Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Table of contents

General Information	. 2
Proposed mechanism	. 3
Synthesis of the starting materials	. 3
Enantioselective synthesis of helicenoid 4a	. 5
Enantioselective synthesis of heterohelicenes 5	6
Enantioselective synthesis of heterohelicenes 6	14
Thermal racemization study of helicene product 5a and 6a	21
Large-scale asymmetric synthesis of 5a and 6a	22
Derivatizations of the chiral azahelicene products	23
Optical properties of the products	26
Reference	31
X-ray structure	32
HPLC traces	36
NMR spectra	56

General Information

Unless otherwise noted, all commercial reagents were used without further purification. Dichloromethane, toluene, ether, THF were purified by passage through an activated alumina column under argon. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed using Huanghai silica gel HSGF254 TLC plates, and visualized under UV or by staining with ceric ammonium molybdate or potassium permanganate. Flash column chromatography was carried out on Huanghai Silica Gel HHGJ-300, 300-400 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker Avance III HD spectrometer (FT, 500 MHz for ¹H, 126 MHz for ¹³C, or 400 MHz for ¹H, 101 MHz for ¹³C, (CD₃)₂SO, δ H= 2.50 and δ C = 39.52). ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (CDCl₃, $\delta H = 7.26$ and $\delta C =$ 77.16). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q= quartet, m = multiplet, br = broad resonance. FT-IR spectra were recorded on ThermoFisher Scientific Nicolet iS7 Spectrometer, and absorption frequencies are reported in reciprocal centimeters (cm-1). Mass spectral data were obtained from the Agilent Technologies 6230 TOF LC/MS spectrometer in electrospray ionization (ESI⁺) mode. Optical rotations were measured with an Autopol V Plus/VI digital polarimeter. Enantiomeric excesses were determined on an Agilent 1260 Chiral HPLC using IA, IB, IC columns. Absorbance analysis was performed on Agilengt Cary 5000 UV-Vis Spectrophotometer using PbSmart detector. Fluorescence analysis was performed on Fluorolog-3 from Horiba Jobin Yvon. The circularly polarized luminescence (CPL) spectra were recorded with a JASCO CPL-300 spectrometer at room temperature. Circular dichroism spectra (CD) were recorded on Chirascan Circular Dichroism Spectrometer from Applied Photophysics. Unless otherwise noted, CD analysis, absorbance analysis and fluorescence analysis were performed at 20 °C with 1.0 cm x 1.0 cm quartz cell. The racemic products were synthesized using the same procedure for the chiral products, unless the racemic CPA catalyst (\pm) -A9 was used instead.

Proposed mechanism

Scheme S1. Proposed reaction mechanism for the formation of diverse azahelicenes under varied conditions

Synthesis of the starting materials

This procedure was adopted from the literature.¹

To a solution of **S1** (62.4 mmol, 10.0 g, 1.0 equiv.) in water (200 mL) was added a solution of FeCl₃ (94 mmol, 15.2 g, 1.5 equiv.) in water (200 mL) at rt, and the mixture was warmed to 100 °C. After stirring overnight at this temperature, the reaction was cooled to rt and then extracted with ethyl acetate for three times. The organic layers were combined, dried over Na₂SO₄ and concentrated under vacuum to give a residue, which was purified by column chromatography (Petroleum ether: EtOAc = 3:1) to give **S2** (7.8 g, yield = 78%) as a yellow solid.

This procedure was adopted from the literature.¹

S2 (18.8 mmol, 6.0 g ,1.0 equiv.) was dissolved in toluene (60 mL), and the solution was heated to reflux after added *p*-TsOH (18.8 mmol, 3.60 g, 1.0 equiv.). After stirring overnight, the mixture was cooled to ambient temperature. After diluting with ethyl acetate, the mixture was filtered through Celite and then washed by saturated aqueous NaHCO₃ solution for 3 times. The organic layers were combined, dried over Na₂SO₄ and concentrated under vacuum to give a residue, which was purified by column chromatography (DCM: EtOAc = 10:1) to give the corresponding **S3** as a white solid (4.1 g, yield = 73%).

This procedure was adopted from the literature.²

To a solution of **S3** (4.9 mmol, 1.47 g, 1.0 equiv.) in DMSO (10 mL/mmol) was added amide **S4** (14.7 mmol, 2.2 g, 3.0 equiv.), K_2CO_3 (14.7 mmol, 2.0 g, 3.0 equiv.) and KI (1.0 mmol, 166 mg, 20 mol%) sequentially at r.t.. The resulting solution was stirred for 12 h at 50 °C until complete consumption of **S3** (monitored by TLC analysis). The reaction mixture was cooled to r.t., and KOH (49 mmol, 2.75 mmol, 10.0 equiv.) was added in one portion. The reaction was warmed to 150 °C and stirred for another 8 h. After cooling to room temperature, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and evaporated under vacuum to give a residue, which was purified by column chromatography (Petroleum ether: EtOAc = 1:1) to give the corresponding polycyclic arylamine **1a** as a brown solid (950 mg, yield = 65%).

dinaphtho[2,1-b:1',2'-d]furan-2,12-diamine (1a)

¹H NMR (400 MHz, DMSO) δ 8.10 (d, J = 2.1 Hz, 1H), 7.80 (dd, J = 17.8, 8.7 Hz, 2H), 7.50 (d, J = 8.7 Hz, 1H), 7.01 (dd, J = 8.6, 2.0 Hz, 1H), 5.84 (s, 2H). ¹³C NMR (126 MHz, DMSO) δ 154.4, 148.0, 131.2, 130.6, 128.6, 124.1, 117.5, 116.2, 107.7, 106.5.

benzyl vinylcarbamate (2)

This procedure was adopted from the literature, and the ¹H NMR data matched with the literature.³ To a solution of NaN₃ (1.95 g, 30 mmol, 1.0 eq.) in H₂O (14 mL) was added a solution of acryloyl chloride **S5** (2.4 mL, 30 mmol) in toluene (18 mL) dropwisely at 0 °C. After stirring for 6 h at this temperature, toluene (ca. 20 mL) was added to dilute the reaction mixture and the mixture was washed by saturated aqueous NaHCO₃ solution. The organic layers were combined, dried over Na₂SO₄ and filtered to give a solution of **S6**, which was used directly for next step without further purification.

To the solution of **S6** was successively added BnOH (3.7 mL, 36 mmol, 1.2 eq.), pyridine (1.2 mL, 15 mmol, 0.5 eq.) and hydroquinone (165 mg, 5 mol%) at rt. After stirring for 3 h, this reaction mixture was concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether: EtOAc = 8:1) to give benzyl vinylcarbamate (**2**) as a white solid (3.0 g, 56% yield for 2 steps).

1H NMR (500 MHz, CDCl₃) δ 7.41 – 7.28 (m, 6H), 6.71 (dt, J = 16.1, 10.0 Hz, 1H), 6.57 – 6.30 (m, 1H), 5.15 (s, 2H), 4.48 (d, J = 15.7 Hz, 1H), 4.30 (d, J = 8.7 Hz, 1H).

Enantioselective synthesis of helicenoid 4a

Diamine **1a** (0.1 mmol), CPA (*R*)-**A1** (0.005 mmol, 5 mol%) and activated 4Å molecular sieves (ca. 50 mg) were placed in a reaction tube and chloroform (1.5 mL) was added into this reaction mixture via syringe, which was followed by adding the corresponding aldehyde **3** (0.4 mmol, 4.0 equiv.). After stirring at rt for about 0.5 h., this reaction mixture was cooled to -40 °C, and a solution of

enamide **2a** (0.4 mmol, 4.0 equiv.) in $CHCl_3$ (0.5 mL) was added slowly into the reaction mixture via syringe and the mixture was stirred at the same temperature for additional 12 h. After the completion of the cycloaddition step as monitored by TLC analysis, the mixture was concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford the corresponding **4a**.

Starting from 0.1 mmol of **1a**, **4a** was afforded as a light yellow solid (77 mg, 94% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1. ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.71 (m, 1H), 7.70 – 7.62 (m, 1H), 7.59 – 7.40 (m, 3H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.29 (d, *J* = 7.4 Hz, 1H), 7.26 – 7.19 (m, 3H), 7.12 – 6.88 (m, 3H), 6.03 – 5.84 (m, 1H), 4.85 – 4.77 (m, 1H), 4.46 (d, *J* = 12.1 Hz, 1H), 4.18 (d, *J* = 12.0 Hz, 1H), 3.82 – 3.70 (m, 1H), 2.89 – 2.67 (m, 1H), 1.87 – 1.67 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 154.5, 154.1, 145.0, 142.7, 136.5, 130.2, 129.4, 128.9, 128.3, 127.9, 127.8, 127.0, 126.7, 126.6, 118.3, 116.3, 113.2, 107.7, 66.0, 55.4, 48.3, 39.2. HPLC: Chiralpak IA column, 60:40 hexanes/ isopropanol, 1 ml/min, t_R = 9.5 min (major), 13.9 min (minor), 99% ee. m/z HRMS (ESI) found [M+H]⁺ 829.3379, C₅₄H₄₅N₄O₅⁺ requires 829.3384.

