Supporting Information

Solvent-controlled Catalytic Divergent C–H Alkylation of Quinolones Driven by Unusual DMSO-promoted 1,3-Heteroarene Migration

Ye Lim Kim,^b Yuri Yun,^b Seoung-Mi Choi,^a and Ju Hyun Kim*^a

^aDepartment of Chemistry, Dongguk University, 04620, Seoul, Korea, E-mail: juhyunkim@dgu.edu

^bDepartment of Chemistry (BK21 Plus), Research Institute of Natural Science, Gyeongsang National University, 52828, Jinju, Korea

Table of Contents

1.	General Information	S3
2.	Synthesis of Starting Materials	S4
3.	Reaction Optimization	S11
4.	General Procedure	S13
	4.1 Procedure for the synthesis of 3 via C–H bond activation	
	4.2 Procedure for the synthesis of 4 via directing group migration	
	4.3 Procedure for scale-up reaction of C-H bond activation	
	4.4 Procedure for scale-up reaction of directing group migration	
5.	Mechanistic Study	S20
	5.1 Deuterium-labeling expriment	
	5.2 Heteroarene migration test using C2-alkylated product 3a	
	5.3 Radical trapping experiments	
	5.4 Attempted Cp*Rh(III) catalysis using N-pyrimidyl indole 6	
	5.5 Rearrangement test using alkylated indole compound 7	
	5.6 Cross-over experiments	
	5.7 Directing ability test using compound 10	

5.8 NMR experiments

6.	Characterization Data of All Compounds	S30
7.	Single crystal X-ray diffraction data	S52
8.	Computational Details	S55
9.	References	S78
10.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S80
11.	Copies of HRMS Spectra	S136

1. General Information

Unless otherwise noted, all reactions were carried out under an argon atmosphere in ovendried Schlenk tubes. All reactions requiring heating were conducted in a pre-heated heating mantle, and reaction temperatures are reported as the temperature of the heat transfer medium surrounding the vessel. Dry solvents (<50 ppm H₂O) were purchased from Acros Organics, Sigma-Aldrich, or TCI and stored over molecular sieves under argon atmosphere.

Commercially available chemicals were purchased from Acros Organics, Aldrich Chemical Co., Alfa Aesar, and TCI. Flash chromatography was performed using Merck silica gel (40– 63 mesh).

The ¹H and ¹³C NMR spectra were recorded on Bruker DRX-300 and Bruker DRX-500, and the chemical shifts (δ) in ¹H and ¹³C NMR spectra are given in ppm relative to TMS. (CDCl₃: δ ¹H = 7.26 ppm, δ ¹³C = 77.16 ppm, DSMO-d₆: δ ¹H = 2.50 ppm, δ ¹³C = 39.51 ppm).

The high-resolution mass spectra were measured by electron ionization from JEOL (JMS-700).

2. Synthesis of Starting materials

2.1 General procedure for the preparation of Substitued 1-(2-Pyrimidinyl)-4(1*H*)quinolinone (1)

Substituted 2-hydroxypyridine (5 mmol), copper(I) iodide (10 mol %), and potassium carbonate (5 mmol) were taken in DMSO (10 mL), and 2-chloropyridine (10 mmol) was added to the resulting mixture. The mixture was stirred at 130 °C for 12 h under nitrogen atmosphere. The resulting mixture was allowed to cool to room temperature and then quenched with water. Extraction with ethyl acetate, concentrated under reduced pressure, and silica gel column purification with acetone : dichoromethane (DCM) afforded 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone derivatives in 34–81% yields.

The following 1-(2-Pyrimidinyl)-4(1H)-quinolinone are known compounds and displayed spectroscopic properties in accord with published data.

1-(2-Pyrimidinyl)-4(1*H*)-quinolinone (**1a**) (CAS : 1687724-48-6)

6-Methyl-1-(2-pyrimidinyl)-4(1*H*)-quinolinone (**1b**) (CAS : 1687724-49-7)

6-Methoxy-1-(2-pyrimidinyl)-4(1*H*)-quinolinone (1c) (CAS : 1802551-21-8)

6-Chloro-1-(2-pyrimidinyl)-4(1*H*)-quinolinone (1d) (CAS :1687724-51-1)

6-Nitro-1-(2-pyrimidinyl)-4(1*H*)-quinolinone (1f) (CAS : 1687724-54-4)

7-Methoxy-1-(2-pyrimidinyl)-4(1*H*)-quinolinone (**1g**) (CAS : 1687724-59-9)

7-Chloro-1-(2-pyrimidinyl)-4(1*H*)-quinolinone (1h) (CAS : 1687724-56-6)

7-Bromo-1-(2-pyrimidinyl)-4(1*H*)-quinolinone (1i) (CAS : 1687724-57-7)

1-(2-Pyrimidinyl)-4(1*H*)-pyridinone (11) (CAS : 29049-26-1)

1-(2-Pyrimidinyl)-2(1*H*)-pyridinone (**1m**) (CAS : 1862952-04-2)

2-(2-Pyrimidinyl)-1(2*H*)-isoquinolinone (1n) (CAS : 1687724-73-7)

1-(2-Pyridinyl)-4(1*H*)-quinolinone (1s) (CAS : 4547-00-6)

Characterization data of compounds 1

1-(pyrimidin-2-yl)-6-(trifluoromethyl)quinolin-4(1*H*)-one (1e):

(t, J = 4.8 Hz, 1H), 6.43 (d, J = 8.3 Hz, 1H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.9, 159.3, 159.1, 141.8, 140.7, 128.0 (q, J = 3.4 Hz), 126.8 (q, J = 33.5 Hz), 126.3, 124.6 (q, J = 4.1 Hz), 123.9 (q, J = 270.8 Hz), 120.1, 119.5, 112.4, 77.6, 77.2, 76.7; ¹⁹F NMR (471 MHz, Chloroform-d) δ -62.3; HRMS (EI-MS) *m*/*z* calcd for C₁₄H₈F₃N₃O [M]⁺ 291.0619, found 291.0617.

8-fluoro-1-(pyrimidin-2-yl)quinolin-4(1*H*)-one (1j):

Slightly yellow solid (0.70 g, yield: 48%); mp 111–113 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.43$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.99 (d, J = 4.9 Hz, 1H), 8.63 (d, J = 4.8 Hz, 2H), 7.92 – 7.85 (m, 1H), 7.54 – 7.41 (m, 2H), 7.38 (d, J = 5.0 Hz, 1H), 7.18 (t, J = 4.8 Hz, 1H);

¹³C NMR (126 MHz, Chloroform-*d*) δ 164.4, 160.1, 159.1, 158.4 (q, J = 261.8 Hz), 157.1, 156.6, 151.2, 140.5 (q, J = 12.6 Hz), 126.7 (q, J = 8.1 Hz), 124.6, 124.5, 117.7 (q, J = 4.9 Hz), 117.6, 114.3 (q, J = 18.8 Hz), 112.9, 77.4, 77.2, 76.9; ¹⁹F NMR (471 MHz, Chloroform-d) δ -124.2; HRMS (EI-MS) *m/z* calcd for C₁₃H₈FN₃O [M]⁺ 241.0651, found 241.0649.

6,7-dimethoxy-1-(pyrimidin-2-yl)quinolin-4(1*H*)-one (1k):

152.8, 147.5, 140.1, 134.3, 121.1, 119.5, 111.1, 105.8, 100.4, 56.2, 56.1; **HRMS** (EI-MS) *m/z* calcd for C₁₅H₁₃N₃O₃ [M]⁺ 283.0957, found 283.0954.

1-(4-methylpyrimidin-2-yl)quinolin-4(1*H*)-one (1t):

Slightly yellow solid (0.40 g, yield: 35%); mp 156–158 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.20$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.71 (d, J = 5.1 Hz, 1H), 8.45 (dd, J = 8.1, 1.7 Hz, 1H), 8.38 (d, J = 8.2 Hz, 1H), 8.07 (dd, J = 8.7, 0.9 Hz, 1H), 7.59 (ddd, J = 8.1)

8.8, 7.0, 1.7 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.23 (d, J = 5.1 Hz, 1H), 6.42 (d, J = 8.2 Hz, 1H),
2.65 (s, 3H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.9, 170.4, 159.3, 158.5, 141.4, 139.1,
131.9, 126.7, 126.7, 124.8, 119.4, 118.2, 111.5, 24.4; HRMS (EI-MS) *m/z* calcd for C₁₄H₁₁N₃O [M]⁺ 237.0902, found 237.0899.

1-(5-methylpyrimidin-2-yl)quinolin-4(1*H*)-one (1u):

7-methoxy-1-(5-methylpyrimidin-2-yl)quinolin-4(1H)-one (1v):

NMR (75 MHz, Chloroform-*d*) δ 178.3, 162.5, 159.0, 157.6, 141.1, 140.6, 129.6, 128.4, 120.9, 113.0, 111.2, 101.1, 55.5, 15.3; HRMS (EI-MS) *m/z* calcd for C₁₄H₁₁N₃O [M]⁺ 267.1008, found 267.1008.

1-(5-bromopyrimidin-2-yl)quinolin-4(1*H*)-one (1w):

1-(pyrazin-2-yl)quinolin-4(1*H*)-one (1x):

White solid (0.38 g, yield: 34%); mp 175–177 °C; purification by silica gel chromatography (Acetone:DCM= 1:3, $\mathbf{R}_f = 0.25$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.85 (d, J = 1.4 Hz, 1H), 8.74 (d, J = 2.5 Hz, 1H), 8.69 (dd, J = 2.5, 1.4 Hz, 1H), 8.45 (dd, J = 8.0, 1.7 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.55 (ddd, J = 8.6, 7.0, 1.7 Hz, 1H), 7.41 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.24 (d, J = 8.6 Hz, 1H), 6.42 (d, J = 8.0 Hz, 1H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.4, 150.1, 144.6, 144.4, 142.9, 141.1, 139.8, 132.4, 127.2, 126.6, 124.9, 116.1, 111.8; HRMS (EI-MS) m/zcalcd for C₂₃H₁₉N₃O₂ [M]⁺ 223.0746, found 223.0748.

1-(benzo[d]thiazol-2-yl)quinolin-4(1*H*)-one (1y):

134.7, 132.9, 127.5, 126.9, 126.8, 126.4, 125.3, 124.1, 121.9, 117.1, 112.1; **HRMS** (EI-MS) *m/z* calcd for C₁₆H₁₀N₂OS [M]⁺ 278.0514, found 278.0510.

3. Reaction Optimization

Table S1. Optimization of reaction conditions^a

Entry	Additives	Solvent	Temp. (°C)	Yield (%) ^f			
		Solvent		3 a	3a'	4 a	5a
1	-	DCE	80	-	-	-	-
2	PivOH	DCE	80	34	19	-	-
3	PivOH	DCM	30	79	17	-	-
4	PivOH	DCM (0.05M)	30	78	18	-	-
5	PivOH	DCM (0.2M)	30	75	18	-	-
6	PivOH	DCM	r.t	70	19	-	-
7	1-AdCO ₂ H	DCM	30	71	20	-	-
8 ^b	PivOH /NaOMe	DCM	30 to 40	(78) ^g	(16) ^g	-	-

9 ^b	PivOH /KO'Bu	DCM	30 to 40	(78) ^g	(13) ^g	-	-
10 ^c	1-AdCO ₂ H	MeCN	60	46	6	29	-
11c	1-AdCO ₂ H	МеОН	60	trace	0	39	39
12 ^c	АсОН	МеОН	60	trace	0	20	6
13 ^c	1-AdCO ₂ H	EtOH	60	trace	0	50	14
14 ^d	PivOH	DMSO	60	0	0	29	0
15 ^d	PivOH	EtOH/DMSO = 3/1	60	trace	0	60	0
16 ^d	PivOH	EtOH/DMSO = 9/1	60	trace	0	74	0
17 ^{<i>d,e</i>}	PivOH (1 equiv.)	EtOH/DMSO = 9/1	60	trace	0	63	0
18 ^d	PivOH	EtOH/DMSO =9/1	70	0	0	77	0
19 ^d	PivOH	EtOH/DMSO =9/1 (0.05M)	70	0	0	70	0

^{*a*}Reaction conditions A: **1a** (0.1 mmol), **2a** (0.12 mmol), [Cp*RhCl₂]₂ (2.5 mol%), AgSbF₆ (10 mol%), and acid (25 mol%) in solvent (1.0 mL). ^{*b*}After proceeding to entry3 (check by TLC), add base (0.1 mmol). ^{*c*}Reaction conditions B: **1a** (0.1 mmol), **2a** (0.14 mmol), [Cp*RhCl₂]₂ (5.0 mol%), AgSbF₆ (20 mol%), and acid (50 mol%). ^{*d*}**2a** (0.16 mmol) was used for reaction conditions B. ^{*e*}Acid (0.1 mmol). ^{*f*}Isolated yield after column chromatography. ^{*g*}NMR yield: Determined using CH₂Br₂(2H, 4.93 ppm).

4. General Procedure

4.1 Procedure for the syntesis of 3 via Cp*Rh-catalyzed C-H bond alkylation

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. $AgSbF_6$ (6.9 mg, 0.02 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1** (0.2 mmol), diethyl 2-diazomalonate **2** (0.24 mmol), PivOH (5.1mg, 0.05 mmol) and DCM (2.0 mL) were added under Ar. The reaction mixture was stirred at 30 °C for 5–12 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with DCM. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by column chromatography on silica gel using Acetone:DCM mixture as the eluent.

4.2 Procedure for the syntesis of 4 via Cp*Rh-catalyzed C-H alkylation/[1,3]-

heteroareme migration cascade

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. $AgSbF_6$ (13.7 mg, 0.04 mmol), $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1** (0.2 mmol), diethyl 2-diazomalonate **2** (0.32 mmol), PivOH (10.2mg, 0.1 mmol), EtOH (1.8 mL) and DMSO (0.2 mL) were added under Ar. The reaction mixture was stirred at 70 °C for 24 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by column chromatography

on silica gel using Acetone:DCM mixture as the eluent.

