Electronic Supporting Information:

Photo-mediated controllable alkylation/difunctionalization of *N*-heteroaromatics *via* nucleohomolytic substitution of alkylboronic esters with *N*-nitrosamines

Ji-Wei Sang,^{a,b‡} Yu Zhang,^{a,c‡} Dingding Xia,^{a,b} Zhimin Hu,^{b*} Jinxin Wang,^{b*} Wei-Dong Zhang^{a,b,c,d*}

[a] State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research

and Evaluation of Innovative Drug, Henan Normal University, Henan 453007, P. R. China.

[b] Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China.

[c] Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.

[d] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China.

Contents

1. General information	S3
2. Synthesis of starting materials	S4
3. General experimental procedure	
4. Synthetic applications	S11
5. Optimization of the reaction conditions	S13
6. Mechanistic investigations.	S18
7. Characterization data of new compounds	S29
8. NMR spectra data	S66
9. Reference.	S186

1. General information.

Commercial reagents were used without purification and specific reactions were carried out under argon atmosphere with exclusion of moisture from reagents using standard techniques for manipulating air-sensitive compounds. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. Visualization of the developed chromatogram was performed by UV light or aqueous KMnO₄ stain. NMR-spectra were recorded on DRX-500 (500 MHz) spectrometer and calibrated by using residual undeuterated chloroform ($\delta = 7.26$ ppm for ¹H, 77.16 ppm for ¹³C), DMSO $d_6 (\delta = 2.50 \text{ ppm for } {}^{1}\text{H}, 39.52 \text{ ppm for } {}^{13}\text{C}), \text{CD}_3\text{OD} (\delta = 3.31 \text{ ppm for } {}^{1}\text{H}, 49.00 \text{ ppm for } {}^{13}\text{C})$ as internal references. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, tt = triplet of triplets, brs = broad singlet), coupling constant (Hz), and integration. High resolution mass spectra were obtained from the Agilent MSD-Trap-XCT. Kessil lamps were purchased from Tansoole, with precise wavelengths (390 nm). Ultraviolet-visible absorption experiments were performed using a METASH UV-8000S (T) spectrophotometer. Thin-layer chromatography (TLC) was performed on 0.25 mm silica gel F-254 plates (Yantai Jiangyou).

2. Synthesis of starting materials.

2.1. Synthesis of quinoxalinone substrates.^[1]

To a solution of *o*-phenylenediamine (10 mmol, 1.0 equiv.) in EtOH (20 mL), ethyl glyoxalate (1.2 equiv.) was added. The mixture was heated at 85 °C for 1 h, then allowed to cool to room temperature and stirred overnight. After the reaction was complete, the product was collected by filtration. The crude product was washed by EtOH for 3 times and then dried to obtain **A**'.

Compound A' (10 mmol, 1.0 equiv.) and K_2CO_3 (1.5 equiv.) were dissolved in DMF (20 mL) and placed in a round-bottom flask equipped with a magnetic stir bar, then organic halide (R₂X, 2.0 equiv.) was added. The reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, it was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 10/1-3/1, v/v) to afford product **A**.

2.2. Synthesis of azauracil substrates.^[2-3]

6-Azauracil (10 mmol, 1.0 equiv.) and K₂CO₃ (0.5 equiv.) were dissolved in DMF (20 mL) and placed in a round-bottom flask equipped with a magnetic stir bar, then organic halide (R₁X, 1.0 equiv.) was added. The reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, it was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 10/1–1/1, v/v) to afford product **D**'.

D' (5 mmol, 1.0 equiv.) and K₂CO₃ (0.5 equiv.) were dissolved in DMF (10 mL) and placed in a roundbottom flask equipped with a magnetic stir bar, then organic halide (R₂X, 1.0 equiv.) was added. The reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, it was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 10/1-3/1, v/v) to afford product **D**.

6-Azauracil (10 mmol, 1.0 equiv.), 18-crown-6-ether (0.1 equiv.) and K₂CO₃ (1.0 equiv.) were dissolved in acetone (30 mL) and placed in a round-bottom flask equipped with a magnetic stir bar, then organic halide (R₁X, 1.0 equiv.) was added. The reaction mixture was stirred at 85 °C overnight. Upon completion of the reaction, it was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 10/1–1/1, v/v) to afford product **D** and **D''**.

2.3. Synthesis of alkylboronic pinacol esters.

R-CO₂H 1. *N*-hydroxyphthalimide DIC, DMAP DCM, rt, overnight 2. B₂Pin₂, DMAC blue LEDs, 14 h then pinacol, Et₃N

The alkylboronic pinacol esters from alkyl acids were prepared following the procedures reported in the literature.^[4]

$$R-CO_{2}H + Bpin \qquad \begin{array}{c} Ir(ppy)_{2}(dtbbpy)PF_{6} \\ Cs_{2}CO_{3}, Blue LEDs \\ DMAC, 35 \ ^{\circ}C, 62 \ h \end{array} \qquad \begin{array}{c} R \\ Bpin \end{array}$$

The alkylboronic pinacol esters from alkyl acids were prepared following the procedures reported in the literature.^[5]

(1)
$$R-OH \xrightarrow{1.TCDI, DMAP}$$

 $DCM, rt, overnight$
(2) $R-OH \xrightarrow{1.ortho-iodophenyl chlorothionoformate,}{DCM, 0 °C to rt, overnight}$
 $2. B_2cat_2, TTMSS
DMAC/dioxane, blue LEDs then pinacol, Et_3N R-Bpin R-Bpin then pinacol, Et_3N R-Bpin R-Bpin then pinacol, Et_3N R-Bpin then pinacol, Et_3N R-Bpin then pinacol, Et_3N R-Bpin then pinacol, Et_3N R-Bpin R-B$

The alkylboronic pinacol esters from alkyl alcohols were prepared following the procedures reported in the literature.^[6]

R-CHO
$$\begin{array}{c}
1. \text{ NH}_4\text{OAc, ethyl acetoacetate} \\
\text{EtOH, reflux, overnight}
\end{array}
\begin{array}{c}
2. \text{ B}_2\text{cat}_2, \textit{ fac-Ir(ppy)}_3 \\
DMF, 390 \text{ nm LEDs} \\
\text{then pinacol, Et}_3\text{N}
\end{array}$$

The alkylboronic pinacol esters from alkyl aldehydes were prepared following the procedures reported in the literature.^[7]

The alkylboronic pinacol esters from alkyl alkenes were prepared following the procedures reported in the literature.^[8]

3. General experimental procedure.

3.1. Procedure A:

The reaction was conducted in an oven-dried 3-mL vial equipped with a stir bar. A1 (16.0 mg, 0.1 mmol), B1 (42.0 mg, 0.2 mmol, 2.0 equiv.) and C1 (23.5 mg, 0.2 mmol, 2.0 equiv.) were sequentially added in DMSO (1.0 mL). The mixture was stirred at room temperature with cooling fans under irradiation of 40 W 390 nm LED lamps (100% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away). Upon completion, the reaction mixture was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 8/1, v/v) to afford product 1 as a yellowish powder (19.4 mg, 80% yield). Unless otherwise noted, 15–29, 48–58 were synthesized under the same reaction conditions.

Figure S1. Representative pictures of reaction set-up.

The reaction was conducted in an oven-dried 3-mL vial equipped with a stir bar. **A1** (32.0 mg, 0.2 mmol), **B1** (21.0 mg, 0.1 mmol) and **C1** (23.5 mg, 0.2 mmol, 2.0 equiv.) were sequentially added in MeOH (1.0 mL) under argon atmosphere. The mixture was stirred at room temperature with cooling fans under irradiation of 390 nm LED lamps (25% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away). Upon completion, the reaction mixture was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 8/1, v/v) to afford product **2** as a yellowish powder (22.9 mg, 84% yield). Unless otherwise noted, **2–14** were synthesized under the same reaction conditions. *Note: these compounds are prone to decomposition in light, air and acidic environments. To ensure a high yield, column chromatography should be done swiftly to prevent decomposition of the product on silica. The product should not be exposed to light, air and acidic conditions. These compounds showed slight decomposition in CDCl₃.*

The reaction was conducted in an oven-dried 3-mL vial equipped with a stir bar. **D1** (29.5 mg, 0.1 mmol), **B1** (63.0 mg, 0.3 mmol, 3.0 equiv.) and **C1** (35.5 mg, 0.3 mmol, 3.0 equiv.) were sequentially added in DMSO (0.5 mL). The mixture was stirred at room temperature with cooling fans under irradiation of 40 W 390 nm LED lamps (100% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away). Upon completion, the reaction mixture was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 10/1, v/v) to afford product **33** as a yellowish powder (32.3 mg, 86% yield). Unless otherwise noted, **30–47** were synthesized under the same reaction conditions.

4. Synthetic applications.

TsN₃ (1.3 equiv.) was slowly added to a solution of **18** (26.6 mg, 0.1 mmol) and CuTc (5 mol%) in toluene (1 mL) under argon atmosphere at room temperature. The reaction was stirred for 12 h. Upon completion, the reaction mixture was quenched by adding water. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 5/1, v/v) to afford product **59** as a white powder (39.4 mg, 85% yield).^[9]

m-CPBA (2.5 equiv.) was slowly added to a solution of **35** (32.6 mg, 0.1 mmol) in DCM (1 mL) at room temperature. The reaction was stirred for 12 h. Upon completion, the reaction mixture was quenched by adding saturated NaHCO₃ solution. The mixture was then extracted with EtOAc, and the combined organic layers were washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum using a rotary evaporator. The resulting residue was purified by flash column chromatography using a PE/EtOAc system (PE/EtOAc, 8/1, v/v) to afford product **60** as a colorless oil (24.2 mg, 71% yield).^[9]

5. Optimization of the reaction conditions.

Reaction conditions: **A1** (0.1 mmol), **B1** (0.15 mmol), morpholine (0.15 mmol), [Ir] (1 mol%), 456 nm Kessil LEDs, DMF (1 mL) at room temperature under argon atmosphere with cooling fan for 2 h. The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.^[10]

A1	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	390 nm Kessil LEDs (100% intensity) solvent, air, 2 h	$- \bigvee_{\substack{N \\ Me}}^{N} + \bigvee_{\substack{I \\ Me}}^{I}$
entry	y ^a	solvent	yield 1/2 (%) ^b
1		DCM	40/10
2		DCE	35/9
3		THF	38/12
4		MeCN	35/10
5		acetone	32/10
6		DMSO	69/0
7		Et ₂ O	29/8
8		EA	20/10
9		PhMe	24/9
10		MeOH	40/23
11		$DMSO/H_2O = 1:1$	8/0
12		DMF	8/0

^{*a*} Reaction conditions: **A1** (0.1 mmol), **B1** (0.15 mmol), **C1** (0.15 mmol), 390 nm Kessil LEDs, solvents (1 mL) at room temperature with cooling fan for 2 h. ^{*b*}The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

C	N N Me A1	+	C1	390 nm K	essil LEDs (100% intensity DMSO, air, 2 h	V) N N Me 1	○
	entry ^a		var	riation		yield (%) ^b	
	1		r	none		82	
	2		0.	5 mL		77	
	3		2	l mL		79	
	4		42	27 nm		63	
	5		45	56 nm		46	
	6		A1/B1/	C1 = 2/1/2		81	
	7		with	nout C1		ND	

^{*a*} Reaction conditions: **A1** (0.1 mmol), **B1** (0.2 mmol), **C1** (0.2 mmol), 390 nm Kessil LEDs, DMSO (1 mL) at room temperature with cooling fan for 2 h. ^{*b*} The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

^{*a*} Reaction conditions: **A1** (0.1 mmol), **B** (0.2 mmol), **C** (0.2 mmol), 390 nm Kessil LEDs, DMSO (1 mL) at room temperature with cooling fan for 2 h. ^{*b*} The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

^{*a*} Reaction conditions: A1 (0.1 mmol), B1 (0.15 mmol), C1 (0.15 mmol), 390 nm Kessil LEDs, MeOH (1 mL) at room temperature with cooling fan. ^{*b*} The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

C	N N Me A1	+ + + Bpin +	C1	390 nm Kessil LEDs (25% inter MeOH, Ar, 0.5 h	nsity)	0
	entry ^a		variati	on	yield (%) ^b	
	1		none	:	87	
	2		EtOH	I	60	
	3		t-BuO	Н	50	
	4		<i>n</i> -BuO	Н	41	
	5		<i>i</i> -PrOl	Н	45	
	6		<i>n</i> -PrO	Н	46	
	7		isopenta	nol	10	
	8		HFPI	[7	

^{*a*} Reaction conditions: **A1** (0.2 mmol), **B1** (0.1 mmol), **C1** (0.2 mmol), 390 nm Kessil LEDs, solvent (1 mL) at room temperature with cooling fan under argon atmosphere for 0.5 h. ^{*b*} The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

^{*a*} Reaction conditions: **A1** (0.2 mmol), **B1** (0.1 mmol), **C1** (0.2 mmol), 390 nm Kessil LEDs, solvent (1 mL) at room temperature with cooling fan under argon atmosphere for 0.5 h. ^{*b*} The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Bn N N N N Bn	+ Hereit	+ (NO	390 nm Kessil LEDs	
D1	B1	C1		33
entry ^a		solvent		yield (%) ^b
1		DCM		38
2		DCE		35
3		THF		33
4		MeCN		30
5		acetone		25
6		Et ₂ O		25
7		EA		29
8		DMC		30
9		PhMe		26
10		MeOH		28
11		DMSO		54
12		DMF		39
13		NMP		45
14		DMAC		36

