Supplementary Information

Excited Pd-catalyzed dearomative 1,4-dicarbofunctionalization

of nonactivated aromatic rings

Kai Jiang,^{1,2} Ziyan Zhao,¹ Xiaodong Yin,¹ Fangjun Chen,¹ Biaolin Yin^{1*}

¹ Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China.
² Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Content

1. Chemicals and apparatus	2
2. Procedure for the synthesis of starting materials.	3
3. General procedure for the Synthesis of 2 and 4	5
4. Optimization of the three-component reaction	6
5. Possible mechanism for the two-component reaction	7
6. Structural characterization data for the compounds	8
7. References	38
8. Copies of NMR spectra for the compounds	39

1. Chemicals and apparatus

All reactions were carried out in dried tubes with magnetic stirrer. Purifications of reaction products were carried out by flash chromatography using Qingdao Haiyang Chemical Co. Ltd silica gel (200-300 mesh). ¹H, ¹³C NMR spectra were recorded on a Bruker AVANCE (500 MHz or 400 MHz for ¹H; 125 MHz or 100 MHz for ¹³C, 471 MHz or 376 MHz for ¹⁹F), ¹H NMR and ¹³C NMR shifts were determined relative to internal standard TMS at δ 0.0. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Mass spectra (MS) were obtained using thermo fisher Q Exactive HR-MS. Melting points were determined using WRS-1C from INESA intelligent technology. Infrared spectra (IR) were recorded on a Brucker TENSOR 27 FTIR spectrophotometer and were reported as wavelength numbers (cm⁻¹). Infrared spectra were recorded by preparing a KBr pellet containing the title compounds. All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature.

2. Procedure for the synthesis of starting materials.

Scheme S1. Synthesis route of 1

A mixture of benzaldehyde (10 mmol) and primary amine (11 mmol) in DCM (20 mL) was stirred at room temperature for 12 hours. Then the volatiles were removed by rotary evaporation under reduced pressure. The residue was redissolved by MeOH (20 mL) and stirred in ice bath for 5 minutes. After cooling down, NaBH₄ (20 mmol, 0.76 g) in three portion was added to the mixture stepwise, following with a continuous stir for 2 hours under room temperature. The reaction was quenched with water, and the mixture was concentrated by rotary evaporation under reduced pressure. The product was extracted by DCM (20 mL) from the mixture and washed with brine (30 mL \times 3). Then the organic phase was dried by anhydrous sodium sulfate, and the solvent was then removed by rotary evaporation under reduced pressure to afford the crude secondary amine.

The resulted secondary amine was dissolved in anhydrous DCM (20 mL), following with the addition of anhydrous triethylamine (3 mL). α -Halogenated acyl chloride (15 mmol) dissolved in 5 mL anhydrous DCM was then added to the reaction mixture dropwise under 0 °C over 10 minutes. After stirring for 3 hours, the reaction was quenched by water. The product was extracted by DCM (20 mL) and washed with brine (50 mL \times 3). Reagents 1 were afforded by the evaporation of solvent and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (10/1, v/v) as the eluent.

Scheme S2. Synthesis route of 3

The secondary amine was dissolved in anhydrous DCM (20 mL), following with the addition of anhydrous triethylamine (3 mL). Acryloyl chloride (15 mmol) dissolved in 5 mL anhydrous DCM was then added to the reaction mixture dropwise under 0 °C over 10 minutes. After stirring for 3 hours, the reaction was quenched by water. The product was extracted by DCM (20 mL) and washed with brine (50 mL \times 3). Reagents **3** were afforded by the evaporation of solvent and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (10/1, v/v) as the eluent.

Scheme S3. Synthesis route of 3ae

2,3-dihydro-1H-inden-1-one (10 mmol) and tetraisopropyl titanate (15 mL) was placed into a 100 mL round bottle flask. Before adding *tert*-butylamine (11 mol) dropwise, the mixture was stirred and cooled down. Then, MeOH (10 mL) was added into the reaction slowly for 5 minutes, and the NaBH₄ (20 mmol, 0.76 g) was added to the mixture in serval portion. After 1.5 hours, the reaction was quenched by water and filtered. The crude secondary amine was collected by the extraction of DCM from the filtrate and the further removal of solvent from organic phase.

The resulted secondary amine was dissolved in anhydrous DCM (20 mL), following with the addition of anhydrous triethylamine (3 mL). Acryloyl chloride (15 mmol) dissolved in 5 mL anhydrous DCM was then added to the reaction mixture dropwise under 0 °C over 10 minutes. After stirring for 3 hours, the reaction was quenched by water. The product was extracted by DCM (20 mL) and washed with brine (50 mL \times 3). Reagents **3ae** were afforded by the evaporation of solvent and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (10/1, v/v) as the eluent.

3. General procedure for the Synthesis of 2 and 4

1 (0.2 mmol) was added to a 25 mL reaction tube charged with nucleophile (0.4 mmol), Pd(PPh₃)₄ (0.01 mmol, 11.6 mg), phosphorus ligand (0.04 mmol), K₂CO₃ (0.4 mmol, 40 mg) and anhydrous THF (2.5 mL). The tube was placed next to the blue LED light (30 W, 430-435 nm) with a fan behind for cooling (Figure S1). The reaction was carried under argon atmosphere for 20 hours. After that, the reaction was quenched by adding water, and the product was diluted with DCM (10 mL) and washed with brine (5 mL \times 3). The organic layer was concentrated by the rotary evaporation and the resulting residue was further purified by chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the product **2**.

3 (0.2 mmol) was added to a 25 mL reaction tube charged with nucleophile (0.4 mmol), halohydrocarbon (0.4 mmol), Pd(PPh₃)₄ (0.01 mmol, 11.6 mg), phosphorus ligand (0.04 mmol), K₂CO₃ (0.4 mmol, 40 mg) and anhydrous DMF (2.5 mL). The tube was placed between two blue LED light (30 W, 430-435 nm) (Figure S1). The reaction was carried under argon atmosphere for 20 hours. After that, the reaction was quenched by adding water, and the product was diluted with DCM (10 mL) and washed with brine (5 mL \times 3). The organic layer was concentrated by the rotary evaporation and the resulting residue was further purified by chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the product **4**.

Figure S1 Device for the standard reaction

4. Optimization of the three-component reaction

3a	+ MeOOC [^] COOMe -	Pd(PPh ₃) ₄ (5 mol%) Ligand (20 mol%) base (2 equiv) Solvent (0.1 M), argon 30 W Blue LEDs		$ \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Entry ^a	Solvent	Ligand	Time(h)	Yield(%) ^b
1	DMF	PPh ₃	24	35
2	DMSO	PPh ₃	24	trace
3	THF	PPh ₃	24	trace
4	DMF	PPh ₃	36	54
5	DMF	PPh ₃	48	56
6 ^c	DMF	PPh ₃	48	37
7^{d}	DMF	PPh ₃	48	trace
8	DMF	Cy-Johnphos	48	trace
9	DMF	Xantphos	48	trace
10	DMF	(S)-BINAP	48	88(86) ^e
11^{f}	DMF	(S)-BINAP	48	N.D.
12 ^g	DMF	(S)-BINAP	48	N.D.
13 ^h	DMF	-	48	26

Table S1. Screen of three-component reaction conditions

^aUnless noted otherwise, the reactions were carried out with 0.2 mmol **3a**, 0.4 mmol nucleophile in solvent (c = 0.1 M) under irradiation of 30 W blue LEDs and argon atmosphere at room temperature. ^bYields of **4a** determined by ¹H NMR with dibromomethane as the internal standard. ^cCs₂CO₃ instead of K₂CO₃. ^dEt₃N instead of K₂CO₃. ^eIsolated yield with the ratio of syn:anti (> 20:1). ^fIn dark. ^gWithout Pd(PPh₃)₄. ^hWithout (S)-BINAP.

5. Possible mechanism for the two-component reaction

Scheme S4. Possible reaction cycle for the two-component reaction.

6. Structural characterization data for the compounds

N-benzyl-N-(tert-butyl)-2-chloroacetamide (1a):

85% yield, white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.36 (m, 2H), 7.30 – 7.27 (m, 1H), 7.21 – 7.19 (m, 2H), 4.66 (s, 2H), 3.98 (s, 2H), 1.46 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.57, 138.50, 129.06, 127.42, 125.35, 58.69, 48.72, 44.22, 28.37. The NMR data is consistent with reported literature.^[1]

N-(adamantan-1-yl)-N-benzyl-2-chloroacetamide (1j):

Ad 80% yield, white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.40 (m, 2H), 7.30 – 7.26 (m, 1H), 7.22 – 7.20 (m, 2H), 4.67 (s, 2H), 3.96 (s, 2H), 2.23 (d, *J* = 3.0 Hz, 6H), 2.10 – 2.03 (m, 3H), 1.69 – 1.58 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.57, 138.86, 129.01, 127.33, 125.38, 60.18, 47.31, 44.70, 39.49, 36.26, 30.12. IR (thin film): v_{max} (cm⁻¹) = 3299, 2909, 2857, 1660, 1448, 1305, 1149, 1003, 798, 747. HRMS (ESI) calcd for C₁₉H₂₅ClNO [M+H]⁺: 318.1619. Found: 318.1610.

N-(tert-butyl)-2-chloro-N-(2-methylbenzyl)acetamide (1m):

80% yield, yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.17 (m, 4H), 4.55 (s, 2H), 3.91 (s, 2H), 2.30 (s, 3H), 1.47 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.79, 136.18, 134.17, 130.62, 127.21, 126.61, 124.52, 58.61, 46.60, 44.00, 28.17, 18.99. IR (thin film): v_{max} (cm⁻¹) = 2970, 1663, 1470, 1401, 1263, 1195, 798, 750, 675. HRMS (ESI) calcd for C₁₄H₂₁ClNO [M+H]⁺: 254.1306. Found: 254.1302.

N-(tert-butyl)-2-chloro-N-(2-ethylbenzyl)acetamide (1n):

87% yield, colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.19 (m, 4H), 4.65 (s, 2H), 3.91 (s, 2H), 2.65 (q, *J* = 7.6 Hz, 2H), 1.49 (s, 9H), 1.27 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.74, 140.14, 135.49, 128.73, 127.44, 126.50, 124.65, 58.61, 46.16, 44.05, 28.20, 25.28, 14.28. IR (thin film): v_{max} (cm⁻¹) = 2969, 1664, 1452, 1402, 1267, 1197, 1045, 798, 753, 675. HRMS (ESI) calcd for C₁₅H₂₃ClNO [M+H]⁺: 268.1463. Found: 268.1454.

N-(tert-butyl)-2-chloro-N-(2-methoxybenzyl)acetamide (10):

70% yield, colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 7.17 – 7.15 (m, 1H), 7.00 – 6.96 (m, 1H), 6.90 – 6.87 (m, 1H), 4.59 (s, 2H), 3.97 (s, 2H), 3.86 (s, 3H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.73, 156.07, 128.33, 126.49, 125.87, 120.70, 110.09, 60.39, 58.48, 55.25, 44.16, 28.18. IR (thin film): ν_{max} (cm⁻¹) = 2967, 1664, 1428, 1404, 1288, 1243, 1195, 1031, 755, 675. HRMS (ESI) calcd for C₁₄H₂₁ClNO₂ [M+H]⁺: 270.1255. Found: 270.1246.

N-(tert-butyl)-2-chloro-N-(3-phenoxybenzyl)acetamide (1p):

79% yield, colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 3H), 7.17 – 7.12 (m, 1H), 7.04 – 7.01 (m, 2H), 6.95 – 6.91 (m, 2H), 6.86 – 6.85 (m, 1H), 4.63 (s, 2H), 3.97 (s, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.49, 158.33, 156.54, 140.79, 130.43, 129.93, 123.84, 119.80, 119.32, 117.30, 115.42, 58.70, 48.52, 44.11, 28.33. IR (thin film): ν_{max} (cm⁻¹) = 2970, 1664, 1482, 1404, 1248, 948, 756, 688. HRMS (ESI) calcd for C₁₉H₂₃ClNO₂ [M+H]⁺: 332.1412. Found: 332.1402.