4.3 Procedure of scale-up (4 mmol) reaction for the synthesis of 3a

A two-neck round bottom flask was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. AgSbF₆ (137.4 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (61.8 mg, 0.1 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1** (4.0 mmol), diethyl 2-diazomalonate **2** (4.8 mmol), PivOH (102.1 mg, 1.0 mmol) and DCM (40 mL) were added under Ar. The reaction mixture was stirred at 30 °C for 8 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with DCM. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by column chromatography on silica gel using Acetone:DCM = 1:5 as the eluent. The product **3a** was isolated in 72% yield (1.098 m)

g).

4.4 Procedure of scale-up (4 mmol) reaction for the synthesis of 4a

A two-neck round bottom flask was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. AgSbF₆ (274.9 mg, 0.8 mmol), $[Cp*RhCl_2]_2$ (123.6 mg, 0.2 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1** (4 mmol), diethyl 2-diazomalonate **2** (6.4 mmol), PivOH (204.3 mg, 2.0 mmol), EtOH (36 mL) and DMSO (4 mL) were added under Ar. The reaction mixture was stirred at 70 °C for 26 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by column chromatography on silica gel using Acetone:DCM = 1:5 as the eluent. The product **4a** was isolated in 71% yield (1.083 g).

4.5 Procedure for application toward the synthesis of distomadine analog

4.5.1 Procedure for the syntesis of 3y via dialkylation

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. $AgSbF_6$ (6.9 mg, 0.02 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1** (0.2 mmol), diethyl 2-diazomalonate **2** (0.24 mmol), PivOH (5.1mg, 0.05 mmol) and DCM (2.0 mL) were added under Ar. The reaction mixture was stirred at 30 °C for 16 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with DCM. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by column chromatography on silica gel using Acetone:DCM = 1:5 as the eluent.

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. AgSbF₆ (3.5 mg, 0.01 mmol), [Cp*RhCl₂]₂ (1.6 mg, 0.0025 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1c** (0.2 mmol), diethyl 2-diazomalonate **2a** (0.24 mmol), PivOH (2.6mg, 0.025 mmol) and DCM (1.0 mL) were added under Ar. The reaction mixture was stirred at 30 °C for 16 h. And then, The reaction solvents evaporated and DMSO (1.0 mL) added. The reaction mixture was stirred at 70 °C for 3.5 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by column chromatography on silica gel using Acetone:DCM = 1:5 as the eluent.

4.5.3 Procedure for the syntesis of 6 via acid-catalyzed lactonization

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, **4w** (28.5 mg, 0.05 mmol), p-TsOH·H₂O (1.0 mg, 0.0025 mmol), 4Å M.S. and toluene (0.38 mL) were added under Ar. The reaction mixture was stirred at 100 °C for 16 h. Afterward, The crude product was purified by flash column chromatography on silica gel, mixture of **6** in 40% yield as yellow oil. Purification by silica gel chromatography (Acetone:DCM = 1:5, **6** + **6'** R_{*f*} = 0.6); ¹H NMR (500 MHz, CDCl₃, major product **6**) δ 8.74 (d, *J* = 4.9 Hz, 2H), 8.05 (dd, *J* = 9.3, 0.8 Hz, 1H), 7.48 – 7.38 (m, 2H), 7.23 (t, *J* = 4.9 Hz, 1H), 5.18 (s, 1H), 4.48 – 4.35 (m, 5H), 4.27 – 4.16 (m, 2H), 3.97 (s, 4H), 1.32 (td, *J* = 7.1, 1.6 Hz, 7H), 1.22 (d, *J* = 7.1 Hz, 3H); **HRMS** (EI-MS) *m*/*z* calcd for C₂₆H₂₅N₃O₉ [M]⁺ 523.1591, found 523.1592; minor product **6'**: HRMS (FAB) *m*/*z* calcd for C₂₃H₂₂N₃O₇ [M + H]⁺ 452.1458, found 452.1582.

Figure S2. ¹³C NMR in Chloroform-d spectrum of products 6 + 6'

5. Mechanistic Study

5.1 Deuterium-labeling expriment

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. AgSbF₆ (6.9 mg, 0.02 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1a** (0.1 mmol), dimethyl 2-diazomalonate **2b** (0.16 mmol), PivOH (5.1mg, 0.05 mmol), CD₃OD (0.9 mL) and DMSO-d₆ (0.1 mL) were added under Ar. The reaction mwixture was stirred at 70 °C for 20 min. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by column chromatography on silica gel using Acetone:DCM = 1:5 as the eluent. Due to the shortened reaction time, the alkylation product was predominantly obtained, with the migration product yielding less than 10%. The D-incorporation of **30-D**_n were estimated by ¹H NMR analysis as shown in Figure S3.

Figure S3. ¹H NMR in Chloroform-*d* spectrum of the reaction of **1a** and **2b** in CD₃OD/DMSO-d₆ (300 MHz)

Figure S3. ¹H NMR in Chloroform-*d* spectrum of the recovered **1a** in CD₃OD/DMSO-d₆ (300 MHz)

5.2 Heteroarene migration test using C2-alkylated compound 3a

Table	S2.	Heteroarene	migration	test using	C2-alk	vlated	product 3a
1 ant	04.	11 ctci oai chc	mgrauon	test using	C ₂ -an	ylattu	product Sa

Entw		Solvent	Tomp (9C)	Time (h)	Yield (%)	
Entry	Auunives	Additives Solvent		Time (ii)	4a	
1	NaOtBu	DMSO	70	1	76	
1	(1 equiv.)	DMSO	70	4	70	
2	NaOMe	DMSO	70	4	40	
2	(1 equiv.)	DIMSO	70		47	
2	HCl	DMSO	70	1	65	
5	(1 equiv.)	DIVISO	70	+	05	
1	PivOH	DMSO	70	1	56	
4	(50 mol%)		DWSO	70	1	50
5	H ₂ O	DMSO	DMSO	70	5	68
J	(1 equiv.)		70	5	08	
6	-	DMSO	70	4	90	
7	-	DMSO	30	48	39	
0	-	EtOH/DMSO	70	4	(5	
8		(v/v = 9/1)	70	4	03	
9	-	EtOH	70	4	60	
10	-	MeCN	70	4	10	
11	-	DCE	70	4	2	

Procedure for the experimental entries 1–5 of Table S2

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, diethyl 2-(4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malonate **3a** (0.1 mmol), the corresponding base or acid (1 equiv.) and DMSO (1 mL) were added unver Ar. The reaction

mixture was stirred at 70 °C. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by flash column chromatography on silica gel.

Procedure for the experimental entries 6–11 of Table S2

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, diethyl 2-(4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl) malonate **3a** (0.1 mmol) and the corresponding solvent (1 mL) were added unver Ar. The reaction mixture was stirred at corresponding temperature. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by flash column chromatography on silica gel.

5.3 Radical trapping experiments

Procedure for the experiments (i)–(ii)

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. $AgSbF_6$ (13.7 mg, 0.04 mmol), $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1** (0.2 mmol), diethyl 2-diazomalonate **2** (0.32 mmol), PivOH (10.2mg, 0.1 mmol), TEMPO or BHT (2 equiv.), EtOH (1.8 mL) and DMSO (0.2 mL) were added under Ar. The reaction mixture was stirred at 70 °C for 24 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product **4a** as a white solid.

Procedure for the experiment (iii)

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. $AgSbF_6$ (13.7 mg, 0.04 mmol), $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-(2-Pyrimidinyl)-4(1*H*)-quinolinone **1** (0.2 mmol), diethyl 2-diazomalonate **2** (0.32 mmol), PivOH (10.2mg, 0.1 mmol), (1-cyclopropylvinyl)benzene (1 equiv.), EtOH (1.8 mL) and DMSO (0.2 mL) were added under Ar. The reaction mixture was stirred at 70 °C for 24 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by flash column chromatography on silica gel, affording the product **4a** as a white solid.

5.4 Attempted Cp*Rh(III) catalysis using N-pyrimidyl indole 6

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. $AgSbF_6$ (13.7 mg, 0.04 mmol), $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1- (pyrimidin-2-yl)-1*H*-indole 7 (0.2 mmol), diethyl 2-diazomalonate **2a** (0.32 mmol), PivOH (10.2mg, 0.1 mmol), EtOH (1.8 mL) and DMSO (0.2 mL) were added under Ar. The reaction mixture was stirred at 70 °C for 24 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by flash column chromatography on silica gel. Alkylated product, diethyl 2-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)malonate, **8** was isolated in 31% yield (22 mg), but C-H alkylation/[1,3]-pyrimidine migration product **9** was not detected.

5.5 Rearrangement test using alkylated indole compound 7

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, diethyl 2-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)malonate **8** (0.1 mmol) and DMSO (1 mL) were added unver Ar. The reaction mixture was stirred at 70 °C. After checking TLC after 4 h, the reaction temperature was increased to 100°C and stirred for 12h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude mixture was checked by NMR, but the desired product **9** was not obtained.

5.6 Cross-over experiments

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. AgSbF₆ (6.9 mg, 0.02 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1- (pyrimidin-2-yl)quinolin-4(1*H*)-one **1a** (0.1 mmol), 7-methoxy-1-(5-methylpyrimidin-2-yl)quinolin-4(1*H*)-one **1y** (0.1 mmol), diethyl 2-diazomalonate **2a** (0.32 mmol), PivOH (5.1 mg, 0.05 mmol), EtOH (1.8 mL) and DMSO (0.2 mL) were added under Ar. The reaction mixture was stirred at 70 °C for 24 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. Only the intramolecular heteroarene migration products **4a** and **4y** were obtained in 35% and 20% respectively, without forming intermolecularly heteroarene transferred products **4a'** and **4y'**. The yields of **4a** and **4y** were determined by ¹H NMR analysis using dibromomethane as an internal standard.

5.7 Directing group ability test using N-phenyl substituted quinolone 9

An oven-dried Schlenk tube was evacuated and flushed with argon three times. Then, it was evacuated and transferred to the glovebox. AgSbF₆ (3.4 mg, 0.01 mmol), $[Cp*RhCl_2]_2$ (1.5 mg, 0.0025 mmol) were added, and the Schlenk tube was transferred to the fume hood. 1-phenylquinolin-4(1H)-one 9 (0.1 mmol), diethyl 2-diazomalonate 2a (0.12 mmol), PivOH (2.6 mg, 0.025 mmol) and dichloroethane (DCE) (1.0 mL) were added under Ar. The reaction mixture was stirred at 30 °C for 12 h. The reaction was quenched with saturated NaHCO₃ solution, and the mixture was extracted three times with DCM. The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and the solvents evaporated to dryness. The crude product was purified by flash column chromatography on silica gel, affording the product 11 (84%, 31.9 mg) as a slightly yellow solid. Eluent for silica gel chromatography (Acetone:DCM=1:5, $\mathbf{R}_f = 0.48$); ¹H NMR (300 MHz, Chloroform-d) δ 7.6 -7.5 (m, 3H), 7.5 (d, J = 7.7 Hz, 1H), 7.4 (dd, J = 8.7, 7.5 Hz, 1H), 7.4 - 7.3 (m, 2H), 7.2 (dd, J = 7.5, 1.1 Hz, 1H), 6.9 (dd, J = 8.7, 1.1 Hz, 1H), 6.6 (s, 1H), 6.3 (d, J = 7.7 Hz, 1H),4.3 (qd, J = 7.1, 1.6 Hz, 4H), 1.3 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-d) δ 179.9, 169.4, 143.1, 141.8, 141.7, 135.0, 131.1, 130.5, 129.7, 127.7, 125.0, 124.2, 118.1, 111.9, 77.6, 77.2, 76.7, 61.5, 56.1, 14.2; **HRMS** (EI-MS) *m/z* calcd for C₂₂H₂₁NO₅ [M]⁺ 379.1420, found 379.1420.

5.8 NMR experiments

To find out the Int-A, the migration reaction of 3a and DMSO-d₆ was conducted and analyzed by ¹H NMR. To NMR tube, 3a (0.05 mmol, 1 equiv) were dissolved in DMSO-d₆. The ¹H NMR were measured immediately, every 30 min. at 55 °C. The results are shown in Figure S4. However, in ¹H NMR spectra, we couldn't detect any reaction intermediates in time-dependent NMR experiments.

Figure S4. ¹H NMR spectra of migration reaction of **3a** in DMSO-d₆.

6. Characterization Data of All Compounds

Characterization of products 3

Diethyl 2-(4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malonate (3a):

White solid (60.3 mg, yield: 79%); mp 131–133 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.38$); ¹H NMR (300 MHz, Chloroform-*d*) δ 9.00 (d, *J* = 4.9 Hz, 2H), 8.42 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.58 (t, J = 4.9 Hz, 1H), 7.45 (ddd, J = 8.7, 7.1, 1.8 Hz, 1H), 7.35 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 6.62 – 6.55 (m, 1H), 6.46 (s, 1H), 4.28 – 4.13 (m, 5H), 1.23 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-d) δ 178.3, 165.3, 160.4, 158.3, 144.0, 141.4, 132.3, 126.4, 125.6, 124.4, 121.9, 117.1, 112.6, 62.8, 56.5, 14.0; HRMS

(EI-MS) m/z calcd for C₂₀H₁₉N₃O₅ [M]⁺ 381.1325, found 381.1327.

Diethyl 2-(6-methyl-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malonate (3b):

Slightly yellow solid (69.6 mg, yield: 88%); mp 127–129 °C; purification by silica gel chromatography (Acetone:DCM=1:10, $R_f = 0.25$; ¹H NMR (300 MHz, Chloroform-*d*) δ 8.97 (d, J =4.9 Hz, 2H), 8.21 - 8.13 (m, 1H), 7.58 (t, J = 4.9 Hz, 1H), 7.29

-7.23 (m, 1H), 6.50 (d, J = 8.7 Hz, 1H), 6.45 (s, 1H), 4.22 - 4.11 (m, 5H), 2.38 (s, 3H), 1.19 $(t, J = 7.1 \text{ Hz}, 6\text{H}); {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{Chloroform-}d) \delta 178.1, 165.3, 160.2, 158.1, 143.7,$ 139.4, 134.4, 133.7, 125.5, 125.3, 121.9, 117.0, 112.0, 62.7, 56.3, 20.8, 13.9; HRMS (EI-MS) m/z calcd for C₂₁H₂₁N₃O₅ [M]⁺ 395.1481, found 395.1485.