^{*a*} Reaction conditions: **D1** (0.1 mmol), **B1** (0.15 mmol), **C1** (0.15 mmol), 390 nm Kessil LEDs, solvent (1 mL) at room temperature with cooling fan for 2 h. ^{*b*} The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Bn N Bn D1	+ $(\begin{array}{c} 0 \\ N \\ Bpin \end{array} + (\begin{array}{c} 0 \\ N \\ N \\ NO \end{array} \\ \hline \\ B1 \\ C1 \end{array} $ 390 nm Kessil LEDs DMSO, air, 2 h	Bn N H ON N Bn 33			
entry ^a	variation	yield (%) ^b			
1	none	54			
2	D1/B1/C1 = 1/2/2	65			
3	D1/B1/C1 = 1/3/3	70			
4	0.5 mL	60			
5	2 mL	38			
6	$0.5 \text{ mL DMSO} + \mathbf{D1/B1/C1} = 1/3/3$	90			
7	without C1	ND			

^{*a*}Reaction conditions: **D1** (0.1 mmol), **B1** (0.15 mmol), **C1** (0.15 mmol), 390 nm Kessil LEDs, DMSO (1 mL) at room temperature with cooling fan for 2 h. ^{*b*} The yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

6. Mechanistic investigations.

6.1. Radical trappling experiments.

The reaction was conducted in an oven-dried 3-mL vial equipped with a stir bar. A1 (32.0 mg, 0.1 mmol), B1 (21.0 mg, 0.1 mmol), C1 (23.5 mg, 0.2 mmol, 2.0 equiv.), TEMPO (47.0 mg, 3.0 equiv.) or BHT (66.2 mg, 3.0 equiv.) were sequentially added in MeOH (1.0 mL) under argon atmosphere. The mixture was stirred at room temperature with cooling fans under irradiation of 390 nm LED lamps (25% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away). Upon completion, the crude mixture was analyzed by ESI-MS.

The reaction was conducted in an oven-dried 3-mL vial equipped with a stir bar. **A1** (16.0 mg, 0.1 mmol), **B1** (42.0 mg, 0.2 mmol, 2.0 equiv.), **C1** (23.5 mg, 0.2 mmol, 2.0 equiv.), TEMPO (47.0 mg, 3.0 equiv.) or BHT (66.2 mg, 3.0 equiv.) were sequentially added in DMSO (1.0 mL). The mixture was stirred at room temperature with cooling fans under irradiation of 40 W 390 nm LED lamps (100% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away). Upon completion, the crude mixture was analyzed by ESI-MS.

6.2. Studies with radical initiators.

The reaction was performed in a 15 mL pressure tube, A1 (32.0 mg, 0.2 mmol), B1 (21.0 mg, 0.1 mmol), C1 (23.5 mg, 0.2 mmol, 2.0 equiv.) were dissolved in MeOH (1 mL) under argon atmosphere. Radical initiator was added and the tube was sealed. The reaction mixture was stirred at 70 °C for 0.5 h (oil bath as the heat source). Upon completion, the yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

The reaction was performed in a 15 mL pressure tube, A1 (16.0 mg, 0.1 mmol), B1 (42.0 mg, 0.2 mmol, 2.0 equiv.), C1 (23.5 mg, 0.2 mmol, 2.0 equiv.) were dissolved in DMSO (1 mL) under argon atmosphere. Radical initiator was added and the tube was sealed. The reaction mixture was stirred at 100 °C for 2 h (oil bath as the heat source). Upon completion, the yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

6.3. Ultraviolet-visible absorption experiments.

UV-vis absorption spectra of A1, B1, C1, B1+C1, A1+C1 and A1+B1+C1 in DMSO were recorded in screw-top 1.0 cm quartz cuvettes using a METASH UV-8000S (T) spectrophotometer. The concentration of each component was 5×10^{-4} M.

Figure S2. UV-vis absorption spectroscopy.

UV-vis absorption spectra of A1, B1, C1, B1+C1, A1+C1 and A1+B1+C1 in MeOH were recorded in screw-top 1.0 cm quartz cuvettes using a METASH UV-8000S (T) spectrophotometer. The concentration of each component was 5×10^{-4} M.

Figure S3. UV-vis absorption spectroscopy.

6.4. ¹¹B NMR experiments.

The reaction was conducted in an oven-dried 3-mL vial equipped with a stir bar. A1 (16.0 mg, 0.1 mmol), B1 (42.0 mg, 0.2 mmol, 2.0 equiv.) and C1 (23.5 mg, 0.2 mmol, 2.0 equiv.) were sequentially added in DMSO- d_6 (1.0 mL) or CD₃OD (1.0 mL). The reaction mixture was stirred for 2 h and then transferred to an ¹¹B NMR tube for analysis.

Figure S4. ¹¹B NMR experiments.

The reaction was conducted in an oven-dried 10-mL vial equipped with a stir bar. A1 (48.0 mg, 0.3 mmol), B1 (126.0 mg, 2.0 equiv.), C1 (70.0 mg, 2.0 equiv.) and internal standard (1,3,5-trimethoxybenzene, 0.75 mmol, 12.6 mg) were sequentially added in DMSO- d_6 (3.0 mL). The mixture was stirred at room temperature with cooling fans under irradiation of 40 W 390 nm LED lamps (100% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away). An aliquot of the reaction mixture then taken at the indicated times and the yield was determined by ¹H NMR.

Figure S5. On-off Experiments.

MeC 1,3,5-tr	OMe	OMe enzene			NO N N Me 2	H O	\bigcirc		
	0.75 mmo	l			0.3 mr	nol			
					M				
	.75	0-5 mi	n, On: 24%		.24-	-			
6.4 6.3 6.2	6.1	.0 5.9 5.8	5.7 5.6	5.5	5.4	5.3	5.2	5.1	-
	J	II (ppm)			М				
	0.75	5-10 m	in, Off: 24%	, 0	0.24	-			
6.4 6.3 6.2	6.1	6.0 5.9 5.8 f1 (ppm)	5.7 5.6	5.5	5.4	5.3	5.2	5.1	-
	0.75	10-15 m	%	0.33-					
6.4 6.3 6.2	6.1 6	.0 5.9 5.8 f1 (nnm)	5.7 5.6	5.5	5.4	5.8	5.2	5.1	_
	T.	15-20 min. Off: 33%							
	0.7		· · · · · ·		0.3:				
6.4 6.3 6.2	6.1 6	.0 5.9 5.8 fl(ppm)	5.7 5.6	5.5	5.4	5.3	5.2	5.1	
					M_				
	0.75-	20-25 m	nin, On: 369	%	0.36-				
6.4 6.3 6.2	6.1 6	.0 5.9 5.8 f1 (μαα)	5.7 5.6	5.5	5.4	5.3	5.2	5.1	
		05.05				-			
	0.75	25-30 m	%	0.36					
6.4 6.3 6.2	6.1 6	0 5.9 5.8 f1 (ppm)	5.7 5.6	5.5	5.4	5.3	5.2	5.1	5
		,							

6.6. Calculation of quantum yield.

Determination of the light intensity at 390 nm:

Standard ferrioxalate actinometry was used to determine the photon flux of the LED lamp (40 W 390 nm).^[11-13] A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate trihydrate (1.5 mmol) in 0.20 M aqueous H₂SO₄ (10.0 mL). A buffered solution of 1,10-phenanthroline (0.15 M) was prepared by dissolving NaOAc (15.0 mmol) and 1,10-phenanthroline (3.0 mmol) in 0.20 M aqueous H₂SO₄ (20 mL). To a 10 mL Schlenk tube was added the ferrioxalate solution (1.0 mL) and the tube was sealed and irradiated with a LED lamp (40 W 390 nm) for 300 s while maintaining the temperature at room temperature through cooling with a fan. The aqueous sulfuric acid (3.0 mL) and buffered solution (4.0 mL) were added immediately. The resulting mixture was then placed in the dark for 1 h to allow the formed ferrous ions to react completely with the 1,10-phenanthroline. An aliquot (25 μ L) of the resulting solution was diluted with 0.20 M aqueous sulfuric acid (3.0 mL), the solution was transferred to a cuvette (l = 1.0 cm) and the absorbance at a wavelength of 510 nm was measured by UV-vis spectrometry. The above procedure was repeated three times, and the average absorption was used for the calculation of the photon flux. A nonirradiated sample was also prepared and the absorbance at 510 nm was measured. The photon flux was calculated as follows:

mol Fe²⁺ =
$$\frac{V \times \Delta A (510 \text{ nm}) \times 100}{l \times \varepsilon}$$
(1)

Where *V* is the total volume (0.00325 L) of the solution that was analyzed, ΔA (0.48201) is the difference between the average absorption of irradiated and non-irradiated solutions at 510 nm, *l* is the path length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 L·mol⁻¹·cm⁻¹)^[11].

The photon flux was calculated as follows:

photon flux =
$$\frac{\text{mol Fe}^{2+}}{\phi \times t \times f}$$
 (2)

Where Φ is the quantum yield for the ferrioxalate actinometer (approximated as 0.783, which was the average value from the reported at $\lambda = 405$ nm and $\lambda = 385$ nm),^[11-12] *t* is the irradiation time (300 s), and *f* is the fraction of light absorbed at $\lambda = 390$ nm by the ferrioxalate actinometer. This value was calculated using the following equation where A (390 nm) is the absorption of the ferrioxalate solution at 390 nm.

$$f = 1 - 10^{-A(390 \text{ nm})} = 0.23167 \tag{3}$$

Figure S6. Absorbance of the ferrioxalate actinometer solution

The average photon flux was thus calculated to be 2.06×10^{-7} einstein s⁻¹.

Sample calculation:

$$mol \ Fe^{2+} = \frac{V \times \Delta A \ (510 \ nm) \times 100}{l \times \varepsilon} = \frac{0.00325 \ L \times 0.381121 \times 100}{1.000 \ cm \ \times 11100 \ L \ mol^{-1} cm^{-1}} = 1.12 \times 10^{-5} \ mol$$

$$photon \ flux = \frac{mol \ Fe^{2+}}{\phi \times t \times f} = \frac{1.12 \times 10^{-5} \ mol}{0.783 \times 300 \ s \times 0.23167} = 2.06 \times 10^{-7} \ einstein \ s^{-1}$$

Determination of quantum yield:

The reaction was conducted in an oven-dried 10-mL vial equipped with a stir bar. A1 (48.0 mg, 0.3 mmol), B1 (126.0 mg, 2.0 equiv.), C1 (70.0 mg, 2.0 equiv.) and internal standard (1,3,5-trimethoxybenzene, 0.75 mmol, 12.6 mg) were sequentially added in DMSO- d_6 (3.0 mL). The mixture was stirred at room temperature with cooling fans under irradiation of 40 W 390 nm LED lamps (100% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away). The reaction mixture then taken at the 5 min and the yield was determined by ¹H NMR.

The quantum yield was determined using eq 4.

$$\phi = \frac{\text{mol product}}{\text{flux } \times t \times f}$$
(4)

Sample quantum yield calculation:

$$\phi = \frac{0.3 \times 10^{-3} \text{mol} \times 0.24}{2.06 \times 10^{-7} \times 300 \text{s} \times 0.89731} = 1.30$$

6.7. Conversion of 2 to 1.

The reaction was conducted in an oven-dried 3-mL vial equipped with a stir bar. **2** (27.3 mg, 0.1 mmol) was added in MeOH (1.0 mL) under argon atmosphere. Continue to stir the mixture at room temperature with cooling fans under irradiation of 390 nm LED lamps (25% intensity or 100% intensity; Kessil KSPR160–390 LED Grow Light; 5-6 cm away) for 7 h. Upon completion, the conversion rate was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

7. Characterization data of new compounds.

3-cyclohexyl-1-methylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **1** (19.4 mg, 80% yield) was obtained as a yellowish powder.^[14]

¹H NMR (500 MHz, CDCl₃): δ = 7.83–7.81 (m, 1H), 7.51–7.47 (m, 1H), 7.32–7.25 (m, 2H), 3.68 (s, 3H),
3.33 (tt, J = 11.6, 3.3 Hz, 1H), 1.97–1.83 (m, 4H), 1.78–1.73 (m, 1H), 1.60–1.41 (m, 4H), 1.34–1.25 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.4, 154.6, 133.0, 132.9, 129.8, 129.5, 123.5, 113.6, 40.9, 30.6, 29.2, 26.4, 26.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{15}H_{19}N_2O^+$ 243.1492, found 243.1490.

3-cyclohexyl-1-methyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 2** (22.9 mg, 84% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.83–7.81 (m, 1H), 7.43–7.40 (m, 1H), 7.25–7.21 (m, 1H), 7.16–7.14 (m, 1H), 5.57 (d, *J* = 7.4 Hz, 1H), 3.42 (s, 3H), 1.70–1.50 (m, 5H), 1.39–1.35 (m, 1H), 1.12–0.85 (m, 5H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 165.0, 130.5, 128.4, 127.4, 124.2, 118.5, 115.5, 58.6, 41.1, 29.6, 29.5, 29.1, 25.9, 25.8, 25.7 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{15}H_{20}N_3O_2^+$ 274.1550, found 274.1555.