Enantioselective synthesis of heterohelicenes 5

Diamine **1a** (0.1 mmol), CPA (*R*)-**A1** (0.005 mmol, 5 mol%) and activated 4Å molecular sieves (ca. 50 mg) were placed in a reaction tube and chloroform (1.5 mL) was added into this reaction mixture via syringe, which was followed by adding the corresponding aldehyde **3** (0.4 mmol, 4.0 equiv.). After stirring at rt for about 0.5 h., this reaction mixture was cooled to -40 °C, and a

solution of enamide **2a** (0.4 mmol, 4.0 equiv.) in CHCl₃ (0.5 mL) was added slowly into the reaction mixture via syringe and the mixture was stirred at the same temperature for additional 12 h ~ 24 h. After the completion of the cycloaddition step as monitored by TLC analysis, the mixture was concentrated under vacuum to give a residue. The residue was dissolved in THF (3 mL) and then cooled to -40 °C, which was followed by adding a solution of 1,2-dichloro-4,5-dicyanobenzoquinone (DDQ, 0.6 mmol, 6.0 equiv.) in THF (1 mL). After stirring at -40 °C for another 12 h, the mixture was warmed to room temperature, washed with saturated aqueous NaHCO₃ and extracted with EtOAc for 3 times. The combine organic layers were dried over Na₂SO₄ and concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate or dichloromethane as eluent to afford the corresponding **5**.

Heterohelicene 5a

Starting from 0.1 mmol of **1a**, **5a** was afforded as a light yellow solid (47.6 mg, 71% yield). Column chromatography eluent: petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.7 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.81 (dt, J = 15.8, 8.3 Hz, 3H), 7.70 (d, J = 7.2 Hz, 4H), 7.46 (s, 1H), 7.27 (d, J = 6.3 Hz, 3H), 7.20 (t, J = 7.7 Hz, 1H), 7.14 (dt, J = 19.0, 7.4 Hz, 3H), 7.07 (t, J = 7.5 Hz, 2H), 6.95 (d, J = 6.7 Hz, 2H), 6.59 (d, J = 8.4 Hz, 1H), 6.22 (d, J = 8.4 Hz, 1H), 5.73 (s, 1H), 4.49 (d, J = 11.8 Hz, 1H), 4.28 (d, J = 11.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.9, 156.6, 155.5, 155.2, 150.4, 148.7, 148.0, 142.6, 138.2, 135.0, 134.0, 130.9, 130.1, 129.2, 128.9, 128.8, 128.7, 128.5, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.6, 127.5, 127.3, 127.0, 122.1, 120.5, 118.3, 115.4, 113.2, 111.8, 111.4, 104.5, 66.9. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 7.6 min (major), 10.9 min (minor), 99% ee. $[\alpha]_D^{25} = 719$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 672.2283, C₄₆H₃₀N₃O₃⁺ requires 672.2282.

Heterohelicene 5b

Starting from 0.125 mmol of **1**, **5b** was afforded as a yellow solid (49 mg, 51% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 1H), 8.16 (dd, J = 8.8, 3.5 Hz, 2H), 8.00 (s, 3H), 7.96 (t, J = 1.9 Hz, 3H), 7.53 (s, 1H), 7.51 – 7.43 (m, 2H), 7.37 – 7.31 (m, 3H), 7.20 (ddd, J = 17.7, 7.8, 2.1 Hz, 2H), 7.07 (t, J = 7.8 Hz, 1H), 7.03 (d, J = 7.1 Hz, 3H), 6.82 (d, J = 8.5 Hz, 1H), 6.35 (d, J = 8.4Hz, 1H), 5.87 (s, 1H), 4.59 (d, J = 11.9 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 155.8, 155.5, 154.8, 150.4, 148.8, 148.0, 142.8, 139.9, 139.8, 134.8, 134.7, 134.6, 134.2, 131.2, 130.4, 129.4, 129.4, 129.2, 129.1, 129.0, 128.9, 128.5, 128.2, 127.8, 127.6, 127.1, 127.1, 126.9, 125.4, 125.0, 122.4, 120.5, 118.5, 115.6, 112.9, 112.2, 111.8, 103.8, 67.1. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 8.1 min (major), 11.0 min (minor), 99% ee. $[\alpha]_D^{25} = 1016$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+ 740.1522$, C₄₆H₂₈Cl₂N₃O₃⁺ requires 740.1502.

Heterohelicene 5c

Starting from 0.1 mmol of **1**, **5c** was afforded as a yellow solid (65 mg, 92% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.25 – 8.05 (m, 6H), 8.01 (s, 2H), 7.78 (ddd, J = 8.6, 5.5, 2.7 Hz, 4H), 7.53 (s, 1H), 7.33 (dd, J = 5.0, 1.9 Hz, 3H), 7.06 – 6.99 (m, 2H), 6.92 – 6.78 (m, 5H), 6.39 (d, J = 8.6 Hz, 1H), 5.92 (s, 1H), 4.59 (d, J = 11.9 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃_new) δ 164.9, 162.9, 156.6, 155.8, 155.5, 155.4, 150.5, 148.8, 148.0, 142.8, 134.9, 134.3, 131.1, 130.3, 129.4, 129.3, 129.1, 129.0, 129.0, 128.9, 128.5, 128.5, 128.1, 127.8, 127.7, 127.1, 122.1, 120.7, 118.6, 118.5, 115.4, 115.2, 115.0, 112.7, 112.1, 111.6, 103.9, 67.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.55, -112.86. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, $t_R = 8.7$ min (major), 12.1 min (minor), 98% ee. $[\alpha]_D^{25} = 671$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 708.2112, $C_{46}H_{28}F_2N_3O_3^+$ requires 708.2093.

Heterohelicene 5d

Starting from 0.1 mmol of **1a**, **5d** was afforded as a yellow solid (65 mg, 78% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.14 – 8.06 (m, 3H), 8.03 (dt, *J* = 8.8, 2.3 Hz, 3H), 7.95 (s, 2H), 7.58 (dd, *J* = 8.6, 2.2 Hz, 4H), 7.44 (s, 1H), 7.35 – 7.31 (m, 2H), 7.30 – 7.27 (m, 2H), 7.25 – 7.21 (m, 2H), 7.02 – 6.97 (m, 2H), 6.67 (d, *J* = 8.5 Hz, 1H), 6.24 (d, *J* = 8.6 Hz, 1H), 5.79 (s, 1H), 4.55 (d, *J* = 11.8 Hz, 1H), 4.33 (d, *J* = 11.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 155.7, 155.4, 155.0, 150.4, 148.7, 147.9, 142.6, 136.8, 134.8, 134.1, 131.3, 131.3, 131.1, 130.3, 129.1, 128.9, 128.8, 128.5, 128.1, 127.8, 127.5, 126.8, 124.2, 123.9, 122.1, 120.4, 118.4, 118.4, 115.4, 112.4, 112.1, 111.6, 103.5, 67.0. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 10.4 min (major), 14.5 min (minor), 99% ee. $[\alpha]_D^{25} = 939$ (c = 1.0, CHCl₃). HRMS (ESI) found $[M+H]^+$ 828.0517, C₄₆H₂₈Br₂N₃O₃⁺requires 828.0492.

Heterohelicene 5e

Starting from 0.1 mmol of **1a**, **5e** was afforded as a yellow solid (58.4 mg, 83% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 14.7, 8.7 Hz, 2H), 8.11 (s, 2H), 8.04 (dd, *J* = 9.9, 8.7 Hz, 2H), 8.00 – 7.91 (m, 2H), 7.65 (dd, *J* = 8.2, 1.8 Hz, 4H), 7.54 (s, 1H), 7.37 – 7.29 (m, 3H), 7.05 – 6.98

(m, 2H), 6.92 (dd, J = 15.3, 7.9 Hz, 4H), 6.83 (d, J = 8.5 Hz, 1H), 6.39 (d, J = 8.6 Hz, 1H), 5.89 (s, 1H), 4.58 (d, J = 12.0 Hz, 1H), 4.35 (d, J = 12.0 Hz, 1H), 2.33 (d, J = 15.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 157.9, 156.7, 155.7, 155.4, 150.5, 148.8, 148.0, 142.6, 139.1, 138.7, 135.4, 135.4, 135.0, 134.0, 130.8, 130.0, 129.0, 128.9, 128.8, 128.8, 128.6, 128.5, 128.4, 128.4, 128.0, 127.9, 127.7, 127.4, 127.1, 122.1, 120.8, 118.6, 118.5, 115.4, 113.0, 111.8, 111.3, 104.0, 66.9, 21.3. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 7.8 min (major), 11.0 min (minor), 98% ee. $[\alpha]_D^{25}$ = 1035 (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺ 700.2615, C₄₈H₃₄N₃O₃⁺requires 700.2595.