Diethyl 2-(6-methoxy-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malona te

S31

purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.38$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.99 (d, J = 4.9 Hz, 2H), 7.81 (d, J = 3.1 Hz, 1H), 7.56 (t, J = 4.9 Hz, 1H), 7.07 (dd, J = 9.3, 3.1 Hz, 1H), 6.57 (d, J = 9.3 Hz, 1H), 6.45 (s, 1H), 4.21 (ddp, J = 10.3, 7.1, 3.5 Hz, 5H), 3.90 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.8, 165.4, 160.3, 158.3, 156.8, 143.2, 136.0, 126.9, 123.0, 121.8, 118.9, 111.6, 105.3, 62.8, 56.4, 55.9, 14.0; **HRMS** (EI-MS) *m/z* calcd for C₂₁H₂₁N₃O₆ [M]⁺ 411.1430, found 411.1430.

Diethyl 2-(6-chloro-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malonate (3d):

Slightly yellow solid (54.9 mg, yield: 66%); mp 110–112 °C; purification by silica gel chromatography (Acetone:DCM= 1:10, $\mathbf{R}_{f} = 0.38$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.98 (dd, J =5.0, 1.0 Hz, 2H), 8.33 (d, J = 2.6 Hz, 1H), 7.60 (td, J = 4.9, 1.0

Hz, 1H), 7.40 - 7.31 (m, 1H), 6.56 (d, J = 9.1 Hz, 1H), 6.42 (d, J = 0.9 Hz, 1H), 4.22 - 4.11 (m, 5H), 1.19 (td, J = 7.1, 1.0 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 176.8, 165.0, 160.4, 157.7, 144.4, 139.7, 132.4, 130.6, 126.5, 125.5, 122.1, 119.0, 112.5, 62.8, 56.1, 13.9; HRMS (EI-MS) *m/z* calcd for C₂₀H₁₈ClN₃O₅ [M]⁺ 415.0935, found 415.0937.

Diethyl

2-(4-oxo-1-(pyrimidin-2-yl)-6-(trifluoromethyl)-1,4-dihydroquinolin-2

1H), 7.67 – 7.60 (m, 2H), 6.72 (d, J = 9.0 Hz, 1H), 6.51 (s, 1H), 4.27 – 4.13 (m, 5H), 1.23 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.4, 165.0, 160.6, 157.9, 144.9, 143.1, 128.4 (q, J = 3.4 Hz), 126.6 (q, J = 33.5 Hz), 125.2, 124.5 (q, J = 4.2 Hz), 123.8 (q, J = 270.8 Hz), 122.3, 118.2, 113.5, 77.6, 77.2, 76.7, 63.0, 56.4, 14.0; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.3; HRMS (EI-MS) *m*/*z* calcd for C₂₁H₁₈F₃N₃O₅ [M]⁺ 449.1199, found 449.1201.

Diethyl 2-(6-nitro-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malonate (3f):

Slightly yellow solid (51.2 mg, yield: 60%); mp 127–130 °C; purification by silica gel chromatography (Acetone:DCM= 1:10, $\mathbf{R}_f = 0.45$); ¹H NMR (300 MHz, Chloroform-*d*) δ 9.25 (d, J = 2.7 Hz, 1H), 9.05 (d, J = 4.9 Hz, 2H), 8.23 (dd, J = 9.4,

2.7 Hz, 1H), 7.68 (t, *J* = 4.9 Hz, 1H), 6.73 (d, *J* = 9.4 Hz, 1H), 6.52 (s, 1H), 4.27 – 4.16 (m, 5H), 1.24 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.0, 164.9, 160.7, 157.6, 145.3, 144.6, 144.0, 126.3, 125.4, 123.2, 122.5, 118.7, 113.9, 63.1, 56.3, 14.0; HRMS (EI-MS) *m/z* calcd for C₂₀H₁₈N₄O₇ [M]⁺ 426.1175, found 426.1173.

chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.38$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.95 (dd, J = 4.9, 1.0 Hz, 2H), 8.28 (d, J = 9.0 Hz, 1H), 7.56 (td, J = 4.9, 1.1 Hz, 1H), 6.89 (dt, J = 9.0, 1.6 Hz, 1H), 6.34 (d, J = 1.0 Hz, 1H), 5.92 (d, J = 2.2 Hz, 1H), 4.14 (ddd, J = 15.1, 7.5, 1.4 Hz, 5H), 3.62 (d, J = 1.0 Hz, 3H), 1.17 (td, J = 7.1, 1.0 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.5, 165.2, 162.7, 160.3, 158.0, 143.8, 142.9, 128.2, 121.9, 119.8, 112.5, 112.2, 100.4, 62.6, 56.2, 55.4, 13.9; HRMS (EI-MS) *m*/*z* calcd for C₂₁H₂₁N₃O₆ [M]⁺ 411.1430, found 411.1428.

Diethyl 2-(7-bromo-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malonate (3h):

White solid (62.6 mg, yield: 68%); mp 169–171 °C; purification by silica gel chromatography (Acetone:DCM= 1:10, $\mathbf{R}_f = 0.38$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.99 (d, J = 4.9 Hz, 2H), 8.24 (d, J = 8.6 Hz, 1H), 7.60 (t, J = 4.9 Hz, 1H), 7.42 (dd, J =

8.6, 1.7 Hz, 1H), 6.75 (d, J = 1.6 Hz, 1H), 6.42 (s, 1H), 4.22 – 4.10 (m, 5H), 1.20 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.5, 165.0, 160.5, 157.6, 144.4, 141.9, 128.0, 127.9, 127.1, 124.3, 122.2, 119.8, 113.0, 62.8, 56.3, 13.9; HRMS (EI-MS) *m/z* calcd for C₂₀H₁₈BrN₃O₅ [M]⁺ 459.0430, found 459.0432.

dihydroquinolin-2-yl)malonate (3i): White solid (59.1 mg, yield: 74%); mp 97–99 °C; purification by silica gel chromatography (Acetone:DCM= 1:10, $\mathbf{R}_f = 0.55$); ¹**H NMR** (300 MHz, Chloroformd) δ 9.19 (s, 1H), 8.50 (d, J = 4.8 Hz, 2H), 7.63 – 7.52 (m, 1H), 7.46

- 7.34 (m, 2H), 7.10 (t, J = 4.8 Hz, 1H), 5.04 (s, 1H), 4.15 (qd, J = 7.1, 3.2 Hz, 4H), 1.18 (t,

J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-d) 166.8, 164.7, 160.2, 158.3 (d, J = 257.5Hz), 154.0, 154.0, 152.8, 139.7 (d, J = 12.6 Hz), 127.3, 127.2 (d, J = 8.2 Hz), 124.6, 124.6, 119.8, 118.0 (d, J = 5.0 Hz), 117.9, 117.4, 114.4 (d, J = 18.8 Hz), 77.6, 77.2, 76.7, 62.4, 50.2, 14.0; ¹⁹F NMR (471 MHz, Chloroform-d) δ -124.1; HRMS (EI-MS) m/z calcd for C₂₀H₁₈FN₃O₅ [M]⁺ 399.1230, found 399.1232.

Diethyl 2-(6,7-dimethoxy-4-oxo-1-(pyrimidin-2-yl)-1,4dihydroquinolin-2-yl)mal onate (3j): Slightly yellow solid (35.3 mg, yield: 40%); mp 65–67 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.25$); ¹H NMR (300 MHz, Chloroform-*d*) δ 9.01 (d, *J* = 4.8 Hz, 2H), 7.76 (s,

1H), 7.60 (t, J = 4.8 Hz, 1H), 6.48 (s, 1H), 6.01 (s, 1H), 4.18 (dtd, J = 13.3, 6.6, 3.7 Hz, 5H), 3.96 (s, 3H), 3.64 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-d) δ 176.8, 165.4, 160.3, 158.3, 153.5, 147.7, 143.0, 137.0, 122.0, 119.9, 111.9, 105.4, 98.8, 62.8, 56.5, 56.4, 56.0, 14.0; **HRMS** (EI-MS) m/z calcd for $C_{22}H_{23}N_3O_7$ [M]⁺ 441.1536, found 441.1535.

Tetraethyl 2,2'-(4-oxo-1-(pyrimidin-2-yl)-1,4dihvdropyridine-2,6-diyl)dimalona te (3k): Slightly yellow solid (64.6 mg, yield: 66%); mp 129–131 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_{f} = 0.18$); ¹H **NMR** (300 MHz, Chloroform-*d*) δ 8.86 (d, *J* = 4.9 Hz, 2H), 7.52 (t, J = 4.9 Hz, 1H), 6.50 (s, 2H), 4.15 (dt, J = 14.5, 7.3 Hz, 10H), 1.22 (t, J = 7.1 Hz, 12H);

¹³C NMR (75 MHz, Chloroform-*d*) δ 178.7, 165.2, 159.8, 157.2, 143.6, 122.0, 119.6, 62.8,
56.3, 14.0; HRMS (EI-MS) *m/z* calcd for C₂₃H₂₇N₃O₉ [M]⁺ 489.1747, found 489.1745.

Diethyl 2-(6-oxo-1-(pyrimidin-2-yl)-1,6-dihydropyridin-2-yl)malonate (3l):

Slightly yellow solid (61.6 mg, yield: 93%); mp 115–117 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f =$ 0.20); ¹**H NMR** (300 MHz, Chloroform-*d*) δ 8.87 (d, J = 4.9 Hz, 2H), 7.48 – 7.33 (m, 2H), 6.61 (dd, J = 9.3, 1.1 Hz, 1H), 6.32 (dd, J = 7.0,

1.1 Hz, 1H), 4.14 (q, J = 7.1 Hz, 4H), 4.03 (s, 1H), 1.19 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 165.3, 163.0, 159.8, 157.9, 139.9, 139.3, 121.4, 121.4, 106.8, 62.6, 55.3, 13.9; HRMS (EI-MS) *m/z* calcd for C₁₆H₁₇N₃O₅ [M]⁺ 331.1168, found 331.1169.
Diethyl 2-(1-oxo-2-(pyrimidin-2-yl)-1,2-dihydroisoquinolin-3yl)malonate (3m):

White solid (75.5 mg, yield: 99%); mp 167–169 °C; purification by silica gel chromatography (Acetone:DCM= 1:10, $\mathbf{R}_f = 0.28$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.92 (d, J = 4.9 Hz, 2H), 8.42 – 8.34 (m,

1H), 7.68 (ddd, J = 8.2, 7.1, 1.4 Hz, 1H), 7.58 – 7.41 (m, 3H), 6.69 (s, 1H), 4.26 – 4.15 (m, 5H), 1.24 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 165.9, 163.1, 159.6, 158.4, 136.3, 133.2, 132.9, 128.0, 127.6, 126.6, 125.7, 121.1, 107.6, 77.5, 77.1, 76.7, 62.5, 55.4, 13.9; HRMS (EI-MS) *m/z* calcd for C₂₀H₁₉N₃O₅ [M]⁺ 381.1325, found 381.1327.

Dimethyl 2-(4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)malonate (3n):

White solid (44.5 mg, yield: 63%); mp 156–158 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.30$); ¹H **NMR** (300 MHz, Chloroform-*d*) δ 8.99 (d, J = 4.8 Hz, 2H), 8.39 (dd, J = 8.0, 1.7 Hz, 1H), 7.58 (t, J = 4.9 Hz, 1H), 7.44 (ddd, J = 8.7,

7.1, 1.7 Hz, 1H), 7.33 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 6.63 – 6.53 (m, 1H), 6.41 (s, 1H), 4.22 (s, 1H), 3.72 (s, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.2, 165.7, 160.4, 158.1, 143.9, 141.4, 132.5, 126.4, 125.5, 124.6, 122.1, 117.1, 112.4, 56.1, 53.6; HRMS (EI-MS) *m/z* calcd for C₁₈H₁₅N₃O₅ [M]⁺ 353.1012, found 353.1014.

Dibenzyl 2-(4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2yl)malonate (30):

Slightly yellow solid (72.8 mg, yield: 72%); mp 69–72 °C; purification by silica gel chromatography (Acetone:DCM= 1:10, \mathbf{R}_f = 0.38); ¹**H** NMR (500 MHz, Chloroform-*d*) δ 8.68 (d, *J* = 4.9 Hz, 2H), 8.39 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.42 (ddd, *J* = 8.7, 7.0, 1.7 Hz, 1H), 7.38 (t, *J* = 4.9 Hz, 1H), 7.34 – 7.28 (m, 7H), 7.28 – 7.23 (m, 4H), 6.57 (d, *J* = 8.6 Hz, 1H), 6.50 (s, 1H), 5.21 (d, *J* = 12.2 Hz, 2H), 5.09 (d, *J* = 12.2 Hz, 2H), 4.28 (s, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 178.0, 165.0, 160.1, 157.9, 143.6, 141.3, 134.6, 132.3, 128.6, 128.6, 128.6, 126.2, 125.5, 124.4, 121.7, 117.1, 112.6, 68.3, 56.2; **HRMS** (EI-MS) *m/z* calcd for C₃₀H₂₃N₃O₅ [M]⁺ 505.1638, found 505.1635.