3-cyclohexyl-1-ethyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 3** (23.5 mg, 82% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.83–7.81 (m, 1H), 7.42–7.39 (m, 1H), 7.23–7.16 (m, 2H), 5.54 (d, *J* = 7.4 Hz, 1H), 4.13 (dq, *J* = 14.4, 7.2 Hz, 1H), 3.92 (dq, *J* = 14.4, 7.2 Hz, 1H), 1.68–1.52 (m, 5H), 1.39–1.35 (m, 1H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.10–0.86 (m, 5H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.4, 129.4, 128.4, 127.5, 124.1, 118.8, 115.2, 58.5, 40.9, 37.6, 29.4, 29.0, 25.8, 25.8, 25.7, 12.8 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{16}H_{22}N_3O_2^+$ 288.1707, found 288.1710.

1-benzyl-3-cyclohexyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product **4** (29.3 mg, 84% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.86–7.84 (m, 1H), 7.38–7.32 (m, 2H), 7.31–7.20 (m, 5H), 7.11–7.09 (m, 1H), 5.70 (d, *J* = 8.4 Hz, 1H), 5.49 (d, *J* = 16.2 Hz, 1H), 4.95 (d, *J* = 16.2 Hz, 1H), 1.83–1.58 (m, 5H), 1.47–1.42 (m, 1H), 1.26–0.94 (m, 5H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): δ = 165.0, 136.1, 129.9, 129.1, 128.3, 127.7, 127.3, 126.5, 124.4, 118.7,

116.3, 58.6, 46.3, 40.6, 29.6, 29.1, 25.8, 25.7, 25.6 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{21}H_{24}N_3O_2^+$ 350.1863, found 350.1861.

ethyl 2-(3-cyclohexyl-4-nitroso-2-oxo-3,4-dihydroquinoxalin-1(2*H***)-yl)acetate: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 5** (27.6 mg, 80% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.84–7.82 (m, 1H), 7.39–7.36 (m, 1H), 7.26–7.22 (m, 1H), 6.90–6.88 (m, 1H), 5.62 (d, *J* = 7.4 Hz, 1H), 5.11 (d, *J* = 17.6 Hz, 1H), 4.27–4.22 (m, 3H), 1.73–1.45 (m, 6H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.13–1.00 (m, 4H), 0.92–0.85 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 167.9, 165.3, 129.6, 128.5, 127.4, 124.6, 118.9, 115.0, 62.1, 58.4, 44.2, 40.8, 29.3, 28.9, 25.8, 25.8, 25.9, 14.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{18}H_{24}N_3O_4^+$ 346.1761, found 346.1755.

3-cyclohexyl-4-nitroso-1-(prop-2-yn-1-yl)-3,4-dihydroquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 6** (22.9 mg, 77% yield) was obtained as a yellow powder.

¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.83 (m, 1H), 7.46–7.43 (m, 1H), 7.37–7.35 (m, 1H), 7.28–7.25 (m, 1H), 5.60 (d, J = 7.2 Hz, 1H), 5.01 (dd, J = 17.7, 2.5 Hz, 1H), 4.46 (dd, J = 17.7, 2.5 Hz, 1H), 2.28 (t, J = 2.5 Hz, 1H), 1.69–1.52 (m, 5H), 1.42–1.28 (m, 1H), 1.12–0.98 (m, 4H), 0.93–0.85 (m, 1H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 164.5, 128.8 128.4, 127.5, 124.7, 118.7, 115.9, 77.6, 72.8, 58.3, 41.2, 31.9, 29.4, 29.0, 25.8, 25.7, 25.7 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{17}H_{20}N_3O_2^+$ 298.1550, found 298.1557.

1-allyl-3-cyclohexyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product **7** (23.6 mg, 79% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.82–7.80 (m, 1H), 7.39–7.35 (m, 1H), 7.23–7.20 (m, 1H), 7.15–7.14 (m, 1H), 5.92–5.85 (m, 1H), 5.58 (d, *J* = 8.0 Hz, 1H), 5.27–5.17 (m, 2H), 4.89–4.84 (m, 1H), 4.32–4.27 (m, 1H), 1.71–1.52 (m, 5H), 1.40–1.36 (m, 1H), 1.13–0.87 (m, 5H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.6, 131.8, 129.8, 128.3, 127.3, 124.3, 118.7, 117.3, 116.1, 58.5, 45.1, 40.7, 29.5, 29.1, 25.8, 25.7 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{17}H_{22}N_3O_2^+$ 300.1707, found 300.1704.

3-cyclohexyl-1,6-dimethyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 8** (21.5 mg, 75% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.69–7.63 (m, 1H), 7.22–6.95 (m, 2H), 7.23–7.20 (m, 1H), 5.57–5.54 (m, 1H), 3.40 and 3.39 (s, 3H), 2.44 and 2.42 (s, 3H), 1.70–1.52 (m, 5H), 1.38–1.35 (m, 1H), 1.07–1.00 (m, 4H), 0.94–0.85 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 165.2, 164.9, 138.6, 134.2, 130.6, 130.4, 129.0, 128.1, 127.2, 125.1, 124.9, 118.9, 118.4, 116.1, 115.3, 58.7, 41.1, 30.7, 29.6, 29.5, 29.1, 26.5, 25.9, 25.8, 25.7, 21.7, 20.9 ppm.
HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₆H₂₂N₃O₂⁺ 288.1707, found 288.1715.

6-chloro-3-cyclohexyl-1-methyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 9** (26.1 mg, 85% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.83–7.82 (m, 1H), 7.38–7.35 (m, 1H), 7.08–7.06 (m, 1H), 5.51 (d, *J* = 7.2 Hz, 1H), 3.40 (s, 3H), 1.68–1.53(m, 5H), 1.37–1.33 (m, 1H), 1.10–0.98 (m, 4H), 0.98–0.86 (m, 4H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.6, 129.6, 129.1, 128.3, 128.0, 118.3, 116.5, 58.5, 41.3, 29.6, 29.5, 29.1, 25.9, 25.7 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{15}H_{19}ClN_3O_2^+$ 308.1160, found 308.1161.

3-cyclohexyl-1,6,7-trimethyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 10** (21.7 mg, 72% yield) was obtained as a yellow powder.

¹H NMR (500 MHz, CDCl₃): δ = 7.57 (s, 1H), 6.91 (s, 1H), 5.55 (d, J = 7.2 Hz, 1H), 3.39 (s, 3H), 2.34 (s, 3H), 2.31 (s, 3H), 1.69–1.52 (m, 5H), 1.39–1.35 (m, 1H), 1.07–0.98 (m, 4H), 0.93–0.88 (m, 1H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 165.0, 137.1, 132.8, 128.2, 125.0, 119.4, 116.6, 58.8, 41.1, 29.6, 29.4, 29.1, 25.9, 25.8, 25.7, 20.1, 19.4 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₇H₂₄N₃O₂⁺ 302.1863, found 302.1860.

3-decyl-1-methyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 10/1, v/v). The product **11** (21.2 mg, 64% yield) was obtained as a yellow powder.

¹H NMR (500 MHz, CDCl₃): δ = 7.86–7.84 (m, 1H), 7.44–7.40 (m, 1H), 7.25–7.22 (m, 1H), 7.17–7.16 (m, 1H), 5.73 (dd, J = 8.6, 5.6 Hz, 1H), 3.42 (s, 3H), 1.27–1.15 (m, 18H), 0.86 (t, J = 6.9 Hz, 3H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 166.2, 130.2, 128.4, 126.4, 124.4, 118.6, 115.5, 32.0, 31.4, 29.6, 29.5, 29.5, 29.4, 29.3, 29.1, 25.4, 22.8, 14.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₁₉H₃₀N₃O₂⁺ 332.2333, found 332.2330.

3-isopropyl-1-methyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product **12** (17.5 mg, 75% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.83–7.81 (m, 1H), 7.43–7.39 (m, 1H), 7.24–7.21 (m, 1H), 7.16–7.14 (m, 1H), 5.54 (d, J = 7.4 Hz, 1H), 3.42 (s, 3H), 1.97–1.90 (m, 1H), 0.92 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.8 Hz, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 165.2, 130.5, 128.4, 127.4, 124.3, 118.5, 115.5, 59.0, 32.0, 29.5, 19.1, 19.0 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₁₂H₁₆N₃O₂⁺ 234.1237, found 234.1240.

3-cyclopentyl-1-methyl-4-nitroso-3,4-dihydroquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product **13** (20.7 mg, 80% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.82–7.80 (m, 1H), 7.44–7.40 (m, 1H), 7.25–7.21 (m, 1H), 7.17–7.15 (m, 1H), 5.67 (d, *J* = 8.9 Hz, 1H), 3.41 (s, 3H), 2.04–1.96 (m, 1H), 1.72–1.24 (m, 7H), 1.15–1.07 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 165.5, 130.5, 128.5, 127.0, 124.2, 118.7, 115.5, 56.9, 42.5, 29.5, 29.4, 29.0, 24.7, 24.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{14}H_{18}N_3O_2^+$ 260.1394, found 260.1395.

3-(*tert***-butyl)-1-methyl-4-nitroso-3,4-dihydroquinoxalin-2(1***H***)-one: This compound was prepared by using the general procedure B (eluent: PE/EtOAc, 8/1, v/v). The product 14** (18.8 mg, 76% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.79–7.77 (m, 1H), 7.43–7.39 (m, 1H), 7.25–7.22 (m, 1H), 7.14–7.12 (m, 1H), 5.57 (s, 1H), 3.42 (s, 3H), 0.84 (s, 9H) ppm.

¹³C NMR (125 MHz, CDCl₃): *δ* = 164.7, 131.2, 128.5, 128.3, 124.2, 118.8, 115.2, 61.0, 38.3, 29.4, 27.2 ppm.

HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₈N₃O₂⁺ 248.1394, found 248.1399.

3-cyclohexyl-1-ethylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **15** (20.5 mg, 80% yield) was obtained as a yellowish powder.^[15]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.84–7.82 (m, 1H), 7.50–7.47 (m, 1H), 7.31–7.28 (m, 2H), 4.30 (q, *J* = 7.2 Hz, 2H), 3.34 (tt, *J* = 11.6, 3.3 Hz, 1H), 1.97–1.92 (m, 2H), 1.87–1.83 (m, 2H), 1.77–1.73 (m, 1H), 1.60–1.41 (m, 4H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.34–1.26 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.4, 154.1, 133.3, 131.8, 130.1, 129.4, 123.3, 113.4, 40.7, 37.4, 30.7, 26.5, 26.3, 12.5 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{16}H_{21}N_2O^+$ 257.1648, found 257.1650.

1-benzyl-3-cyclohexylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **16** (26.1 mg, 82% yield) was obtained as a white powder.^[14]

¹H NMR (500 MHz, CDCl₃): δ = 7.84–7.82 (m, 1H), 7.38–7.20 (m, 8H), 5.48 (s, 2H), 3.40 (tt, J = 11.6, 3.3 Hz, 1H), 2.02–1.99 (m, 2H), 1.90–1.85 (m, 2H), 1.80–1.74 (m, 1H), 1.64–1.56 (m, 2H), 1.52–1.43 (m, 2H), 1.36–1.25 (m, 1H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): δ = 164.5, 154.7, 135.6, 133.2, 132.3, 130.0, 129.5, 129.0, 127.7, 127.0,

123.6, 114.3, 46.0, 40.9, 30.7, 26.4, 26.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₂₁H₂₃N₂O⁺ 319.1805, found 319.1803.

ethyl 2-(3-cyclohexyl-2-oxoquinoxalin-1(2*H***)-yl)acetate:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **17** (23.6 mg, 75% yield) was obtained as a yellowish powder.^[15]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.84–7.83 (m, 1H), 7.47–7.43 (m, 1H), 7.32–7.29 (m, 1H), 7.04–7.02 (m, 1H), 5.00 (s, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.31 (tt, *J* = 11.6, 3.3 Hz, 1H), 1.97–1.94 (m, 2H), 1.87–1.82 (m, 2H), 1.76–1.73 (m, 1H), 1.60–1.52 (m, 2H), 1.48–1.39 (m, 2H), 1.33–1.30 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 167.3, 164.1, 154.2, 133.0, 132.1, 130.2, 129.6, 123.8, 113.0, 62.1, 43.7, 40.9, 30.6, 26.4, 26.2, 14.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{18}H_{23}N_2O_3^+$ 315.1703, found 315.1704.

3-cyclohexyl-1-(prop-2-yn-1-yl)quinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product 18** (21.6 mg, 81% yield) was obtained as a white powder.^[14]

¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.83 (m, 1H), 7.54–7.51 (m, 1H), 7.43–7.41 (m, 1H), 7.35–7.32 (m, 1H), 5.04 (d, J = 2.5 Hz, 2H), 3.32 (tt, J = 11.6, 3.3 Hz, 1H), 2.28 (t, J = 2.5 Hz, 1H), 1.98–1.93 (m, 2H), 1.88–1.83 (m, 2H), 1.77–1.73 (m, 1H), 1.60–1.52 (m, 2H), 1.49–1.40 (m, 2H), 1.34–1.25 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.2, 153.6, 133.2, 131.4, 130.0, 129.6, 123.9, 114.0, 76.9, 73.2, 40.9, 31.6, 30.6, 26.4, 26.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{17}H_{19}N_2O^+$ 267.1492, found 267.1497.