Heterohelicene 5f

Starting from 0.1 mmol of **1a**, **5f** was afforded as a yellow solid (57 mg, 71% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, *J* = 8.5 Hz, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 8.21 – 8.16 (m, 2H), 8.13 (dd, *J* = 20.0, 8.8 Hz, 2H), 8.05 (t, *J* = 6.4 Hz, 2H), 7.87 (dd, *J* = 13.1, 8.0 Hz, 4H), 7.61 (s, 1H), 7.40 – 7.29 (m, 6H), 7.05 – 7.00 (m, 2H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.45 (d, *J* = 8.5 Hz, 1H), 5.93 (s, 1H), 4.61 (d, *J* = 11.9 Hz, 1H), 4.39 (d, *J* = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 155.6, 154.7, 150.4, 148.9, 148.1, 142.9, 141.3, 134.8, 134.4, 131.3, 130.5, 129.3, 129.0, 129.0, 128.5, 128.5, 128.3, 127.9, 127.7, 127.6, 127.2, 126.9, 125.1, 122.6, 120.5, 118.6, 118.6, 115.7, 113.0, 112.4, 111.9, 104.1, 67.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.91, -62.92. Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 9.5 min (major), 13.3 min (minor), 99% ee. [α]_D²⁵ = 957 (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺808.2051, C₄₈H₂₈F₆N₃O₃⁺ requires 808.2029.

Heterohelicene 5g

Starting from 0.1 mmol of **1a**, **5g** was afforded as a yellow solid (58 mg, 72% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, J = 2.0 Hz, 1H), 8.40 (d, J = 1.9 Hz, 1H), 8.20 – 8.04 (m, 6H), 7.99 (s, 2H), 7.63 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 19.7 Hz, 2H), 7.46 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 6.6 Hz, 1H), 7.34 (dd, J = 5.0, 2.0 Hz, 3H), 7.13 (t, J = 7.7 Hz, 1H), 7.08 – 6.99 (m, 3H), 6.77 (d, J = 8.5 Hz, 1H), 6.36 (d, J = 8.5 Hz, 1H), 5.84 (s, 1H), 4.59 (d, J = 11.8 Hz, 1H), 4.36 (d, J = 11.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 155.5, 155.4, 154.3, 150.4, 148.8, 148.0, 142.8, 138.7, 134.8, 134.2, 131.2, 130.9, 130.8, 130.7, 130.6, 130.4, 129.8, 129.2, 129.0, 128.9, 128.7, 128.5, 128.5, 128.2, 127.9, 127.7, 126.8, 125.8, 125.6, 125.3, 123.7, 123.1, 122.4, 120.4, 118.5, 115.7, 112.5, 112.2, 111.8, 103.6, 67.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.42, -62.42. HPLC: Chiralpak IA column, 90:10 hexanes/ isopropanol, 1 ml/min, t_R = 9.5 min (major), > 99% ee. $[\alpha]_D^{25} = 1046$ (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺ 808.2050, C₄₈H₂₈F₆N₃O₃⁺requires 808.2029.

Heterohelicene 5h

Starting from 0.1 mmol of **1a**, **5h** was afforded as a yellow solid (58 mg, 83% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, *J* = 8.4 Hz, 1H), 8.21 – 8.14 (m, 2H), 8.14 – 8.06 (m, 3H), 8.05 – 7.96 (m, 2H), 7.66 (s, 1H), 7.35 – 7.30 (m, 4H), 7.24 (qd, *J* = 7.0, 1.4 Hz, 2H), 7.20 – 7.13 (m, 2H), 7.09 (dt, *J* = 10.7, 7.6 Hz, 3H), 7.04 – 6.99 (m, 3H), 6.51 (d, *J* = 8.4 Hz, 1H), 6.18 (s, 1H), 4.64 (d, *J* = 12.0 Hz, 1H), 4.40 (d, *J* = 12.0 Hz, 1H), 2.11 (s, 3H), 2.03 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 160.5, 159.8, 155.9, 155.5, 150.6, 148.9, 147.8, 142.3, 139.6, 139.3, 136.9, 136.4, 135.0, 134.0, 131.3, 131.2, 131.0, 130.2, 130.1, 129.9, 129.4, 129.2, 129.1, 128.6, 128.5, 128.4, 128.3, 128.2, 128.2, 128.0, 128.0, 127.6, 125.9, 125.7, 122.0, 121.2, 118.9, 118.8, 117.8, 115.1, 112.2, 111.6, 108.1, 67.0, 20.4, 20.1. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 6.9 min (major), 11.5

min (minor), 99% ee. $[\alpha]_D^{25} = 306$ (c = 2.0, CHCl₃). HRMS (ESI) found $[M+H]^+$ 700.2612, $C_{48}H_{34}N_3O_3^+$ requires 700.2595.

Heterohelicene 5i

Starting from 0.125 mmol of **1a**, **5g** was afforded as a yellow solid (44 mg, 44% yield). Column chromatography eluent : petroleum ether : EtOAc = 4:1.

¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, *J* = 8.5 Hz, 1H), 8.25 – 8.18 (m, 2H), 8.15 (d, *J* = 8.6 Hz, 2H), 8.09 (d, *J* = 8.9 Hz, 1H), 8.02 (q, *J* = 8.5 Hz, 2H), 7.83 (s, 1H), 7.55 (dd, *J* = 15.5, 7.9 Hz, 2H), 7.34 (tt, *J* = 7.1, 4.4 Hz, 5H), 7.18 (dddd, *J* = 19.0, 8.9, 5.3, 1.6 Hz, 4H), 7.07 – 7.00 (m, 3H), 6.82 (d, *J* = 8.5 Hz, 1H), 6.19 (s, 1H), 4.63 (d, *J* = 11.9 Hz, 1H), 4.42 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.5, 157.7, 156.0, 155.5, 150.5, 148.9, 148.2, 142.2, 140.7, 140.3, 134.9, 133.7, 133.4, 133.4, 132.2, 131.7, 131.3, 130.5, 129.6, 129.5, 129.3, 129.3, 128.5, 128.0, 127.8, 127.7, 127.4, 122.6, 121.9, 121.1, 119.0, 118.8, 118.3, 115.5, 112.5, 111.9, 108.2, 67.1. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 10.4 min (major), > 99% ee. $[\alpha]_D^{25} = 772$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+ 828.0511$, C₄₆H₂₈Br₂N₃O₃⁺ requires 828.0492.

Heterohelicene 5j

Starting from 0.1 mmol of **1a**, **5j** was afforded as a yellow solid (69 mg, 89% yield). Column chromatography eluent : petroleum ether : EtOAc = 4:1.

¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.5 Hz, 1H), 8.26 – 8.10 (m, 6H), 8.09 – 8.01 (m, 3H), 7.89 (s, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.65 (t, J = 7.8 Hz, 2H), 7.59 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 8.4 Hz,

1H), 7.38 – 7.33 (m, 3H), 7.30 (ddd, J = 8.1, 6.7, 1.2 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.12 (dd, J = 8.2, 7.0 Hz, 1H), 7.09 – 6.98 (m, 4H), 6.91 (dd, J = 8.2, 7.0 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.27 (s, 1H), 4.68 (d, J = 12.0 Hz, 1H), 4.45 (d, J = 12.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.2, 159.2, 156.0, 155.6, 150.6, 148.9, 148.1, 142.8, 137.4, 137.0, 135.0, 134.5, 133.9, 133.8, 131.2, 130.8, 130.6, 130.3, 129.4, 129.2, 128.5, 128.5, 128.4, 128.4, 128.2, 128.1, 127.8, 127.6, 126.4, 126.1, 125.5, 125.4, 125.4, 124.7, 122.3, 121.2, 119.0, 118.8, 118.7, 115.4, 112.3, 111.8, 108.9, 67.0. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 10.5 min (major), > 99% ee. [α]_D²⁵ = 215 (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺ 772.2593, C₅₄H₃₄N₃O₃⁺requires 772.2595.

