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1 General Information

All commercially available reagents including the substrates were used as 

received. Dry dichloromethane was purchased from Energy-Chemical. 

Phenylglyoxal Hydrate, and other reagents without specified were purchased 

from Adamas. Column chromatography purifications were performed by flash 

chromatography using Merck silica gel 60. The reversed-phase medium 

pressure liquid chromatography (RP-MPLC) performed on Santai Science Inc. 

SepaBean® machine T with SW-5222-040-SP C18 26 × 185 mm column. The 

semi-preparative high-performance liquid chromatography (SP-HPLC) 

performed on Agilent 1260 with Nouryon Kromasil® C18 10 × 250 mm column. 
1H NMR, and 13C NMR spectra were recorded using Q.One Instruments 

Quantum-I 400M spectrometer. 1H NMR and 13C NMR chemical shifts were 

reported in parts per million (ppm) downfield from tetramethylsilane. Coupling 

constants (J) are reported in Hertz (Hz). The residual solvent peak was used 

as an internal reference: 1H NMR (chloroform δ 7.26) and 13C NMR (chloroform 

δ 77.16). The following abbreviations were used to explain the multiplicities: s 

= singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. High 

Resolution Mass Spectrometer (HRMS) were obtained on Waters Xevo G2-XS 

QTof. Ultra Performance Liquid Chromatography Mass spectrometry (UPLC-

MS) spectra were acquired on an Agilent Technologies 1290 Infinity LC 

equipped with an Agilent Technologies 6270 Quadrupole mass spectrometer. 

The infrared (IR) spectra were acquired on a Thermo Scientific™ Nicolet™ iS50 

FTIR. Melting points of compounds were test on The SGWX-4 Melting Point 

Apparatus.
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2. Preparation of the cyclization precursors

All tetrapeptides were synthesized through solid-phase peptide synthesis 

(SPPS) method.1
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Figure S1. Synthesis procedure for Pro-Leu-Pro-Leu
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Figure S2. Synthesis procedure for Leu-Pro-Leu-Pro

Method 1 (General Method for Fmoc-AA-OH Attachment on CTC Resin):

 Swelling the 2-chloro-trimethylphenol resin (CTC resin, 0.44 g, 0.5 mmol) resin 

in anhydrous dichloromethane for 15 min, then the solvent was removed under 

reduced pressure. Fmoc-AA-OH (2 eq, 0.100 M) and N,N-

diisopropylethylamine (DIPEA) (5 eq, 0.250 M) was dissolved in 5 mL of 

anhydrous DCM (10.0 mL/g resin), which was then mixed with the resin and 

shaken at room temperature for 2 h. After 2 hours, methanol (0.1 mL g-1 resin) 

was added to the reaction mixture and the resulting mixtures was shaken for 
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15 min. to cap the vacant CTC resin sites. The solvent was then removed under 

reduced pressure,  and the resulting resin was washed sequentially with DMF 

(1 min × 3), DCM (1 min × 3), and MeOH (1 min × 3). Nitrogen flush was 

employed to remove the solvents, ensuring the dryness of the resin.

Method 2 (General Method for Fmoc Deprotection):

A 20% vol. solution of 4-methylpiperidine in DMF (5 mL) was mixed with the 

resin and was shaken for 10 min., which was washed once with DMF. Next, 

20% vol. 4-methylpiperidine solution (in DMF) was added and was shaken to 

achieve the deprotection of Fmoc. The resulting resin was washed three times 

with DMF, and nitrogen flush was employed to remove the solvents, ensuring 

the dryness of the resin.

Method 3 (General Method for Solid Phase Synthesis Using Oxyma-

B/DIC):

Fmoc-AA-OH (2 eq., 0.100 M), Oxyma-B (0.2 eq.), and DIC (4 eq.) were 

dissolved in 5 mL of DMF, it was then mixed with the resin and shook for 2 h. 

Upon completion, the resin was washed sequentially with DMF (1 min × 3) and 

DCM (1 min × 3) to ensure removal of unreacted amino acids.

Method 4 (General Method for Capping Free Amino Groups):

Fmoc-deprotected peptide resin was treated with a pyridine solution containing 

10% acetic anhydride (5 mL) and shook at room temperature for 5 min. to cap 

any exposed amino groups that might not have fully reacted in the previous 

step, which would prevent the side reactions in the subsequent coupling step. 

The resin was then filtered and washed with DMF (1 min × 3).