1-allyl-3-cyclohexylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **19** (20.6 mg, 77% yield) was obtained as a yellowish powder.^[14]

¹H NMR (500 MHz, CDCl₃): δ = 7.84–7.82 (m, 1H), 7.47–7.44 (m, 1H), 7.31–7.24 (m, 2H), 5.97–5.89 (m, 1H), 5.26–5.14 (m, 2H), 4.90–4.88 (m, 2H), 3.34 (tt, *J* = 11.6, 3.3 Hz, 1H), 1.98–1.94 (m, 2H), 1.88–1.82 (m, 2H), 1.78–1.73 (m, 1H), 1.61–1.53 (m, 2H), 1.50–1.41 (m, 2H), 1.35–1.26 (m, 1H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 164.4, 154.2, 133.1, 132.1, 130.9, 129.9, 129.4, 123.5, 118.1, 114.1, 44.6, 40.8, 30.6, 26.4, 26.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{17}H_{21}N_2O^+$ 269.1648, found 269.1650.

3-cyclohexyl-1,6-dimethylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **20** (20.0 mg, 78% yield) was obtained as a yellowish powder.^[14]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.70–7.63 (m, 1H), 7.31–7.05 (m, 2H), 3.66 (s, 3H), 3.35–3.27 (m, 1H), 2.48 and 2.42 (s, 3H), 1.96–1.92 (m, 2H), 1.87–1.82 (m, 2H), 1.77–1.72 (m, 1H), 1.59–1.40 (m, 4H), 1.34–1.25 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.3, 163.1, 154.8, 154.6, 140.1, 133.3, 132.9, 132.8, 131.2, 130.7, 130.6, 129.7, 129.5, 124.7, 113.7, 113.3, 40.8, 30.7, 30.6, 29.2, 29.1, 26.4, 26.3, 22.1, 20.7 ppm.
HRMS (m/z): [M+H]⁺ calcd for C₁₆H₂₁N₂O⁺ 257.1648, found 257.1640.

6-chloro-3-cyclohexyl-1-methylquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product 21** (19.9 mg, 72% yield) was obtained as a yellowish powder.^[14]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.82–7.81 (m, 1H), 7.45–7.42 (m, 1H), 7.20–7.18 (m, 1H), 3.66 (s, 3H), 3.34–3.28 (m, 1H), 1.96–1.91 (m, 2H), 1.87–1.82 (m, 2H), 1.78–1.72 (m, 1H), 1.56–1.40 (m, 4H), 1.34–1.24 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 165.8, 154.3, 133.5, 131.7, 129.4, 129.2, 128.8, 114.7, 40.9, 30.6, 29.4, 26.4, 26.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{15}H_{18}ClN_2O^+$ 277.1102, found 277.1110.

3-cyclohexyl-1,6,7-trimethylquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product 22 (20.5 mg, 76% yield) was obtained as a vellowish powder.^[14]**

¹H NMR (500 MHz, CDCl₃): δ = 7.58 (s, 1H), 7.02 (s, 1H), 3.65 (s, 3H), 3.30 (tt, J = 11.6, 3.3 Hz, 1H),
2.38 (s, 3H), 2.32 (s, 3H), 1.95–1.91 (m, 2H), 1.88–1.82 (m, 2H), 1.77–1.72 (m, 1H), 1.58–1.40 (m, 4H),
1.33–1.24 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 163.1, 154.7, 139.1, 132.3, 131.4, 130.9, 130.0, 114.2, 40.7, 30.7, 29.1, 26.5, 26.3, 20.6, 19.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{17}H_{23}N_2O^+$ 271.1805, found 271.1810.

6,7-dichloro-3-cyclohexyl-1-methylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **23** (23.3 mg, 75% yield) was obtained as a yellow powder.^[15]

¹H NMR (500 MHz, CDCl₃): δ = 7.88 (s, 1H), 7.33 (s, 1H), 3.63 (s, 3H), 3.28 (tt, J = 11.6, 3.3 Hz, 1H), 1.92–1.89 (m, 2H), 1.86–1.82 (m, 2H), 1.77–1.72 (m, 1H), 1.53–1.39 (m, 4H), 1.31–1.23 (m, 1H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 165.9, 154.0, 133.4, 132.4, 132.0, 130.7, 127.2, 115.0, 41.0, 30.6, 29.4, 26.3, 26.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{15}H_{17}Cl_2N_2O^+$ 311.0712, found 311.0711.

1,3-dimethylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **24** (9.4 mg, 54% yield) was obtained as a light orange powder.^[16]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.81–7.79 (m, 1H), 7.54–7.50 (m, 1H), 7.35–7.28 (m, 2H), 3.70 (s, 3H), 2.59 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 158.5, 155.3, 133.4, 132.8, 129.7, 129.6, 123.8, 113.8, 29.2, 21.8 ppm. HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₀H₁₁N₂O⁺ 175.0866, found 175.0870.

1-methyl-3-propylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **25** (12.7 mg, 63% yield) was obtained as a light pink powder.^[16]

¹H NMR (500 MHz, CDCl₃): δ = 7.83–7.81 (m, 1H), 7.53–7.49 (m, 1H), 7.34–7.27 (m, 2H), 3.69 (s, 3H),
2.93–2.90 (m, 2H), 1.84–1.79 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 161.3, 155.0, 133.2, 132.8, 129.7, 129.6, 123.6, 113.7, 36.4, 29.2, 20.4,
14.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{12}H_{15}N_2O^+$ 203.1179, found 203.1177.

3-isopropyl-1-methylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **26** (15.8 mg, 78% yield) was obtained as a yellow powder.^[14]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.85–7.83 (m, 1H), 7.52–7.48 (m, 1H), 7.34–7.27 (m, 2H), 3.69 (s, 3H), 3.65–3.59 (m, 1H), 1.31 (d, *J* = 6.7 Hz, 6H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): *δ* = 165.1, 154.6, 133.1, 132.9, 129.9, 129.6, 123.5, 113.6, 31.3, 29.2, 20.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{12}H_{15}N_2O^+$ 203.1179, found 203.1178.

3-cyclopropyl-1-methylquinoxalin-2(1*H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product **27** (14.0 mg, 70% yield) was obtained as a yellow powder.^[14]

¹**H** NMR (500 MHz, CDCl₃): δ = 3-cyclopropyl-1-methylquinoxalin-2(1*H*)-one ppm.

¹³**C NMR** (125 MHz, CDCl₃): δ = 161.6, 155.4, 133.0, 132.5, 129.3, 128.9, 123.6, 113.6, 29.3, 12.6, 11.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{12}H_{13}N_2O^+$ 201.1022, found 201.1025.

tert-butyl 4-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)piperidine-1-carboxylate: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 4/1, v/v). The product **28** (27.8 mg, 81% yield) was obtained as a yellowish powder.^[14]

¹H NMR (500 MHz, CDCl₃): δ = 7.82–7.80 (m, 1H), 7.53–7.50 (m, 1H), 7.34–7.27 (m, 2H), 4.23 (brs, 2H), 3.69 (s, 3H), 3.45 (tt, J = 11.6, 3.3 Hz, 1H), 2.90 (brs, 2H), 1.93–1.89 (m, 2H), 1.79–1.70 (m, 2H), 1.46 (s, 9H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 162.3, 154.9, 154.5, 133.0, 132.8, 130.0, 129.9, 123.7, 113.7, 79.4,
43.6, 39.1, 29.5, 29.2, 28.6 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₁₉H₂₆N₃O₃⁺ 344.1969, found 344.1970.

1-methyl-3-(tetrahydro-2*H***-pyran-4-yl)quinoxalin-2(1***H***)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 4/1, v/v). The product 29** (18.3 mg, 75% yield) was obtained as a yellowish powder.^[14]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.86–7.84 (m, 1H), 7.54–7.51 (m, 1H), 7.36–7.28 (m, 2H), 4.11–4.07 (m, 2H), 3.70 (s, 3H), 3.64–3.52 (m, 3H), 1.99–1.86 (m, 4H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 162.1, 154.5, 133.0, 132.9, 130.1, 129.9, 123.7, 113.6, 68.0, 38.2, 30.2, 29.2 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₁₄H₁₇N₂O₂⁺ 245.1285, found 245.1293.

4-benzyl-6-cyclohexyl-1,2,4-triazine-3,5(2*H***,4***H***)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 3/1, v/v). The product 30** (19.4 mg, 68% yield) was obtained as a white powder.

¹**H** NMR (500 MHz, CDCl₃): $\delta = 10.05$ (brs, 1H), 7.50–7.48 (m, 2H), 7.34–7.27 (m, 3H), 5.08 (s, 2H), 2.89–2.84 (m, 1H), 1.88–1.69 (m, 5H), 1.41–1.19 (m, 5H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.9, 149.1, 148.8, 135.9, 129.6, 128.6, 128.1, 44.2, 39.5, 38.5, 30.5, 26.3, 26.1 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{16}H_{20}N_3O_2^+$ 286.1550, found 286.1547.

4-benzyl-6-cyclohexyl-2-methyl-1,2,4-triazine-3,5(2H,4H)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **31** (26.0 mg, 87% yield) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.51–7.49 (m, 2H), 7.33–7.26 (m, 3H), 5.09 (s, 2H), 3.59 (s, 3H), 2.90– 2.84 (m, 1H), 1.87–1.70 (m, 5H), 1.42–1.31 (m, 4H), 1.26–1.18 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.9, 149.1, 148.8, 135.9, 129.6, 128.6, 128.1, 44.2, 39.5, 38.5, 30.5, 26.3, 26.1 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{17}H_{22}N_3O_2^+$ 300.1707, found 300.1714.

4-benzyl-2-butyl-6-cyclohexyl-1,2,4-triazine-3,5(2H,4H)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **32** (26.3 mg, 77% yield) was obtained as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ = 7.51–7.48 (m, 2H), 7.33–7.26 (m, 3H), 5.09 (s, 2H), 3.95–3.92 (m, 2H),
2.90–2.85 (m, 1H), 1.87–1.79 (m, 4H), 1.74–1.70 (m, 3H), 1.42–1.31 (m, 6H), 1.27–1.18 (m, 1H), 0.95 (t, *J* = 7.4 Hz, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.8, 148.9, 148.6, 136.0, 129.6, 128.6, 128.0, 51.4, 44.2, 38.5, 30.6, 30.3, 26.3, 26.1, 19.8, 13.8 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₈N₃O₂⁺ 342.2176, found 342.2175.

2,4-dibenzyl-6-cyclohexyl-1,2,4-triazine-3,5(*2H*,*4H*)-**dione:** This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **33** (32.3 mg, 86% yield) was obtained as a yellowish powder.^[2]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.51–7.49 (m, 2H), 7.43–7.41 (m, 2H), 7.38–7.28 (m, 6H), 5.09 (s, 2H), 5.08 (s, 2H), 2.91–2.86 (m, 1H), 1.90–1.80 (m, 4H), 1.76–1.72 (m, 1H), 1.43–1.34 (m, 4H), 1.29–1.22 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.8, 149.1, 148.9, 136.0, 135.9, 129.6, 128.8, 128.7, 128.6, 128.2, 128.1, 55.4, 44.3, 38.5, 30.6, 26.2, 26.1 ppm.

HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₃H₂₆N₃O₂⁺ 376.2020, found 376.2025.

ethyl 2-(4-benzyl-6-cyclohexyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3*H*)-yl)acetate: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **34** (30.8 mg, 83% yield) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.47–7.44 (m, 2H), 7.32–7.25 (m, 3H), 5.09 (s, 2H), 4.66 (s, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.90–2.85 (m, 1H), 1.88–1.68 (m, 5H), 1.38–1.32 (m, 4H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.24–1.18 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 167.6, 155.7, 149.6, 149.2, 135.7, 129.4, 128.6, 128.1, 61.9, 52.9, 44.3, 38.5, 30.4, 26.2, 26.0, 14.2 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₆N₃O₄⁺ 372.1918, found 372.1911.

2-allyl-4-benzyl-6-cyclohexyl-1,2,4-triazine-3,5(*2H*,*4H*)-**dione:** This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **35** (26.7 mg, 82% yield) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.51–7.48 (m, 2H), 7.34–7.26 (m, 3H), 5.98–5.90 (m, 1H), 5.29–5.23 (m, 2H), 5.10 (s, 2H), 4.54 (dt, *J* = 6.0, 1.4 Hz, 2H), 2.92–2.83 (m, 1H), 1.88–1.78 (m, 4H), 1.74–1.70 (m, 1H), 1.41–1.31 (m, 4H), 1.26–1.20 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.8, 149.1, 148.8, 135.9, 131.7, 129.6, 128.6, 128.1, 118.9, 54.1, 44.2, 38.6, 30.5, 26.2, 26.1 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{19}H_{24}N_3O_2^+$ 326.1863, found 326.1866.

4-benzyl-6-cyclohexyl-2-(prop-2-yn-1-yl)-1,2,4-triazine-3,5(2H,4H)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **36** (27.1 mg, 84% yield) was obtained as a yellowish powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.52–7.50 (m, 2H), 7.34–7.26 (m, 3H), 5.09 (s, 2H), 4.71 (d, *J* = 2.5 Hz, 2H), 2.90–2.87 (m, 1H), 2.35 (t, *J* = 2.5 Hz, 1H), 1.90–1.79 (m, 4H), 1.74–1.71 (m, 1H), 1.42–1.32 (m, 4H), 1.27–1.21 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.7, 149.7, 148.5, 135.7, 129.7, 128.6, 128.2, 77.3, 73.3, 44.3, 41.5, 38.7, 30.4, 26.2, 26.0 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{19}H_{22}N_3O_2^+$ 324.1707, found 324.1710.