Methyl (R)-2-(4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinolin-2-yl)-

2-tosylacetate (3p): White solid (66.5 mg, yield: 74%); mp 75–77 °C; purification by silica gel chromatography (Acetone:DCM= 1:10, $\mathbf{R}_f =$ 0.20); ¹**H NMR** (300 MHz, Chloroform-*d*) δ 8.99 (d, J = 4.9 Hz, 2H), 8.33 (dd, J = 8.0, 1.7 Hz, 1H), 7.65 – 7.54 (m, 3H), 7.43 (ddd, J = 8.7,

7.0, 1.8 Hz, 1H), 7.32 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 7.26 – 7.21 (m, 2H), 6.67 – 6.59 (m, 1H), 6.53 (s, 1H), 5.16 (s, 1H), 3.74 (s, 3H), 2.38 (s, 3H); ¹³C NMR (75 MHz, Chloroform*d*) δ 177.4, 163.2, 160.2, 158.0, 146.5, 141.7, 139.3, 132.4, 132.3, 130.4, 129.6, 126.2, 125.7, 124.7, 121.9, 117.8, 114.3, 69.9, 53.9, 21.8; **HRMS** (EI-MS) *m/z* calcd for C₂₃H₁₉N₃O₅S [M]⁺ 449.1045, found 449.1043.

Methyl (Z)-3-hydroxy-2-(4-oxo-1-(pyrimidin-2-yl)-1,4-

dihydroquinolin-2-yl)but-2-enoate (3q): Slightly yellow solid (29.7 mg, yield: 44%); mp 67–69 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.28$); ¹H NMR (300 MHz, Chloroform-d) δ 12.68 (s, 1H), 8.90 (d, J = 4.9 Hz, 2H), 8.45 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 8.5 Hz, 1H), 6.32 (s, 1H), 3.66 (s, 3H), 1.97 (s, 3H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.8, 177.4, 171.0, 159.7, 159.0, 145.9, 141.3, 132.2, 126.5, 125.6, 124.2, 121.4, 117.0, 114.7, 99.4, 52.1, 20.4; **HRMS** (EI-MS) *m/z* calcd for C₁₈H₁₅N₃O₄ [M]⁺ 337.1063, found 337.1063.

Diethyl 2-(1-(4-methylpyrimidin-2-yl)-4-oxo-1,4-

dihydroquinolin-2-yl)malonate (3s): Slightly yellow solid (61.7 mg, yield: 78%); mp 103–105 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.40$); ¹H NMR (300 MHz, Chloroform-d) δ 8.79 (d, J = 5.1 Hz, 1H), 8.37 (dd, J = 8.0, 1.6

Hz, 1H), 7.46 – 7.38 (m, 2H), 7.31 (ddd, *J* = 8.1, 7.0, 1.0 Hz, 1H), 6.65 – 6.58 (m, 1H), 6.43 (s, 1H), 4.17 (qd, *J* = 7.1, 1.1 Hz, 4H), 4.10 (s, 1H), 2.61 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.1, 171.8, 165.3, 159.6, 157.6, 144.0, 141.2, 132.2, 126.2, 125.5, 124.3, 121.5, 117.1, 112.3, 62.7, 56.5, 24.1, 13.9; **HRMS** (EI-MS) *m/z* calcd for C₂₁H₂₁N₃O₅ [M]⁺ 395.1481, found 395.1483.

Diethyl 2-(1-(5-methylpyrimidin-2-yl)-4-oxo-1,4-dihydroquinolin-2-yl)malonate (3t):

Slightly yellow sticky solid (58.5 mg, yield: 74%); purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.43$); ¹H NMR (300 MHz, Chloroform-*d*) δ 8.77 (s, 2H), 8.37 (dd, J = 8.0, 1.7 Hz, 1H), 7.41 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 7.31 (ddd, J = 8.0, 7.1, 1.1Hz, 1H), 6.54 (d, J = 8.6 Hz, 1H), 6.44 (s, 1H), 4.17 (qd, J = 7.1, 3.0

Hz, 5H), 2.46 (s, 3H), 1.20 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.2,

165.3, 160.2, 155.9, 144.1, 141.4, 132.2, 132.2, 126.2, 125.5, 124.2, 117.1, 112.2, 62.7, 56.3,
15.5, 13.9; **HRMS** (EI-MS) *m/z* calcd for C₂₁H₂₁N₃O₅ [M]⁺ 395.1481, found 395.1479.

Diethyl 2-(7-methoxy-1-(5-methylpyrimidin-2-yl)-4-oxo-1,4dihydroquinolin-2-yl)malonate (3u): Slightly yellow solid (61.3 mg, yield: 72%); mp 111–113 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.40$); ¹H NMR (300 MHz, Chloroform-d) δ 8.77 (s, 2H), 8.33 (d, J= 8.9 Hz, 1H), 6.93

(dd, J = 9.0, 2.3 Hz, 1H), 6.36 (s, 1H), 5.93 (d, J = 2.3 Hz, 1H), 4.18 (qq, J = 6.9, 3.7 Hz, 4H), 4.10 (s, 1H), 3.68 (s, 3H), 2.47 (s, 3H), 1.21 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.8, 165.4, 162.7, 160.3, 156.0, 144.0, 143.1, 132.1, 128.4, 120.1, 112.3, 112.2, 100.7, 62.7, 56.4, 55.5, 15.6, 14.0; HRMS (EI-MS) *m*/*z* calcd for C₂₂H₂₃N₃O₆ [M]⁺ 425.1587, found 425.1590.

Diethyl 2-(1-(5-bromopyrimidin-2-yl)-4-oxo-1,4-dihydroquinolin-2-yl)malonate (3v):

1.3 (dt, J = 12.9, 7.1 Hz, 6H); For the mixture of major **3u** and C5-alkylated product **3u**', ¹³C
NMR (75 MHz, Chloroform-d) δ 180.3, 178.2, 169.2, 165.2, 161.0, 159.9, 158.1, 143.7, 141.3, 140.5, 139.8, 135.0, 132.4, 131.1, 126.6, 126.3, 125.7, 124.6, 124.4, 121.2, 118.5, 118.1, 117.0, 113.4, 113.0, 77.6, 77.2, 76.7, 62.9, 61.6, 56.5, 56.2, 14.2, 14.0; HRMS (EI-MS) *m/z* calcd for C₂₀H₁₈BrN₃O₅ [M]⁺ 459.0430, found 459.0426.

Diethyl 2-(1-(benzo[d]thiazol-2-yl)-4-oxo-1,4-dihydroquinolin-2-

yl)malonate (3w): Slightly yellow sticky solid (39.3 mg, yield: 45%); purification by silica gel chromatography (Acetone:DCM= 1:20, R_f=0.5); ¹H NMR (300 MHz, Chloroform-d) δ 8.41 – 8.35 (m, 1H), 8.17 – 8.11 (m, 1H), 8.02 – 7.95 (m, 1H), 7.70 – 7.56 (m, 2H), 7.48 (ddd, J = 8.7, 7.1, 1.8 Hz, 1H), 7.37 (ddd, J = 8.0, 7.1, 1.1 Hz,

1H), 6.89 (dt, J = 8.5, 0.8 Hz, 1H), 6.51 (s, 1H), 4.52 (s, 1H), 4.19 (q, J = 7.1 Hz, 4H), 1.19 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.3, 165.2, 157.4, 149.8, 144.7, 142.2, 136.6, 132.8, 127.7, 127.6, 126.5, 125.6, 125.0, 124.9, 122.3, 117.4, 113.3, 63.0, 55.8, 14.0; HRMS (EI-MS) *m/z* calcd for C₂₃H₂₀N₂O₅S [M]⁺ 436.1093, found 436.1096.

Diethyl 2-(4-oxo-1-(pyridin-2-yl)-1,4-dihydroquinolin-2-yl)malonate (3x):

380.1372, found 380.1374.

2,2'-(6-methoxy-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinoline-2,5tetraethyl diyl)dimalonate (3y):

Sticky yellow solid (46.7 mg, yield: 82%); purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.5$); ¹H NMR CO₂Et (500 MHz, Chloroform-d) δ 8.97, 8.96, 7.56, 7.55, 7.54, 7.13, 7.11, 6.97, 6.54, 6.52, 6.29, 4.21, 4.19, 4.19, 4.18, 4.17, 4.16, 4.16, 4.15, 4.14, 4.14, 4.13, 4.09, 3.76, 1.24, 1.22, 1.22, 1.21, 1.20, 1.19; ¹³C NMR (126) MHz, CDCl₃) δ 180.0, 168.8, 165.2, 160.4, 158.4, 154.7, 142.5, 137.6, 124.2, 122.9, 121.9,

118.7, 117.8, 112.7, 62.8, 61.1, 57.0, 56.1, 49.9, 14.2, 14.0; HRMS (EI-MS) m/z calcd for $C_{28}H_{31}N_3O_{10}$ [M]⁺ 569.2009, found 569.2013.

Characterization of products 4

Diethyl 2-(4-oxo-1,4-dihydroquinolin-2-yl)-2-(pyrimidin-2vl)malonate (4a):

White solid (58.7 mg, yield: 77%); mp 175–177 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, $\mathbf{R}_f = 0.15$); ¹H **NMR** (300 MHz, Chloroform-*d*) δ 11.53 (s, 1H), 8.74 (d, J = 4.9 Hz,

2H), 8.32 - 8.24 (m, 1H), 7.54 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.36 (dt, J = 8.2, 0.9 Hz, 1H), 7.33 - 7.24 (m, 2H), 6.15 (d, J = 1.9 Hz, 1H), 4.31 (q, J = 7.1 Hz, 4H), 1.22 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-d) δ 178.5, 167.1, 165.1, 157.2, 146.2, 139.3, 132.1, 125.9, 125.3, 123.9, 120.5, 118.2, 113.0, 69.7, 63.5, 13.7; HRMS (EI-MS) m/z calcd for C₂₀H₁₉N₃O₅ [M]⁺ 381.1325, found 381.1327.

mg, yield: 88%); mp 185-187 °C; purification by silica gel chromatography (Acetone:DCM= 1:3, $\mathbf{R}_f = 0.25$); ¹H NMR (300 MHz, Chloroform-*d*) δ 11.43 (s, 1H), 8.78 (d, *J* = 4.9 Hz,

2H), 8.12 (d, J = 2.0 Hz, 1H), 7.41 (dd, J = 8.4, 2.1 Hz, 1H), 7.38 – 7.27 (m, 2H), 6.14 (d, J = 1.9 Hz, 1H), 4.42 - 4.28 (m, 4H), 2.44 (s, 3H), 1.25 (t, J = 7.1 Hz, 6H); ¹³C NMR (75) MHz, Chloroform-*d*) δ 178.5, 167.3, 165.3, 157.3, 145.9, 137.4, 134.0, 133.7, 125.4, 125.3, 120.5, 118.1, 112.9, 69.7, 63.6, 21.2, 13.8; HRMS (EI-MS) *m/z* calcd for C₂₁H₂₁N₃O₅ [M]⁺ 395.1481, found 395.1479.

Diethyl 2-(6-methoxy-4-oxo-1,4-dihydroquinolin-2-yl)-2-(pyrimidin-2-yl)malona te (4c): Slightly yellow solid (46.1 mg, yield: 56%); mp 183–185 °C; purification by silica gel chromatography (Acetone:DCM= 1:3 R_f = 0.25); ¹H NMR (300 MHz, Chloroform-*d*) δ 11.55 (s, 1H), 8.78 (d, *J* = 4.9 Hz, 2H),

7.70 (d, J = 2.9 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.22 (dd, J = 9.0, 2.9 Hz, 1H), 6.16 (d, J = 1.9 Hz, 1H), 4.34 (q, J = 7.1 Hz, 4H), 3.89 (s, 3H), 1.25 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.0, 167.3, 165.3, 157.3, 156.7, 145.3, 134.0, 126.5, 123.5, 120.5, 119.8, 112.1, 104.6, 69.6, 63.6, 55.9, 13.8; HRMS (EI-MS) *m*/*z* calcd for C₂₁H₂₁N₃O₆ [M]⁺ 411.1430, found 411.1427.

Diethyl 2-(6-chloro-4-oxo-1,4-dihydroquinolin-2-yl)-2-

(pyrimidin-2-yl)malonate (4d): White solid (48.2 mg, yield: 58%); mp 185–187 °C; purification by silica gel chromatography (Acetone:DCM= 1:7 R_f = 0.5); ¹H NMR (300 MHz, Chloroform-*d*) δ 11.60 (s, 1H), 8.78 (d, *J* = 4.9 Hz, 2H),

8.30 (d, J = 2.4 Hz, 1H), 7.53 (dd, J = 8.8, 2.4 Hz, 1H), 7.39 – 7.31 (m, 2H), 6.17 (d, J = 1.7 Hz, 1H), 4.35 (q, J = 7.1 Hz, 4H), 1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.4, 167.2, 165.1, 157.3, 146.6, 137.7, 132.6, 130.0, 126.4, 125.5, 120.6, 119.9, 113.3, 69.6, 63.7, 13.8; HRMS (EI-MS) *m*/*z* calcd for C₂₀H₁₈ClN₃O₅ [M]⁺ 415.0935, found 415.0937.

2H), 8.62 – 8.55 (m, 1H), 7.73 (dd, J = 8.7, 2.2 Hz, 1H), 7.51 (d, J = 8.7 Hz, 1H), 7.32 (t, J = 4.9 Hz, 1H), 6.20 (d, J = 1.9 Hz, 1H), 4.32 (q, J = 7.1 Hz, 4H), 1.23 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.9, 166.9, 164.9, 157.3, 147.3, 141.1, 128.3 (q, J = 3.3 Hz), 127.6 (q, J = 270.8 Hz), 125.9 (q, J = 33.0 Hz), 124.7, 124.2 (q, J = 4.2 Hz), 122.2, 120.7, 119.3, 118.6, 114.0, 77.6, 77.2, 76.7, 69.7, 63.7, 13.7; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.0; **HRMS** (EI-MS) *m*/*z* calcd for C₂₁H₁₈F₃N₃O₅ [M]⁺ 449.1199, found 449.1195.

