 (dd, *J* = 2.1, 8.5 Hz, 1H), 8.23 (d, *J* = 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.14, 152.55, 140.85, 132.93, 130.99, 129.38, 129.29, 126.50, 120.33, 113.76, 111.51, 60.58, 14.48. HRMS (ESI) calcd. for C₁₅H₁₆NO₂Se ([M+H]+) is 322.0346 and found 322.0345.

N-(3-chlorophenyl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 5h): eluted in (1% ethyl acetate/petroleum ether, v/v); yellow liquid (39 mg, isolated yield: 69%) ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 1H), 6.45 (dd, *J* = 2.5, 8.4 Hz, 1H), 6.77 (d, *J* = 2.5 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.21 – 7.29 (m, 4H), 7.36 – 7.41 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.53, 139.52, 136.77, 131.21, 129.39, 129.35, 126.46, 118.84, 114.56, 110.94. HRMS (ESI) calcd. for C₁₂H₁₁ClNSe ([M+H]+) is 283.9745 and found 283.9743.

N-(**3**-bromophenyl)-*S*e-phenylselenohydroxylamine (Table 3, Entry 5i): eluted in (2% ethyl acetate/petroleum ether, v/v); yellow liquid (44 mg, isolated yield: 67%) ¹H NMR (400 MHz, CDCl₃) δ 4.27 (s, 1H), 6.74 (dd, J = 2.1, 8.1 Hz, 1H), 6.86 (d, J = 2.1 Hz, 1H), 7.05 – 7.17 (m, 6H), 7.34 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.64, 138.61, 130.02, 128.45, 128.39, 128.32, 125.44, 123.93, 120.67, 116.41, 110.50. HRMS (ESI) calcd. for C₁₂H₁₁BrNSe ([M+H]+) is 327.9154 and found 327.9159.

N-(3-iodophenyl)-*S*e-phenylselenohydroxylamine (Table 3, Entry 5j): eluted in (2% ethyl acetate/petroleum ether, v/v); orange liquid (47 mg, isolated yield: 63%) ¹H NMR (400 MHz, CDCl₃) δ 4.21 (s, 1H), 6.92 (dd, *J* = 1.8, 8.1 Hz, 1H), 7.06 (d, *J* = 1.9 Hz, 1H), 7.08 – 7.20 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 148.57, 138.57, 129.93, 128.48, 128.32, 126.66, 125.46, 122.35, 111.46, 95.91. HRMS (ESI) calcd. for C₁₂H₁₁INSe ([M+H]+) is 375.9101 and found 375.9103.

N-(3,5-dichlorophenyl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 5k): eluted in (2% ethyl acetate/petroleum ether, v/v); brown liquid (41 mg, isolated yield: 65%) ¹H NMR (401 MHz, CDCl₃) δ 4.59 (s, 1H), 6.61 (d, *J* = 2.1 Hz, 1H), 6.83 (d, *J* = 2.1 Hz, 1H), 7.10 – 7.18 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.85, 137.86, 128.37, 119.58, 119.50, 115.76, 115.01, 114.78. HRMS (ESI) calcd. for C₁₂H₁₀Cl₂NSe ([M+H]+) is 317.9355 and found 317.9333.

N-(3,5-dibromophenyl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 5l): eluted in (2% ethyl acetate/petroleum ether, v/v); brown liquid (49 mg, isolated yield: 60%) ¹H NMR (400 MHz, CDCl₃) δ 4.57 (s, 1H), 6.78 (d, J = 2.0 Hz, 1H), 7.09 – 7.19 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 151.39, 138.48, 137.24, 116.95, 115.95, 111.12, 110.48, 97.51. HRMS (ESI) calcd. for C₁₂H₁₀Br₂NSe ([M+H]+) is 405.8345 and found 405.8324.

Se-phenyl-*N*-(m-tolyl)selenohydroxylamine (Table 3, Entry 5m): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (35 mg, isolated yield: 66%) ¹H NMR (400 MHz, CDCl₃) δ 2.10 (s, 3H), 5.67 (s, 1H), 6.80 (ddd, *J* = 2.2, 8.1, 14.3 Hz, 2H), 6.92 (t, *J* = 7.4, 7.4 Hz, 1H), 6.96 (t, *J* = 2.2, 2.2 Hz, 1H), 7.00 – 7.04 (m, 2H), 7.08 (t, *J* = 8.0, 8.0 Hz, 1H), 7.20 –

7.25 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 135.40, 135.12, 134.25, 131.73, 129.59, 128.76, 127.02, 120.33, 20.92. **HRMS (ESI)** calcd. for C₁₃H₁₄NSe ([M+H]+) is 264.0291 and found 264.0284.

N-(4-ethylphenyl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 5n): eluted in (2% ethyl acetate/petroleum ether, v/v); brown liquid (33 mg, isolated yield: 60%) ¹H NMR (400 MHz, CDCl₃) δ 1.12 (t, *J* = 7.6, 7.6 Hz, 3H), 2.47 (q, *J* = 7.6, 7.6, 7.6 Hz, 2H), 4.08 (s, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 6.99 (dd, *J* = 2.1, 8.1 Hz, 1H), 7.05 – 7.19 (m, 6H), 7.35 (d, *J* = 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.35, 136.50, 133.79, 130.82, 129.59, 128.18, 125.04, 114.11, 111.62, 26.65, 14.76. HRMS (ESI) calcd. for C₁₄H₁₆NSe ([M+H]+) is 278.0447 and found 278.0425.