Heterohelicene 5k

Starting from 0.1 mmol of **1a**, **5k** was afforded as a yellow solid (54 mg, 70% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.32 – 8.24 (m, 4H), 8.22 (s, 1H), 8.20 – 8.13 (m, 3H), 8.05 (s, 2H), 7.88 (d, *J* = 8.5 Hz, 1H), 7.86 – 7.77 (m, 2H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.30 – 7.13 (m, 6H), 7.04 (t, *J* = 6.4 Hz, 3H), 6.66 (d, *J* = 8.5 Hz, 1H), 6.02 (s, 1H), 4.66 (d, *J* = 11.9 Hz, 1H), 4.41 (d, *J* = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.6, 156.6, 155.9, 155.6, 150.6, 148.2, 142.9, 135.3, 135.0, 134.3, 133.7, 133.4, 133.0, 132.9, 131.2, 130.2, 129.3, 129.0, 128.5, 128.5, 128.4, 128.2, 128.1, 127.8, 127.6, 127.2, 127.1, 126.8, 126.2, 126.0, 125.4, 124.4, 124.2, 122.4, 120.9, 118.8, 118.7, 115.6, 113.4, 112.1, 111.6, 104.2, 67.0. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 11.3 min (major), 14.2 min (minor), 94% ee. $[\alpha]_D^{25} = 792$ (c = 0.5, CHCl₃). HRMS (ESI) found $[M+H]^+$ 772.2591, C₅₄H₃₄N₃O₃⁺requires 772.2595.

Heterohelicene 51

Starting from 0.1 mmol of **1a**, **5l** was afforded as a yellow solid (28.3 mg, 41% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 8.4 Hz, 1H), 8.21 (d, J = 8.8 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.13 – 8.05 (m, 3H), 8.02 (s, 2H), 7.54 (s, 1H), 7.36 – 7.31 (m, 3H), 7.29 – 7.22 (m, 2H), 7.13 (s, 1H), 7.08 (dd, J = 3.8, 1.1 Hz, 1H), 7.02 (s, 2H), 6.86 (d, J = 8.5 Hz, 1H), 6.75 (dd, J = 5.0, 3.6 Hz, 1H), 6.70 (dd, J = 5.0, 3.6 Hz, 1H), 6.42 (d, J = 8.6 Hz, 1H), 5.92 (s, 1H), 4.59 (d, J = 11.9 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 155.6, 152.4, 150.4, 144.6, 142.4, 134.0, 131.1, 130.3, 129.1, 129.0, 128.5, 128.1, 128.0, 127.8, 127.6, 127.1, 126.8, 125.9, 125.5, 122.2, 118.5, 112.1, 111.9, 111.4, 107.3, 102.4, 67.0.Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 11.7 min (major), > 99% ee. $[\alpha]_D^{25} = 870$ (c = 0.2, CHCl₃). HRMS (ESI) found [M+H]⁺ 684.1401, C₄₂H₂₆N₃O₃S₂⁺ requires 684.1410.

Enantioselective synthesis of heterohelicenes 6

Diamine **1a** (0.1 mmol), CPA (*R*)-**A1** (0.005 mmol, 5 mol%) and activated 4Å molecular sieves (ca. 50 mg) were placed in a reaction tube and chloroform (1.5 mL) was added into this reaction mixture via syringe, which was followed by adding the corresponding aldehyde **3** (0.4 mmol, 4.0 equiv.). After stirring at rt for about 0.5 h., this reaction mixture was cooled to -40 °C, and a solution of enamide **2a** (0.4 mmol, 4.0 equiv.) in CHCl₃ (0.5 mL) was added slowly into the reaction mixture via syringe and the mixture was stirred at the same temperature for additional 12 h ~ 24 h. After the completion of the cycloaddition step as monitored by TLC analysis, the mixture was concentrated under vacuum to give a residue. The residue was then dissolved in DCM (10 mL), and added MnO₂

(10 mmol, 100 equiv.) at rt. After stirring for 48 h, the mixture was filtered through Celite and concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate or dichloromethane as eluent to afford the corresponding product 6.

Heterohelicene 6a

Starting from 0.1 mmol of **1a**, **6a** was afforded as a light yellow solid (61.6 mg, 75% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1. ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 8.7 Hz, 1H), 8.00 (s, 2H), 7.91 (d, *J* = 8.8 Hz, 1H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.68 (s, 1H), 7.35 (q, *J* = 4.4 Hz, 3H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.07 (q, *J* = 7.5 Hz, 4H), 5.69 (s, 1H), 4.61 (d, *J* = 11.9 Hz, 1H), 4.44 (d, *J* = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.6,

154.9, 150.2, 149.7, 142.0, 137.9, 135.0, 129.7, 129.3, 129.1, 128.8, 128.6, 128.5, 128.4, 128.2, 128.2, 128.0, 127.5, 127.4, 122.1, 118.9, 113.9, 111.2, 103.3, 66.9. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, $t_R = 10.7$ min (major), 16.4 min (minor), 99% ee. $[\alpha]_D^{25} = 900$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+ 821.2755$, $C_{54}H_{37}N_4O_5^+$ requires 821.2758.

Heterohelicene 6b

Starting from 0.125 mmol of **1a**, **6b** was afforded as a yellow solid (77 mg, 69% yield). Column chromatography eluent : petroleum ether : EtOAc = 5:1.

¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.7 Hz, 1H), 8.12 – 8.05 (m, 3H), 7.99 (d, J = 8.8 Hz, 1H), 7.67 (s, 1H), 7.57 (s, 1H), 7.39 – 7.34 (m, 3H), 7.17 (dd, J = 7.8, 2.1 Hz, 1H), 7.03 (dd, J = 17.5, 9.7 Hz, 3H), 5.71 (s, 1H), 4.64 (d, J = 11.8 Hz, 1H), 4.46 (d, J = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃_new) δ 160.4, 155.6, 155.0, 150.3, 149.6, 142.1, 139.6, 134.9, 134.5, 130.0, 129.4, 129.3, 129.0, 128.6, 128.5, 128.5, 127.0, 125.2, 121.9, 118.8, 114.1, 111.5, 102.5, 67.0. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 11.8 min (major), > 99% ee. [α]_D²⁵ = 703 (c = 0.5, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 889.1979, C₅₄H₃₅Cl₂N₄O₅⁺ requires 889.1979.

Heterohelicene 6c

Starting from 0.1 mmol of **1a**, **6c** was afforded as a yellow solid (60 mg, 70% yield). Column chromatography eluent : petroleum ether : EtOAc = 4:1.

¹H NMR (500 MHz, CDCl₃) δ 8.14 – 8.03 (m, 3H), 7.96 (d, *J* = 8.8 Hz, 1H), 7.84 (t, *J* = 6.8 Hz, 2H), 7.61 (s, 1H), 7.37 – 7.30 (m, 3H), 7.05 (s, 2H), 6.83 – 6.75 (m, 2H), 5.71 (s, 1H), 4.62 (d, *J* = 11.9 Hz, 1H), 4.44 (d, *J* = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 162.9, 156.3, 155.0, 150.3, 149.7, 142.0, 134.9, 134.1, 129.8, 129.3, 129.2, 129.2, 128.9, 128.8, 128.6, 128.5, 122.0, 118.8, 115.0, 114.8, 113.8, 111.3, 102.6, 66.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.95. m/z. HPLC: Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, t_R = 9.3 min (major), > 99% ee. [α]_D²⁵ = 757 (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺ 857.2567, C₅₄H₃₅F₂N₄O₅⁺requires 857.2570.

Heterohelicene 6d

Starting from 0.1 mmol of **1a**, **6d** was afforded as a yellow solid (75 mg, 77% yield). Column chromatography eluent : petroleum ether : EtOAc = 4:1.

¹H NMR (500 MHz, CDCl₃) δ 8.12 – 8.02 (m, 3H), 7.96 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.60 (s, 1H), 7.39 – 7.31 (m, 3H), 7.28 – 7.19 (m, 2H), 7.04 (d, *J* = 6.8 Hz, 2H), 5.67 (d, *J* = 9.0 Hz, 1H), 4.61 (d, *J* = 11.9 Hz, 1H), 4.44 (d, *J* = 11.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.1, 155.0, 150.2, 149.7, 142.0, 136.8, 134.9, 131.1, 129.9, 129.3, 128.9, 128.8, 128.6, 128.5, 128.5, 124.2, 121.9, 118.8, 114.0, 111.4, 102.4, 66.9. HPLC: Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, $t_R = 11.5 \text{ min (major)}, > 99\%$ ee. $[\alpha]_D^{25} = 1253$ (c = 0.5, CHCl₃). HRMS (ESI) found [M+H]⁺977.0994, C₅₄H₃₅Br₂N₄O₅⁺requires 977.0969.