Diethyl 2-(6-nitro-4-oxo-1,4-dihydroquinolin-2-yl)-2-(pyrimidin-2-yl)malonate (4f):

White solid (36.7 mg, yield: 43%); mp 207–209 °C; purification by silica gel chromatography (Acetone:DCM=1:7, \mathbf{R}_{f} =0.63); ¹**H NMR** (300 MHz, Chloroform-*d*) δ 11.92 (s, 1H), 9.16 (d, *J* = 2.6 Hz, 1H), 8.80 (d, *J* = 4.9 Hz, 2H), 8.37 (dd, *J* =

9.1, 2.6 Hz, 1H), 7.52 (d, J = 9.1 Hz, 1H), 7.38 (t, J = 4.9 Hz, 1H), 6.22 (d, J = 1.8 Hz, 1H),
4.35 (q, J = 7.1 Hz, 4H), 1.25 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ
177.7, 166.8, 164.8, 157.4, 147.5, 143.8, 142.8, 126.4, 124.7, 123.2, 120.8, 119.6, 114.5,
69.6, 63.9, 13.8; HRMS (EI-MS) *m/z* calcd for C₂₀H₁₈N₄O₇ [M]⁺ 426.1175, found 426.1174.

Diethyl 2-(7-methoxy-4-oxo-1,4-dihydroquinolin-2-yl)-2-(pyrimidin-2-yl)malon ate (4g): Slightly yellow solid (60.9

mg, yield: 74%); mp 179–181 °C; purification by silica gel chromatography (Acetone:DCM= 1:7, \mathbf{R}_f = 0.26); ¹**H** NMR (300 MHz, Chloroform-*d*) δ 11.61 (s, 1H), 8.72 (d, *J* = 4.9 Hz, 2H), 8.16 (d, *J* = 9.0 Hz, 1H), 7.31 – 7.23 (m, 1H), 6.93 – 6.83 (m, 1H), 6.79 (d, *J* = 2.3 Hz, 1H), 6.10 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 4H), 3.82 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 167.1, 165.0, 163.0, 157.2, 146.3, 141.3, 127.5, 120.5, 119.4, 114.6, 112.5, 99.2, 69.9, 63.5, 55.7, 13.8; **HRMS** (EI-MS) *m/z* calcd for C₂₁H₂₁N₃O₆ [M]⁺ 411.1430, found 411.1428.

2H), 8.18 (d, *J* = 8.6 Hz, 1H), 7.58 (d, *J* = 1.7 Hz, 1H), 7.41 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.36 (t, *J* = 4.9 Hz, 1H), 6.17 (d, *J* = 1.9 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 4H), 1.26 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.1, 167.1, 165.1, 157.3, 146.6, 140.1, 127.9, 127.5, 126.7, 124.2, 120.8, 120.7, 113.7, 69.6, 63.7, 13.9; HRMS (EI-MS) *m/z* calcd for C₂₀H₁₈BrN₃O₅ [M]⁺ 459.0430, found 459.0430.

Diethyl 2-(6,7-dimethoxy-4-oxo-1,4-dihydroquinolin-2-yl)-2-

(pyrimidin-2-yl)malonate (4j): White solid (32.7 mg, yield: 37%); mp 207–209 °C; purification by silica gel chromatography (Acetone:DCM= 1:1, $\mathbf{R}_f = 0.20$); ¹H NMR (300 MHz, Chloroform-*d*) δ 11.37 (s, 1H), 8.78 (d, J = 4.9 Hz, 2H), 7.67 (s, 1H), 7.33 (t, J = 4.9 Hz, 1H), 6.74 (s, 1H), 6.10 (d, J = 1.7 Hz, 1H), 4.35 (qd, J = 7.1, 1.0 Hz, 4H), 3.97 (s, 6H), 1.26 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 177.5, 167.5, 165.4, 157.3, 153.9, 147.6, 144.8, 135.1, 120.5, 119.7, 112.4, 105.0, 99.0, 69.6, 63.6, 56.4, 56.4, 13.9; **HRMS** (EI-MS) *m/z* calcd for C₂₂H₂₃N₃O₇ [M]⁺ 441.1536, found 441.1536.

Diethyl 2-(6-(1,3-diethoxy-1,3-dioxopropan-2-yl)-4-oxo-1,4-dihydropyridin-2-yl)-2-

7.4 (t, *J* = 4.9 Hz, 1H), 7.0 (d, *J* = 2.1 Hz, 1H), 6.7 (d, *J* = 2.1 Hz, 1H), 4.8 (s, 1H), 4.1 (m, *J* = 16.4, 14.2, 8.4, 5.3 Hz, 8H), 1.1 (q, *J* = 7.0 Hz, 13H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 167.2, 167.0, 166.0, 164.1, 157.1, 156.6, 152.4, 120.2, 111.4, 110.4, 74.1, 61.4, 59.5, 40.4, 40.1, 39.8, 39.7, 39.5, 39.4, 39.2, 39.0, 38.7, 13.9, 13.7; HRMS (EI-MS) *m/z* calcd for C₂₃H₂₇N₃O₉ [M]⁺ 489.1747 found 489.1747.

Diethyl 2-(6-oxo-1,6-dihydropyridin-2-yl)-2-(pyrimidin-2-

yl)malonate (4l):

Slightly brown solid (25.8 mg, yield: 39%); mp 155–157 °C; purification by silica gel chromatography (Acetone:DCM= 1:1, \mathbf{R}_f =

0.25); ¹**H NMR** (300 MHz, Chloroform-*d*) δ 11.25 (s, 1H), 8.77 (d, *J* = 4.9 Hz, 2H), 7.41 – 7.30 (m, 2H), 6.50 (dd, *J* = 9.2, 0.9 Hz, 1H), 6.21 (dd, *J* = 7.1, 0.9 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 4H), 1.24 (t, *J* = 7.1 Hz, 6H); ¹³**C NMR** (75 MHz, Chloroform-*d*) δ 166.6, 164.8, 163.0,

157.3, 141.6, 140.5, 120.6, 120.5, 108.0, 69.6, 63.4, 13.8; **HRMS** (EI-MS) *m/z* calcd for C₁₆H₁₇N₃O₅ [M]⁺ 331.1168, found 331.1171.

Diethyl 2-(1-oxo-1,2-dihydroisoquinolin-3-yl)-2-(pyrimidin-2-yl)malonate (4m):

Slightly yellow solid (68.7 mg, yield: 90%); mp 157–159 °C; purification by silica gel chromatography (Acetone:DCM= 1:7, $\mathbf{R}_f =$ 0.50); ¹**H NMR** (300 MHz, Chloroform-*d*) δ 10.61 (s, 1H), 8.79 (d, J = 5.0 Hz, 2H), 8.42 – 8.32 (m, 1H), 7.62 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H),

7.54 – 7.43 (m, 2H), 7.33 (t, J = 4.9 Hz, 1H), 6.62 (d, J = 1.9 Hz, 1H), 4.36 (q, J = 7.1 Hz, 4H), 1.27 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 166.9, 165.2, 162.7, 157.3, 137.4, 134.8, 132.6, 127.4, 127.3, 127.0, 125.6, 120.5, 108.3, 70.0, 63.3, 13.9; **HRMS** (EI-MS) *m/z* calcd for C₂₀H₁₉N₃O₅ [M]⁺ 381.1325, found 381.1328.

Dimethyl 2-(4-oxo-1,4-dihydroquinolin-2-yl)-2-(pyrimidin-2yl)malonate (4n):

White solid (49.5 mg, yield: 70%); mp 207–209 °C; purification by silica gel chromatography (Acetone:DCM= 1:7, $\mathbf{R}_f = 0.25$); ¹H

NMR (300 MHz, Chloroform-*d*) δ 11.45 (s, 1H), 8.80 (d, J = 5.0

Hz, 2H), 8.36 - 8.30 (m, 1H), 7.60 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.42 - 7.30 (m, 3H), 6.14 (d, J = 2.0 Hz, 1H), 3.88 (s, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.6, 167.6, 164.9, 157.3, 146.0, 139.4, 132.2, 125.9, 125.3, 124.0, 120.6, 118.3, 113.0, 69.9, 54.2; **HRMS** (EI-MS) *m/z* calcd for C₁₈H₁₅N₃O₅ [M]⁺ 353.1012, found 353.1008.

Dibenzyl 2-(4-oxo-1,4-dihydroquinolin-2-yl)-2-(pyrimidin-2-

yl)malonate (40):

Slightly yellow solid (68.8 mg, yield: 68%); mp 165–167 °C; purification by silica gel chromatography (Acetone:DCM= 1:7, \mathbf{R}_f = 0.45); ¹**H NMR** (300 MHz, Chloroform-*d*) δ 11.35 (s, 1H), 8.70

(d, *J* = 4.9 Hz, 2H), 8.31 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.38 – 7.28 (m, 4H), 7.26 – 7.13 (m, 9H), 6.23 (s, 1H), 5.32 – 5.20 (m, 4H); ¹³**C NMR** (75 MHz, Chloroform-*d*) δ 178.5, 166.8, 164.8, 157.2, 146.0, 139.4, 134.4, 132.2, 128.5, 128.4, 128.3, 128.2, 125.9, 125.2, 124.0, 120.6, 118.3, 112.9, 70.0, 68.9; **HRMS** (EI-MS) *m/z* calcd for C₃₀H₂₃N₃O₅ [M]⁺ 505.1638, found 505.1635.

Methyl 2-(4-oxo-1,4-dihydroquinolin-2-yl)-2-(pyrimidin-2-yl)-2-tosylacetate (4p): Slightly yellow solid (53.9 mg, yield: 60%); mp 198–200 °C; purification by silica gel chromatography (Acetone:DCM= 1:7, $\mathbf{R}_f = 0.38$); ¹H NMR (300 MHz, Chloroform-*d*) δ 12.38 (s, 1H), 8.93 (d, J = 5.0 Hz, 2H), 8.32 (dd, J = 8.1, 1.5 Hz, 1H), 7.71 - 7.60 (m, 3H), 7.58 - 7.47 (m, 2H), 7.58 - 7.58 (m, 2H), 7.58 - 7.58 (m, 2H), 7.58 (m, 2H), 7.58 (m, 2H),7.38 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.17 (d, J = 8.2 Hz, 2H), 5.68 (d, J = 1.8 Hz, 1H), 3.81 (s, 3H), 2.38 (s, 3H); ¹³C NMR (75 MHz, Chloroform-d) δ 177.7, 165.4, 161.2, 157.1, 146.6, 141.8, 139.4, 132.5, 132.0, 131.5, 129.0, 125.9, 125.4, 124.3, 121.5, 118.6, 114.1, 84.0, 53.9, 21.8; **HRMS** (EI-MS) m/z calcd for C₂₃H₁₉N₃O₅S [M]⁺ 449.1045, found 449.1043.

Diethyl 2-(4-methylpyrimidin-2-yl)-2-(4-oxo-1,4-dihydroquinolin-

2-vl)malonate (4q): Slightly yellow solid (55.4 mg, yield: 70%); mp 161-163 °C; purification by silica chromatography gel CO₂Et (Acetone:DCM=1:5, $\mathbf{R}_f = 0.18$); ¹H NMR (300 MHz, Chloroform-d) δ 11.79 (s, 1H), 8.59 (d, J = 5.1 Hz, 1H), 8.29 (dd, J = 8.2, 1.5 Hz, 1H), 7.55 (s, 1H), 7.38 – 7.24 (m, 2H), 7.16 (d, J = 5.2 Hz, 1H), 6.18 (d, J = 1.8 Hz, 1H), 4.31 (q, J = 7.1 Hz, 4H), 2.53 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz,

Chloroform-d) & 178.6, 167.8, 167.1, 164.5, 156.6, 146.3, 139.3, 132.1, 125.9, 125.3, 123.8, 120.1, 118.1, 113.0, 69.5, 63.4, 24.2, 13.8; **HRMS** (EI-MS) *m/z* calcd for C₂₁H₂₁N₃O₅ [M]⁺ 395.1481, found 395.1478.

3-(4-oxo-1,4-dihydroquinolin-2-yl)-3-(pyrimidin-2-yl)pentane-

2,4-dione (4r): Slightly yellow solid (37.9 mg, yield: 59%); mp 80– 82 °C; purification by silica gel chromatography (MeOH: DCM = 1:30, $\mathbf{R}_f = 0.2$); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.91 (d, J = 4.9Hz, 2H), 8.49 (dd, J = 8.0, 1.6 Hz, 1H), 7.55 – 7.44 (m, 2H), 7.41 (t,

J = 7.5 Hz, 1H), 6.60 (d, J = 8.5 Hz, 1H), 6.38 (s, 1H), 2.12 (s, 6H); ¹³C NMR (75 MHz,

Chloroform-*d*) δ 192.0, 178.8, 159.9, 159.1, 147.5, 141.4, 132.5, 126.6, 125.6, 124.5, 121.6, 117.1, 114.5, 109.7, 24.4; **HRMS** (EI-MS) *m*/*z* calcd for C₁₈H₁₆N₃O₃ [M+H]⁺ 322.1192, found 322.1190.

Diethyl 2-(5-methylpyrimidin-2-yl)-2-(4-oxo-1,4-dihydroquinolin-2-yl)malonate (4s):

Slightly yellow solid (36.4 mg, yield: 46%); mp 75–78 °C; purification by silica gel chromatography (Acetone:DCM= 1:5, \mathbf{R}_f = 0.20); ¹**H** NMR (300 MHz, Chloroform-*d*) δ 11.62 (s, 1H), 8.59 (d, J = 0.8 Hz, 2H), 8.30 (dd, J = 8.2, 1.5 Hz, 1H), 7.57 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.30 (ddd, J = 8.1, 7.0, 1.1

Hz, 1H), 6.17 (s, 1H), 4.39 – 4.27 (m, 4H), 2.39 – 2.29 (m, 3H), 1.24 (t, J = 7.1 Hz, 6H); ¹³C **NMR** (75 MHz, Chloroform-*d*) δ 178.5, 167.3, 162.4, 157.3, 146.5, 139.3, 132.1, 130.3, 125.9, 125.3, 124.0, 118.2, 112.9, 69.3, 63.5, 15.6, 13.8; **HRMS** (EI-MS) *m/z* calcd for C₂₁H₂₁N₃O₅ [M]⁺ 395.1481, found 395.1482.