Method 5 (General Method for Resin Cleavage Mediated by HFIP):

After completing the Fmoc deprotection, the resulting resin was added 5 mL of 

a 20% vol. HFIP (hexafluoroisopropanol) in DCM solution and shook for 40 min 

to cleave the peptide sequence. Nitrogen flush was employed to remove the 

solvents, and the resin was subsequently washed several times with DCM to 
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obtain the filtrate.

Method 6 (General Method for Linear Peptide Purification):

The filtrate was concentrated under reduced pressure, before adding an 

appropriate amount of cold ether. Once the white solids precipitate was formed, 

centrifugation was performed to obtain the product as a white solid.

3 General procedure for the cyclization reaction under batch 

conditions

To a solution of linear precursor (0.1mM) in MeCN (100 mL) was added a 

solution of HATU (0.3 mM, 4 mL) and DIPEA (0.6 mM) in MeCN. The reaction 

mixture was heated to room temperature (r.t.) and stirred for 4 h. LC-MS 

analysis was performed to confirm the completion of the starting materials 

(Figure S3). Upon completion, the reaction mixture was concentrated in 

vacuum and purified by reverse-phase separation (using methanol and water 

as the mobile phase). The collected fraction was then concentrated in vacuum 

to afford the product as a white solid. HPLC spectrum was used to analysis the 

ratio of the products and epimers (MeOH:H2O = 90%:10%, Signal=215nm, 

Figure S4). These peaks represent epimer (RT = 13.054 min.), product (RT = 

13.363 min.), unknown intermediate (RT = 14.594 min.), dimer (RT = 15.389 

min.), respectively from left to right.
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Figure S3. The LC-MS spectrum for analyses of the crude product under batch condition after 
4 h at 100 ℃.

Figure S4. The HPLC spectrum for the crude product under batch condition after 4 h at 100 
°C (tR = 13.36 min, 10% to 90% MeOH over 20min).

4 General procedure for the cyclization reaction under flow 

conditions

For the flow reactor: Polypropylene (PP) T-shape mixers, PP fittings, PP 

unions, and Teflon® tubes (inner diameter: 0.8 mm) were purchased from 

Nanjing Runze Fluid Control Equipment Co., LTD. Solutions were introduced 

to a micro-flow system with syringe pumps (TYD01, purchased from Lead Fluid 

Technology Co., Ltd.) equipped PP syringes (10 mL). 
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Figure S5. The overview of cyclo-(Pro-Leu)2 synthesis under continuous flow condition

Syringe A: a solution of linear tetrapeptide (Pro-Leu-Pro-Leu) (0.01 mmol) 

in 10 mL of MeCN. Syringe B: a solution of HATU (11.4 mg, 3 eq.) and DIPEA 

(10.5 μL, 6 eq.) in 10 mL of MeCN. The reaction time (residence time) was 

controlled by adjusting the injection rate of the syringe pump (Figure S5). The 

reaction coil was heated in an oil bath at 50°C. With a residence time of 2 

minutes, LC-MS analysis showed that the product was formed, but starting 

material was still detected. At a residence time of 5 minutes, the conversion of 

starting material reached 90%. 

4.1 Investigation into the influence of coupling reagent and base loading 

on the synthesis of cyclo-(Pro-Leu)2.

Typically, this cyclization requires an excess of coupling reagents and 

bases to achieve satisfactory results, as this approach accelerates the desired 

cyclization and suppresses epimerization.2,3 Optimal performance was 

achieved with 3 equivalents of coupling reagent and 6 equivalents of base 

(Table 2, entry 7). However, adding more coupling reagents was unbeneficial, 

which is attributed to the increased dimer formation at higher coupling reagent 

concentration. 

Table S1. Investigation of the effect of coupling reagent and base loading on the synthesis of 
cyclo-(Pro-Leu)2
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Entry HATU (eq.) DIPEA (eq.) Yielda (%)

1 1.0 2.0 5.2

2 1.5 2.0 9.6

3 2.0 2.0 13.2

4 2.5 2.0 13.5

5 2.0 3.0 15.7

6 2.0 4.0 21.2

7 3.0 6.0 30.1

8 3.5 6.0 27.6

9 4.0 6.0 27.3
a Yields were determined by HPLC-UV analysis.

5 General screening procedure using HTE continuous-flow 

platform
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Figure S6. Overview of the operating principles of the HTE continuous-flow platform

(1) Firstly, the solvent channel is set through computer software (a 12-port 

valve connecting different solvent bottles). Once the reaction solvent is 

chosen, the pump provides the driving force. We use a series of 

reciprocating piston pumps to drive the solvent flow in the tubing (the pump 

can operate under both high and low pressure; high pressure ensures high 

precision and low delay). The solvent is first degassed using a degassing 

module to avoid bubbles that could affect the flow rate, ensuring it reaches 

the set precision.