Heterohelicene 6e

Starting from 0.1 mmol of **1a**, **6e** was afforded as a yellow solid (70.8 mg, 83% yield). Column chromatography eluent : petroleum ether : EtOAc = 4 : 1.

¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.8 Hz, 1H), 8.05 (s, 2H), 7.96 (d, *J* = 8.8 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 2H), 7.66 (s, 1H), 7.39 – 7.29 (m, 3H), 7.05 (s, 2H), 6.86 (d, *J* = 7.9 Hz, 2H), 5.72 (s, 1H), 4.63 (d, *J* = 12.0 Hz, 1H), 4.44 (d, *J* = 12.0 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃_new) δ 157.7, 154.9, 150.3, 149.7, 141.9, 138.9, 135.2, 135.1, 129.6, 129.2, 128.9, 128.8, 128.7, 128.5, 128.4, 128.4, 127.3, 122.2, 118.9, 113.9, 111.1, 102.8, 66.8, 21.4. Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, t_R = 8.3 min (major), 15.5 min (minor), 98% ee. [α]_D²⁵ = 876 (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺ 849.3084, C₅₆H₄₁N₄O₅⁺ requires 849.3071.

Heterohelicene 6f

Starting from 0.1 mmol of **1a**, **5f** was afforded as a yellow solid (62 mg, 65% yield). Column chromatography eluent : petroleum ether : EtOAc = 4 : 1.

¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.05 (m, 3H), 8.00 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 8.0 Hz, 2H), 7.71 (s, 1H), 7.36 (dd, J = 5.0, 1.9 Hz, 3H), 7.31 (d, J = 8.1 Hz, 2H), 7.08 – 7.02 (m, 2H), 5.72 (s, 1H), 4.63 (d, J = 11.9 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 155.0, 150.2, 149.8, 142.2, 141.2, 134.8, 130.0, 129.4, 129.0, 128.9, 128.6, 128.6, 128.5, 127.5, 124.8, 121.9, 118.9, 114.2, 111.7, 103.1, 67.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.89. Chiralpak IA column, 70:30 hexanes/ ethanol, 1 ml/min, $t_R = 10.0$ min (major), > 99% ee. $[\alpha]_D^{25} = 727.2$ (c = 0.5, CHCl₃). HRMS (ESI) found $[M+H]^+$ 957.2535, $C_{56}H_{35}F_6N_4O_5^+$ requires 957.2506.

Heterohelicene 6g

Starting from 0.1 mmol of **1a**, **6g** was afforded as a yellow solid (67 mg, 70% yield). Column chromatography eluent : petroleum ether : EtOAc = 5 : 1.

¹H NMR (500 MHz, CDCl₃) δ 8.61 (s, 1H), 8.16 (d, J = 8.8 Hz, 1H), 8.12 – 8.05 (m, 2H), 8.00 (d, J = 8.8 Hz, 1H), 7.69 (s, 1H), 7.62 (s, 1H), 7.40 (d, J = 7.7 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.06 (s, 2H), 7.00 (t, J = 7.8 Hz, 1H), 5.71 (s, 1H), 4.64 (d, J = 11.8 Hz, 1H), 4.46 (d, J = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃_new) δ 155.2, 155.0, 150.3, 149.7, 142.1, 138.6, 134.8, 130.9, 130.7, 130.4, 130.2, 130.0, 129.4, 129.0, 128.9, 128.6, 128.5, 125.7, 125.4, 123.8, 123.2, 121.8, 118.8, 114.2, 111.6, 102.5, 67.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.31. HPLC: Chiralpak IA column, 80:20 hexanes/ ethanol, 1 ml/min, $t_R = 9.4$ min (major), 10.8 min (minor), 99% ee. $[\alpha]_D^{25} = 682$ (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺ 957.2530, C₅₆H₃₅F₆N₄O₅⁺requires 957.2506.

Heterohelicene 6h

Starting from 0.1 mmol of **1a**, **6h** was afforded as a yellow solid (61.3 mg, 72% yield). Column chromatography eluent : petroleum ether : EtOAc = 4 : 1.

¹H NMR (500 MHz, CDCl₃) δ 8.10 – 8.01 (m, 3H), 7.96 (d, J = 8.8 Hz, 1H), 7.77 (s, 1H), 7.35 (dp, J = 6.0, 2.0 Hz, 3H), 7.21 (t, J = 7.3 Hz, 2H), 7.02 (dq, J = 10.4, 3.1 Hz, 4H), 5.97 (s, 1H), 4.68 (s, 1H), 4.49 (d, J = 12.0 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.5, 155.0, 150.3, 149.6, 141.6, 139.2, 136.9, 134.9, 131.4, 130.1, 129.9, 129.5, 129.0, 128.6, 128.5, 128.4, 128.4, 128.1, 125.6,

122.6, 119.1, 113.2, 111.4, 106.9, 66.9, 20.4. HPLC: Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, $t_R = 6.5$ min (major), > 99% ee. $[\alpha]_D^{25} = 402(c = 1.0, CHCl_3)$. HRMS (ESI) found $[M+H]^+$ 849.3093, $C_{56}H_{41}N_4O_5^+$ requires 849.3071.

Heterohelicene 6i

Starting from 0.1 mmol of **1a**, **6i** was afforded as a yellow solid (62 mg, 51% yield). Column chromatography eluent : petroleum ether : EtOAc = 3 : 1.

¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.00 (m, 4H), 7.96 (d, *J* = 8.8 Hz, 1H), 7.50 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.28 – 7.22 (m, 1H), 7.11 (td, *J* = 7.7, 1.7 Hz, 1H), 7.06 – 6.99 (m, 2H), 6.95 (td, *J* = 7.5, 1.2 Hz, 1H), 5.96 (s, 1H), 4.64 (d, *J* = 12.0 Hz, 1H), 4.51 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 155.0, 150.2, 149.8, 141.3, 140.3, 134.9, 133.6, 132.1, 130.2, 129.7, 129.4, 129.2, 128.7, 128.5, 128.5, 127.4, 122.4, 121.8, 119.2, 113.8, 111.6, 107.0, 67.0. HPLC: Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 9.3 min (major),> 99% ee. [α]_D²⁵ = 517 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺977.0994, C₅₄H₃₅Br₂N₄O₅⁺ requires 977.0969.

Heterohelicene 6j

Starting from 0.1 mmol of **1a**, **6j** was afforded as a yellow solid (47 mg, 51% yield). Column chromatography eluent : petroleum ether : EtOAc = 4 : 1.

¹H NMR (500 MHz, CDCl₃) δ 8.15 – 8.03 (m, 5H), 7.98 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.41 – 7.32 (m, 3H), 7.27 – 7.22 (m, 1H), 7.17 (ddd, *J* = 8.1, 6.6, 1.1 Hz, 1H), 7.06 (p, *J* = 3.2 Hz, 2H), 6.99 – 6.90 (m, 2H), 6.07 (s, 1H), 4.71 (d, *J* = 12.0 Hz, 1H), 4.53 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.0, 155.1, 150.4, 149.8, 142.1, 137.2, 135.0, 133.6, 130.3, 130.0, 129.6, 129.2, 129.1, 128.5, 128.5, 128.4, 128.2, 127.5, 126.1, 125.4, 125.2, 124.4, 122.6, 119.2, 113.5, 111.5, 107.6, 66.9. HPLC: Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, t_R = 8.9 min (major), > 99% ee. [α]_D²⁵ = 253 (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺921.3093, C₆₂H₄₁N₄O₅⁺requires 921.3071.

Heterohelicene 6k

Starting from 0.1 mmol of **1a**, **6k** was afforded as a yellow solid (51 mg, 55% yield). Column chromatography eluent : petroleum ether : EtOAc = 5 : 1.

¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 1.8 Hz, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 8.10 (s, 2H), 8.04 (d, *J* = 8.8 Hz, 1H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.39 – 7.33 (m, 3H), 7.29 – 7.26 (m, 1H), 7.25 – 7.17 (m, 2H), 7.06 (d, *J* = 8.5 Hz, 3H), 5.79 (s, 1H), 4.69 (d, *J* = 11.9 Hz, 1H), 4.48 (d, *J* = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 155.0, 150.4, 149.9, 141.9, 135.2, 135.0, 133.6, 132.8, 129.8, 129.3, 129.0, 128.6, 128.5, 128.5, 128.1, 127.4, 127.1, 126.9, 126.0, 125.2, 124.3, 122.2, 118.9, 114.0, 111.2, 102.9, 66.9. HPLC: Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, t_R = 12.1 min (major), 19.9 min (minor), 93% ee. $[\alpha]_D^{25}$ = 386 (c = 0.5, CHCl₃). HRMS (ESI) found [M+H]⁺ 921.3090, C₆₂H₄₁N₄O₅⁺requires 921.3071.