Diethyl 2-(7-methoxy-4-oxo-1,4-dihydroquinolin-2-yl)-2-(5methylpyrimidin-2-yl)malonate (4t): White solid (59.6 mg, yield: 70%); mp 180–182 °C; purification by silica gel chromatography (Acetone:DCM=1:5, \mathbf{R}_f =0.25); ¹H NMR (300 MHz, Chloroform-*d*) δ 11.37 (s, 1H), 8.58 (d, *J* = 0.8 Hz, 2H),

8.20 (d, *J* = 9.0 Hz, 1H), 6.89 (dd, *J* = 9.0, 2.3 Hz, 1H), 6.70 (d, *J* = 2.3 Hz, 1H), 6.06 (d, *J* = 1.9 Hz, 1H), 4.32 (qd, *J* = 7.1, 0.8 Hz, 4H), 3.85 (s, 3H), 2.33 (t, *J* = 0.7 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.1, 167.4, 162.9, 162.5, 157.3, 146.0,

141.1, 130.2, 127.7, 119.8, 114.1, 113.0, 99.1, 69.3, 63.5, 55.7, 15.6, 13.8; **HRMS** (EI-MS) *m/z* calcd for C₂₂H₂₃N₃O₆ [M]⁺ 425.1587, found 425.1587.

Diethyl 2-(benzo[d]thiazol-2-yl)-2-(4-oxo-1,4-dihydroquinolin-2-

yl)malonate (4u): Slightly orange solid (24.4 mg, yield: 28%); mp 272–274 °C; purification by silica gel chromatography (Acetone:DCM=1:20, $\mathbf{R}_f = 0.25$); ¹H NMR (300 MHz, Chloroformd) δ 10.92 (s, 1H), 8.27 (dd, J = 8.2, 1.5 Hz, 1H), 8.04 – 7.96 (m, 1H), 7.89 (dd, J = 7.6, 1.5 Hz, 1H), 7.58 (ddd, J = 8.5, 6.9, 1.5 Hz,

1H), 7.51 – 7.36 (m, 3H), 7.36 – 7.25 (m, 1H), 6.19 (d, J = 1.8 Hz, 1H), 4.41 (q, J = 7.1 Hz, 4H), 1.30 (t, J = 7.1 Hz, 6H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.2, 165.9, 164.2, 151.2, 145.1, 138.9, 135.2, 132.0, 126.1, 125.7, 125.6, 124.9, 123.9, 123.1, 121.3, 117.9, 109.6, 64.0, 63.6, 13.5; HRMS (EI-MS) *m/z* calcd for C₂₃H₂₀N₂O₅S [M]⁺ 436.1093, found 436.1095.

diethyl 2-(5-(1,3-diethoxy-1,3-dioxopropan-2-yl)-6-methoxy-4-oxo-1,4dihydroquinolin-2-yl)-2-(pyrimidin-2-yl)malonate (4x):

Slightly yellow solid (46.7 mg, yield: 57%); mp 60–62 °C;
purification by silica gel chromatography (Acetone:DCM=
t 1:5, **R**_f = 0.3); ¹H NMR (500 MHz, Chloroform-*d*) δ 11.38,
8.77, 8.76, 7.39, 7.37, 7.33, 7.33, 7.32, 7.31, 7.21, 6.05, 6.05,

4.37, 4.36, 4.36, 4.35, 4.35, 4.34, 4.33, 4.33, 4.32, 4.32, 4.23, 4.23, 4.22, 4.21, 4.21, 4.20, 4.19, 4.18, 4.18, 4.17, 3.82, 1.28, 1.26, 1.26, 1.25, 1.24, 1.24, 1.23; ¹³C NMR (126 MHz, Chloroform-*d*) δ 211.0, 180.2, 169.2, 167.2, 165.2, 157.3, 154.7, 144.7, 135.5, 123.7, 122.6,

120.5, 119.8, 118.8, 113.3, 69.6, 69.1, 63.6, 61.1, 57.4, 53.9, 49.8, 31.9, 29.8, 29.4, 14.3, 13.9; **HRMS** (EI-MS) *m/z* calcd for C₂₈H₃₁N₃O₁₀ [M]⁺ 569.2009, found 569.2010.

7. Single crystal X-ray diffraction data

Single-crystal X-ray dirffraction data were collected using an Bruker SMART APEX2 ULTRA and a APEX II CCD area detector with a multilayer-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) generated by a rotating anode. Data collection, data reduction, and semiempirical absorption correction were carried out using the software package APEX2.* All of the calculations for the structure determination were carried out using the SHELXTL package.** All non-H atoms were refined anisotropically. All hydrogen atoms were included in calculated positions with isotropic thermal parameters 1.2 times those of attached atoms. The ellipsoids are drawn at the 50% probability level.

* APEX2 (Version 2009.1–0) Data Collection and Processing Software; Bruker AXS Inc.: Madison, Wisconsin, U.S.A., 2008.

** SHELXTL-PC (Version 6.22) Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc.: Madison, Wisconsin, U.S.A., 2001.

X-ray crystallographic data of 4a (CCDC No. 2295767)

Single-crystal sample (4a) was prepared in DMSO. The ethyl group residue shows a disorder (Figure S5).

Figure S5. X-ray crystal structure of 4a. The main residue disorder is 50%.

 Table S3. Crystal data and structure refinement for 4a.

Identification code	4a	
Empirical formula	C20 H19 N3 O5	
Formula weight	381.38	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.7958(3) Å	α= 84.9440(10)°.
	b = 13.0685(4) Å	β= 84.5000(10)°.
	c = 16.1565(5) Å	$\gamma = 86.6780(10)^{\circ}.$
Volume	1839.12(10) Å ³	

Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

4 1.377 Mg/m³ 0.101 mm⁻¹ 800 0.502 x 0.483 x 0.475 mm³ 1.566 to 27.495°. -11<=h<=11, -16<=k<=16, -20<=l<=20 49692 8390 [R(int) = 0.0307]99.9 % Semi-empirical from equivalents 0.7455 and 0.7226 Full-matrix least-squares on F² 8390 / 0 / 523 1.036 R1 = 0.0470, wR2 = 0.1236R1 = 0.0510, wR2 = 0.1270n/a 0.571 and -0.360 e.Å⁻³

8. Computational Details

All calculations were conducted using the Gaussian 09¹ software package in the framework of the density functional theory (DFT).² Geometry optimizations were performed using the B3LYP functional³ with Grimme's D3 correction,⁴ and the 6-31G(d,p) basis set.⁵ Vibrational frequency calculations were carried out at the same level of theory as that used for geometry optimizations, wherein thermochemistry correction energy (G – E) was acquired. Transition states were located by the presence of one imaginary frequency and confirmed by intrinsic reaction coordinate (IRC) calculations.^{6,7} The single-point calculations of the optimized geometries were performed with B3LYP functional with Grimme's D3 correction.⁴ For all calculations, the solvation environment was considered with PCM⁸ solvation model with DMSO ($\varepsilon = 46.826$) as the solvent. Finally, to increase the accuracy of the integration grid, we used the int = ultrafine option for all types of calculations. Figures of three-dimensional molecular structures were prepared using CYLview.⁹

Final solution phase Gibbs free energies were calculated as follows:

$$G_{sol} = E_{sol} + (G - E) \tag{1}$$

 $\Delta G(sol) = \Sigma G(sol) \text{ for products - } \Sigma G(sol) \text{ for reactants}$ (2)

Structure	Electronic energies (Hatree/Particle)	Total Gibbs free energies (Hatree/Particle)
3a_I	-1235.713230	-1235.455069
3a_II	-1235.715730	-1235.458292
3a_III	-1235.726713	-1235.469812
3a_IV	-1235.714441	-1235.457292
Indole_I	-1122.364858	-1122.115135
Indole_II	-1122.340011	-1122.087335
Indole_III	-1122.352327	-1122.102334
Indole_IV	-1122.342953	-1122.092905
Int A	-1235.079911	-1234.837614
TS1	-1235.04095	-1234.801510
Int B	-1235.041865	-1234.800026
TS2	-1235.033091	-1234.792529
Int C	-1235.084848	-1234.842534

Table S3. Calculated electronic energies at the B3LYP/6-31G(d,p)/PCM level of theory.

Figure S6. Calculated relative Gibbs free energies for tautomers of alkylated indole

Cartesian coordinates of the optimized structures

3a_I

С	-4.13363011	3.88516363	1.56432415
С	-3.53103912	2.73970614	1.02026871
С	-4.29780479	1.70895427	0.49988553
С	-5.70326268	1.80448670	0.51564398
С	-6.31579942	2.95212551	1.06127135
С	-5.51434904	3.98117803	1.58079397
Ν	-6.49668162	0.77244773	-0.00849801
С	-7.87484016	0.85479266	0.02907863
С	-8.50199563	1.94843707	0.54432637
С	-7.78886997	3.09062221	1.08774343
0	-8.35830914	4.09075632	1.53295668
С	-5.83558641	-0.29094708	-0.71512404
Ν	-5.63672287	-0.06540282	-2.01536937
С	-5.07734626	-1.07184670	-2.69934034
С	-4.71501104	-2.26781160	-2.08613775
С	-4.93001344	-2.35553794	-0.71183610
Ν	-5.48428987	-1.35947693	-0.01030120
С	-8.72631016	-0.31709733	-0.44535827
Н	-9.72743118	0.10108198	-0.59057291
С	-8.36603253	-0.99610371	-1.78472257
0	-8.06568804	-2.16771325	-1.84726177
0	-8.49390578	-0.29135040	-2.92125314
С	-8.59034405	1.14462011	-2.94283760

С	-8.81929237	-1.38173524	0.67652434
0	-8.03697816	-1.42033005	1.58882600
0	-9.86483232	-2.23794751	0.66256762
С	-10.80766176	-2.33960034	-0.41054044
Н	-3.52028077	4.68399073	1.96878243
Н	-2.44885400	2.65053258	1.00652057
Н	-3.81244258	0.82916964	0.09600857
Н	-6.02918924	4.84421773	1.98975474
Н	-9.58477224	1.98601195	0.57758337
Н	-4.92747847	-0.90884203	-3.76343538
Н	-4.28045729	-3.08634797	-2.64799873
Н	-4.65357746	-3.24401046	-0.14962565
Н	-8.80945920	1.39824978	-3.98006940
Н	-9.39339952	1.51572687	-2.30113235
Н	-7.63582789	1.58273090	-2.64417268
Н	-11.59986926	-2.98896095	-0.03687858
Н	-11.24950703	-1.37045567	-0.66959590
Н	-10.34657782	-2.78888339	-1.29199963

3a_II

С	-4.14757074	4.05685705	1.23063735
С	-3.47832425	2.85768959	0.94014523
С	-4.17964453	1.72245083	0.56576351
С	-5.58377837	1.76285131	0.46228981
С	-6.26137110	2.95588388	0.77984257
С	-5.52855608	4.09368698	1.15541196
Ν	-6.31415336	0.60496324	0.11184647

С	-7.71027730	0.61560793	0.18679900
С	-8.39160047	1.75003573	0.48765204
С	-7.73929479	3.02231493	0.75801407
0	-8.36374543	4.05787239	0.99260205
С	-5.63874036	-0.43274870	-0.60644306
Ν	-4.96871139	-0.05114307	-1.69533804
С	-4.38280831	-1.02272643	-2.39590880
С	-4.46813518	-2.36685659	-2.02685237
С	-5.17283615	-2.63978715	-0.86098433
Ν	-5.74886850	-1.67509671	-0.12777782
С	-8.44096879	-0.70136721	-0.03321446
Н	-7.87550819	-1.48087963	0.48257061
С	-9.86168784	-0.65471177	0.54201832
0	-10.83992522	-0.54890418	-0.15891816
0	-10.01254892	-0.76836281	1.87798169
С	-8.89523735	-0.88290928	2.77281981
С	-8.46683064	-1.07818848	-1.52835498
0	-8.07110475	-0.33110777	-2.38733324
0	-8.84350689	-2.33072124	-1.86549279
С	-9.43284746	-3.25297082	-0.94035386
Н	-3.58644272	4.93941187	1.52065449
Н	-2.39610824	2.80775359	1.01493754
Н	-3.64058212	0.80700525	0.35717697
Н	-6.09693541	4.98857348	1.38593702
Н	-9.47394654	1.74048879	0.52492514
Н	-3.83871760	-0.71402521	-3.28554457
Н	-4.00636630	-3.15205857	-2.61354815

Н	-5.27687163	-3.65493320	-0.48521080
Н	-9.33089443	-0.92698350	3.77083581
Н	-8.32492282	-1.79981875	2.58967662
Н	-8.23668405	-0.01444427	2.69826570
Н	-9.43451273	-4.21574612	-1.45239108
Н	-8.84635677	-3.34736629	-0.01933570
Н	-10.45679650	-2.95878897	-0.70230124

3a_III

С	-9.26218357	2.30599645	0.44477972
С	-9.18858030	0.94998460	0.09107617
С	-7.96546525	0.32548704	-0.09767280
С	-6.76941005	1.05536544	0.05924829
С	-6.83666673	2.41635153	0.43113215
С	-8.09024303	3.02226524	0.61337185
Ν	-5.51076778	0.45266802	-0.10196091
С	-4.33723401	1.18610468	0.07951169
С	-4.37316152	2.49704961	0.43547971
С	-5.61088987	3.22119570	0.65389481
0	-5.65241790	4.41081775	0.98233618
С	-5.40849317	-0.94036618	-0.39689254
Ν	-5.85759966	-1.33577070	-1.59075630
С	-5.72071960	-2.63948110	-1.86476070
С	-5.12545755	-3.53140952	-0.97593255
С	-4.70992417	-3.00026743	0.24433902