(2) Next, set the reaction sample sequence and the automatic sampler start 

for sampling. The sampling needle then sequentially takes samples from the 

designated sample bottles. Before and after each reaction sampling, the 

automatic sampler draws a specified volume of isolation solvent to separate 

the reaction components at both ends from the carrier solvent, reducing 

diffusion, as shown in Figure S7.

(3) The various reaction components are injected into a quantification loop, 

and then a six-port valve directs the reactants from the quantification loop 

into the solvent system. The solvent pushes the reactants to the UV 

detector, producing a signal intensity response, and then flows into the 

reactor for the chemical reaction (the reaction temperature can be set via 

the software). The reaction residence time is determined by the length of 

the tubing on the heating block and the flow rate.

Figure S7. Overview of the mechanism of each reaction in flow
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(4) After the reaction is complete, the reaction liquid in the tubing is directed 

through the six-port valve's quantification loop (5 μL) into high-performance 

liquid chromatography (HPLC) for separation and quantitative analysis. The 

remaining reaction liquid is discarded as waste. A portion of the eluent (1 

μL) is then diverted from the HPLC's backend to the mass spectrometer for 

qualitative analysis.

(5) Finally, based on the large amount of experimental data generated from 

rapid and efficient reactions, artificial intelligence is used to screen process 

routes, and automated devices validate and conduct online analysis of the 

selected processes to quickly identify the optimal reaction conditions.
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In this study, the HTE conversion rate and yield calculations were determined 

using both internal standard and standard curve method. The anisole was 

selected as the internal standard to determine the concentration of starting 

materials. These values were determined based on the ratio of the peak area 

of the product to that of the internal standard. Standard solutions of 1 mM, 2 

mM, 5 mM, 10 mM, and 20 mM were prepared, with 10 μL of each sample 
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injected. Standard curves for both the reactant and the product were generated 

based on peak area (using the same HPLC elution gradient as in reaction 

analysis). The standard curve for the reactant is shown in Figure S8. 

Figure S8. The standard curve of precursor and product
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Figure S9. Structures of coupling reagents and bases screened.

17.6 mg of linear tetrapeptide (Leu-Pro-Leu-Pro) was dissolved in 

acetonitrile to prepare a 20 mM solution in a 2 mL sample vial. Anisole was 

used as the internal standard (5 mM). A coupling reagent solution (60 mM) and 

a base solution (120 mM) was prepared. All chose coupling reagents and bases 

are showed in Figure S9 The reactor temperature was set to 100°Cand the 

solvent pump flow rate was set to 1.0 mL/min. The reaction sequence was 

programmed to sequentially draw 10 μL of the linear tetrapeptide solution, 10 

μL of the coupling reagent, and 10 μL of the base solution for each reaction. 

The reaction components were then injected into the tubing via a quantification 

loop for flow reaction. After the reaction, the six-port valve at the back end 

directed the reaction solution into the HPLC-MS system for automated data 

collection. 
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The effect of coupling reagents and bases in the HTE screening reactions

The table S2 shows the HTE screening results for the reaction yields and the 

product-to-epimer ratio (P:P*) under different coupling reagent and base 

combinations in DMF. The highest yield occurs with PyBOP-DIPEA (35.1%), 

followed by PyAOP-DIPEA (32.0%) and HATU-DIPEA (30.1%). 
Table S2. HTE screening results in DMF with different coupling reagents and bases.

Reaction conditions Yields(%)a P:P*b

HATU-DIPEA 30.1 82:18

HBTU-DIPEA 28.7 76:24

TCFH-DIPEA 23.6 72:28

PyAOP-DIPEA 32.0 80:20

PyBOP-DIPEA 35.1 75:25

COMU-DIPEA 21.6 70:30

DCC-DIPEA 10.2 76:24

DIC-DIPEA 8.3 56:44

EDC-DIPEA trace *

T3P-DIPEA 7.2 55:45

HATU-NMI 25.5 88：12

HATU-NMM 24.6 83：17

HATU-Collidine 19.4 73：27

HATU-Pyridine 21.5 86：14

HATU-TMP 10.6 70：30

HATU-Et3N 16.8 68：32

HATU-DtBP 6.8 *

HATU-4Pipecoline 13.2 85：15

* The epimer of the product
a Yields were determined by HPLC-UV analysis.
b The ratio of the peak area