N-(tert-butyl)-2-chloro-N-(2,6-dimethoxybenzyl)acetamide (1q):

OMe ¹ 85% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.21 (m, 1H), 6.56 (d, *J* = 8.4 Hz, 2H), 4.66 (s, 2H), 4.40 (s, 2H), 3.82 (s, 6H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.82, 158.56, 128.92, 114.09, 103.93, 57.94, 55.53, 45.74, 40.46, 28.01. IR (thin film): *v*_{max} (cm⁻¹) = 2971, 2780, 1754, 1472, 1259, 1115, 1036, 743. HRMS (ESI) calcd for C₁₅H₂₃ClNO₃ [M+H]⁺: 300.1361. Found: 300.1353.

N-(tert-butyl)-2-chloro-N-(2-fluorobenzyl)acetamide (1r):

78% yield, white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 1H), 7.26 – 7.22 (m, 1H), 7.20 – 7.17 (m, 1H), 7.11 – 7.06 (m, 1H), 4.70 (s, 2H), 4.00 (s, 2H), 1.46 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.68, 158.64, 129.04 (d, $J_{C-F} = 8.3$ Hz), 126.88 (d, $J_{C-F} = 4.0$ Hz), 125.60 (d, $J_{C-F} = 13.8$ Hz), 124.59 (d, $J_{C-F} = 3.5$ Hz), 115.56, 58.75, 43.99, 42.82, 28.22. ¹⁹F NMR (471 MHz, CDCl₃) δ -118.37. IR (thin film): v_{max} (cm⁻¹) = 2971, 1663, 1482, 1401, 1263, 1192, 1097, 1033, 760, 674. HRMS (ESI) calcd for C₁₃H₁₈ClFNO [M+H]⁺: 258.1055. Found: 258.1047.

N-(tert-butyl)-2-chloro-N-(2-chlorobenzyl)acetamide (1s):

78 yield, yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 1H), 7.34 – 7.29 (m, 1H), 7.28 – 7.22 (m, 2H), 4.67 (s, 2H), 3.92 (s, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.56, 135.77, 131.83, 129.91, 128.69, 127.35, 126.59, 58.74, 46.78, 43.98, 28.20. IR (thin film): v_{max} (cm⁻¹) = 2970, 1664, 1446, 1399, 1363, 1264, 1194, 1042, 756, 680. HRMS (ESI) calcd for C₁₃H₁₈Cl₂NO [M+H]⁺: 274.0760. Found: 274.0750.

N-(tert-butyl)-2-chloro-N-(2-(trifluoromethyl)benzyl)acetamide (1t):

73% yield, colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.70 (m, 1H), 7.64 – 7.60 (m, 1H), 7.49 – 7.40 (m, 2H), 4.83 (s, 2H), 3.92 (s, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.67, 137.12, 132.54, 128.31, 127.55, 126.84, 126.62 (d, $J_{C-F} = 5.9$ Hz), 126.45, 125.59, 124.52, 58.95, 45.56, 43.91, 28.16. ¹⁹F NMR (471 MHz, CDCl₃) δ -61.43. IR (thin film): v_{max} (cm⁻¹) = 2972, 1669, 1452, 1407, 1312, 1270, 1164, 1116, 1043, 762. HRMS (ESI) calcd for C₁₄H₁₈ClF₃NO [M+H]⁺: 308.1024. Found: 308.1019.

N-(tert-butyl)-2-chloro-N-(3-(trifluoromethyl)benzyl)acetamide (1u):

 $75\% \text{ yield, colorless liquid. }^{1}\text{H NMR (400 MHz, CDCl_3)} \delta 7.56 - 7.49 \text{ (m,}$ 2H), 7.47 - 7.41 (m, 2H), 4.73 (s, 2H), 3.95 (s, 2H), 1.43 (s, 9H). $^{13}\text{C NMR (101 MHz, CDCl_3)} \delta 167.57$, 139.84, 131.35, 129.66, 128.70, 125.22, 124.42 (q, $J_{C-F} = 3.8 \text{ Hz}$), 122.51, 122.25 (q, $J_{C-F} = 3.7 \text{ Hz}$), 117.95, 58.87, 48.48, 43.94, 28.36. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.75. IR (thin film): v_{max} (cm⁻¹) = 2975, 1665, 1448, 1402, 1327, 1266, 1177, 1079, 913, 799, 704, 666. HRMS (ESI) calcd for C₁₄H₁₈ClF₃NO [M+H]⁺: 308.1024. Found: 308.1019.

methyl 3-((N-(tert-butyl)-2-chloroacetamido)methyl)benzoate (1v):

70% yield, colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 1H), 7.92 – 7.86 (m, 1H), 7.50 – 7.38 (m, 2H), 4.71 (s, 2H), 3.96 (s, 2H), 3.91 (s, 3H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.60, 166.64, 139.13, 131.05, 129.77, 129.23, 128.73, 126.52, 58.86, 52.36, 48.53, 44.06, 28.38. IR (thin film): v_{max} (cm⁻¹) = 2964, 1722, 1664, 1442, 1288, 1193, 752, 675. HRMS (ESI) calcd for C₁₅H₂₁ClNO₃ [M+H]⁺: 298.1204. Found: 298.1200.

N-(tert-butyl)-2-chloro-N-(naphthalen-1-ylmethyl)acetamide (1w):

72% yield, yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H),

7.84 – 7.82 (m, 1H), 7.64 – 7.56 (m, 2H), 7.54 – 7.50 (m, 1H), 7.46 – 7.43 (m, 1H), 5.13 (s, 2H), 3.96 (s, 2H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.91, 133.69, 129.82, 129.16, 128.06, 126.69, 126.27, 125.57, 122.53, 121.77, 58.77, 46.49, 44.00, 28.25. IR (thin film): v_{max} (cm⁻¹) = 2971, 1664, 1404, 1264, 1196, 1024, 799. HRMS (ESI) calcd for C₁₇H₂₁ClNO [M+H]⁺: 290.1306. Found: 290.1296.

N-benzyl-2-bromo-N-(tert-butyl)acetamide (1x):

73% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 2H), 7.30 – 7.26 (m, 1H), 7.22 – 7.20 (m, 2H), 4.69 (s, 2H), 3.74 (s, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.83, 138.60, 129.05, 127.40, 125.34, 58.62, 49.39, 30.17, 28.32. IR (thin film): v_{max} (cm⁻¹) = 2969, 1655, 1443, 1398, 1365, 1262, 1194, 997, 748. HRMS (ESI) calcd for C₁₃H₁₉BrNO [M+H]⁺: 284.0645. Found: 284.0636.

dimethyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2a):

COOMe74% yield (d.r. = 1:1), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.84- 5.76 (m, 2H), 5.78 - 5.70 (m, 2H), 3.74 (d, J = 5.1 Hz, 6H), 3.53 - 3.46 (m, 1H), 3.40 - 3.38 (m, 1H),3.30 (s, 1H), 3.26 (s, 1H), 2.23 (s, 1H), 2.29 (s, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.05,168.03, 132.34, 125.27, 57.85, 56.64, 56.42, 54.01, 52.46, 36.66, 35.62, 27.69. IR (thin film): v_{max} (cm⁻¹) = 3315, 2077, 1653, 1570, 1391, 1339, 752. HRMS (ESI) calcd for C₁₈H₂₆NO₅ [M+H]⁺: 336.1805.Found: 336.1807.

COOEt58% yield (d.r. = 1:1), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.84- 5.73 (m, 4H), 4.27 - 4.19 (m, 4H), 3.52 - 3.47 (m, 1H), 3.35 - 3.32 (m, 1H) 3.52 - 3.47 (m, 1H), 3.30(s, 1H), 3.26 (s, 1H), 2.33 (s, 1H), 2.30 (s, 1H), 1.39 (s, 9H), 1.30 - 1.25 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.21, 167.68, 132.12, 125.42, 61.51, 57.88, 56.91, 54.05, 47.10, 36.67, 35.49, 27.71, 14.13.IR (thin film): v_{max} (cm⁻¹) = 2956, 2831, 1598, 1364, 1081, 767, 545. HRMS (ESI) calcd for C₂₀H₃₀NO₅[M+H]⁺: 364.2118. Found: 364.2119.

diisopropyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2c):

 $COO'Pr \qquad 61\% \text{ yield (d.r.} = 1.3:1), \text{ yellow liquid. } ^{1}\text{H NMR (400 MHz, CDCl_3)} \delta 5.81 \\ -5.75 \text{ (m, 4H)}, 5.14 - 5.04 \text{ (m, 2H)}, 3.50 - 3.45 \text{ (m, 1H)}, 3.30 \text{ (s, 1H)}, 3.28 \text{ (s, 1H)} 3.27 - 3.24 \text{ (m, 1H)}, \\ 2.33 \text{ (s, 1H)}, 2.31 \text{ (s, 1H)}, 1.39 \text{ (s, 9H)}, 1.29 - 1.25 \text{ (m, 12H)}. \\ ^{13}\text{C NMR (101 MHz, CDCl_3)} \delta 173.17, \\ 167.16, 131.95, 125.59, 69.05, 57.85, 53.98, 47.16, 36.63, 35.38, 27.70, 21.72, 21.63. \text{ IR (thin film)}: v_{\text{max}} \\ \text{(cm}^{-1}) = 2830, 1600, 1361, 1084, 770, 546. \text{ HRMS (ESI) calcd for } C_{22}\text{H}_{34}\text{NO}_5 \text{ [M+H]}^+: 392.2431. \text{ Found}: \\ \end{cases}$

392.2435.

di-tert-butyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2d):

 $\dot{COO}^{t}Bu = 51\% \text{ yield (d.r.} = 1:1), \text{ colorless liquid. }^{1}H \text{ NMR (400 MHz, CDCl_3) } \delta \\ 5.81 - 5.76 (m, 4H), 3.45 - 3.39 (m, 1H), 3.30 (s, 1H), 3.28 (s, 1H), 3.17 - 3.11 (m, 1H), 2.33 (s, 1H), \\ 2.32 (s, 1H), 1.48 (s, 9H), 1.47 (s, 9H), 1.39 (d, <math>J = 4.9 \text{ Hz}, 9H$). $^{13}C \text{ NMR (126 MHz, CDCl_3) } \delta 173.24, \\ 167.00, 131.64, 125.87, 81.83, 58.62, 57.99, 53.96, 47.21, 36.59, 35.38, 27.96, 27.68. IR (thin film): <math>v_{max}$ (cm⁻¹) = 2972, 2831, 1600, 1363, 1250, 1141, 767, 547. HRMS (ESI) calcd for C₂₄H₃₈NO₅ [M+H]⁺: 420.2744. Found: 420.2737.

methyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (2e):

COOME 55% yield (d.r. = 1.2:1), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.82 – 5.76 (m, 2H), 5.74 – 5.65 (m, 2H), 3.74 (d, J = 4.6 Hz, 3H), 3.56 – 3.52 (m, 1H), 3.47 – 3.44 (m, 1H), 3.30 (s, 1H), 3.25 (s, 1H), 2.32 (s, 1H), 2.29 (s, 1H), 2.23 (d, J = 3.0 Hz, 3H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 201.45, 173.04, 168.48, 132.21, 125.52, 64.49, 57.89, 54.05, 52.41, 47.16, 36.66, 35.28, 30.15, 27.70. IR (thin film): v_{max} (cm⁻¹) = 2957, 2831, 1598, 1363, 1081, 767, 544. HRMS (ESI) calcd for C₁₈H₂₆NO₄ [M+H]⁺: 320.1856. Found: 320.1858.

ethyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (2f):

COOEt54% yield (d.r. = 1:1), colorless liquid. 1 H NMR (400 MHz, CDCl₃) δ 5.80 –5.77 (m, 2H), 5.74 – 5.61 (m, 2H), 4.25 – 4.18 (m, 2H), 3.57 – 3.51 (m, 1H), 3.44 – 3.41 (m, 1H), 3.30 (s, 1H), 3.26 (s, 1H), 2.32 (s, 1H), 2.29 (s, 1H), 2.23 (d, J = 2.7 Hz, 3H), 1.39 (s, 9H), 1.32 – 1.27 (m,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.43, 173.00, 167.94, 132.09, 125.71, 64.70, 61.52, 57.84, 54.00, 47.14, 36.66, 35.12, 30.06, 27.70, 14.15. IR (thin film): v_{max} (cm⁻¹) = 2831, 1599, 1363, 1080, 769, 545. HRMS (ESI) calcd for C₁₉H₂₈NO₄ [M+H]⁺: 334.2013. Found: 334.2014.

isopropyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (2g):

COO'Pr50% yield (d.r. = 1:1), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.79 –5.76 (m, 2H), 5.74 – 5.68 (m, 2H), 5.12 – 5.02 (m, 1H), 3.54 – 3.50 (m, 1H), 3.40 – 3.37 (m, 1H), 3.29(s, 1H), 3.25 (s, 1H), 2.32 (s, 1H), 2.30 (s, 1H), 2.22 (d, J = 3.1 Hz, 3H), 1.39 (s, 9H), 1.30 – 1.21 (m,6H). ¹³C NMR (126 MHz, CDCl₃) δ 201.61, 173.06, 167.48, 132.06, 125.78, 69.29, 64.90, 57.87, 54.02,47.16, 36.66, 35.17, 30.20, 27.70, 21.63. IR (thin film): v_{max} (cm⁻¹) = 2958, 2831, 1598, 1364, 1269,1081, 745, 541. HRMS (ESI) calcd for C₂₀H₃₀NO₄ [M+H]⁺: 348.2169. Found: 348.2170.

benzyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (2h):

 $\begin{array}{l} \text{COOBn} \\ & 43\% \text{ yield (d.r.} = 1.1:1), \text{ colorless liquid. }^{1}\text{H NMR (500 MHz, CDCl_3) \& 7.38} \\ -7.33 (m, 5\text{H}), 5.78 - 5.73 (m, 2\text{H}), 5.70 - 5.65 (m, 2\text{H}), 5.21 - 5.13 (m, 2\text{H}), 3.57 - 3.52 (m, 1\text{H}), 3.48 \\ -3.47 (m, 1\text{H}), 3.28 (s, 1\text{H}), 3.20 (s, 1\text{H}), 2.30 (s, 1\text{H}), 2.26 (s, 1\text{H}), 2.18 (d,$ *J* $= 5.2 \text{ Hz}, 3\text{H}), 1.37 (s, 9\text{H}). \\ ^{13}\text{C NMR (126 MHz, CDCl_3) \& 201.32, 173.01, 167.87, 135.10, 132.18, 128.67, 128.60, 128.42, 125.63, 67.28, 64.36, 57.81, 54.01, 47.11, 36.64, 35.30, 30.38, 27.70. \text{ IR (thin film): } $v_{max} (cm^{-1}) = 2831, 1599, 1363, 1080, 768, 546. \text{ HRMS (ESI) calcd for C}_{24}\text{H}_{30}\text{NO4} [M+\text{H}]^{+}: 396.2169. \text{ Found: } 396.2169. \\ \textbf{dimethyl 2-(2-(adamantan-1-yl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2j):} \end{array}$

61% yield (d.r. = 1:1), white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.82 –

5.79 (m, 2H), 5.76 – 5.71 (m, 2H), 3.74 (d, J = 4.9 Hz, 6H), 3.52 – 3.46 (m, 1H), 3.41 – 3.36 (m, 1H), 3.30 (s, 1H), 2.26 (s, 1H), 2.32 (s, 1H), 2.28 (s, 1H), 2.11 (s, 9H), 1.74 – 1.65 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.00, 168.06, 132.42, 125.22, 56.78, 56.67, 56.44, 55.25, 52.48, 47.38, 39.65, 36.81, 36.29, 35.65, 29.56. IR (thin film): v_{max} (cm⁻¹) = 2915, 2832, 1599, 1363, 1078, 767, 546. HRMS (ESI) calcd for C₂₄H₃₂NO₅ [M+H]⁺: 414.2275. Found: 414.2277.

methyl 2-(2-(adamantan-1-yl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (2k):

COOMe48% yield (d.r. = 1.2:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.80 –5.77 (m, 2H), 5.72 – 5.66 (m, 2H), 3.74 (d, J = 6.6 Hz, 3H), 3.54 – 3.52 (m, 1H), 3.46 – 3.44 (m, 1H),3.30 (s, 1H), 3.25 (s, 1H), 2.31 (s, 1H), 2.28 (s, 1H), 2.23 (d, J = 3.8 Hz, 3H), 2.11 (s, 9H), 1.73 – 1.64(m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 201.52, 172.99, 168.51, 132.32, 125.63, 64.51, 56.81, 55.28,52.46, 47.50, 39.64, 36.80, 36.28, 35.31, 30.42, 29.55. IR (thin film): v_{max} (cm⁻¹) = 2915, 2832, 1600,1363, 1079, 766. HRMS (ESI) calcd for C₂₄H₃₂NO₄ [M+H]⁺: 398.2326. Found: 398.2328.

ethyl 2-(2-(adamantan-1-yl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (21):

COOEt48% yield (d.r. = 1.3:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.79 –5.77 (m, 2H), 5.73 – 5.66 (m, 2H), 4.28 – 4.14 (m, 2H), 3.54 – 3.52 (m, 1H), 3.43 – 3.41 (m, 1H), 3.29(s, 1H), 3.25 (s, 1H), 2.31 (s, 1H), 2.28 (s, 1H), 2.23 – 2.22 (m, 3H), 2.11 (s, 9H), 1.75 – 1.60 (m, 6H),1.31 – 1.24 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.52, 172.98, 167.96, 132.24, 125.70, 64.43, 61.54,56.80, 55.24, 47.47, 39.65, 36.75, 36.29, 35.28, 30.34, 29.55, 14.16. IR (thin film): v_{max} (cm⁻¹) = 2831,1601, 1361, 1268, 1074, 760, 546. HRMS (ESI) calcd for C₂₅H₃₄NO₄ [M+H]⁺: 412.2482. Found:412.2482.

dimethyl 2-(2-(tert-butyl)-6-methyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2m):

COOMe76% yield (d.r. = 1.1:1), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.77 - 5.65 (m, 2H), 5.46 - 5.41 (m, 1H), 3.76 - 3.71 (m, 6H), 3.52 - 3.37 (m, 2H), 3.35 - 3.33 (m, 1H),3.26 - 3.22 (m, 1H), 2.54 - 2.26 (m, 2H), 1.77 (s, 3H), 1.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 173.29, 168.18, 137.32, 133.85, 124.19, 122.08, 56.92, 56.67, 54.23, 52.49, 44.98, 38.10, 36.19, 27.67,18.96. IR (thin film): v_{max} (cm⁻¹) = 2832, 1599, 1362, 756. HRMS (ESI) calcd for C₁₉H₂₈NO₅ [M+H]⁺:350.1962. Found: 350.1964.

COOMe 81% yield (d.r. = 1:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.79 – 5.65 (m, 2H), 5.49 – 5.41 (m, 1H), 3.76 – 3.67 (m, 6H), 3.53 – 3.37 (m, 2H), 3.35 – 3.33 (m, 1H), 3.24 – 3.18 (m, 1H), 2.58 – 2.44 (m, 1H), 2.26 – 2.21 (m, 1H), 2.12 – 1.98 (m, 2H), 1.39 (s, 9H), 1.07 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.35, 168.20, 142.36, 134.45, 123.84, 119.88, 57.21, 56.77, 54.19, 52.35, 45.59, 45.17, 38.29, 36.05, 27.64, 22.98, 12.64. IR (thin film): v_{max} (cm⁻¹) = 2962, 2832, 1738, 1602, 1362, 1155, 762. HRMS (ESI) calcd for C₂₀H₃₀NO₅ [M+H]⁺:364.2118. Found: 364.2121.

COOMe 62% yield (d.r. = 1.1:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.81 – 5.72 (m, 1H), 5.71 – 5.62 (m, 1H), 4.73 – 4.66 (m, 1H), 3.78 – 3.71 (m, 6H), 3.71 – 3.59 (m, 2H), 3.56 (s, 3H), 3.38 – 3.36 (m, 1H), 3.20 – 3.15 (m, 1H), 2.86 – 2.70 (m, 1H), 2.20 – 2.15 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.97, 168.15, 156.72, 132.73, 123.84, 93.45, 57.66, 56.29, 55.65, 54.05, 52.40, 44.68, 43.99, 38.41, 36.81, 27.62. IR (thin film): v_{max} (cm⁻¹) = 2832, 1600, 1361, 760. HRMS (ESI) calcd for C₁₉H₂₈NO₆ [M+H]⁺: 366.1911. Found: 366.1913.

dimethyl 2-(2-(tert-butyl)-3-oxo-7-phenoxy-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2p):

COOMe 68% yield (d.r. = 1:1), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.40 - 7.32 (m, 2H), 7.19 - 7.13 (m, 1H), 7.08 - 7.04 (m, 2H), 5.90 - 5.80 (m, 2H), 4.75 - 4.72 (m, 1H), 4.06 - 4.04 (m, 1H), 3.80 - 3.70 (m, 7H), 3.32 - 3.20 (m, 1H), 3.20 - 3.17 (m, 1H), 2.34 - 2.31 (m, 2H), 1.32 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 173.03, 168.62, 154.46, 153.01, 132.39, 129.81, 124.50, 123.43, 120.82, 107.65, 58.09, 53.98, 53.40, 52.59, 52.31, 47.26, 38.86, 38.17, 27.69. IR (thin film): v_{max} (cm⁻¹) = 2831, 1599, 1362, 1079, 767, 546. HRMS (ESI) calcd for C₂₄H₃₀NO₆ [M+H]⁺: 428.2068. Found: 428.2070.

dimethyl 2-(2-(tert-butyl)-6,10-dimethoxy-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (4-2q):

dimethyl 2-(2-(tert-butyl)-6-fluoro-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2r):

COOMe 36% yield (d.r. = 1:1), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.97 – 5.92 (m, 1H), 5.87 – 5.80 (m, 1H), 5.70 – 5.62 (m, 1H), 3.80 – 3.69 (m, 7H), 3.69 – 3.61 (m, 1H), 3.43 – 3.41 (m, 1H), 3.27 – 3.21 (m, 1H), 2.93 – 2.82 (m, 1H), 2.28 – 2.21 (m, 1H), 1.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.16, 167.61, 136.70, 132.79, 125.21, 122.80, 56.19, 55.85, 54.36, 52.69, 44.48, 40.51, 38.03, 27.63. IR (thin film): v_{max} (cm⁻¹) = 2920, 1741, 1688, 1466, 1285, 1024, 754. HRMS (ESI) calcd for C₁₈H₂₅CINO₅ [M+H]⁺: 370.1416. Found: 370.1407.

dimethyl 2-(2-(tert-butyl)-3-oxo-6-(trifluoromethyl)-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2t):

 COOMe
 40% yield (d.r. = 1.1:1), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ

 6.59 - 6.53 (m, 1H), 5.89 - 5.82 (m, 1H), 5.73 - 5.64 (m, 1H), 3.79 - 3.71 (m, 6H), 3.70 - 3.59 (m, 2H),

 3.50 - 3.48 (m, 1H), 3.29 - 3.22 (m, 1H), 2.85 - 2.77 (m, 1H), 2.31 - 2.23 (m, 1H), 1.39 (s, 9H). ¹³C

NMR (126 MHz, CDCl₃) δ 171.99, 167.40, 138.94, 134.49, 132.86 (d, $J_{C-F} = 4.6$ Hz), 131.20, 125.02, 118.05, 121.84, 121.69, 56.78, 56.20, 55.45, 54.29, 52.65, 45.47, 44.90, 35.64, 27.49. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.28. IR (thin film): v_{max} (cm⁻¹) = 2831, 1601, 1359, 1076, 758. HRMS (ESI) calcd for C₁₉H₂₅F₃NO₅ [M+H]⁺: 404.1679. Found: 404.1685.

dimethyl 2-(2-(tert-butyl)-3-oxo-7-(trifluoromethyl)-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2u):

COOMe 70% yield (d.r. = 1.1:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.51 - 6.44 (m, 1H), 6.04 - 5.88 (m, 1H), 5.88 - 5.78 (m, 1H), 3.93 - 3.89 (m, 1H), 3.81 (d, *J* = 4.0 Hz, 3H), 3.79 - 3.70 (m, 1H), 3.68 (d, *J* = 5.6 Hz, 3H), 3.41 - 3.32 (m, 2H), 2.44 - 2.36 (m, 2H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.33, 168.28, 136.89 (d, *J*_{C-F} = 5.6 Hz), 130.77, 128.99, 126.60, 124.67, 124.20, 123.66, 122.37, 57.05, 56.49, 54.30, 52.91, 52.30, 46.65, 45.95, 37.16, 33.97, 27.68. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.87. IR (thin film): *v*_{max} (cm⁻¹) = 2831, 1601, 1361, 1073, 760. HRMS (ESI) calcd for C₁₉H₂₅F₃NO₅ [M+H]⁺: 404.1679. Found: 404.1683.

dimethyl 2-(2-(tert-butyl)-7-(methoxycarbonyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (2v):

COOMe50% yield (d.r. = 1:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.02 - 7.01 (m, 1H), 6.12 - 5.99 (m, 1H), 5.85 - 5.74 (m, 1H), 4.10 - 4.03 (m, 1H), 3.93 - 3.85 (m, 1H),3.80 (s, 3H), 3.78 (d, J = 3.6 Hz, 3H), 3.63 (d, J = 3.9 Hz, 3H), 3.40 - 3.26 (m, 2H), 2.39 (s, 1H), 2.35(s, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 57.17, 54.24, 52.59, 52.12, 51.84, 46.76, 46.38,37.87, 35.33, 27.69. IR (thin film): v_{max} (cm⁻¹) = 2831, 1600, 1362, 1267, 1075, 762, 546. HRMS (ESI)calcd for C₂₀H₂₈NO7 [M+H]⁺:394.1860. Found: 394.1865.

dimethyl 2-(1'-(tert-butyl)-5'-oxo-4H-spiro[naphthalene-1,3'-pyrrolidin]-4-yl)malonate (2w):

COOMe63% yield (d.r. = 1.1:1), yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.86 - 5.78 (m, 2H), 5.80 - 5.71 (m, 2H), 3.75 (d, J = 4.1 Hz, 6H), 3.54 - 3.48 (m, 1H), 3.41 - 3.39 (m,1H), 3.31 (s, 1H), 3.27 (s, 1H), 2.34 (s, 1H), 2.30 (s, 1H), 1.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 173.10, 168.08, 132.33, 125.28, 57.87, 56.63, 54.03, 52.52, 47.05, 36.66, 35.62, 27.69. IR (thin film): v_{max} (cm⁻¹) = 2831, 1600, 1362, 1074, 765, 546. HRMS (ESI) calcd for C₁₈H₂₆NO₅ [M+H]⁺: 336.1805.Found: 336.1806.

methyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (2y):

COOMe51% yield (d.r. = 1.3:1), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.80 –5.78 (m, 2H), 5.74 – 5.65 (m, 2H), 3.74 (d, J = 5.6 Hz, 3H), 3.57 – 3.51 (m, 1H), 3.46 – 3.44 (m, 1H),3.29 (s, 1H), 3.25 (s, 1H), 2.32 (s, 1H), 2.29 (s, 1H) 2.23 (d, J = 3.5 Hz, 3H), 1.39 (s, 9H). ¹³C NMR (126MHz, CDCl₃) δ 201.49, 173.02, 168.50, 132.26, 125.68, 64.19, 57.80, 54.02, 52.44, 47.12, 36.61, 35.15,30.18, 27.71. IR (thin film): v_{max} (cm⁻¹) = 2831, 1601, 1362, 1075, 763, 548. HRMS (ESI) calcd for

C₁₈H₂₅NO₄ [M+H]⁺: 320.1856. Found: 320.1859.

ethyl 2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (2z):

COOEt49% yield (d.r. = 1:1), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.81 –5.75 (m, 2H), 5.74 – 5.66 (m, 2H), 4.28 – 4.14 (m, 2H), 3.57 – 3.50 (m, 1H), 3.43 – 3.41 (m, 1H), 3.29(s, 1H), 3.25 (s, 1H), 2.32 (s, 1H), 2.29 (s, 1H), 2.23 (d, J = 3.1 Hz, 3H), 1.39 (s, 9H), 1.31 – 1.24 (m,3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.59, 173.04, 168.00, 132.15, 125.65, 64.41, 61.54, 57.85, 54.01,47.15, 36.66, 35.12, 30.34, 27.71, 14.16. IR (thin film): v_{max} (cm⁻¹) = 2831, 1600, 1362, 1076, 763, 547.HRMS (ESI) calcd for C₁₉H₂₈NO₄ [M+H]⁺: 334.2013. Found: 334.2012.

N-benzyl-N-(tert-butyl)acrylamide (3a):

81% yield, white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.30 – 7.21 (m, 3H), 6.38 (dd, *J* = 16.6, 10.0 Hz, 1H), 6.30 (dd, *J* = 16.6, 2.1 Hz, 1H), 5.53 (dd, *J* = 10.0, 2.1 Hz, 1H), 4.63 (s, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.53, 139.46, 131.57, 128.79, 127.21, 127.08, 125.69, 57.72, 48.97, 28.53. The NMR data is consistent with reported literature.^[2] N-benzyl-N-(2,4,4-trimethylpentan-2-yl)acrylamide (3ab):

73% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 2H), 7.32 – 7.23 (m, 3H), 6.39 (dd, J = 16.6, 10.1 Hz, 1H), 6.28 (dd, J = 16.6, 2.4 Hz, 1H), 5.52 (dd, J = 10.1, 2.4 Hz, 1H), 4.69 (s, 2H), 2.07 (s, 2H), 1.50 (s, 6H), 1.03 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.64, 139.46, 131.89, 128.79, 127.09, 125.78, 61.86, 50.43, 49.86, 31.79, 31.60, 29.39. IR (thin film): v_{max} (cm⁻¹) = 2966, 1654, 1416, 1257, 1203, 987, 798, 748. HRMS (ESI) calcd for C₁₈H₂₇NO [M+H]⁺: 272.2020. Found: 272.2023.

N-(adamantan-1-yl)-N-benzylacrylamide (3ac):

78% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.29-7.25(m, 3H), 6.39 (dd, J = 16.6, 10.0 Hz, 1H), 6.29 (dd, J = 16.6, 2.4 Hz, 1H), 5.53 (dd, J = 10.0, 2.4 Hz, 1H), 4.67 (s, 2H), 2.26 (d, J = 2.7 Hz, 6H), 2.09 – 2.06 (m, 3H), 1.71 – 1.63 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.55, 139.78, 132.05, 128.73, 127.04, 125.75, 59.24, 47.67, 39.62, 36.38, 30.07. IR (thin film): v_{max} (cm⁻¹) = 3294, 2908, 2842, 1648, 1545, 1458, 1416, 1366, 1312, 1209, 990, 743. HRMS (ESI) calcd for C₂₀H₂₅NO [M+H]⁺: 294.1863. Found: 294.1867.

N-(tert-butyl)-N-(2,3-dihydro-1H-inden-1-yl)acrylamide (3ae):

70% yield, orange solid. ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.04 (m, 4H), 6.04 – 5.96 (m, 1H), 5.85 – 5.70 (m, 1H), 5.30 (t, *J* = 9.3 Hz, 1H), 5.09 (d, *J* = 10.2 Hz, 1H), 3.17 – 3.03 (m, 1H), 2.97 – 2.87 (m, 1H), 2.59 – 2.45 (m, 1H), 2.33 – 2.17 (m, 1H), 1.60 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 168.35, 144.85, 140.79, 132.71, 127.33, 126.99, 125.17, 124.33, 123.09, 60.24, 58.41, 34.11, 29.75, 29.57. IR (thin film): v_{max} (cm⁻¹) = 2964, 2790, 1652, 1611, 1470, 1422, 1307, 1270, 1207, 1141, 1030, 980, 800, 752. HRMS (ESI) calcd for C₁₆H₂₁NO [M+H]⁺: 242.1550. Found: 242.1549.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4a):

86% yield (d.r. > 20:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ

5.82 – 5.76 (m, 2H), 5.66 – 5.56 (m, 2H), 3.76 (d, J = 1.5 Hz, 6H), 3.55 – 3.50 (m, 1H), 3.39 (d, J = 7.4 Hz, 0.05H), 3.32 (d, J = 8.5 Hz, 1.01H), 3.30 – 3.06 (m, 2H), 2.17 – 2.15 (m, 1H), 1.59 (dd, J = 14.2, 6.0 Hz, 1H), 1.37 (s, 9H), 1.00 (dd, J = 14.2, 2.5 Hz, 1H), 0.87 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.66, 168.07, 132.12, 129.76, 127.62, 126.43, 57.01, 55.60, 53.82, 52.61, 49.32, 43.58, 38.14, 35.69, 30.17, 29.64, 27.75. IR (thin film): v_{max} (cm⁻¹) = 2831, 1600, 1361, 1074, 768, 545. HRMS (ESI) calcd for C₂₃H₃₆NO₅ [M+H]⁺: 406.2588. Found: 406.2584.

diethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate

(4b):

75% yield (72h, d.r. > 20:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.85 - 5.76 (m, 2H), 5.65 - 5.56 (m, 2H), 4.26 - 4.17 (m, 4H), 3.55 - 3.49 (m, 1H), 3.30 - 3.15 (m, 3H), 2.17 - 2.15 (m, 1H), 1.59 (dd, *J* = 14.2, 6.0 Hz, 1H), 1.37 (s, 9H), 1.30 - 1.26 (m, 6H), 1.01 (dd, *J* = 14.2, 2.6 Hz, 1H), 0.87 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.70, 167.66, 131.98, 129.59, 127.85, 126.65, 61.56, 57.49, 55.63, 53.82, 49.35, 43.59, 38.18, 35.61, 30.18, 29.66, 27.77, 14.10. IR (thin film): v_{max} (cm⁻¹) = 2831, 1600, 1361, 1267, 1075, 756, 546. HRMS (ESI) calcd for C₂₅H₄₀NO₅ [M+H]⁺: 434.2901. Found: 434.2906.

di isopropyl 2-((4R,5r,8R)-2-(tert-butyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4c):