Starting from 0.1 mmol of **1a**, **6l** was afforded as a yellow solid (29 mg, 35% yield). Column chromatography eluent : petroleum ether : EtOAc = 4 : 1.

¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.01 (m, 3H), 7.96 (d, *J* = 8.9 Hz, 1H), 7.58 (s, 1H), 7.35 (p, *J* = 3.2 Hz, 3H), 7.23 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.18 – 7.13 (m, 1H), 7.04 (s, 2H), 6.68 (dd, *J* = 5.0, 3.7 Hz, 1H), 5.70 (s, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 4.43 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 153.3, 150.2, 149.5, 144.6, 141.6, 135.0, 129.9, 129.3, 128.8, 128.5, 128.4, 128.1, 127.8, 126.5, 122.0, 118.7, 114.0, 111.1, 101.5, 66.9. Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, t_R = 13.2 min (major), > 99% ee. $[\alpha]_D^{25} = 751$ (c = 0.5, CHCl₃). HRMS (ESI) found [M+H]⁺ 833.1909, C₅₀H₃₃N₄O₅S₂⁺requires 833.1887.

Scheme S2. One-pot asymmetric synthesis of azahelicene 6a via sequential bis-Povarov reaction and oxidative aromatization.

Thermal racemization study of helicene product 5a and 6a

Thermal racemization of 5a at 150°C (in mesitylene)

Time/s	ee (%) of 5a
0	99.2
1800	99.3
3600	99.5
7200	99.0
21600	98.7
43200	99.2
86400	99.0
172800	99.5

259200	98.6
432000	98.9

Thermal racemization of **6a** at 150°C (in mesitylene)

Time/s	ee (%) of 6a
0	98.5
1800	98.4
3600	98.7
7200	98.5
21600	98.4
43200	98.5
86400	98.3
172800	98.6
259200	98.1
432000	98.2

Large-scale asymmetric synthesis of 5a and 6a

Diamine **1a** (1 mmol), CPA (*R*)-**A9** (0.05 mmol, 5 mol%) and activated 4Å molecular sieves (ca. 500 mg) were placed in a reaction tube and CHCl₃ (15 mL) was added into this reaction mixture via syringe, which was followed by adding benzaldehyde **3a** (4 mmol, 4.0 equiv.) at rt. After stirring at rt for about 0.5 h, the reaction mixture was cooled to -40 °C, and a solution of enamide **2** (4 mmol, 4.0 equiv.) in CHCl₃ (5 mL) was added slowly into the reaction mixture via syringe. After stirring at the same temperature for additional 24 h, the mixture was concentrated under vacuum to give a residue. The residue was dissolved in THF (15 mL) and then cooled to -40 °C. Then a solution of

1,2-dichloro-4,5-dicyanobenzoquinone (DDQ, 6 mmol, 6.0 equiv.) in THF (5 mL) was added and the mixture was allowed to stir at -40 °C for another 24 h. After that, this mixture was warmed to room temperature and washed with saturated aqueous NaHCO₃ and extracted with EtOAc for 3 times. The combine organic layers were then, dried over Na₂SO₄ and concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford the (*P*)-**5a** as a yellow solid (517 mg, 77% yield, 99% ee).

Diamine **1a** (1 mmol), CPA (*R*)-**A9** (0.05 mmol, 5 mol%) and activated 4Å molecular sieves (ca. 500 mg) were placed in a reaction tube and CHCl₃ (15 mL) was added into this reaction mixture via syringe, which was followed by adding benzaldehyde **3a** (4 mmol, 4.0 equiv.) at rt. After stirring at rt for about 0.5 h, the reaction mixture was cooled to -40 °C, and a solution of enamide **2a** (4 mmol, 4.0 equiv.) in CHCl₃ (5 mL) was added slowly into the reaction mixture via syringe. After stirring at the same temperature for additional 24 h, the mixture was concentrated under vacuum to give a residue. The residue was dissolved in DCM (50 mL), and added MnO₂ (100 mmol, 100 equiv.) at rt. After stirring for another 48 h at rt, the mixture was filtered through Celite and concentrated under vacuum to give a residue = 4/1) to afford the (*P*)-**6a** as a yellow solid (525 mg, 64% yield, 99% ee).

Derivatizations of the chiral azahelicene products

To a solution of **5a** (50 mg, 0.0745 mmol) in MeOH/EtOAc (5 mL/1 mL) was added Pd/C (ca. 10 mg, 10% Pd, 55 wt% H₂O) at rt. After stirring under H₂ atmosphere (1.0 atm, balloon) for 18 h at rt, the mixture was filtered through Celite. The filtrate was concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate = 3:1 as eluent to afford **7a** as a yellow solid (36 mg, 90% yield, 99% ee). ¹H NMR (500 MHz, CDCl₃) δ 8.26 – 8.06 (m, 8H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.18 – 7.03 (m, 6H), 6.61 (d, *J* = 8.4 Hz, 1H), 5.89 (s, 1H), 3.45 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 155.9, 155.3, 151.3, 147.5, 138.5, 134.6, 130.9, 130.8, 128.9, 128.8, 128.6, 128.3, 128.2, 127.6, 127.4, 127.4, 127.3, 123.5, 122.6, 119.0, 118.3, 114.6, 113.9, 111.4, 110.9, 101.1.Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, t_R = 5.7 min (major), 9.8 min (minor), 99% ee. [*a*]_D²⁵ = 1396 (c = 1.0, CHCl₃). HRMS (ESI) found [M+H]⁺ 538.1918, C₃₈H₂₄N₃O⁺ requires 538.1914.

To a solution of **7a** (97 mg, 0.18 mmol) in DCM (10 mL) was added NIS (45 mg, 0.2 mmol, 1.1 equiv.) at rt. After stirring at rt for 15 h, the mixture was concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel using dichloromethane/ethyl acetate = 50/1 as eluent to afford **8a** as a brown solid (74 mg, 62% yield, 99% ee).¹H NMR (500 MHz, CDCl₃) δ 8.27 – 8.16 (m, 5H), 8.11 (d, *J* = 8.4 Hz, 1H), 8.07 (td, *J* = 5.4, 3.1 Hz, 4H), 7.47 – 7.37 (m, 3H), 7.23 – 7.14 (m, 4H), 7.01 (dd, *J* = 8.5, 6.7 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 1H), 4.26 (s, 2H).¹³C NMR (126 MHz, CDCl₃) δ 161.5, 156.6, 156.1, 155.3, 150.5, 148.5, 147.6, 142.2, 138.9, 134.6, 131.3, 131.0, 129.5, 129.4, 128.9, 128.8, 128.2, 127.8, 127.7, 127.5, 127.3, 123.2, 122.1, 118.7, 118.3, 113.8, 113.0, 111.5. Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, t_R = 8.3 min (major), 9.7 min (minor), 99% ee. $[\alpha]_D^{25} = 1601$ (c = 1.0, CHCl₃). HRMS (ESI) found $[M+H]^+$ 664.0881, C₃₈H₂₃IN₃O⁺requires 664.0880.

Under N₂ atmosphere, **8a** (20 mg, 0.03 mmol), phenylacetylene (8 μL, 0.075 mmol, 2.5 equiv.), Pd(PPh₃)₂Cl₂ (4.2 mg, 20 mol%), CuI (2.3 mg, 40 mol%) and Et₃N (12.5 μL, 0.09 mmol, 3.0 equiv.) were dissolved in DMF (1 mL), and the mixture was placed into 105 °C oil bath and was allowed to stirred for 12 h. After the completion of this reaction, the mixture was cooled to rt and diluted with EtOAc, washed by brine, dried over Na₂SO₄ and concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate = 3/1 as eluent to afford **9a** as a yellow solid (12 mg, 61% yield, 99% ee). ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 8.36 (d, *J* = 8.5 Hz, 1H), 8.32 – 8.19 (m, 4H), 7.85 – 7.71 (m, 8H), 7.50 (s, 1H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.22 (dt, *J* = 11.8, 7.8 Hz, 5H), 7.17 – 7.06 (m, 3H), 6.54 – 6.48 (m, 2H), 6.45 – 6.39 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.8, 156.6, 155.7, 147.5, 138.6, 136.7, 135.4, 134.5, 130.3, 130.0, 129.3, 129.1, 129.0, 128.8, 128.5, 128.3, 128.2, 128.1, 127.7, 127.4, 124.2, 122.0, 121.6, 119.5, 118.0, 117.7, 113.7, 113.3, 112.0, 111.7, 99.6. Chiralpak IB column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 27.0 min (major), 20.4 min (minor), 99% ee. [α]_D²⁵ = 1516 (c = 0.5, CHCl₃). HRMS (ESI) found [M+H]⁺ 638.2230, C₄₆H₂₈N₃O⁺requires 638.2227.