2,4-dibenzyl-6-methyl-1,2,4-triazine-3,5(*2H*,*4H*)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **37** (20.9 mg, 68% yield) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.50–7.48 (m, 2H), 7.42–7.28 (m, 8H), 5.09 (s, 2H), 5.08 (s, 2H), 2.24(s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 156.4, 149.3, 143.0, 136.0, 135.7, 129.6, 128.8, 128.7, 128.7, 128.3, 128.2, 55.3, 44.3, 17.1 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{18}H_{18}N_3O_2^+$ 308.1394, found 308.1342.

2,4-dibenzyl-6-propyl-1,2,4-triazine-3,5(*2H*,*4H*)-**dione:** This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **38** (24.5 mg, 73% yield) was obtained as a colorless oil.^[17]

¹**H NMR** (500 MHz, CDCl₃): δ = 7.50–7.47 (m, 2H), 7.42–7.27 (m, 8H), 5.09 (s, 2H), 5.08 (s, 2H), 2.60–

2.57 (m, 2H), 1.68–1.64 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): δ = 156.2, 149.1, 145.7, 136.0, 135.8, 129.5, 128.8, 128.7, 128.3, 128.1,

55.3, 44.3, 32.4, 19.7, 13.8 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₂₀H₂₂N₃O₂⁺ 336.1707, found 336.1710.

2,4-dibenzyl-6-isopropyl-1,2,4-triazine-3,5(*2H,4H*)-**dione:** This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **39** (26.8 mg, 80% yield) was obtained as a colorless oil.^[17]

¹**H NMR** (500 MHz, CDCl₃): δ = 7.51–7.49 (m, 2H), 7.43–7.27 (m, 8H), 5.10 (s, 2H), 5.09 (s, 2H), 3.22–

¹³**C NMR** (125 MHz, CDCl₃): δ = 155.7, 149.6, 149.0, 136.0, 135.9, 129.6, 128.9, 128.8, 128.7, 128.2,

128.1, 55.3, 44.2, 29.3, 20.1 ppm.

3.16 (m, 1H), 1.21 (d, *J* = 6.8 Hz, 6H) ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₂N₃O₂⁺ 336.1707, found 336.1709.

2,4-dibenzyl-6-cyclopropyl-1,2,4-triazine-3,5(*2H*,*4H*)-**dione:** This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **40** (26.0 mg, 78% yield) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ = 7.52–7.50 (m, 2H), 7.39–7.28 (m, 8H), 5.11 (s, 2H), 5.04 (s, 2H), 2.31–

2.25 (m, 1H), 1.00–0.93 (m, 4H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 156.2, 148.9, 146.7, 135.9, 135.8, 129.5, 128.7, 128.6, 128.2, 128.1, 55.2, 44.3, 9.9, 9.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₂₀H₂₀N₃O₂⁺ 334.1550, found 334.1555.

tert-butyl 4-(2,4-dibenzyl-3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl)piperidine-1-carboxylate:

This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 4/1, v/v). The product

41 (41.9 mg, 88% yield) was obtained as a colorless oil.^[17]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.49–7.47 (m, 2H), 7.41–7.28 (m, 8H), 5.08 (s, 2H), 5.07 (s, 2H), 4.19 (brs, 2H), 3.01 (tt, *J* = 11.6, 3.3 Hz, 1H), 2.82 (brs, 2H), 1.87–1.83 (m, 2H), 1.57–1.54 (m, 2H), 1.48 (s, 9H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.6, 154.8, 148.8, 147.1, 135.7, 135.7, 129.6, 128.9, 128.8, 128.6, 128.3, 128.1, 79.6, 55.4, 44.3, 43.6, 36.8, 29.4, 28.5 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₇H₃₃N₄O₄⁺ 477.2496, found 477.2500.

2,4-dibenzyl-6-(tetrahydro-2*H***-pyran-4-yl)-1,2,4-triazine-3,5(2***H***,4***H***)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 4/1, v/v). The product 42** (32.1 mg, 85% vield) was obtained as a white powder.^[17]

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.51−7.48 (m, 2H), 7.43−7.27 (m, 8H), 5.10 (s, 2H), 5.08 (s, 2H), 4.06− 4.02 (m, 2H), 3.54−3.49 (m, 2H), 3.15−3.09 (m, 1H), 1.83−1.71 (m, 4H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): δ = 155.6, 148.8, 147.1, 135.7, 135.7, 129.6, 128.9, 128. 8, 128.7, 128.3,

128.2, 67.8, 55.4, 44.3, 35.9, 30.1 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₂₂H₂₄N₃O₃⁺ 378.1812, found 378.1811.

2,4-dibenzyl-6-(*tert*-butyl)-1,2,4-triazine-3,5(2*H*,4*H*)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **43** (26.9 mg, 77% yield) was obtained as a white powder.^[17]

¹H NMR (500 MHz, CDCl₃): δ = 7.50–7.42 (m, 4H), 7.38–7.29 (m, 6H), 5.08 (s, 4H), 1.34 (s, 9H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 154.9, 150.4, 149.1, 136.1, 135.9, 129.5, 129.1, 128.8, 128.6, 128.3, 128.0, 55.3, 44.2, 37.4, 27.9 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{21}H_{24}N_3O_2^+$ 350.1863, found 350.1866.

2,4-dibenzyl-6-(prop-1-en-2-yl)-1,2,4-triazine-3,5(2H,4H)-dione: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 10/1, v/v). The product **44** (16.7 mg, 50% yield) was obtained as a colorless oil.

¹**H** NMR (500 MHz, CDCl₃): δ = 7.50–7.42 (m, 4H), 7.38–7.28 (m, 6H), 6.53–6.52 (m, 1H), 5.58–5.57

(m, 1H), 5.14 (s, 2H), 5.12 (s, 2H), 2.04 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.2, 148.7, 141.0, 136.8, 135.8, 135.7, 129.5, 129.0, 128.8, 128.8, 128.7, 128.4, 128.1, 122.4, 55.7, 44.4, 21.4 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{20}H_{20}N_3O_2^+$ 334.1550, found 334.1547.

2-(acetoxymethyl)-5-(6-cyclopentyl-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-

yl)tetrahydrofuran-3,4-diyl diacetate: This compound was prepared by using the general procedure C

(eluent: PE/EtOAc, 3/1, v/v). The product 45 (25.4 mg, 56% yield) was obtained as a yellowish oil.

¹**H** NMR (500 MHz, CDCl₃): $\delta = 6.33-6.32$ (m, 1H), 5.63–5.61 (m, 1H), 5.48–5.45 (m, 1H), 4.36–4.32

(m, 2H), 4.16–4.12 (m, 1H), 3.33–3.29 (m, 4H), 2.11 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.03–1.97 (m, 2H), 1.75–1.66 (m, 6H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 170.7, 169.7, 169.7, 155.8, 149.8, 149.0, 89.1, 78.8, 73.2, 70.6, 63.7, 40.5, 30.7, 30.4, 27.4, 25.4, 20.8, 20.7, 20.6 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₈N₃O₉⁺ 454.1820, found 454.1815.

2-(acetoxymethyl)-5-(6-cyclohexyl-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-

yl)tetrahydrofuran-3,4-diyl diacetate: This compound was prepared by using the general procedure C

(eluent: PE/EtOAc, 3/1, v/v). The product 46 (35.0 mg, 75% yield) was obtained as a yellowish oil.

¹**H** NMR (500 MHz, CDCl₃): $\delta = 6.32-6.31$ (m, 1H), 5.63–5.61 (m, 1H), 5.49–5.47 (m, 1H), 4.35–4.31

(m, 2H), 4.16–4.11 (m, 1H), 3.30 (s, 3H), 2.90–2.85 (m, 1H), 2.10 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H),

1.95–1.88 (m, 2H), 1.84–1.78 (m, 2H), 1.74–1.69 (m, 1H), 1.41–1.29 (m, 4H), 1.28–1.17 (m, 1H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): δ = 170.6, 169.7, 169.6, 155.4, 150.3, 148.9, 89.0, 78.8, 73.2, 70.6, 63.8,

38.9, 30.7, 30.6, 27.4, 26.2, 26.0, 20.8, 20.6, 20.6 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{21}H_{30}N_3O_9^+$ 468.1977, found 468.1980.

2-(acetoxymethyl)-5-(6-(6-(2,5-dimethylphenoxy)-3,3-dimethylhexyl)-4-methyl-3,5-dioxo-4,5dihydro-1,2,4-triazin-2(3*H*)-yl)tetrahydrofuran-3,4-diyl diacetate: This compound was prepared by using the general procedure C (eluent: PE/EtOAc, 2/1, v/v). The product 47 (24.7 mg, 40% yield) was obtained as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ = 6.69–6.68 (m, 1H), 6.65–6.62 (m, 2H), 6.32 (d, J = 2.9 Hz, 1H), 5.65 (dd, J = 5.5, 2.9 Hz, 1H), 5.51–5.48 (m, 1H), 4.37–4.33 (m, 2H), 4.18–4.14 (m, 1H), 3.92 (t, J = 6.4 Hz, 2H), 3.33 (s, 3H), 2.66–2.62 (m, 2H), 2.30 (s, 3H), 2.17 (s, 3H), 2.12 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.80–1.74 (m, 2H), 1.64–1.53 (m, 2H), 1.45–1.42 (m, 2H), 0.98 (s, 6H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 170.5, 169.6, 169.5, 157.2, 155.8, 149.0, 147.5, 136.5, 130.3, 123.6, 120.6, 112.1, 89.3, 79.1, 73.2, 70.7, 68.6, 63.7, 38.0, 37.7, 32.6, 27.4, 27.1, 25.8, 24.4, 21.5, 20.8, 20.6, 20.6, 15.9 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{31}H_{44}N_3O_{10}^+$ 618.3021, found 618.3026.

3-(6-(2,5-dimethylphenoxy)-3,3-dimethylhexyl)-1-methylquinoxalin-2(1*H***)-one: This compound was prepared by using the general procedure A (eluent: PE/DCM, 1/1, v/v). The product 48** (21.6 mg, 55% yield) was obtained as a white powder.

¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.83 (m, 1H), 7.53–7.50 (m, 1H), 7.35–7.28 (m, 2H), 6.99 (d, J = 7.4 Hz, 1H), 6.65–6.63 (m, 2H), 3.94 (t, J = 6.4 Hz, 2H), 3.70 (s, 3H), 2.96–2.92 (m, 2H), 2.31 (s, 3H), 2.19 (s, 3H), 1.86–1.70 (m, 4H), 1.51–1.47 (m, 2H),1.03 (s, 6H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 161.9, 157.2, 155.0, 136.5, 133.2, 132.9, 130.3, 129.7, 129.6, 123.7, 123.6, 120.6, 113.7, 112.1, 68.7, 38.4, 38.2, 32.9, 29.7, 29.1, 27.2, 24.4, 21.5, 16.0 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₅H₃₃N₂O₂⁺ 393.2537, found 393.2535.

3-(1-(4-(*tert***-butyl)phenyl)propan-2-yl)-1-methylquinoxalin-2(1***H***)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product 49** (18.0 mg, 54% yield) was obtained as a white powder.^[18]

¹H NMR (500 MHz, CDCl₃): δ = 7.89–7.87 (m, 1H), 7.54–7.50 (m, 1H), 7.36–7.33 (m, 4H), 7.23–7.21 (m, 2H), 3.87–3.82 (m, 1H), 3.70 (s, 3H), 3.26 (dd, *J* = 13.5, 5.9 Hz, 1H), 2.73 (dd, *J* = 13.5, 8.7 Hz, 1H), 1.30 (s, 9H), 1.27 (d, *J* = 6.9 Hz, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.1, 154.7, 148.7, 137.8, 133.1, 132.9, 129.9, 129.7, 129.1, 125.2, 123.6, 113.6, 40.0, 38.2, 34.5, 31.5, 29.2, 18.0 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{22}H_{27}N_2O^+$ 335.2118, found 335.2122.

3-(3-(benzo[*d*][**1,3**]**dioxol-5-yl)propyl)-1-methylquinoxalin-2(1***H***)-one: This compound was prepared by using the general procedure A (eluent: PE/DCM, 1/2, v/v). The product 50** (16.8 mg, 52% yield) was obtained as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ = 7.83–7.81 (m, 1H), 7.54–7.50 (m, 1H), 7.35–7.28 (m, 2H), 6.73–6.66 (m, 3H), 5.89 (s, 2H), 3.69 (s, 3H), 2.99–2.95 (m, 2H), 2.71–2.67 (m, 2H), 2.13–2.06 (m, 2H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 160.9, 155.0, 147.6, 145.6, 136.1, 133.2, 132.8, 129.8, 129.7, 123.7, 121.4, 113.7, 109.2, 108.2, 100.8, 35.5, 33.8, 29.2, 28.6 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{19}H_{19}N_2O_3^+$ 323.1390, found 323.1399.

3-heptadecyl-1-methylquinoxalin-2(1*H*)**-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 10/1, v/v). The product **51** (23.9 mg, 60% yield) was obtained as a yellowish powder.