Ν	-4.85979179	-1.70756045	0.55039364
С	-3.06058919	0.47965491	-0.17846405
С	-2.18394796	0.05572783	0.88331917
С	-2.69480437	0.10963787	-1.46260549
0	-1.61074291	-0.57899964	-1.74233006
0	-1.13569052	-0.60163389	0.69527667
0	-3.47881320	0.44376544	-2.48008438
С	-3.17844970	-0.10423077	-3.77472125
0	-2.57421762	0.40793301	2.11171779
С	-1.74032267	-0.04205620	3.19200227
Н	-10.22692359	2.78231084	0.58844923
Н	-10.09922328	0.37204993	-0.03763776
Н	-7.93873778	-0.71906681	-0.37727537
Н	-8.08826364	4.06951827	0.89717807
Н	-3.44234464	3.03945909	0.54284035
Н	-6.09442373	-2.96925158	-2.83190802
Н	-5.00195812	-4.58135053	-1.21494111
Н	-4.25037069	-3.62566975	1.00649166
Н	-3.95398683	0.28557863	-4.43208591
Н	-2.18987435	0.21446088	-4.11272036
Н	-3.21857723	-1.19649391	-3.74636760
Н	-2.21060938	0.34091278	4.09693985
Н	-1.69602151	-1.13399578	3.21381044
Н	-0.72621103	0.35171031	3.08787486
Н	-1.17230431	-0.74130125	-0.82634697

3a_IV

С	-9.53624288	1.86131059	0.80542718
С	-9.35155367	0.51576627	0.45659014
С	-8.08240496	-0.00272814	0.24456412
С	-6.95143962	0.82715811	0.37589055
С	-7.13083271	2.18133971	0.73352789
С	-8.42751610	2.67849376	0.93971222
Ν	-5.63748954	0.33965639	0.19630878
С	-4.53363591	1.20102948	0.26388893
С	-4.68723715	2.50529296	0.60851114
С	-5.97808755	3.09733367	0.91381093
Ο	-6.11670256	4.27193666	1.26391946
С	-5.37758096	-1.05239766	0.19760380
Ν	-5.89000282	-1.79712330	-0.78130522
С	-5.61471301	-3.10619862	-0.73734765
С	-4.81943578	-3.67459661	0.25549819
С	-4.33597999	-2.80547230	1.22922809
Ν	-4.62747478	-1.50062958	1.21909505
С	-3.20448396	0.67794466	-0.16530993
С	-2.26757797	0.35884949	0.78779429
0	-2.58310751	0.12393636	2.06678465
Н	-3.48667630	-0.27990312	2.06846287
С	-2.91155922	0.58640210	-1.60111628
Ο	-1.87963474	0.20808821	-2.12375906
0	-4.01068015	0.94914905	-2.32592271
С	-3.85967170	0.84406647	-3.74565461
0	-0.97691510	0.25667624	0.49992756

С	-0.10379347	-0.34011386	1.47234743
Н	-10.53532450	2.25367713	0.96662109
Н	-10.21084518	-0.13870329	0.34222637
Н	-7.97113385	-1.03629861	-0.05055561
Н	-8.51038082	3.72516205	1.21320458
Н	-3.82105202	3.15498986	0.60881858
Н	-6.03854822	-3.71153737	-1.53529456
Н	-4.58992551	-4.73323956	0.27011594
Н	-3.70633478	-3.15249207	2.04470440
Н	-4.81214529	1.16608247	-4.16733155
Н	-3.04703850	1.48451139	-4.09985496
Н	-3.64038909	-0.18677620	-4.03925000
Н	0.86395138	-0.40724152	0.97649296
Н	-0.02977869	0.28250644	2.36725867
Н	-0.45293912	-1.33680726	1.75636641

Indole_I

С	-6.36131062	5.01746576	-0.60794264
С	-5.27595690	4.22993430	-1.02813850
С	-5.30146310	2.83931820	-0.94822981
С	-6.45448535	2.23933565	-0.42958150
С	-7.55234409	3.02356434	0.00206458
С	-7.50386505	4.42060000	-0.09103070
N	-6.78504793	0.88329387	-0.19398283
С	-8.08345379	0.84610175	0.36402738
С	-8.55365079	2.11850565	0.48222075

С	-5.93034359	-0.20396263	-0.37140634
Ν	-6.24503683	-1.33951020	0.26795702
С	-5.39117447	-2.35488185	0.14462531
С	-4.22747343	-2.27005292	-0.61517199
С	-4.01385514	-1.05117368	-1.25436831
Ν	-4.85119800	-0.01903226	-1.14353590
С	-8.90879101	-0.37525382	0.65994859
Н	-9.81713371	0.03668322	1.11018123
С	-9.31748063	-1.07850542	-0.63915323
0	-8.61027853	-1.14035408	-1.61517495
0	-10.55326869	-1.64420485	-0.69651458
С	-11.47279761	-1.59085296	0.40350926
С	-8.34850147	-1.21591416	1.84513394
0	-7.94567365	-0.63407369	2.81837364
0	-8.51295928	-2.56178821	1.91234932
С	-8.57667455	-3.45726633	0.78997292
Н	-6.30406444	6.09873202	-0.68969788
Н	-4.39179331	4.71306865	-1.43331403
Н	-4.47093881	2.24097195	-1.28881083
Н	-8.34766236	5.01832800	0.24075516
Н	-9.53007770	2.38374245	0.86367363
Н	-5.65266979	-3.26463425	0.68058007
Н	-3.53620516	-3.09893838	-0.70537826
Н	-3.14059193	-0.89083850	-1.88361278
Н	-12.31019811	-2.22539414	0.11153347
Н	-11.03202434	-1.97995736	1.32665929
Н	-11.84079001	-0.57233421	0.56660238

Н	-8.12380392	-4.38875010	1.13575529
Н	-9.61145209	-3.65202054	0.50069810
Н	-8.02233080	-3.07795111	-0.06627624

Indole_II

С	-9.29257803	1.89609206	-0.71866238
С	-9.47376837	0.52585850	-0.46602163
С	-8.39561666	-0.35294468	-0.37842125
С	-7.11270808	0.17673423	-0.55004357
С	-6.91551218	1.55684297	-0.79882456
С	-8.01611641	2.41915743	-0.88614195
Ν	-5.83415821	-0.42574703	-0.49548248
С	-4.86431079	0.58633787	-0.72805028
С	-5.50214161	1.77485582	-0.91012518
С	-5.56874164	-1.75402911	-0.15803655
Ν	-6.57230613	-2.63761225	-0.26896155
С	-6.28686464	-3.89794383	0.06545672
С	-5.02142167	-4.30615190	0.48393953
С	-4.05557046	-3.30441389	0.55437690
Ν	-4.32395850	-2.03471231	0.25327916
С	-3.38884013	0.31051992	-0.84097853
Н	-3.21229743	-0.59064151	-1.42755338
С	-2.69099977	1.42669934	-1.62387323
0	-2.37239637	1.35132028	-2.78646108
0	-2.47312752	2.50987531	-0.84768649
С	-1.80015607	3.60313281	-1.50087315

С	-2.65727381	0.08327110	0.48729950
0	-1.57109126	-0.44639093	0.56045252
0	-3.33212535	0.58512855	1.53366851
С	-2.70063979	0.39267755	2.80863280
Н	-10.15801493	2.54870467	-0.78451962
Н	-10.47898003	0.13429923	-0.34129633
Н	-8.54097049	-1.40777094	-0.20180104
Н	-7.86525448	3.47723185	-1.07868028
Н	-5.01081652	2.71536467	-1.10707123
Н	-7.10709970	-4.60854461	-0.01605965
Н	-4.80427717	-5.33618179	0.73930190
Н	-3.03434473	-3.50976936	0.86872406
Н	-1.69867326	4.37947819	-0.74332943
Н	-0.81974396	3.28435033	-1.86292962
Н	-2.38940421	3.96322499	-2.34811352
Н	-3.35850576	0.86507961	3.53772756
Н	-2.59387161	-0.67460311	3.02195431
Н	-1.71073624	0.85582041	2.82278406

Indole_III

Charge=0, Multiplicity=1 C -4.51901590 4.10899327 -1.94005935 C -3.46318538 3.27775642 -1.52645831 C -3.69826233 2.04322531 -0.92461372 C -5.02799938 1.65076378 -0.74686722 C -6.10394463 2.47456586 -1.16527330 C -5.83989836 3.71492639 -1.76343933

Ν	-5.58431776	0.46856394	-0.22232195
С	-6.99941345	0.58129617	-0.27654181
С	-7.31668654	1.78370969	-0.84146264
С	-4.86142330	-0.64884550	0.20346078
N	-5.44188521	-1.84956229	0.04631637
С	-4.76285683	-2.89891037	0.50971652
С	-3.49851927	-2.78601807	1.08715471
С	-2.97445358	-1.49657372	1.14575558
N	-3.64566246	-0.42265940	0.72431226
С	-7.92425796	-0.42162457	0.26095153
С	-8.95108915	-0.94911158	-0.50956314
С	-7.81118151	-0.95174556	1.59586690
0	-9.79597842	-1.85769471	-0.06933608
0	-8.54747455	-1.84290568	2.07269311
Н	-9.47997382	-2.06412774	0.88409137
0	-9.12919418	-0.53826811	-1.76192137
С	-10.17523637	-1.16143556	-2.52675916
0	-6.82362209	-0.41090526	2.32949291
С	-6.61365498	-0.98598557	3.62756362
Н	-4.29756309	5.06748893	-2.40036325
Н	-2.43764476	3.60493383	-1.67057831
Н	-2.88479716	1.41735676	-0.58672306
Н	-6.66020464	4.35049921	-2.08434117
Н	-8.32540326	2.14255224	-0.98410689
Н	-5.24580521	-3.86806849	0.39665958
Н	-2.95150356	-3.64768209	1.45098952
Н	-1.98346307	-1.30969252	1.55567979

Н	-10.12795618	-0.68860626	-3.50713756
Н	-10.00529580	-2.23754757	-2.61439998
Н	-11.15121617	-0.98848733	-2.06626991
Н	-5.78406455	-0.42640881	4.05883195
Н	-7.50906983	-0.88916947	4.24619201
Н	-6.35654305	-2.04519559	3.53940893

Indole_IV

С	-9.39936668	2.15772953	-1.01813720
С	-9.60392581	0.92324351	-0.37696673
С	-8.53531385	0.11317748	0.00227122
С	-7.24739998	0.57628682	-0.27430204
С	-7.02145458	1.81129786	-0.92956780
С	-8.11425968	2.60771413	-1.29890567
Ν	-5.98718183	-0.01511229	-0.05821613
С	-4.97738041	0.87101123	-0.54452594
С	-5.60078496	1.96276907	-1.07245616
С	-5.78252644	-1.32435652	0.34078719
Ν	-6.60349457	-1.84060051	1.26739022
С	-6.36731160	-3.09970802	1.63614085
С	-5.30889354	-3.85623109	1.12887060
С	-4.53349140	-3.23846037	0.15519828
Ν	-4.77798623	-1.99186909	-0.26137174
С	-3.52790925	0.74638923	-0.26744789
С	-2.71049008	0.06765740	-1.14504746
С	-2.96742642	1.45552056	0.89223321

0	-3.17554046	-0.81243640	-2.03021803
0	-1.79584158	1.53986176	1.21471519
Н	-3.93224601	-1.28099744	-1.56428062
0	-1.39389431	0.25103140	-1.16387809
С	-0.59400445	-0.66288387	-1.92779503
0	-3.96570933	2.00941327	1.64760554
С	-3.51618827	2.69304804	2.82077568
Н	-10.25628563	2.76498065	-1.29420963
Н	-10.61616209	0.59432436	-0.16146088
Н	-8.69267206	-0.82463235	0.51744458
Н	-7.95224773	3.55818429	-1.79862602
Н	-5.08039297	2.82678986	-1.46013483
Н	-7.04709565	-3.51512086	2.37733367
Н	-5.11605036	-4.86972359	1.45811541
Н	-3.70579060	-3.75005927	-0.33003595
Н	0.43671059	-0.37890079	-1.71657899
Н	-0.77109662	-1.69715026	-1.61917017
Н	-0.80116695	-0.57018259	-2.99703877
Н	-4.41689453	3.07660540	3.30187896
Н	-2.98423690	2.01283889	3.49299650
Н	-2.84151092	3.51465090	2.56241462

Int A

С	-1.49348620	3.89066221	-0.34397407
С	-1.30323619	2.73784896	-1.11699979
С	-2.18889512	1.67139113	-1.05365675

С	-3.30820015	1.72820954	-0.19905878
С	-3.49753592	2.88740742	0.58908443
С	-2.58772822	3.95322781	0.49945646
Ν	-4.22488454	0.65131706	-0.07126554
С	-5.35305000	0.78783057	0.75460914
С	-5.54624520	1.88785542	1.53736859
С	-4.62729230	3.01282186	1.53577759
0	-4.79006746	4.00079172	2.25532145
С	-3.95900039	-0.65005884	-0.57686644
Ν	-3.50714035	-0.78279348	-1.82571550
С	-3.34482292	-2.03716649	-2.26183130
С	-3.66576677	-3.15167036	-1.49044183
С	-4.12447816	-2.89072558	-0.20019401
Ν	-4.24440841	-1.64785865	0.26888646
С	-6.38926801	-0.24978707	0.69689158
С	-7.03209454	-0.68769066	-0.55215492
0	-7.95642638	-1.47925031	-0.61553000
С	-6.91129671	-0.81455002	1.97491154
0	-7.25290951	-0.14600180	2.93018720
0	-6.93872804	-2.15589278	1.94803340
С	-7.48747918	-2.77540664	3.12672246
0	-6.49837875	-0.07684897	-1.63711780
С	-7.05966975	-0.46575191	-2.89976963
Н	-0.79416359	4.71826579	-0.40706569
Н	-0.45287614	2.66866825	-1.78924944
Н	-2.03489618	0.81122684	-1.68558529
Н	-2.78412765	4.81543343	1.12783795
Н	-6.43001614	1.94824069	2.15709659
-----	-------------	-------------	-------------
Н	-2.96263620	-2.14383756	-3.27472252
Н	-3.55854907	-4.16119608	-1.86881771
Н	-4.39691785	-3.68892208	0.48574592
Н	-7.44993781	-3.84733607	2.93584936
Н	-6.89438870	-2.51654004	4.00755727
Н	-8.51811871	-2.44823423	3.28404618
Н	-6.49654631	0.08824388	-3.64981639
Н	-6.95018700	-1.54306535	-3.05204535
Н	-8.12166345	-0.21105749	-2.94370491
TS1			