To a solution of **6a** (200 mg, 0.244 mmol) in MeOH/EA (10 mL/5 mL) was added Pd/C (ca. 30 mg, 10% Pd, 55 wt% H₂O) at rt. After stirring under H₂ atmosphere (1.0 atm, balloon) for 12 h at rt, the mixture was filtered through Celite. The filtrate was concentrated under vacuum to give a residue, which was triturated with DCM and filtered to afford **10a** as a light yellow solid (132 mg, 98% yield, 99% ee). ¹H NMR (500 MHz, MeOD) δ 8.28 (d, *J* = 8.5 Hz, 1H), 8.18 (d, *J* = 8.9 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.9 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.21 – 7.14 (m, 1H), 7.11 – 7.06 (m, 2H), 6.11 (s, 1H), 5.49 (s, 2H). *Due to the compound's poor solubility in various deuterated solvents, its* ¹³C NMR

spectrum was not recorded. Chiralpak IA column, 70:30 hexanes/ isopropanol, 1 ml/min, $t_R = 5.6$ min (major), > 99% ee. $[\alpha]_D^{25} = 859$ (c = 0.1, CHCl₃). HRMS (ESI) found $[M+H]^+$ 553.2028, $C_{38}H_{25}N_4O^+$ requires 553.2023.

To a solution of **10a** (20 mg, 0.036 mmol) in DCM (2 mL) was added NBS (14 mg, 0.0792 mmol, 2.2 equiv.) at rt. After stirring at rt for 5.5 h, the mixture was concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate = 3/1 as eluent to afford **11a** as an orange solid (15.5 mg, 61% yield, 99% ee).¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.8 Hz, 1H), 8.11 (dd, *J* = 8.6, 7.1 Hz, 2H), 7.65 – 7.58 (m, 2H), 7.37 – 7.30 (m, 1H), 7.24 – 7.15 (m, 2H), 3.97 (s, 2H).¹³C NMR (126 MHz, CDCl₃) δ 157.0, 154.9, 148.1, 147.6, 139.6, 130.7, 130.6, 128.9, 128.5, 128.2, 128.1, 127.5, 124.5, 118.7, 112.6, 110.7, 100.6. Chiralpak IA column, 80:20 hexanes/ isopropanol, 1 ml/min, t_R = 11.7 min (major), 18.0 min (minor), 99% ee. $[\alpha]_D^{25} = 1581$ (c = 1, CHCl₃). HRMS (ESI) found [M+H]⁺709.0232, C₃₈H₂₃Br₂N₄O⁺requires 709.0233.

Optical properties of the products

Unless otherwise noted, CD analysis, absorbance analysis and fluorescence analysis were performed at 20 % with 1.0 cm x 1.0 cm quartz cell.

Figure S1. UV/vis absorbance spectra for 5a and 6a measured in DCM $(1.0 \times 10^{-4} \text{ M})$.

Figure S2. Fluorescence spectra for **5a** and **6a** measured at in dichloromethane $(1.0 \times 10^{-4} \text{ M})$, excited by 350nm).

Figure S3. Fluorescence spectra for **5a** and (*P*)-**5a**+[H⁺] measured at in dichloromethane $(1.0 \times 10^{-4} \text{ M}, \text{ excited by 350nm})$.

Figure S4. CD spectra of (P)/(M)-5a and (P)/(M)-6a in dichloromethane $(1.0 \times 10^{-4} \text{ M})$.

Figure S5. CPL spectra of (P)/(M)-5a and (P)/(M)-6a in DCM (1.0×10⁻⁴ M).

Figure S6. Dissymmetry values of azahelicenes (P)/(M)-5a and (P)/(M)-6a

Figure S7. CPL spectra of (*P* -6a in DCM $(1.0 \times 10^{-4} \text{ M})$ with addition of TFA.

Figure S8. Dissymmetry values of azahelicenes (P) 6a with addition of TFA.

Reference

1. Areephong, J.; Ruangsupapichart, N.; Thongpanchang, T., A concise synthesis of functionalized 7-oxa-[5]-helicenes. *Tetrahedron Letters* **2004**, *45* (15), 3067-3070.

2. Chang, X.; Zhang, Q.; Guo, C., Switchable Smiles Rearrangement for Enantioselective O-Aryl Amination. *Org Lett* **2019**, *21* (12), 4915-4918.

3. Hoang, T. T.; Smith, T. P.; Raines, R. T., A Boronic Acid Conjugate of Angiogenin that Shows ROS-Responsive Neuroprotective Activity. *Angew Chem Int Ed* **2017**, *56* (10), 2619-2622.

X-ray structure

Figure S9. X-ray structure of (*P*)-5i (CCDC number 2401332)

Identification code	t_a
Empirical formula	$C_{46}H_{27}Br_2N_3O_3$
Formula weight	829.52
Temperature/K	173(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.1539(4)
b/Å	11.8063(5)
c/Å	29.1718(12)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3497.1(2)
Z	4
$\rho_{calc}g/cm^3$	1.576
μ/mm^{-1}	3.338
F(000)	1672.0
Crystal size/mm ³	$0.160 \times 0.150 \times 0.120$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	8.078 to 137.714
Index ranges	$-12 \le h \le 12, -13 \le k \le 14, -35 \le l \le 34$
Reflections collected	43860
Independent reflections	6434 [$R_{int} = 0.0695$, $R_{sigma} = 0.0421$]
Data/restraints/parameters	6434/0/490
Goodness-of-fit on F ²	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0441, wR_2 = 0.1085$
Final R indexes [all data]	$R_1 = 0.0478, wR_2 = 0.1110$
Largest diff. peak/hole / e $Å^{-3}$	0.40/-0.86
Flack parameter	0.065(8)

 Table S1 Crystal data and structure refinement for (P)-5i.

Figure S10. X-ray structure of 6a (CCDC number 2401205)

Identification code	t		
Empirical formula	$C_{54}H_{36}N_4O_5\\$		
Formula weight	820.87		
Temperature/K	173.00		
Crystal system	orthorhombic		
Space group	P2 ₁ 2 ₁ 2		
a/Å	21.7158(6)		
b/Å	40.9507(11)		
c/Å	14.8230(4)		
$\alpha/^{\circ}$	90		
β/°	90		
γ/°	90		
Volume/Å ³	13181.8(6)		
Z	12		
$\rho_{calc}g/cm^3$	1.241		
μ/mm^{-1}	0.645		
F(000)	5136.0		
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$		
Radiation	$CuK\alpha (\lambda = 1.54178)$		
2Θ range for data collection/°	4.316 to 137.11		
Index ranges	$-25 \le h \le 26, -49 \le k \le 49, -17 \le$		
index runges	$l \leq 17$		
Reflections collected	147661		
Independent reflections	24194 [$R_{int} = 0.0874$, $R_{sigma} =$		

Table S2. Crystal data and structure refinement for 6a

 Reflections collected
 147661

 Independent reflections
 $24194 \ [R_{int} = 0.0874, R_{sigma}]$

 Data/restraints/parameters
 24194/711/1788

 Goodness-of-fit on F²
 1.008

 Final R indexes [I>= 2σ (I)]
 $R_1 = 0.0789, wR_2 = 0.2109$

 Final R indexes [all data]
 $R_1 = 0.1110, wR_2 = 0.2423$

 Largest diff. peak/hole / e Å⁻³
 0.76/-0.44

 Flack parameter
 2.19(9)

HPLC traces

Helicenoid 4a

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.522	MM	74.7	2	0.6103	50.170	0.766
2	14.46	MM	74.2	1.3	0.9416	49.830	0.885

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.509	FM	5047.6	135.3	0.6218	99.748	0.791
2	13.936	MM	12.8	2.8E-1	0.7553	0.252	1.081
Heterohelicene 5a

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.597	BVR	28681	1951.2	0.177	99.672	0.704
2	10.949	MM	94.4	4.5	0.3506	0.328	0.787

Heterohelicene 5b

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.214	BVR	8363	553.1	0.1799	50.875	0.805
2	11,106	VV R	8075.3	385.6	0.2464	49.125	0.817

DAD1 E, Sig=280,4 Ref=off (E:\Data\QTR\QTR20230612QTR-7-28-1 2023-06-12 22-01-23\001-P2-C3