¹**H NMR** (500 MHz, CDCl₃): δ = 7.83–7.82 (m, 1H), 7.53–7.49 (m, 1H), 7.34–7.28 (m, 2H), 3.70 (s, 3H),

2.95–2.91 (m, 2H), 1.80–1.74 (m, 2H), 1.45–1.24 (m, 28H), 0.87 (t, J = 6.8 Hz, 3H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): *δ* = 161.5, 155.1, 133.2, 132.9, 129.7, 129.6, 123.7, 113.7, 34.5, 32.1, 29.8,

29.8, 29.8, 29.7, 29.6, 29.5, 29.2, 27.0, 22.8, 14.3 ppm.

HRMS (*m/z*): [M+H]⁺ calcd for C₂₆H₄₃N₂O⁺ 399.3370, found 399.3377.

(Z)-1-ethyl-3-(heptadec-8-en-1-yl)quinoxalin-2(1*H*)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 10/1, v/v). The product 52 (20.9 mg, 51% yield) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.84–7.82 (m, 1H), 7.53–7.49 (m, 1H), 7.33–7.30 (m, 2H), 5.38–5.31 (m, 2H), 4.31 (q, *J* = 7.2 Hz, 2H), 2.95–2.91 (m, 2H), 2.02–1.98 (m, 4H), 1.80–1.76 (m, 2H), 1.46–1.22 (m, 23H), 0.87 (t, *J* =6.8 Hz, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 161.5, 154.5, 133.2, 132.1, 130.0, 130.0, 129.6, 123.4, 113.5, 37.4, 34.4, 32.0, 29.9, 29.8, 29.7, 29.5, 29.5, 29.4, 27.4, 27.0, 22.8, 14.3, 12.6 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₂₇H₄₃N₂O⁺ 411.3370, found 411.3375.

3-((4R)-4-((8R,9S,10S,13R,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-

dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)pentyl)-1-methylquinoxalin-2(1*H*)one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 8/1, v/v). The product 53 (35.2 mg, 57% yield) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.81–7.79 (m, 1H), 7.50–7.47 (m, 1H), 7.32–7.25 (m, 2H), 3.67 (s, 3H), 3.59–3.53 (m, 1H), 3.02–2.96 (m, 1H), 2.82–2.76 (m, 1H), 1.97–1.72 (m, 7H), 1.57–1.00 (m, 24H), 0.88–0.87 (m, 12H), 0.63 (s, 3H), 0.04 (s, 6H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 162.0, 155.0, 133.2, 132.8, 129.7, 129.5, 123.6, 113.6, 72.9, 56.5, 56.2,
42.9, 42.4, 40.3, 40.3, 37.0, 36.0, 36.0, 35.7, 34.7, 33.0, 31.4, 31.1, 29.1, 28.4, 27.4, 26.5, 26.1, 24.4, 23.5,
20.9, 18.7, 18.4, 12.2, -4.42 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₃₉H₆₃N₂O₂Si⁺ 619.4653, found 619.4660.

3-((8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-17-((2*R*,5*S*,*E*)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl)-1methylquinoxalin-2(1*H*)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 10/1, v/v). The product 54 (34.9 mg, 63% yield, dr = 1.5:1) was obtained as a light orange powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.85–7.78 (m, 1H), 7.50–7.45 (m, 1H), 7.32–7.22 (m, 2H), 5.40–4.98 (m, 3H), 3.68–3.30 (m, 4H), 2.80–2.25 (m, 2H), 2.13–0.95 (m, 29H), 0.87–0.78 (m, 9H), 0.71 and 0.69 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 163.5, 162.8, 154.5, 154.3, 142.4, 140.6, 138.5, 133.0, 132.6, 130.2, 129.9, 129.5, 129.3, 129.3, 123.5, 123.3, 121.0, 120.6, 113.5, 113.4, 57.1, 57.0, 56.2, 56.1, 51.3, 50.5, 50.1, 42.5, 42.3, 40.6, 39.9, 39.5, 37.3, 37.2, 37.2, 36.5, 35.1, 34.2, 32.1, 32.0, 31.9, 29.1, 29.1, 29.0, 26.7, 25.5, 24.5, 24.4, 24.1, 21.4, 21.2, 21.1, 20.9, 19.8, 19.8, 19.1 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₃₈H₅₅N₂O⁺ 555.4309, found 555.4310.

3-((8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl)-1-

ethylquinoxalin-2(1H)-one: This compound was prepared by using the general procedure A (eluent:

PE/EtOAc, 10/1, v/v). The product 55 (39.0 mg, 72% yield, dr = 1.6:1) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.86–7.79 (m, 1H), 7.51–7.46 (m, 1H), 7.31–7.27 (m, 2H), 5.40–5.21 (m, 1H), 4.33–4.25 (m, 2H), 3.65–3.62 (m, 1H), 2.83–2.77 and 2.28–2.2.24 (m, 1H), 2.66–2.55 (m, 1H), 1.65–0.84 (m, 41H), 0.69 and 0.67 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 163.6, 162.9, 154.0, 153.8, 142.4, 140.7, 133.3, 132.9, 131.9, 130.5, 130.2, 129.5, 129.3, 123.3, 123.1, 121.0, 120.5, 113.4, 113.3, 57.0, 56.9, 56.3, 56.3, 50.5, 50.1, 42.4, 40.0, 39.6, 39.5, 37.3, 37.2, 37.2, 37.2, 36.5, 36.3, 35.9, 35.9, 35.0, 34.3, 32.1, 32.0, 2.0, 28.4, 28.1, 26.8, 24.4, 24.3, 24.1, 24.0, 22.9, 22.7, 21.1, 20.9, 19.9, 19.8, 18.8, 12.6, 12.5, 12.0 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₃₇H₅₅N₂O⁺ 543.4309, found 543.4305.

1-methyl-3-((5'R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5',6a,8a,9-tetramethyl-

1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-icosahydrospiro[naphtho[2',1':4,5]indeno[2,1*b*]**furan-10,2'-pyran]-4-yl)quinoxalin-2(1***H***)-one:** This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 5/1, v/v). The product **56** (32.8 mg, 59% yield, dr = 1.9:1) was obtained as a yellow powder.

¹**H NMR** (500 MHz, CDCl₃): *δ* = 7.84–7.78 (m, 1H), 7.51–7.46 (m, 1H), 7.33–7.24 (m, 2H), 5.39–5.20 (m, 1H), 4.44–4.34 (m, 1H), 3.69–3.60 (m, 3H), 3.49–3.28 (m, 3H), 2.82–2.24 (m, 2H), 2.02–1.41 (m, 20H), 1.17–0.95 (m, 8H), 0.81–0.76 (m, 6H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 163.5, 162.8, 154.6, 154.3, 142.4, 140.7, 133.0, 132.9, 132.6, 130.2, 129.9, 129.6, 129.4, 123.5, 123.3, 120.8, 120.3, 113.6, 113.5, 109.4, 81.0, 66.9, 62.2, 56.7, 50.4, 50.0, 42.5, 41.7, 40.4, 40.0, 39.5, 37.4, 37.3, 36.5, 35.0, 34.2, 32.2, 32.0, 31.9, 31.6, 31.5, 30.4, 29.1, 29.0, 28.9, 26.6, 24.1, 20.8, 20.7, 19.8, 19.8, 17.3, 16.4, 14.7 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₃₆H₄₉N₂O₃⁺ 557.3738, found 557.3737.

3-((55,8*R***,9***S***,10***S***,13***S***,14***S***)-10,13-dimethyl-17-oxohexadecahydro-1***H***-cyclopenta[***a***]phenanthren-3-yl)-1-methylquinoxalin-2(1***H***)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 4/1, v/v). The product 57** (17.3 mg, 40% yield) was obtained as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): *δ* = 7.87–7.85 (m, 1H), 7.51–7.48 (m, 1H), 7.33–7.26 (m, 2H), 3.67 (s, 3H), 3.63–3.60 (m, 1H), 2.43–2.37 (m, 1H), 2.06–2.00 (m, 2H), 1.98–1.65 (m, 10H), 1.57–1.44 (m, 4H), 1.30–1.18 (m, 5H), 0.88 (s, 3H), 0.85 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 221.8, 163.8, 154.4, 133.1, 132.5, 130.2, 129.4, 123.4, 113.5, 54.7, 51.6, 47.9, 41.2, 36.2, 36.0, 35.5, 35.1, 34.8, 31.7, 30.9, 30.4, 29.1, 28.5, 23.7, 21.8, 20.2, 13.9, 11.9 ppm.
HRMS (m/z): [M+H]⁺ calcd for C₂₈H₃₇N₂O₂⁺ 433.2850, found 433.2857.

3-((8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl)-1-methylquinoxalin-2(1*H*)-one: This compound was prepared by using the general procedure A (eluent: PE/EtOAc, 4/1, v/v). The product **58** (17.0 mg, 37% yield) was obtained as a yellowish oil.

¹H NMR (500 MHz, CDCl₃): δ = 7.80–7.78 (m, 1H), 7.51–7.47 (m, 1H), 7.32–7.25 (m, 2H), 5.22–5.20 (m, 1H), 3.67 (s, 3H), 3.66–3.61 (m, 1H), 2.82–2.77 (m, 1H), 2.58–2.47 (m, 2H), 2.18–1.80 (m, 10H), 1.67–1.38 (m, 7H), 1.24–1.00 (m, 6H), 0.61 (s, 3H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ = 209.8, 162.8, 154.3, 140.7, 133.0, 132.6, 130.1, 129.4, 123.3, 120.7, 113.5, 63.9, 57.1, 50.0, 44.2, 39.0, 37.3, 37.2, 35.1, 34.2, 31.9, 31.7, 29.1, 24.6, 24.1, 22.9, 20.9, 19.8,

13.3 ppm.

HRMS (m/z): $[M+H]^+$ calcd for $C_{30}H_{39}N_2O_2^+$ 459.3006, found 459.3010.

3-cyclohexyl-1-((1-tosyl-1H-1,2,3-triazol-4-yl)methyl)quinoxalin-2(1H)-one: This compound was prepared by using the procedure of synthetic application (eluent: PE/EtOAc, 5/1, v/v). The product **59** (39.4 mg, 85% yield) was obtained as a white powder.^[19]

¹**H** NMR (500 MHz, CDCl₃): δ = 8.20 (s, 1H), 7.96 (d, *J* = 8.1 Hz, 2H), 7.82–7.80 (m, 1H), 7.69–7.67

(m, 1H), 7.50–7.45 (m, 1H), 7.36–7.28 (m, 3H), 5.49 (s, 2H), 3.31 (tt, *J* = 11.6, 3.3 Hz, 1H), 2.42 (s, 3H),

1.96–1.93 (m, 4H), 1.89–1.85 (m, 1H), 1.60–1.42 (m, 4H), 1.35–1.24 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 164.0, 154.3, 147.6, 142.4, 133.2, 132.7, 131.7, 130.8, 130.0, 129.8, 129.0, 124.0, 123.6, 114.3, 40.9, 37.7, 30.7, 26.4, 26.2, 22.0 ppm.

HRMS (m/z): $[M+H]^+$ calcd for C₂₄H₂₆N₅O₃S⁺ 464.1751, found 464.1746.

4-benzyl-6-cyclohexyl-2-(oxiran-2-ylmethyl)-1,2,4-triazine-3,5(2H,4H)-dione: This compound was prepared by using the procedure of synthetic application (eluent: PE/EtOAc, 7/1, v/v). The product **60** (24.2 mg, 71% yield) was obtained as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ = 7.50–7.48 (m, 2H), 7.34–7.28 (m, 3H), 5.09 (s, 2H), 4.10–4.09 (m, 2H),

3.33-3.29 (m, 1H), 2.88-2.83 (m, 2H), 2.68-2.67 (m, 1H), 1.89-1.79 (m, 4H), 1.74-1.70 (m, 1H), 1.39-

1.33 (m, 4H), 1.25–1.20 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ = 155.7, 149.5, 149.2, 135.8, 129.7, 128.7, 128.2, 53.6, 49.2, 46.0, 44.4, 38.6, 30.5, 30.5, 26.2, 26.1 ppm.

HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₉H₂₄N₃O₃⁺ 342.1812, found 342.1811.