 $\int \\ 67\% \text{ yield (72h, d.r.} > 20:1), \text{ colorless liquid. }^{1}\text{H NMR (400 MHz, CDCl_3) } \delta 5.84 - 5.81 (m, 2H), 5.66 - 5.52 (m, 2H), 5.19 - 4.98 (m, 2H), 3.55 - 3.45 (m, 1H), 3.29 - 3.15 (m, 3H), 2.20 - 2.13 (m, 1H), 1.60 (dd, <math>J = 14.2, 6.0 \text{ Hz}, 1H$), 1.38 (s, 9H), 1.28 - 1.26 (m, 12H), 1.04 (dd, J = 14.2, 2.5 Hz, 1H), 0.88 (s, 9H). $^{13}\text{C NMR}$ (101 MHz, CDCl_3) δ 175.73, 167.26, 131.83, 129.42, 128.08, 126.83, 69.12, 57.91, 55.66, 53.80, 49.38, 43.58, 38.19, 35.45, 30.17, 29.66, 27.77, 21.71. IR (thin film): v_{max} (cm⁻¹) = 2959, 2831, 1601, 1362, 1100, 763, 545. HRMS (ESI) calcd for C₂₇H₄₄NO₅ [M+H]⁺: 462.3214. Found: 462.3209.

di-tert-butyl 2-((4R,5r,8R)-2-(tert-butyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4d):

52% yield (72h, d.r. > 20:1), colorless liquid. ¹H NMR (500 MHz,

CDCl₃) δ 5.84 - 5.80 (m, 2H), 5.64 - 5.54 (m, 2H), 3.44 - 3.36 (m, 1H), 3.29 - 3.15 (m, 2H), 2.98 (d, J

= 9.9 Hz, 1H), 2.20 – 2.12 (m, 1H), 1.60 (dd, J = 14.3, 6.0 Hz, 1H), 1.47 (d, J = 1.1 Hz, 18H), 1.37 (s, 9H), 1.05 (dd, J = 14.3, 2.5 Hz, 1H), 0.87 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.78, 167.16, 131.60, 129.23, 128.41, 127.18, 81.88, 59.71, 55.70, 53.82, 49.41, 43.62, 38.26, 35.46, 30.19, 29.72, 27.96, 27.79. IR (thin film): v_{max} (cm⁻¹) = 2831, 1600, 1363, 1267, 1077, 763, 545. HRMS (ESI) calcd for C₂₉H₄₈NO₅ [M+H]⁺: 490.3527. Found: 490.3522.

3-((4R,5r,8R)-2-(tertbutyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)pentane-2,4-dione (4e):

 $f \propto 60\%$ yield (d.r. > 20:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.72 – 5.55 (m, 4H), 3.65 – 3.60 (m, 2H), 3.28 – 3.15 (m, 2H), 2.23 (d, J = 1.2 Hz, 6H), 2.19 – 2.13 (m, 1H), 1.63 (dd, J = 14.2, 6.0 Hz, 1H), 1.37 (s, 9H), 0.97 (dd, J = 14.2, 2.5 Hz, 1H), 0.88 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 202.24, 175.44, 132.13, 129.93, 127.72, 126.52, 74.14, 55.62, 53.86, 49.23, 43.55, 38.52, 35.98, 30.63, 30.21, 29.76, 27.75. IR (thin film): v_{max} (cm⁻¹) = 2831, 1601, 1361, 1265, 758. HRMS (ESI) calcd for C₂₃H₃₆NO₃ [M+H]⁺: 374.2690. Found: 374.2684.

methyl-2-((4R,5S,8R)-2-(tert-butyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3-oxobutanoate (4f):

 $63\% \text{ yield (d.r.} = 1.1:1), \text{ colorless liquid. } ^{1}\text{H NMR (400 MHz, CDCl_3) } \delta$ $5.82 - 5.68 \text{ (m, 2H)}, 5.65 - 5.53 \text{ (m, 2H)}, 3.75 \text{ (s, 3H)}, 3.58 - 3.52 \text{ (m, 1H)}, 3.47 - 3.38 \text{ (m, 1H)}, 3.30 - 3.13 \text{ (m, 2H)}, 2.26 \text{ (d, } J = 1.5 \text{ Hz}, 3\text{ H)}, 2.20 - 2.12 \text{ (m, 1H)}, 1.60 \text{ (dd, } J = 14.2, 6.0 \text{ Hz}, 1\text{ H)}, 1.37 \text{ (s, 9H)}, 1.01 - 0.94 \text{ (m, 1H)}, 0.87 \text{ (s, 9H)}. ^{13}\text{C NMR (101 MHz, CDCl_3)} \delta 201.30, 175.54, 168.24, 132.13, 129.65, 128.01, 126.74, 64.68, 55.66, 53.82, 52.56, 49.27, 43.60, 38.40, 35.42, 30.67, 30.18, 29.72, 27.74. IR (thin film): <math>v_{\text{max}} \text{ (cm}^{-1}) = 2956, 2834, 1684, 1600, 1362, 1156, 764, 555. \text{ HRMS (ESI) calcd for } C_{23}\text{H}_{36}\text{NO}_4 \text{ [M+H]}^+: 390.2639.$

ethyl-2-((4R,5S,8R)-2-(tert-butyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3oxobutanoate (4g):

 $85\% \text{ yield (d.r.} = 4:1), \text{ colorless liquid. } ^{1}\text{H NMR (500 MHz, CDCl_3) } \delta 5.85$ - 5.69 (m, 2H), 5.69 - 5.53 (m, 2H), 4.28 - 4.13 (m, 2H), 3.59 - 3.53 (m, 1H), 3.46 - 3.36 (m, 1H), 3.28 - 3.15 (m, 2H), 2.28 - 2.24 (m, 3H), 2.19 - 2.13 (m, 1H), 1.61 (dd, *J* = 14.2, 6.0 Hz, 1H), 1.37 (s, 9H), 1.32 - 1.24 (m, 6H), 1.04 - 0.94 (m, 1H), 0.88 - 0.84 (m, 9H). $^{13}\text{C NMR (126 MHz, CDCl_3) } \delta 201.36,$ 175.55, 167.73, 132.00, 129.71, 128.05, 126.81, 64.99, 61.62, 55.67, 53.82, 49.28, 43.61, 38.39, 35.36, 30.56, 30.18, 29.69, 27.75, 14.10. IR (thin film): v_{max} (cm⁻¹) = 2956, 2833, 1597, 1468, 1361, 1266, 1159, 756, 555. HRMS (ESI) calcd for C₂₄H₃₈NO₄ [M+H]⁺: 404.2795. Found: 404.2790.

isopropyl-2-((4R,5S,8R)-2-(tert-butyl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)-3oxobutanoate (4h):

75% yield (72h, d.r. = 4:1), white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.82 - 5.68 (m, 2H), 5.64 - 5.53 (m, 2H), 5.15 - 5.01 (m, 1H), 3.59 - 3.50 (m, 1H), 3.42 - 3.31 (m, 1H), 3.29 - 3.12 (m, 2H), 2.25 - 2.23 (m, 3H), 2.19 - 2.12 (m, 1H), 1.60 (dd, *J* = 14.2, 5.9 Hz, 1H), 1.37 (s, 9H), 1.30 - 1.22 (m, 6H), 1.06 - 0.93 (m, 1H), 0.87 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 201.32, 175.61, 167.20, 131.92, 129.58, 128.07, 126.80, 69.25, 65.59, 55.64, 53.81, 49.27, 43.55, 38.28, 35.29, 30.17, 29.71, 27.75, 21.73. IR (thin film): v_{max} (cm⁻¹) = 2956, 2833, 1601, 1467, 1363, 1240, 1104, 766, 556. HRMS (ESI) calcd for C₂₅H₄₀NO₄ [M+H]⁺: 418.2952. Found: 418.2954.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-3-oxo-4-pentyl-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (4p):

 $\begin{array}{ll} & \hbox{n-Bu$} & 66\% \text{ yield (d.r.} = 8:1), \text{ colorless liquid. } ^1\text{H NMR (500 MHz, CDCl_3) } \delta$\\ & 5.80-5.75 \ (\text{m}, 2\text{H}), \ 5.75-5.70 \ (\text{m}, 1\text{H}), \ 5.67-5.63 \ (\text{m}, 1\text{H}), \ 3.75 \ (\text{d}, J = 1.8 \ \text{Hz}, 6\text{H}), \ 3.55-3.50 \ (\text{m}, 1\text{H}), \ 3.40 \ (\text{d}, J = 7.3 \ \text{Hz}, \ 0.11\text{H}), \ 3.31 \ (\text{d}, J = 8.8 \ \text{Hz}, \ 0.92\text{H}), \ 3.24-3.02 \ (\text{m}, 2\text{H}), \ 2.16-2.13 \ (\text{m}, 1\text{H}), \ 1\text{H}, \$

1.64 – 1.44 (m, 2H), 1.37 (s, 9H), 1.31 – 1.15 (m, 6H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.34, 168.10, 132.65, 129.53, 126.87, 126.12, 56.72, 55.93, 53.85, 52.92, 52.60, 42.07, 35.71, 32.00, 27.85, 27.70, 26.24, 22.50, 14.12. IR (thin film): v_{max} (cm⁻¹) = 3291, 2921, 1742, 1685, 1461, 1265, 753. HRMS (ESI) calcd for C₂₃H₃₆NO₅ [M+H]⁺: 406.2588. Found: 406.2591.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-3-oxo-4-(5,5,5-trifluoropentyl)-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (4q):

61% yield (d.r. = 10:1), colorless liquid. ¹H NMR (500 MHz, CDCl₃)

δ 5.83 – 5.63 (m, 4H), 3.75 (d, J = 1.2 Hz, 6H), 3.57 – 3.50 (m, 1H), 3.33 – 3.04 (m, 3H), 2.17 – 1.99 (m, 3H), 1.60 – 1.48 (m, 4H), 1.37 (s, 9H), 1.24 – 1.17 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.93, 168.02, 132.70, 132.24, 129.24, 128.81, 127.36, 126.37, 125.46, 122.13, 60.81, 56.61, 55.89, 53.95, 52.63, 42.12, 35.73, 33.60 (q, J_{C-F} = 28.8 Hz), 28.74, 27.69, 27.18, 25.82, 21.95. ¹⁹F NMR (471 MHz, CDCl₃) δ -66.49. IR (thin film): v_{max} (cm⁻¹) = 2831, 1643, 1571, 1370, 754. HRMS (ESI) calcd for C₂₃H₃₃F₃NO₅ [M+H]⁺: 460.2305. Found: 460.2306.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-3-oxo-4-(4-phenylbutyl)-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4r):

61% yield (d.r. = 9:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ

7.30 – 7.24 (m, 2H), 7.19 – 7.15 (m, 3H), 5.83 – 5.71 (m, 3H), 5.68 – 5.61 (m, 1H), 3.76 (s, 6H), 3.58 – 3.51 (m, 1H), 3.40 (d, J = 7.0 Hz, 0.11H), 3.32 (d, J = 8.8 Hz, 0.96H), 3.26 – 3.02 (m, 2H), 2.68 – 2.55 (m, 2H), 2.18 – 2.14 (m, 1H), 1.72 – 1.52 (m, 5H), 1.39 (s, 9H), 0.96 – 0.82 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.23, 168.06, 142.89, 132.54, 129.45, 128.39, 128.21, 127.03, 126.21, 125.54, 56.75, 55.92, 53.88, 52.60, 42.11, 35.82, 31.76, 29.70, 27.91, 27.71, 26.09. IR (thin film): v_{max} (cm⁻¹) = 2917,

1742, 1682, 1448, 1268, 752. HRMS (ESI) calcd for C₂₈H₃₈NO₅ [M+H]⁺: 468.2744. Found: 468.2748.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-isopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-

yl)malonate (4s):

47% yield (d.r. > 20:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃)