С	-2.23174323	3.72800360	0.34255917
С	-2.80186707	2.60187986	0.95638706
С	-2.13397895	1.38889859	0.96622454
С	-0.87840439	1.29934142	0.34987318
С	-0.28751431	2.41878578	-0.28005845
С	-0.99075395	3.63178184	-0.26554256
С	1.05469833	0.01234456	-0.30248467
С	1.68307594	1.02000517	-0.94250579
С	1.04249170	2.33241932	-0.96171710
0	1.54813427	3.31200078	-1.50765706
С	1.25972854	-1.45107690	-0.02194846
С	-0.46099729	-1.25040814	0.64367629
Ν	-0.46822507	-1.56030437	2.00779402
С	-1.03256526	-2.70055344	2.33005584
С	-1.71515733	-3.50527717	1.39515785

С	-1.88480300	-2.97091011	0.10181712
Ν	-1.34070354	-1.83769832	-0.27067441
С	1.34544231	-2.44336039	-1.15926249
0	0.88956025	-3.55536665	-1.12828781
0	2.01935464	-1.91320654	-2.18876127
С	2.18156544	-2.76800627	-3.34267876
С	2.15926617	-1.83449131	1.13649168
0	2.38388138	-2.97214946	1.46482950
0	2.63514037	-0.74838313	1.75225860
С	3.41354150	-0.99067160	2.94214912
Н	-2.76515442	4.67126540	0.34479905
Н	-3.77381642	2.67903422	1.43050354
Н	-2.56302209	0.51674099	1.44474176
Н	-0.52761912	4.48315680	-0.74978029
Н	2.63307855	0.88525284	-1.43775718
Н	-0.98477439	-2.99081889	3.37635426
Н	-2.15541509	-4.45179378	1.67903973
Н	-2.51388508	-3.47499632	-0.62667583
Н	1.20489322	-3.03676662	-3.74723252
Н	2.74796369	-2.17828492	-4.05905922
Н	2.72281021	-3.67405498	-3.06699515
Н	3.72222691	-0.00721978	3.28765063
Н	2.79783674	-1.48996146	3.69179848
Н	4.27947256	-1.61179458	2.70926246
Ν	-0.14436184	0.13284248	0.32775580

Int B

С	-9.54828584	1.57180315	-1.94534451
С	-9.70932242	0.43901746	-1.12975059
С	-8.61782417	-0.14141058	-0.49983606
С	-7.34875833	0.42649352	-0.68380893
С	-7.16308125	1.57251989	-1.49406308
С	-8.28846309	2.12652193	-2.12209093
N	-6.20620358	-0.09734753	-0.11797507
С	-4.97857145	0.49429077	-0.21144161
С	-4.71060144	1.59637391	-0.94288493
С	-5.81873317	2.21235474	-1.67792035
0	-5.67654293	3.20816717	-2.39093811
С	-5.90858535	-0.98301525	1.01539384
Ν	-6.05356352	-2.37432305	0.70122277
С	-6.31721068	-3.16633633	1.70535522
С	-6.59027837	-2.69612960	3.01762677
С	-6.69764483	-1.29167651	3.18533589
N	-6.43116900	-0.43853100	2.23393467
С	-4.34464892	-0.46560130	0.77362059
С	-3.63144185	0.08511163	1.99921056
0	-3.71423848	-0.36689302	3.11461257
0	-2.84629688	1.11257092	1.63567397
С	-2.06002552	1.69007434	2.69856343
С	-3.49573651	-1.59788146	0.18423217
0	-2.86175272	-2.37247321	0.86366187
0	-3.57240679	-1.62258173	-1.14941163
С	-2.89398957	-2.72521154	-1.78178104

Η	-10.41158973	2.01163874	-2.43484373
Н	-10.69654665	0.00816938	-0.99087199
Н	-8.72718341	-1.02208543	0.12471177
Н	-8.12914703	3.00281265	-2.74181915
Н	-3.72595501	2.04094958	-0.98663616
Н	-6.36175428	-4.23356295	1.49010088
Н	-6.78840640	-3.38142079	3.83313696
Н	-7.04545716	-0.87928886	4.13154354
Н	-1.48776820	2.49212132	2.23472494
Н	-2.71396973	2.08271231	3.48072015
Н	-1.39723955	0.93663563	3.13082738
Н	-3.03821086	-2.57957335	-2.85125842
Н	-1.83177162	-2.71724845	-1.52638292
Н	-3.33503958	-3.67024778	-1.45544984

TS2

С	-2.44644668	3.22743807	0.37661747
С	-2.71560111	2.12553871	1.20323143
С	-1.83787016	1.05651021	1.25610787
С	-0.68670264	1.07317596	0.44911020
С	-0.41354350	2.17067510	-0.40443826
С	-1.30203463	3.24983697	-0.40993233
С	1.26519501	-0.01687187	-0.39447963
С	1.62722136	0.97944874	-1.23272667
С	0.80621991	2.18667720	-1.26917247
0	1.06920280	3.14817793	-1.98900685

С	1.56451548	-1.48340061	-0.18682727
С	0.14151497	-1.66631883	0.48661273
Ν	0.13039590	-2.20121467	1.77488100
С	-1.00465278	-2.71840975	2.17425878
С	-2.14900709	-2.79911937	1.35096087
С	-1.98865533	-2.40498006	0.01295397
Ν	-0.86670064	-1.90027006	-0.45040929
С	1.79061161	-2.36240420	-1.41204700
Ο	1.30421575	-3.44505990	-1.58144213
Ο	2.65833581	-1.76403827	-2.24400749
С	3.03036904	-2.52536148	-3.41368045
С	2.69231009	-1.78181365	0.82019744
Ο	3.28876491	-2.82551247	0.85758200
Ο	2.90806086	-0.74315401	1.62958044
С	3.86462971	-0.96175790	2.68737038
Н	-3.13274914	4.06592480	0.35735489
Н	-3.61065711	2.11583930	1.81462915
Н	-2.02093259	0.20674280	1.90209254
Н	-1.06852097	4.09456573	-1.04703830
Н	2.46970925	0.89061472	-1.90283491
Н	-1.02809506	-3.11918676	3.18525183
Н	-3.07939903	-3.21489449	1.71414661
Н	-2.79475661	-2.53486625	-0.70454171
Н	2.14741838	-2.74335496	-4.01582623
Н	3.72535443	-1.89319438	-3.96115405
Н	3.50670873	-3.45987739	-3.11438264
Н	3.90869495	-0.02261809	3.23352121

Н	3.52279964	-1.77187146	3.33296415
Н	4.83992320	-1.21517407	2.26966473
Ν	0.23501786	0.05598162	0.50221968

Int C

С	-0.95994759	3.84628898	-0.50517995
С	-0.74899594	2.82267484	-1.44598734
С	-1.56863027	1.70538013	-1.46004692
С	-2.62383341	1.58706968	-0.52590772
С	-2.83048004	2.62851854	0.42017091
С	-1.99514906	3.74825728	0.42064860
Ν	-3.40352985	0.46172900	-0.58045324
С	-4.40325134	0.32194532	0.29030523
С	-4.72179180	1.27494995	1.26195020
С	-3.94122531	2.48935928	1.37821170
0	-4.20596589	3.35939279	2.22980733
С	-6.64468953	-0.49325154	-0.42892158
Ν	-7.72925767	-0.96215132	0.19395820
С	-8.91170646	-0.57346869	-0.30114536
С	-9.01345031	0.26743856	-1.40452993
С	-7.81141895	0.70955569	-1.95827980
Ν	-6.62358822	0.34234586	-1.47296228
С	-5.27503579	-0.92910275	0.10982166
С	-4.60304284	-1.87671479	-0.91218423
0	-5.02407719	-2.13262392	-2.01292097
0	-3.48254870	-2.39383260	-0.37913801

С	-2.72312750	-3.23538680	-1.26121109
С	-5.48701021	-1.69227095	1.43689465
0	-5.39068344	-1.21517304	2.54380452
0	-5.82108949	-2.96695176	1.19082191
С	-6.16792428	-3.74487741	2.34970073
Н	-0.31239446	4.71786577	-0.50247786
Н	0.05996752	2.90974169	-2.16490830
Н	-1.43048886	0.90171033	-2.17549405
Н	-2.17943441	4.52574817	1.15486242
Н	-5.54661129	1.13263950	1.94710091
Н	-9.79635535	-0.94904736	0.20870395
Н	-9.97372112	0.57419172	-1.80334863
Н	-7.79822667	1.38441545	-2.81176992
Н	-1.86545442	-3.57295190	-0.67998093
Н	-3.32425800	-4.08540481	-1.59396902
Н	-2.39639260	-2.66565502	-2.13506755
Н	-6.39981435	-4.74091937	1.97432323
Н	-5.33207548	-3.77972517	3.05255033
Н	-7.03700281	-3.30670959	2.84664795

9. References

(1) Gaussian-09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.
Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J.
J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.
Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

(2) R. G. Parr, Y. Weitao, Density-Functional Theory of Atoms and Molecules; Oxford University Press, 1989.

(3) a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.

- (4) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- (5) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213.
- (6) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- (7) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.

- (8) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
- (9) C. Y. Legault, CYLview, 1.0b, Université de Sherbrooke, 2009 (http://www.cylview.org).

10. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

¹³C NMR spectrum of **1e** (75 MHz, Chloroform-*d*)

¹H NMR spectrum of **1i** (300 MHz, Chloroform-*d*)

¹⁹F NMR spectrum of **1i** (471 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1j** (75 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1r** (75 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1s** (75 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1t** (75 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1u** (75 MHz, Chloroform-*d*)

¹³C NMR spectrum of **1v** (75 MHz, Chloroform-*d*)

¹³C NMR of **3a** (75 MHz, Chloroform-*d*)

¹³C NMR of **3b** (75 MHz, Chloroform-*d*)

¹³C NMR of **3c** (75 MHz, Chloroform-*d*)

¹³C NMR of **3d** (75 MHz, Chloroform-*d*)

¹³C NMR of **3e** (75 MHz, Chloroform-*d*)

¹H NMR of **3i** (300 MHz, Chloroform-*d*)

-60 -66 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -1 11 (ppm)

¹⁹F NMR of **3i** (471MHz, Chloroform-*d*)

¹³C NMR of **3**j (75 MHz, Chloroform-*d*)

¹³C NMR of **3k** (75 MHz, Chloroform-*d*)

¹³C NMR of **3**I (75 MHz, Chloroform-*d*)

 $^{13}\mathrm{C}$ NMR of **3m** (75 MHz, Chloroform-*d*)

¹³C NMR of **3n** (75 MHz, Chloroform-*d*)

 $^{13}\mathrm{C}$ NMR of **3o** (75 MHz, Chloroform-*d*)

¹³C NMR of **3p** (75 MHz, Chloroform-*d*)

¹³C NMR of **3q** (75 MHz, Chloroform-*d*)

¹³C NMR of **3s** (75 MHz, Chloroform-*d*)

¹³C NMR of **3t** (75 MHz, Chloroform-*d*)

¹³C NMR of **3u** (75 MHz, Chloroform-*d*)

¹³C NMR of mixture of **3v** and **3v'** (75 MHz, Chloroform-*d*)

¹³C NMR of **3w** (75 MHz, Chloroform-*d*)

¹³C NMR of **3**x (75 MHz, Chloroform-*d*)

¹³C NMR of **3**y (126 MHz, Chloroform-*d*)

¹³C NMR of **4a** (75 MHz, Chloroform-*d*)

¹³C NMR of **4b** (75 MHz, Chloroform-*d*)

¹³C NMR of **4c** (75 MHz, Chloroform-*d*)

¹³C NMR of **4d** (75 MHz, Chloroform-*d*)

¹³C NMR of **4e** (75 MHz, Chloroform-*d*)

____62.00

¹H NMR of **4f** (300 MHz, Chloroform-*d*)

¹H NMR of **4g** (300 MHz, Chloroform-*d*)

¹H NMR of **4h** (300 MHz, Chloroform-*d*)

¹H NMR of **4j** (300 MHz, Chloroform-*d*)

¹H NMR of **4k** (300 MHz, DMSO- d_6)

¹H NMR of **4**I (300 MHz, Chloroform-*d*)

¹H NMR of **4n** (300 MHz, Chloroform-*d*)

¹H NMR of **4p** (300 MHz, Chloroform-*d*)

¹H NMR of **4s** (300 MHz, Chloroform-*d*)

¹H NMR of **4t** (300 MHz, Chloroform-*d*)

¹H NMR of **4u** (300 MHz, Chloroform-*d*)

¹H NMR of **4x** (500 MHz, Chloroform-*d*)

11. Copies of HRMS Spectra

HRMS spectra of 1j

HRMS spectra of 1t

HRMS spectra of 1u

HRMS spectra of 1v

HRMS spectra of 1x

HRMS spectra of 3a

HRMS spectra of 3c

HRMS spectra of 3e

HRMS spectra of 3g

HRMS spectra of 3i

HRMS spectra of 3k

HRMS spectra of 3m

HRMS spectra of 30

HRMS spectra of 3q

HRMS spectra of 3t

HRMS spectra of 3u

HRMS spectra of 3v

HRMS spectra of 3x

HRMS spectra of 4a

HRMS spectra of 4c

0-

m/z

HRMS spectra of 4e

HRMS spectra of 4g

HRMS spectra of 4j

HRMS spectra of 41

HRMS spectra of 4n

HRMS spectra of 4p

HRMS spectra of 4r

HRMS spectra of 4t

HRMS spectra of 4x

HRMS spectra of 6

HRMS spectra of 6'

HRMS spectra of 11