8. NMR spectra data.

¹H NMR (500 MHz, CDCl₃) for 1

$\begin{array}{c} 83\\ 83\\ 81\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83$	32 32 31 31 31	20 20 20 20 20 20 20 20 20 20 20 20 20 2	96 96 96 96	96 94 93 93 93 93 93 93 93 93 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95	87 88 88 88 88 83 83 83 83 83 83 83	2 3 4 4 4 4 7 8 8 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
	ホホホホ	・・・・・・・	· · · · · · · · · ·			

	— 164.35 — 154.63	L 132.97 L 132.93 L 132.93 129.47 L 129.47 - 113.55	$\left\{ \begin{array}{c} 77.42 \\ 77.16 \\ 76.91 \end{array} \right.$	-40.87 $\int 30.63$ 29.16 726.42 26.26
1				
antos, man felha sa lan da bera ketera ana jakan da mataka ketera ketera da manda da berak ketera ta ta da da s	สาวารกระสมประส ¹ าสสาวารระบาทสามาร์	1995,554,414,1993,1994,1996,1996,1996,1996,1996,1996,1996	นสูง-สุของการสารสารสารสารสารสารสารสารสารสารสารสารสา	wandaningsi managangan ini kana mantakangna (si na ini kanagananasi na ini kanaga manga na ini kanaga manga na

S67

¹H NMR (500 MHz, CDCl₃) for 2

3	3	Ξ	Ξ	$\overline{\mathbf{c}}$	$\overline{\mathbf{c}}$	2	2	Ξ		0	9	9	S	4	3	3	2		9	9	y v) 4			2 :	0	5	5	5	9	9	5	5	5	1	0	5	9	2	5	5	4	3	2	2	Ξ	Ξ	Ξ	Ξ
ଞ	×.	æ	- œ	ব	ব	্ব	িব্	ন	ব	ন	িব	<u></u>	<u></u>	<u>.</u>	<u></u>	Ċ.	.	<u></u>			. –		- Y	; v	: স্	. 9	9	9	9	9	9	9	9	9	9	9	9	9	•	•	•	9	9	9	•	•	9	9	9
ト	7	1	1				1	1		1				ト	て	r	1	1			- r	- r	- V	n r) (") —			-		-					-							-	-	_	-			-

S71

¹H NMR (500 MHz, CDCl₃) for 4

000400000		0 1 7 3 3 6 6 6		. 0 9 7 7 0 0 1 1 0 8 8 9 7 0 .
مغمغ مخمخ بنا بنا بنا بنا بنا		<u> </u>		
			レレレレ ろうろう 4 4	. – – – – – – – – – – – – – – – – – – –

4

0 0 0 1 1 8 0 1 5 5	0 M M A I O O M M A A	1 2 2 5 2 2 2 4 4 4 5 5 5 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	0 0 6 6 8 8 7 7 1 0 6 8 7 9 4 4
. ထံ ထံ ထံ ယံ ယံ ယံ ယံ ယံ ယံ ယံ ဟံ	1 9 9 9 9 9 9 9 9 9 9 9	- ∞ ∞ v v v v v v v v v ∞ ∞	$\Box \Box $
		<u>, いいいい いちょう うちょ 4 4</u>	

 .20 .20 .19 .04 .02 .02	.57 .56 .56 .56 .54 .40 .39 .39	.42 .67 .67 .67 .67 .65 .65 .65 .65	$\begin{array}{c} .64 \\ .61 \\$
9	NNNNNN 1	8	

666666	- 0 8 8 L L 9 N N 4 M A A - 0 0 0	0 0 V V V V 7 7 8 P V V V N N N N N 1 1 0 8 0 P
	<u>v</u> 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>
	v • • • • • • • • • • • • • • • • • • •	

57 91 55 33 33 33 34 35 55 55 55 55 55 55 55 55 55 55 55 55	69 68 67 67	65 65 65 65 65 65	5 2 3 3 7 7 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8	33 35 35 35 07 05 05 05 05 05 05 05	03 02 01 01 01 00 88 88
7 7 9 9 9 9 9 9 9			 		

0 0 0 7 0 0 0 0 0 0	7 1 0 1 0 4 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1	0011000	8 1 1 6 1 7 9 9	NH 0 L 8 L 9 N N 9 4 N 1 0 H - H	9
x x x x 4 4 4 4 4	444000		00400000	0 0 V V 7 7 7 7 7 7 7 0 0 0 0 V V 7 7 7 7	0
~~~~	$\vec{h}$	$\vec{h}$ $\vec{h}$ $\vec{h}$ $\vec{h}$ $\vec{h}$ $\vec{h}$ $\vec{h}$ $\vec{h}$ $\vec{h}$	<b>. . . . . . . . . .</b>		÷

















888 883 883 883 885 885 885 885 885 885	44 30 30 30 30 30 30 30 30 30 30 30 30 30	5       6       7       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8	34 96 96 96 96 96 96 96 96 96 96 96 96 96	2 2 2 8 8 8 2 7 3 7 7 7 8 8 8 7 7 3 7 7 8 8 8 8 7 7 3 8 8 8 7 7 3 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 7 7 8 8 8 7 7 7 8 8 8 7 7 7 8 8 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<b>4</b> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4



10.0 9.5

9.0 8.5 8.0 7.5

7.0

6.5

6.0

5.5



4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

# ¹³C NMR (125 MHz, CDCl₃) for 15 -164.39-154.08133.29 130.12 123.27 113.40 31.84 129.44 40.73 37.40 30.67 26.45 26.27 - 12.54 77.42 77.16 76.91 15 ومراجع المراجع أبريا والمراجع فالمراجع ومتعاوماتها والمراجع والمراجع المراجع 90 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 80 70 60 50 40 30 20 10 0 fl (ppm)

884 883 335 336 837 837 837 837 837 837 837 837 837 837	31 33 33 33 33 33 33 33 33 33 33 33 33 3	222222222222222222222222222222222222222	2 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	90 88 88 88 88 88 88 88 88 88 88 88 88 88
******	<b>ホホホホホホ</b>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· · · · · · · · · · · · · · · · · · ·	









883 883 883 883 884 883 884 883 884 883 884 884	31 33 33 30 29 29	$\begin{array}{c} 0.4 \\ 0.2 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\$	31 97 95 94 87 87 87	888       888       888       888       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       886       8
	* * * * * * *	<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	$\vdots$	







4         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	2 4 4 5 8 <del>8</del> 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 7 7 7 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7	0 4 0 3 3 2 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	9 9 9 9 7 9 9 9 9 7 7 9 9 9 7 7 7 9 9 9 9	8 8 8 8 8 9 9 9 7 9 8 8 8 8 9 9 9 7 9 9 8 8 8 8
		- <i>L L L V</i> I	n w y y w u		



### ¹³C NMR (125 MHz, CDCl₃) for 18 -153.58-164.24133.16 123.88 29.58 31.41 30.00 114.04 76.91 73.16 7 40.92 31.56 26.39 26.22 30.63 77.41 77.1 77.1 18 90 $\dot{40}$ 30 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 80 70 60 50 20 10 0 fl (ppm)



8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	31 33 25 25 25 25 25 24	24 25 25 24 17 17 14 14 14 14	889 889 888 888 888 888 70 70 70	9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8       8
		<b>6 6 6 6 6 6 6 6 6 6</b>	44446-	





<ul><li>70</li><li>68</li><li>63</li><li>63</li><li>63</li><li>31</li><li>53</li><li>53</li><li>53</li><li>53</li><li>53</li><li>53</li><li>53</li><li>53</li><li>54</li><li>55</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56</li><li>56&lt;</li></ul>		0 2 8 7 7 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9	8 2 2 9 3 4	86 85 85 85 83 83 83 83 83 83 83 83 83 83 83 83 83	553 553 553 553 553 553 553 553 553 553
	- (- (- (- (- (- )				









882 882 882 882 882 882 882 882 882 882	118 118 118 118 118 118 118 118 118 118	91 91 88 88 88 88 88 88 88 88 88 88 88 88 88	7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7









8 9 7 9 7 7 8 8 8 8	104400	1 - 9 9 9 4 6 7	9999946666	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
_ איַ אַ סָ שָ אַ איַ איַ איַ איַ אַ אַ	نونونونونو	ن حن من من من من من من		
	<b></b>			






<b>2 2 1 0 6 2 </b>	2 7 2 2 2 C C C C 2 9 2 9 2 9 2 9 2 9 2 9 2	2 2 2 4 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

















7.85 7.85 7.84 7.84 7.83 7.83 7.83 7.83 7.83 7.52 7.52 7.50 7.50 7.50 7.50	7.49 7.48 7.34 7.34 7.34 7.33 7.33 7.33 7.33 7.33	7.29 7.29 7.27 7.27 7.27 7.27 7.27 7.27	5.62 5.62 5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.61









5	5		2	69	17	: [	<u>}</u>	46	4		45	44		4	30	U C		28	28	0	0	28	27		207	26	26	)     (	20	25	20		00	85	84	84	5 6	0	82	82	8	S O		22	21	20	20	20	١٧	19	11	10	60	60	60	08	08	5	, ,
F	-	: r		~	1	: 1	-	Ļ	, ר	•	Ļ.		: 1	, ,	1	Г		-	-	r	-	2	1	Ì	-	2	1		-	F	~	;	V	2	2	0	ic	i	2	2	5	C	1		-	-	-	÷	-	-	-	-	1.	1.	1.	1.		. –	i
ι								L				L		L	L		J.	J	_		ι.	_									ι			L					L	L			L	L					L	L	L	1	L						









ЧY

0.0



¹³ C NMR (125 MHz, CDCl ₃ ) for 28				
	162.27 154.88 154.49	$   \begin{array}{c}     132.96 \\     132.82 \\     132.82 \\     129.90 \\     123.69 \\     - 113.65 \\   \end{array} $	79.43 77.41 77.16 76.91	43.57 39.05 29.52 29.51 28.60
NBoc N N Me 28				· · · ··
			4	
กระจะสะประทั่งเป็นการแรงสายสายสายให้เป็นสายสายให้เป็นสายให้เสียงให้สายสายให้และสายสายสายสายสายสายสายสายสายสายส		han	101 mar da to ser fra instant, fra i fra da	-and wanted in the Mary and the line of the second
240 230 220 210 200 190 180	170 160 150	140 130 120 110 100	) 90 80 70 60	50 40 30 20 10



85 85 84 85 52 52 51 51 51	35 35 34 35 32 32 32 32	30 33 30 30 30 30 31 11 11	11 10 10 09 08 08 08 08 08	07 64 61 55 53 55 53	96 95 95 95 95 95 95 95 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86
		ト レ レ レ 4 4	444444	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
			L L L L I I		









0



50 50 33 33 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50	2 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	80 8 8 8 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	77 77 77 77 77 77 77 77 77 77 77 77 77	<b>31</b> <b>31</b> <b>31</b> <b>31</b> <b>32</b> <b>32</b> <b>33</b> <b>35</b> <b>36</b> <b>37</b> <b>37</b> <b>37</b> <b>37</b> <b>37</b> <b>37</b> <b>37</b> <b>37</b>
~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· · · · · · · · · · · · · · · ·		


21 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	31 31 30 30 30 30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	85 85 85 85 85 85 85	85 84 84 84 82 82 81 81 81	80 80 33 35 35 35 35 35 35 35 35 35 35 35 35	335 35 35 35 35 35 35 35 35 35 35 35 35
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	・・・・・・	* ~ ~ ~ ~ ~ ~ ~ ~	<u></u>			

330 331 346 45 51 51 51 51 51 51 51 51 51 51 51 51 51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	887 887 885 881 881 881 881 881 881 881 881 881	880 880 880 880 880 880 880 880 880 880	33 33<
	3 3 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

¹³ C NMR (125 MHz, CDCl ₃) for 32				
	< 155.81	✓ 136.04 129.62 128.61 128.03	77.41 77.16 76.91	\sim 51.42 44.19 38.46 \sim 30.55 30.55 30.55 \sim 30.55 26.09 \sim 13.79 \sim 13.79
$ \begin{array}{c} $				
ร้างขนองใหล่สมหน้าขึ้นของสารรถเขาอาหรุโฟมารูการของหุไทร์กระการรูกษรีที่สารรมายกรรมไปปรึกษีไม้ส่วนใจเรยไปปาหาระหลายกรุณที่ม	hangeneren anderen anderen anderen	**************************************	Nerrauntaningkantariyate haryanlarthannariyatesiyat	איקרי איר און ייראר איר איר איר איר איר איר איר איר א
240 230 220 210 200 190 180 170	160 150	140 130 120 110 100 f1 (ppm)	90 80 70 6	0 50 40 30 20 10 0

38 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	335 335 335 335 335 335 335 335 335 335	08 0	889 889 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 883 884 884 885 883 884 885 8
~~~~~~~~	~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $



¹³ C NMR (125 MHz, CDCl ₃ ) for 33	$\begin{pmatrix} 155.76 \\ 149.06 \\ 148.94 \\ 135.91 \\ 135.91 \\ 129.60 \\ 128.83 \\ 128.63 \\ 128.63 \\ 128.63 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\ 128.07 \\$	77.41 77.16 76.91	-55.35 $-44.26$ $-38.54$ $-30.55$ $-26.09$
$ \begin{array}{c}                                     $			
๛๛๛๚๛๛๚๛๛๛๛๛๚๚๚๚๛๚๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	negender som en verd valaren af hjor og men som som som som het hødelige por till tradese som	idenespinepinetantastastast	
240 230 220 210 200 190 180 17	0 160 150 140 130 120 110 100 f1 (ppm)	90 80 70	60     50     40     30     20     10     0



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 3 3 3 3 4 5 4 4 4 4 4 5 3 3 3 3 3 3 4 5 4 5	2132560967288297 21325609622388223	$\begin{array}{c} 22\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$
	****	· · · · · · · · · · · · · · · · · · ·	*