δ 5.83 - 5.70 (m, 3H), 5.70 - 5.61 (m, 1H), 3.76 (s, 6H), 3.58 - 3.51 (m, 1H), 3.32 (d, J = 9.2 Hz, 1H), 3.25 - 3.11 (m, 2H), 2.14 - 2.11 (m, 1H), 1.71 - 1.57 (m, 1H), 1.57 - 1.44 (m, 1H), 1.38 (s, 9H), 1.27 - 1.15 (m, 3H), 0.88 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.27, 168.05, 132.75, 129.52, 126.81, 126.12, 56.76, 55.95, 53.86, 53.11, 52.60, 42.08, 37.25, 35.70, 28.27, 27.70, 24.17, 22.48. IR (thin film): v_{max} (cm⁻¹) = 2955, 1745, 1687, 1464, 1254, 1021, 751. HRMS (ESI) calcd for C₂₃H₃₆NO₅ [M+H]⁺: 406.2588. Found: 406.2592.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-(2-cyclohexylethyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4t):

61% yield (d.r. = 6:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.80 - 5.70 (m, 3H), 5.68 - 5.62 (m, 1H), 3.76 (d, *J* = 1.5 Hz, 6H), 3.55 - 3.50 (m, 1H), 3.40 (d, *J* = 7.3 Hz, 0.15H), 3.32 (d, *J* = 9.1 Hz, 0.91H), 3.24 - 3.02 (m, 2H), 2.12 - 2.10 (m, 1H), 1.73 - 1.59 (m, 6H), 1.37 (s, 9H), 1.24 - 1.12 (m, 6H), 0.91 - 0.78 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.32, 168.05, 132.76, 129.55, 126.74, 126.08, 56.69, 55.95, 53.84, 53.12, 52.63, 42.01, 37.93, 35.70, 33.19, 29.71, 27.70, 26.72, 26.41, 23.66. IR (thin film): v_{max} (cm⁻¹) = 2923, 2853, 1746, 1681, 1582, 1443, 1337, 1236, 1154, 1023, 747. HRMS (ESI) calcd for C₂₆H₄₀NO₅ [M+H]⁺: 446.2901. Found: 446.2905.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-(3,3-dimethylbutyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4u):

52% yield (d.r. > 20:1), colorless liquid. ¹H NMR (500 MHz, CDCl₃)

δ 5.77 – 5.71 (m, 3H), 5.69 – 5.62 (m, 1H), 3.76 (s, 6H), 3.57 – 3.50 (m, 1H), 3.31 (d, *J* = 9.8 Hz, 1H), 3.25 – 3.10 (m, 2H), 2.12 – 2.07 (m, 1H), 1.70 – 1.61 (m, 2H), 1.37 (s, 9H), 1.28 – 1.18 (m, 2H), 0.87 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.27, 168.09, 132.96, 129.53, 126.63, 126.05, 56.81, 56.02, 53.90, 53.57, 52.71, 42.35, 42.04, 35.69, 30.53, 29.26, 27.70, 21.45. IR (thin film): v_{max} (cm⁻¹) = 2911, 1748, 1469, 1269, 1031, 751. HRMS (ESI) calcd for C₂₄H₃₈NO₅ [M+H]⁺: 420.2744. Found: 420.2748.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-isobutyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8-yl)malonate (4v):

I = 80% yield (d.r. = 6:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.80 – 5.69 (m, 3H), 5.67 – 5.63 (m, 1H), 3.76 (s, 6H), 3.55 – 3.50 (m, 1H), 3.40 (d, J = 7.3 Hz, 0.15H), 3.31 (d, J = 8.6 Hz, 0.90H), 3.26 – 3.03 (m, 2H), 2.27 – 2.24 (m, 1H), 1.87 – 1.77 (m, 1H), 1.52 – 1.45 (m, 1H), 1.37 (s, 9H), 1.08 – 1.01 (m, 1H), 0.88 – 0.84 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 175.48, 168.06, 132.31, 129.54, 127.15, 126.07, 56.63, 55.87, 53.84, 52.62, 50.28, 42.22, 35.68, 35.09, 27.70, 25.35, 22.52. IR (thin film): v_{max} (cm⁻¹) = 2957, 2833, 1743, 1636, 1364, 1248, 763. HRMS (ESI) calcd for C₂₂H₃₄NO₅ [M+H]⁺: 392.2431. Found: 392.2434.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-(2-ethylbutyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4w):

73% yield (d.r. = 11:1), colorless liquid. 1 H NMR (400 MHz, CDCl₃)

δ 5.80 – 5.71 (m, 3H), 5.66 – 5.63 (m, 1H), 3.75 (s, 6H), 3.57 – 3.48 (m, 1H), 3.40 (d, *J* = 7.3 Hz, 0.09H),

3.30 (d, J = 9.3 Hz, 1.01H), 3.27 – 3.01 (m, 2H), 2.29 – 2.26 (m, 1H), 1.57 – 1.44 (m, 2H), 1.37 (s, 9H), 1.31 – 1.21 (m, 4H), 1.17 – 1.06 (m, 1H), 0.89 – 0.75 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.55, 168.02, 132.47, 129.59, 126.97, 125.99, 56.68, 55.91, 53.83, 52.57, 49.94, 42.21, 36.94, 35.70, 29.67, 27.72, 24.87, 10.49. IR (thin film): v_{max} (cm⁻¹) = 2960, 1746, 1687, 1447, 1260, 1023, 750. HRMS (ESI) calcd for C₂₄H₃₈NO₅ [M+H]⁺: 420.2744. Found: 420.2742.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-(cyclobutylmethyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4x)

56% yield (d.r. = 9:1), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 5.82 – 5.75 (m, 2H), 5.75 – 5.68 (m, 1H), 5.64 – 5.59 (m, 1H), 3.77 – 3.75 (m, 6H), 3.57 – 3.51 (m, 1H), 3.40 (d, *J* = 7.3 Hz, 0.10H), 3.36 (d, *J* = 8.4 Hz, 0.91H), 3.23 – 3.01 (m, 2H), 2.61 – 2.47 (m, 1H), 2.11 – 1.94 (m, 3H), 1.84 – 1.65 (m, 3H), 1.60 – 1.44 (m, 2H), 1.36 (s, 9H), 1.31 – 1.22 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 175.32, 168.11, 132.34, 129.45, 127.06, 126.18, 56.62, 55.87, 53.84, 52.61, 50.32, 41.99, 35.69, 33.55, 33.07, 28.08, 27.86, 27.69, 17.98. IR (thin film): v_{max} (cm⁻¹) = 2960, 1742, 1680, 1553, 1445, 1247, 1025, 748. HRMS (ESI) calcd for C₂₃H₃₄NO₅ [M+H]⁺: 404.2431. Found: 404.2435. dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-(cyclopentylmethyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4y):

75% yield (d.r. = 6:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ

5.80 – 5.61 (m, 4H), 3.74 (d, J = 1.5 Hz, 6H), 3.56 – 3.49 (m, 1H), 3.39 (d, J = 7.3 Hz, 0.14H), 3.29 (d, J = 8.7 Hz, 0.89H), 3.25 – 3.01 (m, 2H), 2.23 – 2.20 (m, 1H), 2.12 – 2.02 (m, 1H), 1.79 – 1.67 (m, 2H), 1.65 – 1.52 (m, 3H), 1.54 – 1.41 (m, 2H), 1.36 (s, 9H), 1.24 – 1.10 (m, 1H), 1.08 – 0.92 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.43, 168.04, 132.45, 129.52, 127.02, 126.09, 56.65, 55.85, 53.82, 52.59, 51.50, 42.21, 37.36, 35.69, 32.60, 32.29, 27.69, 25.12. IR (thin film): v_{max} (cm⁻¹) = 2912, 1648, 1450, 1271, 743. HRMS (ESI) calcd for C₂₄H₃₆NO₅ [M+H]⁺: 418.2588. Found: 418.2590.

dimethyl 2-((4R,5r,8R)-2-(tert-butyl)-4-(cyclohexylmethyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4z):

71% yield (d.r. = 8:1), colorless liquid. ^{1}H NMR (400 MHz, CDCl₃) δ

5.79 – 5.68 (m, 3H), 5.65 – 5.60 (m, 1H), 3.75 (s, 6H), 3.55 – 3.48 (m, 1H), 3.39 (d, J = 7.3 Hz, 0.11H), 3.31 (d, J = 9.1 Hz, 0.90H), 3.24 – 3.02 (m, 2H), 2.32 – 2.28 (m, 1H), 1.71 – 1.58 (m, 5H), 1.54 – 1.43 (m, 2H), 1.36 (s, 9H), 1.24 – 0.98 (m, 4H), 0.91 – 0.72 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.55, 168.05, 132.38, 129.53, 127.00, 126.00, 56.74, 55.87, 53.83, 52.58, 49.37, 42.24, 35.70, 34.64, 33.66, 33.35, 33.12, 27.70, 26.67, 26.11. IR (thin film): v_{max} (cm⁻¹) = 2921, 2856, 2794, 1743, 1682, 1449, 1265, 752. HRMS (ESI) calcd for C₂₅H₃₈NO₅ [M+H]⁺: 432.2744. Found: 432.2747.

dimethyl 2-((5r,8r)-4-((1-(tert-butoxycarbonyl)piperidin-4-yl)methyl)-2-(tert-butyl)-3-oxo-2azaspiro[4.5]deca-6,9-dien-8-yl)malonate (4aa):

NBoc 80%, yield (d.r. = 8:1), colorless liquid. ¹H NMR (400 MHz, CDCl₃)

δ 5.77 – 5.74 (m, 2H), 5.70 – 5.66 (m, 1H), 5.61 – 5.57 (m, 1H), 4.18 – 3.99 (m, 2H), 3.98 – 3.87 (m, 1H), 3.72 (s, 6H), 3.52 – 3.48 (m, 1H), 3.26 (d, *J* = 8.7 Hz, 1H), 3.22 (d, *J* = 9.9 Hz, 1H), 3.13 (d, *J* = 9.9 Hz, 1H), 2.73 – 2.55 (m, 2H), 2.26 (dd, *J* = 7.7, 5.9 Hz, 1H), 2.00 – 1.78 (m, 1H), 1.76 – 1.69 (m, 1H), 1.64 – 1.57 (m, 2H), 1.53 – 1.46 (m, 1H), 1.41 (s, 9H), 1.34 (s, 9H), 1.08 – 0.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.16, 167.92, 167.88, 154.85, 131.97, 129.24, 127.51, 126.28, 79.09, 67.38, 56.68, 55.82, 53.91, 52.61, 49.10, 42.22, 35.67, 33.12, 32.81, 29.47, 28.43, 27.68. IR (thin film): *v*_{max} (cm⁻¹) = 2920, 2860, 2798, 1741, 1686, 1450, 1262, 751. HRMS (ESI) calcd for C₂₉H₄₅N₂O₇ [M+H]⁺: 533.3224.

dimethyl 2-((4R,5r,8R)-4-(adamantan-2-ylmethyl)-2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9dien-8-yl)malonate (4ab):

Ad 71% yield (d.r. > 20:1), white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.83 - 5.76 (m, 2H), 5.67 - 5.54 (m, 2H), 3.77 (d, J = 1.4 Hz, 6H), 3.57 - 3.47 (m, 1H), 3.34 (d, J = 8.6Hz, 1H), 3.31 - 3.14 (m, 2H), 2.28 - 2.21 (m, 1H), 1.97 - 1.90 (m, 3H), 1.76 - 1.56 (m, 9H), 1.53 - 1.43 (m, 4H), 1.37 (s, 9H), 0.89 - 0.82 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.82, 168.08, 132.12, 129.76, 127.64, 126.47, 57.09, 55.60, 53.82, 52.65, 47.20, 43.60, 42.53, 38.85, 37.08, 35.71, 31.90, 28.65, 27.77. IR (thin film): v_{max} (cm⁻¹) = 2912, 1648, 1450, 1271, 743. HRMS (ESI) calcd for C₂₉H₄₂NO₅ [M+H]⁺: 484.3057. Found: 484.3062.