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.148	BVR	5577.1	390.6	0.1686	99.502	0.791
2	11.023	MM	27.9	1.5	0.3035	0.498	1.131

Heterohelicene 5c

 #	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.905	BV R	17992.7	1133.3	0.1887	50.576	0.845
2	12.204	BVR	17582.8	776.2	0.2663	49.424	0.777

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.691	BV R	6249.4	416.7	0.1805	98.990	0.82
2	12.084	MM	63.7	3.6	0.2981	1.010	0.649

Heterohelicene 5d

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	10.358	1672.1	84.9	0.3284	49.987	0.781	MM	MM
2	14.47	1673	60.5	0.4606	50.013	0.795	MM	MM

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	10.367	43488.6	2358.6	0.3073	99.760	0.833	MM	MM
2	14.461	104.8	3.6	0.4338	0.240	0.671	BB	BB

Heterohelicene 5e

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	7.841	21410.3	1426.4	0.2502	50.521	0,746	MM	MM
2	11.027	20968.9	1109.1	0.3151	49.479	0,845	MM	MM

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	7.813	16946.7	1070.1	0.2639	98.990	0.757	MM	MM
2	11.043	172.9	8.1	0.354	1.010	0.768	MM	MM

Heterohelicene 5f

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	9.532	5067.7	257.2	0.3019	49.995	0.728	BB	BB
2	13.257	5068.6	206.8	0.374	50.005	0.779	BB	BB

	#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	1	9.513	3917.6	199.4	0.2992	99.472	0.733	BB	BB
	2	13.287	20.8	9E-1	0.385	0.528	0.835	MM	MM

Heterohelicene 5g

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	9.304	5725.7	367.1	0.2599	50.393	0.796	MM	MM
2	12.611	5636.3	255.9	0.3671	49.607	0.774	MM	MM

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	9.481	8036.5	501.6	0.2449	100.000	0.721	BB	BB

Heterohelicene 5h

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	6.849	10803.4	834.2	0.1967	50.403	0.706	BB R	BB R
2	11.416	10630.6	493.6	0.3589	49.597	0.782	MM	8 3

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	6.952	8735.7	667	0.2183	99.714	0.719	MM	MM
2	11.521	25	1.2	0.3067	0.286	0.736	BB	BB

Heterohelicene 5i

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.316	MM	2520.6	101.2	0.415	50.509	0.716
2	15.181	WR	2469.8	72.1	0.4018	49.491	0.74

#	Time	Type	Area	Height	Width	Area%	Symmetry
1	10.424	VV R	7905.3	319.4	0.2897	100.000	0.645

Heterohelicene 5j

 #	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	10.334	2888.2	112.2	0.3844	50.715	0.594	BB	BB
2	14.147	2806.8	82.8	0.5113	49.285	0.619	BB	BB

Heterohelicene 5k

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	11.879	6733.2	274.3	0.3703	49,977	0.677	BB	BB
2	14.649	6739.4	234.4	0.4792	50.023	0.7	MM	

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	11.348	3355.3	142.8	0.3562	97.100	0.705	BB	BB
2	14.176	100.2	3.5	0,4332	2.900	0.744	BB	BB

Heterohelicene 51

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	11.841	475.7	16.7	0.4296	50.281	0.756	BB	BB
2	14.566	470.3	15.7	0.4534	49.719	0.73	BB	BB

Heterohelicene 6a

Heterohelicene 6b

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	12.026	MM	2815.8	93.5	0.5018	50.510	0.721
2	15.014	MM	2759	75	0.613	49.490	0.621

Heterohelicene 6c

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.58	VV R	3685.6	170.2	0.2552	49.755	0.758
2	16.739	MM	3721.9	93.3	0.6649	50.245	0.708

Heterohelicene 6d

#	#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	1	11.655	3588.4	56.1	1.0664	50.089	0.517	MM	MM
2	2	22.432	3575.6	67.2	0.8873	49.911	0.777	MM	MM

 11.17.0	20/01.2	550.5	1.5105	100.000	0.102 1414	1.0.1
 1004814000820308	2000 AV 2000 AV 2000	100000000000000000000000000000000000000		ACCOUNT OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	20112000000000000000000000000000000000	

Heterohelicene 6e

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	8.306	1956	96.9	0.3363	50.027	0.718	MM	MM
2	15.399	1953.9	50.7	0.6421	49.973	0.722	MM	MM

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	8.32	2669	132.3	0.3074	98,763	0.696	BB	BB
2	15.509	33.4	8.9E-1	0.6275	1.237	0.811	MM	MM

Heterohelicene 6f

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	10.155	1691.1	80.7	0.3226	50.407	0.791	BB	BB
2	13.537	1663.8	51.2	0.4953	49.593	0.742	BB	BB

Heterohelicene 6g

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	9.404	101.6	6.4	0.2654	50,583	0.875	MM	MM
2	10.641	99.3	5	0.3322	49.417	0.863	MM	MM

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	9.381	9513.5	589.6	0.2689	99.436	0.844	MM	MM
2	10.759	53.9	2.8	0.3227	0.564	0.937	MM	

Heterohelicene 6h

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	6.419	11286.6	794.3	0.2158	50.166	0.688	BB	BB
2	12.469	11211.9	365.9	0.5107	49.834	0,717	MM	MM

Heterohelicene 6i

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.702	MM	2385.9	71.8	0.5538	49.869	0.605
2	16.904	MM	2398.5	42.2	0.9475	50.131	0.651

Heterohelicene 6j

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	8.891	1515.9	51.7	0.4338	50.140	0,529	BB	BB
2	12.201	1507.4	35.6	0.6314	49.860	0.55	BB	BB

Heterohelicene 6k

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	12.199	1829.6	48.9	0.6235	50.569	0.654	MM	MM
2	19.959	1788.4	31	0.9611	49.431	0.64	MM	MM

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	12.128	3730.8	99.7	0.5584	96.514	0.585	BB	BB
2	19.928	134.7	2	1.1173	3.486	1.063	MM	MM

Heterohelicene 61

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	13.017	382.4	13.3	0.4797	49.597	0.785	MM	MM
2	14.952	388.7	11.7	0.556	50,403	0.758	MM	8.2

Heterohelicene 7a

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.726	BB	1371.4	96.8	0.2078	51.667	0.6
2	9.784	BB	1282.9	54.6	0.3141	48.333	0.756

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.691	BB	18105.6	1479.4	0.1818	99.819	0.563
2	9.84	MM	32.8	1.4	0.3792	0.181	0,645

Heterohelicene 8a

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	8.457	1014.5	61.9	0.2513	49.637	0.741	BB	BB
2	9.83	1029.3	55	0.2865	50.363	0.748	BB	BB

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	8.34	4110.4	262.8	0,2384	99.809	0.711	BB	BB
2	9.7	7.9	5E-1	0,2601	0.191	0.654	MM	MM

Heterohelicene 9a

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	20,543	396.7	5.9	0.9119	49.543	0.774	BB	BB
2	27.571	404.1	5.2	0.9414	50.457	0.983	BB	BB

#	时间	峰面积	峰高	峰宽	峰面积%	对称因子	类型	Туре
1	20.423	17.9	2.8E-1	1.0476	0.363	0.655	MM	MM
2	27.019	4900.4	87.4	0.8503	99.637	0.64	BB	BB

Heterohelicene 10a

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.311	BB	100.3	3.7	0.3195	50.218	0.626
2	13.284	MM	99.4	2.3	0.711	49.782	0.678

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.558	MM	10877.8	412.1	0.4399	100.000	0.393

Heterohelicene 11a

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	12.636	MM	13	3.2E-1	0.6718	50.639	0.769
2	18.149	MM	12.6	2.6E-1	0.8156	49.361	0.662

74	#	Time	Туре	Area	Height	Width	Area%	Symmetry
ſ	1	11.731	BB	5590.8	155.3	0.4769	99.777	0.424
	2	18.009	MM	12.5	2.2E-1	0.9384	0.223	0.811

NMR spectra

dinaphtho[2,1-b:1',2'-d]furan-2,12-diamine (1a)

helicenoid 4a

Helicene 5a

68

Helicene 5b

Helicene 5c

Helicene 5d

Helicene 5e

Helicene 5f

Helicene 5g

Helicene 5h

Helicene 5i

Helicene 5j

80

Helicene 5k

Helicene 5l

Helicene 6a

Helicene 6b

Helicene 6c

Helicene 6d

87

Helicene 6e

Helicene 6g

Helicene 6h

Helicene 6i

Helicene 6j

95

Helicene 6k

Helicene 6l

Helicene 9a

Helicene 11a