51 51 51 51 53 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51	30 23 23 23 23 23 23 23 23 23 23 23 23 23	225 225 223 223 223 254 254 254 254 254 255 253 255 255 255 255 255 255 255 255	53 53 86 85 85 85 85 85 85 85 85 85 85 85 85 85	8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
~~~~	· · · · · · · · · · ·	<b>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</b>	* * * * +	





<b>552</b> <b>550</b> <b>550</b> <b>550</b> <b>550</b> <b>550</b> <b>551</b> <b>551</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b><b>552</b></b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>55</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>552</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b> <b>55</b>	$232 \\ 232 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 $	8 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	887 / 887 / 887 / 887 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 / 883 /
****	* * * * * * * * * * *		











	$\bigcirc \lor \land $	$4 \ 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$
N	<u>4                                    </u>	<u>,                                    </u>
~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	


55 55 55 55 55 55 55 55 55 55 55 55 55	37 337	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	331 332 333 333 333 333 333 333 333 333	7 2 2 3 3 0 2 3 0 2
	\neg			
		/ _/		

	-156.24 -146.69 -146.69 135.90 135.82 129.54 128.63 128.63 128.09	$ \left\{\begin{array}{c} 77.41 \\ 77.16 \\ 76.91 \end{array}\right. $	55.24 44.31	9.92
$ \begin{array}{c} Bn. \\ N \\ N \\ Bn \\ 40 \\ \end{array} $				
		ĺ		
∽₽₽₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		والمتبرية هوالمارين والمؤركة ومورسمين وا	generation and half the state of the later of the state o	ngen halven ander fan de skriften fan skriften fan skriften fan skriften fan skriften fan skriften fan skriften
240 230 220 210 200 190 180 170	160 150 140 130 120 110 100 f1 (ppm)) 90 80 70	60 50 40 30	20 10 0

49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40	31 31 32 33 34 35 37 38 39 31 32 32 33 34 35 37	48 88 <td< th=""></td<>

S147

42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35 35 35 37 37 37 35 37 37 37 37 37 37 37 37 37 37 37 37 37	 $\begin{array}{c} 31\\ 05\\ 06\\ 05\\ 06\\ 05\\ 06\\ 05\\ 06\\ 05\\ 05\\ 06\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05$	05 05 05 05 05 03 05 03 05 00 05 03 05 05 03 05 05 05 05 05 05 05 05 05 05 05 05 05
	~~~ ~~~~	L L L L L V V 4 4	4 4 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

S149

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 7 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4	335 336 3 35 3 35 3 35 3 35 3 36 4 3 4 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	233 23 53 53 53 53 53 53 53 53 53 53 53 53 53	58 58 58 58 58 58 58 58 58 58 58 58 58 5
					<u>ָ</u> יי יי יי יי יי יי יי יי יי

9	3	0	3	3	2	2	ŝ		9	5	5	4	4	3	3	0	9	5	\mathbf{c}	0	-	0	9	5	5	5	4	4	3	3	2	5	-	-	-	0	0	9	6	ø	∞	œ				- 'S	9	9	9
୍ର	ં	ં	୍ତ	्र	9	v	4	4	4	4	઼ઌ	ં	ကဲ	ં	. ∽	. ∽				ં	:	9	. 9		· -	Ŀ.	Ŀ.	Ŀ.	Ŀ.	5	Ľ.	Ŀ.	L	Ŀ.	Ŀ.	Ŀ.	Ŀ.	Ģ	9	୍ତ	୍ତ						è é	<u> </u>	୍ତ୍
て	9	9	5	5	5	5	5	5	5	S	4	4	4	4	4	4	4	4	4	\mathbf{c}	2						-		-		-	-	-	-	-	-						-	-	•	• •	• •			-
L .									_						L						-									L	L		L.	L.	L.	L.	L	1		1	1								

62 62 62 62 62 62 62 62 62 62 62 62 62 6	61 61 64 84 84 84 84 84 84 84 84 84 84 84 84 84	333 333 333 333 332 332 332 332 332 332	$\begin{array}{c} 31\\ 14\\ 12\\ 08\\ 08\\ 05\\ 91\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83$	882 881 882 880 880 880 882 883 883 883 883 883 883 883 883 883
5.5.5.6.6. 7			4 4 6 6 7 7 7 7	

ĸĬĸĸŧĬĸĬĸĨĹŶŧŧŔĸĸſŗĬĸĸſſŊĸĿĊĬĬŧŦĿĸĬĬĸĬĬŶŢŖĸſĬĬĬĬŖĿĿſĸĬĸŗŔſŔſſĬſŊĸĿſŊ

170 160 150

20.63

25.98 20.84

sylve for a present of the sector of the sector

50

60

40

20

30

0

10

70

¹³C NMR (125 MHz, CDCl₃) for 46

240

230

220

210 200

190

180

120

fl (ppm)

140 130

110 100

90

80

3 2 5 6 2 9 8 8 8 9 9 6 9 8 9 9 9 9 9 9 9 9 9 9 9	1 3 3 5	8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	0 W W W W W W 4 4 4 4 4 4 4	4 4 m m m m n n n n n n n n n n n n n n

333512 35512 355512 35555555555	(22)	63 94 94 94 95 94 95 95 92 92	31 88
		· · · · · · · · · · · · · · · · · · ·	

000040000	0 0 0 0 0	9 N N 4 M M 0 6	6 6 8 8 7 9 6 6 6 6	1 - 5 5 4 7 0 5 5	0 7 0 0 7 7 0 0 V 9
	0 0 0 0 0 0	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	0000000000000000000000000000000000000	667	8 8 8 8 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\cdot $ $		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		m

6677777777777777777777777777777777777	o v v 4 4 w v v 0 0 v x v	0 m m - 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• • • • • • • • • • • • • • • • • • •	, w w w w w w w w w w	~ * * * * * * * * * * * * * * * * * * *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<pre></pre>

83 83 83 83 83 83 83 83 83 83 83 83 83 8	$\begin{array}{c} 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$	20 20 20 20 20 20 20 20 20 20	8 8 8 7
	<u> </u>		

S167

4460166000	0 0 9 V 4 4 7 M	0 - 5 6 - 6 - 7 - 6 8 - 4 6 8 -	0 1 8 0 0 1 1 8 0 0 1 1 5 0 8 L V 9 0 0 8 L V 9 0 8 L V
. ઝંઝંઝંઝં પં તં તં તં તં	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>
		4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

8 1 2 2 2 3 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 2 3 1 1 1 1	30 27 27	252	80 75 75	22 23 25 2	333536	$ \begin{bmatrix} 2 & 3 \\ 2 & 3 \\ 2 & 3 \\ 2 & 3 \\ 3 & 1 \\ 3 & 1 \\ 3 & 2 \\ 3 & 2 \\ 3$	20 16 16 16 16 16 83 88 83 83 83 83 83 83 83 83 83 83 83	33
								0.0

0 3 4 7 6 7 7 8 8 7 7 7 9 3 7 7 7 9 3 3 2 7 7 9 3 3 2 7 7 9 3 3 3 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 0 3 4 7 6 7 7 8 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9	in io io
0 1	18 12 12

8 1 1 6 9 9 4 8 1 9 9	00000	0 7 7 0 0 0 7 7 0	FF967064	4 0 2 1 9 0 4 0	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	ا و ا و ا و ا و ا و ا	n vì vì vì vì vì vì vì vì			
「「「「「「」」」」					\circ \circ \circ \circ \circ \circ \circ \circ \circ

140 130 110 100 fl (ppm)

80 80 30 28 28 28 28 27 28 28 27	31 33 229 229 01	99 53 51 50 49	45 45 33 35 35 45 45 45 45 45 45 45 45 45 45 45 45 45	11 11 11 11 11 11 11 11	09 06 06 06 06 05 02 02 02 02 02 02 02 02 05 00 00	90 888 868 85 85 85 85 69 67
~~~~~	44444				1 1 1 0 0 0	$\circ \circ \circ \circ \circ \circ \circ \circ \circ$

![](_page_173_Figure_2.jpeg)

![](_page_174_Figure_0.jpeg)

68	89	47	27	25	01	97	37	28	2	9	1	9	0	0	5	ø	1	F	Ľ	3	S	4	0	9	2	1	ũ	1	ß	S	6	2	5		-	2	9	4	Ś	4	6	8	4	9	6	4	<u>6</u> ;	9	2
40.	31.	30.	29.	23.	23.	20.	13.	13.	7.7	7.1	6.9	6.9	6.9	6.3	6.2	0.4	0.1	2.4	9.9	9.6	9.5	5	2.7	7.1	6.5	6.3	5.9	5.9	5.0	4.2	2.0	5.0	1.9	ŝ	<b>.</b> .	ন ব	4.3	4.1	3.9	2.9	2.6	1.0	0.9	9.8	9.7	8.8	10 10 10	5 5 7	L.
-	-	-	-	-	-	-	-	-	ŕ-	ŕ-	Ē	Ń.	Ń.	Ŵ	Ŵ	Ń	Ń	4	3	3	3	ŝ	3	ŝ	ŝ	Ś	3	3	3	Ś.	3	ŝ.	3	Ô.	2	Ċ.	Ċ.	Ń.	N	N	<b>N</b>	2	<b>N</b>	-	-	-		-	-

![](_page_174_Figure_2.jpeg)

![](_page_174_Figure_3.jpeg)

80 80 79 80 78 78 78 78 78 78 78 78 78 78 78 78 78	226 226 226 226 226 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	c 1 2 2 3 4 7 3 7 3 7 4 7 5 9 0 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60           60
~~~~	<b>F F F 6 6 6 6 1 1 1 </b>		


887 885 885 885 885 885 887 28 885 28 332 28 332 28 885 50 887 887 887 887 887 887 887 887 887 88	26 26 67	61 90 88 88 89 79 79 79 79 79 79 79 79	9779 9776 9775 9755 9755 9755 9755 9755	667 667 667 667 667 667 667 667 667 667
****	κ. 			

80 80 80 80 80 80 80 80 80 80 80 80 80 8	30 30 27 27	5125	21 20 67 58 49	11 10 10	64 61 61 61 61 61 61 61 61 61 61 61 61 62 64 64 64 64 65 64 65 64 65 65 65 66 76 67 76 67 76 76	6 1 1 1 1 1 1 1 1 1 1
			N N M M A A			

¹H NMR (500 MHz, CDCl₃) for 59

97 95 88 89 69 69 69 69 69	67 49 48 48	3 3 4 6 4 8 9 3 3 4 6 7 9 3 7 9 7 9 4 9 7 9 3 7 9 7 9 4 9 7 9 7 9 7 9	49 49 49 49 49 49 49 49 49 49 49 49 49 4	31 99 93 93 93 93 93 93 93 93 93 93 93 93	8888 888 888 888 888 887 887 887 887 88
8					

¹H NMR (500 MHz, CDCl₃) for 60

50 50 50 50 50 50 50 50	31 33 30 30 30 30 30 30 30 30 30 30 30 30	x x x x x x x x x x x x x x x x x x x	888 887 887 887 887 887 887 887
	~ ~ ~ ~ ~ ~ ~ ~ ~		

S185

9. Reference.

- [1] J. Zhou, Q. Ren, N. Xu, C. Wang, S. Song, Z. Chen and J. Li, Green Chem., 2021, 23, 5753.
- [2] F. Cheng, L. Fan, Q. Lv, X. Chen and B. Yu, Green Chem., 2023, 25, 7971.
- [3] L.-C. Hwang, S.-Y. Yang, C.-L. Chuang and G.-H. Lee, Molecules, 2017, 22,1924.
- [4] A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers and V. K. Aggarwal, Science, 2017, 357, 283.
- [5] A. Noble, R. S. Mega, D. Pflästerer, E. L. Myers and V. K. Aggarwal, Angew. Chem., Int. Ed., 2018, 57, 2155.
- [6] (a) F. W. Friese and A. Studer, Angew. Chem., Int. Ed., 2019, 58, 9561; (b) J. Wu, R. M. Bär, L. Guo, A.
- Noble and V. K. Aggarwal, Angew Chem. Int. Ed., 2019, 58, 18830.
- [7] C. Lian, J. Zhang and F. Mo, Org. Chem. Front., 2024, 11, 1140.
- [8] S. Kisan, V. Krishnakumar and C. Gunanathan, ACS Catal., 2017, 7, 5950.
- [9] X.-K. He, J. Lu, A.-J. Zhang, Q.-Q. Zhang, G.-Y. Xu and J. Xuan, Org. Lett., 2020, 22, 5984.
- [10] E. Speckmeier and T. C. Maier, J. Am. Chem. Soc., 2022, 144, 9997.
- [11] C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London), 1956, A235, 518.
- [12] H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Pure Appl. Chem., 2004, 76, 2105.
- [13] M. Monalti et. al. Chemical Actinometry. Handbook of Photochemistry, 3rd Ed; Taylor & Francis Group,
- LLC. Boca Raton, FL, 2006, 601.
- [14] A. Bisoyi, A. R. Tripathy, G. S. Yedase, S. S.P, U. Choudhury and V. R. Yatham, *J. Org. Chem.* 2023, 88, 2631.
- [15] M. Wang, Y. Zhang, X. Yang and P. Sun, Org. Biomol. Chem., 2022, 20, 2467.
- [16] X. Liu, Z. Guo, Y. Liu, X. Chen, J. Li, D. Zou, Y. Wu and Y. Wu, Org. Biomol. Chem., 2022, 20, 1391.

- [17] S. P. Panda, S. K. Hota, R. Dash, L. Roy and S. Murarka, Org. Lett., 2023, 25, 3739.
- [18] L. Wang, Z. Chen, G. Fan, X. Liu and P. Liu, J. Org. Chem., 2022, 87, 14580.
- [19] K. Niu, Y. Hao, L. Song, Y. Liu and Q. Wang, Green Chem., 2021, 23, 302.