dimethyl 2-((4R,5r,8R)-4-neopentyl-3-oxo-2-(2,4,4-trimethylpentan-2-yl)-2-azaspiro[4.5]deca-6,9dien-8-yl)malonate (4ac):

68% yield (d.r. = 11:1), white solid. ¹H NMR (400 MHz, CDCl₃)

δ 5.83 - 5.75 (m, 2H), 5.67 - 5.56 (m, 2H), 3.76 (s, 6H), 3.56 - 3.49 (m, 1H), 3.39 (d, *J* = 8.6 Hz, 0.09H), 3.32 (d, *J* = 8.5 Hz, 1H), 3.31 - 3.10 (m, 2H), 2.26 - 2.22 (m, 1H), 2.09 - 2.03 (m, 1H), 1.66 - 1.57 (m, 2H), 1.42 (s, 3H), 1.35 (s, 3H), 1.02 - 0.95 (m, 10H), 0.86 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 175.50, 168.05, 132.24, 129.96, 127.64, 126.38, 57.66, 56.99, 56.13, 52.59, 49.69, 43.55, 37.82, 35.66, 31.38, 30.16, 29.60, 29.14, 28.29. IR (thin film): v_{max} (cm⁻¹) = 3297, 2961, 1743, 1679, 1446, 1230, 1156, 1024, 752. HRMS (ESI) calcd for C₂₇H₄₄NO₅ [M+H]⁺: 462.3214. Found: 462.3216.

dimethyl 2-((4R,5r,8R)-2-(adamantan-1-yl)-4-neopentyl-3-oxo-2-azaspiro[4.5]deca-6,9-dien-8yl)malonate (4ad):

54% yield (d.r. = 12:1), white solid. ¹H NMR (500 MHz, CDCl₃)

δ 5.81 – 5.75 (m, 2H), 5.67 – 5.56 (m, 2H), 3.76 (d, *J* = 2.0 Hz, 6H), 3.55 – 3.50 (m, 1H), 3.38 (d, *J* = 7.4 Hz, 0.08H), 3.31 (d, *J* = 8.5 Hz, 0.97H), 3.28 – 3.10 (m, 2H), 2.20 – 2.14 (m, 1H), 2.12 – 2.06 (m,

9H), 1.72 - 1.62 (m, 6H), 1.57 (dd, J = 14.2, 6.1 Hz, 1H), 0.98 (dd, J = 14.2, 2.5 Hz, 1H), 0.86 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.65, 168.03, 132.16, 129.88, 127.57, 126.36, 57.05, 54.97, 54.48, 52.63, 49.59, 43.70, 39.73, 38.18, 36.33, 35.72, 30.17, 29.65, 29.57. IR (thin film): v_{max} (cm⁻¹) = 2954, 1745, 1689, 1468, 1248, 1026, 749. HRMS (ESI) calcd for C₂₉H₄₂NO₅ [M+H]⁺: 484.3057. Found: 484.3062.

dimethyl 2-((1R,3aR,7R,9aS)-3-(tert-butyl)-1-neopentyl-2-oxo-2,3,3a,4,5,7-hexahydro-1Hindeno[1,7a-b]pyrrol-7-yl)malonate (4ae)

50% yield (d.r. = 1:1), white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.85 - 5.82 (m, 1H), 5.66 - 5.62 (m, 1H), 5.57 - 5.56 (m, 1H), 3.77 (d, J = 9.4 Hz, 6H), 3.62 - 3.59 (m, 1H), 3.56 - 3.52 (m, 1H), 3.19 (s, 0.5H), 3.17 (s, 0.5H), 2.79 - 2.72 (m, 1H), 2.42 - 2.34 (m, 2H), 2.14 - 2.05 (m, 1H), 1.86 - 1.79 (m, 1H), 1.61 (dd, J = 14.5, 6.2 Hz, 1H), 1.39 (s, 9H), 1.06 (dd, J = 14.5, 2.3 Hz, 1H), 0.87 (s, 9H) ¹³C NMR (126 MHz, CDCl₃) δ 175.49, 168.08, 143.03, 129.63, 127.13, 119.64, 64.56, 58.52, 53.81, 53.20, 52.69, 44.50, 38.54, 37.02, 30.67, 30.23, 30.06, 29.51, 28.32. IR (thin film): v_{max} (cm⁻¹) = 2954, 1746, 1688, 1462, 1257, 1021, 752. HRMS (ESI) calcd for C₂₅H₃₈NO₅ [M+H]⁺: 432.2744. Found: 432.2749.

2D-NMR of compounds

NOESY of 2a-syn

¹H-¹³C HSQC NMR of **2a**

¹H-¹³C HMBC NMR of **2a**

¹H-¹³C HMBC NMR of **4a**
Crystal structure of 4ab

The crystal data was collected on a Agilent Gemini E diffractometer (Mo, 50kV 40mA) and reducted by CrysAlisPro (Rigaku). The structures were solved by direct methods using SHELXS-97. Refinements were performed with SHELXL-2013 using full matrix least-squares calculations on F2, with anisotropic displacement parameters for all the nonhydrogen atoms.

Single crystals suitable for X-ray diffraction were obtained by evaporation of the mixed solvent from chloroform at room temperature. Crystal data have been deposited to CCDC number 2389530.

4ab

CCDC: 2389530

Table S2. Crystal data and structure	e refinement	for	4ab
--------------------------------------	--------------	-----	-----

Identification code	4ab
Empirical formula	$C_{29}H_{41}NO_5$
Formula weight	483.63
Temperature/K	293(2)
Crystal system	monoclinic
Space group	I2/a
a/Å	33.370(2)
b/Å	6.4924(3)
c/Å	25.4956(14)
α/°	90
β/°	104.957(6)
$\gamma^{/\circ}$	90
Volume/Å ³	5336.4(5)
Z	8
$ ho_{calc}g/cm^3$	1.204
μ/mm^{-1}	0.081
F(000)	2096.0
Crystal size/mm ³	0.22 imes 0.18 imes 0.11
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.652 to 49
Index ranges	$-38 \le h \le 38, \text{-}7 \le k \le 7, \text{-}29 \le l \le 29$
Reflections collected	20949
Independent reflections	4301 [$R_{int} = 0.0448$, $R_{sigma} = 0.0401$]
Data/restraints/parameters	4301/4/321
Goodness-of-fit on F ²	1.033
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0818, wR_2 = 0.2014$
Final R indexes [all data]	$R_1 = 0.1111$, $wR_2 = 0.2247$
Largest diff. peak/hole / e Å ⁻³	0.76/-0.22

7. References

- Mcdaniel K. A., Blood A. R., Smith G. C., Jui N. T. Dearomatization of Unactivated Arenes via Catalytic Hydroalkylation. ACS Catal., 2021, 11(9): 4968-4972.
- 2. Clayden J., Turnbull R., Pinto I. Nucleophilic addition to electron-rich heteroaromatics: Dearomatizing anionic cyclizations of pyrrolecarboxamides. Org. Lett., 2004, 6(4): 609-611.

8. Copies of NMR spectra for the compounds

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

7.389 7.374 7.358 7.358 7.358 7.224 7.204 7.204 7.205 7.205 7.205 7.205 7.205 7.205 7.205 7.205 7.206

¹³C NMR spectrum of **1j** (CDCl₃, 126MHz)

$\begin{array}{c} 7,264\\ 7,220\\ 7,234\\ 7,232\\ 7,232\\ 7,194\\ 7,194\\ 7,194\\ 7,194\\ 7,194\\ 7,194\\ 7,194\\ 7,194\\ 7,194\\ 7,223\\ -3.907\\ -3.907\\ -3.907\\ -1.472\\ -1.472\\ \end{array}$

¹H NMR spectrum of **1m** (CDCl₃, 500MHz)

¹³C NMR spectrum of **1m** (CDCl₃, 126MHz)

¹H NMR spectrum of **1n** (CDCl₃, 400MHz)

¹³C NMR spectrum of **1n** (CDCl₃, 101MHz)

-1.455

¹³C NMR spectrum of **10** (CDCl₃, 101MHz)

¹H NMR spectrum of **1p** (CDCl₃, 400MHz)

¹³C NMR spectrum of **1p** (CDCl₃, 101MHz)

-1.310

¹³C NMR spectrum of **1q** (CDCl₃, 101MHz)

¹H NMR spectrum of **1r** (CDCl₃, 500MHz)

¹³C NMR spectrum of **1r** (CDCl₃, 126MHz)

¹⁹F NMR spectrum of **1r** (CDCl₃, 471MHz)

¹H NMR spectrum of 1s (CDCl₃, 400MHz)

¹³C NMR spectrum of **1s** (CDCl₃, 101MHz)

¹³C NMR spectrum of **1t** (CDCl₃, 101MHz)

¹⁹F NMR spectrum of **1t** (CDCl₃, 471MHz)

7,556 7,556 7,556 7,553 7,534 7,534 7,467 7,467 7,467 7,467 7,467 7,467 7,467 7,467 7,467 7,467 7,467 7,467 7,415 7,415 7,415 7,415 7,415 7,415 7,415 7,734 1,434 7,134 7,415 7,734 7,415 7,415 7,734 7,467 7,734 7,467 7,734 7,467 7,734 7,467 7,734 7,467 7,734 7,467 7,734 7,467 7,734 7,467 7,734 1,7467 7,747 7,7

¹H NMR spectrum of **1u** (CDCl₃, 400MHz)

¹³C NMR spectrum of **1u** (CDCl₃, 101MHz)

¹⁹F NMR spectrum of **1u** (CDCl₃, 376MHz)

7.967 7.967 7.946 7.7945 7.7896 7.7888 7.7888 7.7888 7.7491 7.491 7.491 7.491 7.492 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.444 7.745 7.444 7.745 7.444 7.745

¹H NMR spectrum of **1v** (CDCl₃, 400MHz)

¹³C NMR spectrum of **1v** (CDCl₃, 101MHz)

¹H NMR spectrum of **1w** (CDCl₃, 400MHz)

¹³C NMR spectrum of **1w** (CDCl₃, 101MHz)

¹H NMR spectrum of **1x** (CDCl₃, 400MHz)

¹³C NMR spectrum of **1x** (CDCl₃, 101MHz)

$\begin{array}{c} & 5.819 \\ & 5.815 \\ & 5.798 \\ & 5.794 \\ & 5.759 \\ & 5.758 \\ & 5.758 \\ & 5.758 \\ & 5.743 \\ & 5.744 \\$

¹³C NMR spectrum of **2a** (CDCl₃, 101MHz)

¹³C NMR spectrum of **2b** (CDCl₃, 126MHz)

¹³C NMR spectrum of **2c** (CDCl₃, 101MHz)

5.802 5.798 5.772 5.772 5.771 5.771 5.771 5.771 5.679 5.679 5.673 5.673 5.673 5.673 5.673 5.673 5.673 5.673 5.673 5.673 5.673 5.673 5.673 5.674 5.673 5.746 5.673 5.674 5.274 5.674 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.274 5.2727 5.274 5.274 5.274 5.2745 5.2746 5.2744 5.2745 5.2745 5.2745 5.2745 5.2745 5.2746 5.2745 5.2757 5.2225 5.2275 5.2225 5.2275 5.22255 5.2225 5.2225 5.2225 5.2225 5.22255 5.22255 5.22

¹H NMR spectrum of **2e** (CDCl₃, 400MHz)

¹³C NMR spectrum of **2e** (CDCl₃, 101MHz)

5.799 5.779 5.779 5.776 5.775 5.773 5.772 5.773 5.772 5.773 5.772 5.773 5.772 5.773 5.772 5.773 5.772 5.772 5.772 5.773 5.772 5.722 5.722 5.722 5.722 5.722 5.722 5.722 5.722 5.7225 5.7225 5.7225 5.2223 5.2222 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2223 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2232 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2233 5.2235 5.2233 5.2233 5.2232 5.2235 5.2235 5.2235 5.2235 5.2235 5.2235 5.2235 5.2235 5.2235 5.2235 5.2235 5.2235

-- (Ebus)

¹³C NMR spectrum of **2f** (CDCl₃, 101MHz)

¹H NMR spectrum of **2g** (CDCl₃, 500MHz)

¹H NMR spectrum of **2h** (CDCl₃, 500MHz)

¹³C NMR spectrum of **2h** (CDCl₃, 126MHz)

¹³C NMR spectrum of **2j** (CDCl₃, 101MHz)

¹³C NMR spectrum of **2k** (CDCl₃, 126MHz)

5.789 5.685 5.665 5.665 5.665 5.665 5.665 7.5.685 7.5.685 7.5.685 7.5.685 7.5.665 7.4.220 7.3.533 7.4.220 7.3.533 7.4.220 7.3.533 7.4.220 7.3.533 7.4.220 7.3.533 7.4.220 7.3.533 7.4.220 7.3.533 7.2.228 7.2.228 7.2.228 7.2.208 7.209 7.208 7.