N-(4-(difluoromethoxy)phenyl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 50): eluted in (5% ethyl acetate/petroleum ether, v/v); brown liquid (39 mg, isolated yield: 62%) ¹H NMR (400 MHz, CDCl₃) δ 4.23 (s, 1H), 6.38 (t, *J* = 74.4, 74.4 Hz, 1H), 6.75 (d, *J* = 8.7 Hz, 1H), 7.02 (dd, *J* = 2.8, 8.7 Hz, 1H), 7.17 – 7.29 (m, 6H), 7.37 (d, *J* = 2.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.39, 138.48, 137.24, 116.95, 115.95, 111.12, 110.48, 97.51. HRMS (ESI) calcd. for C₁₃H₁₂F₂NOSe ([M+H]+) is 316.0052 and found 316.0048.

N-methyl-*N*,*Se*-diphenylselenohydroxylamine (Table 3, Entry 5p): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (31 mg, isolated yield: 59%) ¹H NMR (401 MHz, CDCl₃) δ 2.74 (s, 3H), 6.45 – 6.49 (m, 2H), 7.02 – 7.12 (m, 4H), 7.17 – 7.21 (m, 2H), 7.34 – 7.38 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.51, 136.27, 133.52, 128.73, 127.95, 124.79, 113.43, 112.23, 29.43. HRMS (ESI) calcd. for C₁₃H₁₄NSe ([M+H]+) is 264.0291 and found 264.0284.

2-((phenylselanyl)amino) benzamide (Table 3, Entry 5q): eluted in (25% ethyl acetate/petroleum ether, v/v); white solid (34 mg, isolated yield: 58%) Mp. 113-114 °C; ¹H **NMR** (401 MHz, DMSO-*d*₆) δ 6.74 (d, *J* = 8.5 Hz, 1H), 6.93 (s, 1H), 7.09 – 7.29 (m, 5H), 7.36 (dd, *J* = 2.0, 8.5 Hz, 1H), 7.92 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 170.95, 151.41, 140.40, 137.68, 137.62, 134.61, 129.74, 129.48, 126.43, 118.36, 114.96, 110.65. **HRMS (ESI)** calcd. for C₁₃H₁₃N₂OSe ([M+H]+) is 293.0193 and found 293.0186.

N-(naphthalen-1-yl)-*Se*-phenylselenohydroxylamine (Table 3, Entry 5r): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (33 mg, isolated yield: 55%) ¹H NMR (401 MHz, CDCl₃) δ 4.91 (s, 1H), 7.05 – 7.17 (m, 7H), 7.37 – 7.46 (m, 2H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.71 – 7.78 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.20, 134.05, 133.84, 130.92, 128.21, 128.13, 127.56, 125.77, 125.07, 124.35, 121.94, 120.64, 117.63, 105.96. HRMS (ESI) calcd. for C₁₆H₁₄NSe ([M+H]+) is 300.0291 and found 300.0264.

Se-phenyl-*N*-(quinolin-8-yl) selenohydroxylamine (Table 3, Entry 5s): eluted in (2% ethyl acetate/petroleum ether, v/v); yellow liquid (32 mg, isolated yield: 54%) ¹H NMR (400 MHz, CDCl₃) δ 5.01 (s, 1H), 7.09 (tt, *J* = 1.2, 1.2, 8.2, 8.2 Hz, 3H), 7.17 – 7.23 (m, 2H), 7.28 (s, 1H), 7.47 – 7.56 (m, 3H), 7.78 – 7.86 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 134.79, 134.19, 132.47, 131.93, 128.82, 128.79, 127.70, 127.28, 126.39, 126.21, 126.06, 125.75, 121.57, 120.97. HRMS (ESI) calcd. for C₁₅H₁₃N₂Se ([M+H]+) is 301.0244 and found 301.0238.

N,N'-(naphthalene-1,5-diyl)bis(*Se*-phenylselenohydroxylamine) (Table 3, Entry 5t): eluted in (10% ethyl acetate/petroleum ether, v/v); dark red liquid (56 mg, isolated yield: 60 %) ¹H NMR (400 MHz, CDCl₃) δ 4.94 (s, 1H), 6.82 (dd, *J* = 2.6, 5.8 Hz, 1H), 7.13 – 7.30 (m, 13H), 7.61 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.30, 141.10, 134.26, 129.73, 123.25, 123.21, 120.28, 117.29, 112.24, 111.59. HRMS (ESI) calcd. for C₂₂H₁₉N₂Se₂ ([M+H]+) is 470.9878 and found 470.9875.

N-(**benzo[d]thiazol-2-yl**)-*Se*-phenylselenohydroxylamine (Table 3, entry 5v): eluted in (1% ethyl acetate/petroleum ether, v/v); brown liquid (29 mg, isolated yield: 47%) ¹H NMR (401 MHz, DMSO-*d*₆) δ 7.19 – 7.26 (dd, *J* = 3.1, 6.0 Hz, 2H), 7.48 – 7.53 (m, 1H), 7.54 – 7.60 (dd, *J* = 6.5, 8.3 Hz, 2H), 7.60 – 7.65 (dt, *J* = 3.5, 7.0 Hz, 2H), 8.17 – 8.23 (dd, *J* = 1.8, 7.4 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 151.84, 144.29, 140.02, 135.41, 129.98, 127.93, 126.85, 122.79, 122.02, 119.17, 111.65. HRMS (ESI) calcd. for C₁₃H₁₁N₂SSe ([M+H]+) is 306.9808 and found 306.9810.

(Table 2, Entry 3r)

(Table 2, Entry 3s)

(Table 2, Entry 3y)