¹³C NMR spectrum of **2l** (CDCl₃, 126MHz)

$\begin{array}{c} 5.741\\ 5.744\\ 5.723\\ 5.723\\ 5.723\\ 5.723\\ 5.723\\ 5.723\\ 5.723\\ 5.723\\ 5.733\\ 5.693\\ 5.723\\ 5.693\\ 5.733\\ 5.6673\\ 5.733\\ 5.6673\\ 5.734\\ 5.733\\ 5.6673\\ 5.734\\ 5.733\\ 5.673\\ 5.673\\ 5.738\\$

¹³C NMR spectrum of **2n** (CDCl₃, 101MHz)

¹H NMR spectrum of **20** (CDCl₃, 400MHz)

¹³C NMR spectrum of **20** (CDCl₃, 101MHz)

 7.377
 7.373

 7.3345
 7.3345

 7.3345
 7.3345

 7.3345
 7.3345

 7.1164
 7.1164

 7.1173
 7.1164

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

 7.1164
 7.1156

¹H NMR spectrum of **2p** (CDCl₃, 500MHz)

¹³C NMR spectrum of **2p** (CDCl₃, 126MHz)

¹³C NMR spectrum of **2q** (CDCl₃, 101MHz)

$\begin{array}{c} 5.837\\ 5.826\\ 5.728\\ 5.728\\ 5.728\\ 5.778\\ 5.778\\ 5.778\\ 5.778\\ 5.778\\ 5.778\\ 5.778\\ 5.778\\ 5.778\\ 5.778\\ 5.758\\ 5.758\\ 5.740\\ 5.740\\ 5.735\\ 5.$

¹³C NMR spectrum of **2r** (CDCl₃, 126MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR spectrum of **2r** (CDCl₃, 376MHz)

¹³C NMR spectrum of **2s** (CDCl₃, 126MHz)

$\begin{array}{c} 6.5773\\ 6.5773\\ 6.5572\\ 6.5564\\ 7.58557\\ 7.5863\\ 7.5863\\ 7.5863\\ 7.5863\\ 7.5863\\ 7.5863\\ 7.5863\\ 7.5863\\ 7.5689$

¹H NMR spectrum of **2t** (CDCl₃, 500MHz)

¹³C NMR spectrum of **2t** (CDCl₃, 126MHz)

¹⁹F NMR spectrum of **2t** (CDCl₃, 471MHz)

$\begin{array}{c} 6.489\\ 6.481\\ 6.487\\ 6.487\\ 6.487\\ 6.468\\ 6.468\\ 6.468\\ 6.468\\ 6.468\\ 6.468\\ 6.468\\ 6.468\\ 6.468\\ 6.468\\ 6.5937\\ 7.58855\\ 5.9377\\ 5.8346\\ 7.58816\\ 5.8312\\ 5.833390\\ 5.8312\\ 5.833390\\ 3.3922\\ 3.3922\\ 3.3922\\ 3.3923\\ 3.3923\\ 3.3387\\ 3.3387\\ 3.3387\\ 3.3387\\ 3.3387\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3386\\ 3.3387\\$

¹H NMR spectrum of **2u** (CDCl₃, 400MHz)

¹³C NMR spectrum of **2u** (CDCl₃, 126MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR spectrum of **2u** (CDCl₃, 376MHz)

7.023 6.087 6.087 6.087 6.037 6.037 6.037 6.037 6.037 6.012 5.788 6.037 6.012 5.783 6.012 5.783 7.55802 5.783 7.55802 5.783 7.55802 5.783 7.55802 5.783 7.55802 7.5580

¹H NMR spectrum of **2v** (CDCl₃, 400MHz)

¹³C NMR spectrum of **2v** (CDCl₃, 101MHz)

$\begin{array}{c} 7,461\\ 7,458\\ 7,3383\\ 7,3363\\ 7,3363\\ 7,3363\\ 7,3363\\ 7,3363\\ 7,3363\\ 7,3363\\ 7,3363\\ 7,238\\ 7,2363\\ 7,2363\\ 7,2283\\ 7,2233\\ 7,$

¹H NMR spectrum of **2w** (CDCl₃, 400MHz)

¹³C NMR spectrum of **2w** (CDCl₃, 101MHz)

¹³C NMR spectrum of **2x** (CDCl₃, 126MHz)

¹³C NMR spectrum of **2y** (CDCl₃, 126MHz)

5,789 5,767 5,767 5,767 5,767 5,767 5,767 5,767 5,767 5,577 5,577 5,570 5,589 5,599 5,589

¹³C NMR spectrum of **2z** (CDCl₃, 126MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrum of **3a** (CDCl₃, 101MHz)

7.337 7.337 7.337 7.3378 7.3358 6.420 6.339 6.337 6.337 6.337 6.337 6.337 6.2305 6.2305 6.2305 6.2305 6.2305 6.2305 6.2553 7.55508 7.5

¹H NMR spectrum of **3ab** (CDCl₃, 400MHz)

¹³C NMR spectrum of **3ac** (CDCl₃, 101MHz)

¹H NMR spectrum of **3ae** (CDCl₃, 500MHz)

¹³C NMR spectrum of **3ae** (CDCl₃, 126MHz)

¹³C NMR spectrum of 4a (CDCl₃, 126MHz)

¹³C NMR spectrum of **4b** (CDCl₃, 126MHz)

¹³C NMR spectrum of **4c** (CDCl₃, 101MHz)

¹³C NMR spectrum of 4d (CDCl₃, 126MHz)

¹³C NMR spectrum of **4e** (CDCl₃, 126MHz)

$\begin{array}{c} 5.783\\ 5.777\\ 5.777\\ 5.757\\ 5.757\\ 5.757\\ 5.752\\ 5.752\\ 5.752\\ 5.752\\ 5.752\\ 5.752\\ 5.752\\ 5.752\\ 5.752\\ 5.753\\ 5.566\\ 5.5689\\ 5.5689\\ 5.5689\\ 5.753\\ 5.5689\\ 5.753\\ 5.5689\\ 5.753\\ 5.5689\\ 5.753\\ 5.5689\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.753\\ 5.5588\\ 5.752\\ 5.758\\ 5.2588\\ 5$

¹³C NMR spectrum of **4f** (CDCl₃, 101MHz)

5.781 5.781 5.781 5.781 5.781 5.739 5.745 5.739 5.745 5.739 5.562 5.562 5.562 5.568 5.5588 5.5588 5.55

¹³C NMR spectrum of 4g (CDCl₃, 126MHz)

¹H NMR spectrum of **4h** (CDCl₃, 400MHz)

¹³C NMR spectrum of **4h** (CDCl₃, 101MHz)

5.771 5.771 5.775 5.775 5.777 5.777 5.777 5.777 5.777 5.777 5.777 5.777 5.777 5.777 5.777 5.777 5.750 5.777 5.777 5.739 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.6644 5.6644 5.6335 3.533 5.535 3.515 5.535 3.515 5.535 3.515 5.535 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515 3.515 5.515

¹H NMR spectrum of **4p** (CDCl₃, 500MHz)

¹³C NMR spectrum of **4p** (CDCl₃, 126MHz)

$\begin{array}{c} 5.5.81\\ 5.5.73\\ 5.5.75\\$

¹³C NMR spectrum of 4q (CDCl₃, 126MHz)

-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm) 10 0 -10 -20 -30 -40 -50 -60 -70

 $^{19}\mathrm{F}$ NMR spectrum of 4q (CDCl₃, 471 MHz)

¹H NMR spectrum of **4r** (CDCl₃, 400MHz)

¹³C NMR spectrum of **4r** (CDCl₃, 101MHz)

5.804 5.772 5.772 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.775 5.677 5.7725 5.7725 5.7725 5.7725 5.7725 5.7725 5.7725 5.7725 5.7725 5.7

¹H NMR spectrum of **4s** (CDCl₃, 400MHz)

¹³C NMR spectrum of **4s** (CDCl₃, 101MHz)

¹³C NMR spectrum of 4t (CDCl₃, 126MHz)

5.758 5.755 5.755 5.755 5.755 5.755 5.755 5.755 5.725 5.726 5.726 5.727 5.728 5.7219 5.7219 5.7219 5.7219 5.7219 5.644 5.644 5.644 5.644 5.644 5.7219 5.723 5.723 5.724 5.724 5.724 5.724 5.723 5.724 5.724 5.724 5.724 5.725 5.725 5.726 5.727 5.727 5.727 5.727 5.727 5.727 5.727 5.727 5.727 5.728 5

¹H NMR spectrum of **4u** (CDCl₃, 500MHz)

¹³C NMR spectrum of **4u** (CDCl₃, 126MHz)

-2.269 -2.255 -2

1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.

¹³C NMR spectrum of 4v (CDCl₃, 126MHz)

¹H NMR spectrum of **4w** (CDCl₃, 400MHz)

¹³C NMR spectrum of **4w** (CDCl₃, 101MHz)

¹³C NMR spectrum of **4x** (CDCl₃, 126MHz)

5,5773 5,5773 5,5739 5,5739 5,5739 5,5739 5,5739 5,5739 5,55739 5,55739 3,3740 3,3,266 3,3,276 5,5535 3,3,266 3,26663,2666 3,2666 3,26666 3,2666666666666

¹³C NMR spectrum of 4y (CDCl₃, 101MHz)

¹³C NMR spectrum of **4z** (CDCl₃, 101MHz)

¹³C NMR spectrum of 4aa (CDCl₃, 101MHz)

¹H NMR spectrum of **4ab** (CDCl₃, 400MHz)

¹³C NMR spectrum of **4ab** (CDCl₃, 101MHz)
5.821 5.815 5.815 5.815 5.815 5.815 5.815 5.767 5.767 5.767 5.767 5.767 5.765 5.765 5.765 5.765 5.573 5.565 5.5625

¹H NMR spectrum of **4ac** (CDCl₃, 400MHz)

¹³C NMR spectrum of 4ac (CDCl₃, 101MHz)

 5.796

 5.785

 5.785

 5.785

 5.785

 5.785

 5.785

 5.785

 5.573

 5.566

 5.567

 5.566

 5.566

 5.566

 5.567

 5.566

 5.566

 5.566

 5.566

 5.566

 5.566

 5.566

 5.566

 5.566

 5.567

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.568

 5.578</

¹H NMR spectrum of 4ad (CDCl₃, 500MHz)

¹³C NMR spectrum of 4ad (CDCl₃, 126MHz)

5.852 5.852 5.841 5.824 5.