6 NMR study on the cyclization site

The choice of cyclization sites for peptides has a significant impact on the 

synthesized peptide molecules. Different cyclization sites can lead to varying 

stereo configurations, which affect the spatial structure and activity of the 
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peptide, as well as its stability.4 In this study, the cyclic tetrapeptide molecules 

have a cyclic symmetrical structure, thus requiring exploration of two different 

cyclization sites. Cyclization experiments were conducted using two different 

linear tetrapeptide precursors, H-Pro-Leu-Pro-Leu-OH and H-Leu-Pro-Leu-

Pro-OH, under the same conditions. After reverse-phase column separation 

and LC-MS analysis, preparative liquid chromatography was used to isolate the 

isomers. The analysis revealed that the cyclization reaction of linear precursor 

2 was more effective, while linear precursor 1 was more prone to side reactions, 

resulting in the detection of isomer formation.

2.83.03.23.43.63.84.04.24.44.64.85.05.25.4

1

2

+

Figure S10. Comparison of amine hydrogen NMR shifts before and after isolated with 
preparation HPLC. Top side represents the product has been isolated. The bottom side is the 
mixtures (contain product and epimer) before isolated.

NMR comparison of the solated product cyclo-(Pro-Leu)2 and crude 

mixtures suggested the formation of an isomer (Figure S10). To determine the 

structure of this isomer, we synthesized H-Pro-Leu-Pro-D-Leu-OH and H-Leu-

Pro-Leu-Pro-OH and conducted the cyclization reaction. After NMR analysis, 
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this main side product was determined to be cyclo-(Pro-Leu-Pro-D-Leu), a 

epimer of the main product cyclo-(Pro-Leu) (Figure S11).
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Figure S11. The amine hydrogen NMR shifts of cyclo-(Pro-Leu-Pro-D-Leu)

7 Application of Machine learning to predict yields

All scripts and computation are based on Python and Sci-kit Learn package.5-7 

With the database of 270 cyclization HTE reactions, we wonder if we could 

leverage machine learning and proper chemical descriptors to predict reaction 

yields. As the screening conditions is mainly about coupling reagents, bases, 

and solvents, we consider to use chemical informatic descriptors to transform 

the structure to suitable format. The circular morgan molecular fingerprints was 

calculated with RDKit packages, setting radius 2 and 256 dimensions.

To optimize the basic hyperparameters of random forest model, we test 

several different numbers of decision trees and the max depth of each tree 

(Table S3). Although more decision trees lead to better prediction performance, 

considering the size of dataset and we select 100 as the investigated 
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parameter. For the depth of each decision tree, we noticed when it over 8, the 

R2 is increased while the RMSE is also increased. Thus, to avoid probable 

overfitting, we decided depth of 8. 

Table S3 Investigation of basic hyperparameter of random forest model.

* Calculated the average results over 10 times 30/70 random split training.

For out of sample test, we propose two kinds of data splitting strategies. One is 

splitting dataset with different coupling reagents, and the other on is splitting 

with different bases. For coupling reagents splitting strategy, each out of sample 

test set will choose 3 different coupling reagent and the other 7 reagents as 

training set. For bases splitting strategy, each out of sample test will choose 3 

bases as out of sample test set and the other 6 bases as training set. The details 

are shows in Table S4.
Table S4. The details of two out-of-sample training strategies.

Model R2* RMSE*
RF

(n_estimators=20) 0.8361 3.65 
RF

((n_estimators=50) 0.8414 3.60 
RF

((n_estimators=100) 0.8426 3.59 
RF

((n_estimators=250) 0.8439 3.57 
RF

((n_estimators=500) 0.8449 3.56 
RF

(max_depth=3) 0.7760 4.29 
RF

(max_depth =4) 0.8266 3.77 
RF

(max_depth =5) 0.8311 3.72 
RF

(max_depth =8) 0.8445 3.56 
RF

(max_depth =10) 0.8425 3.59 

Strategy Out of 
sample task Compounds in test set Num. of 

Training set
Num. of 
Test set

Coupling-1 HATU+HBTU+TCFH 189 81

Coupling-2 PyAOP+PyBOP+COMU 189 81Coupling 
reagent

Coupling-3 DCC+DIC+EDC 189 81

Base

Base-1 DIPEA+Et3N+TMP 180 90
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Feature selection and the importance investigation

The MACCS fingerprint (Molecular Access System Computational Chemistry 

Software) is a popular method for encoding molecular structures into a binary 

vector format. Essentially, it is a simple method of representing molecule 

structures, such as its functional groups, rings, bonds, and other structural 

characteristics, in a way that a computer can process efficiently. We applied the 

MACCS fingerprint consists of a predefined set of 166 bits, where each bit 

represents the presence or absence of a particular structural feature. The 

binary encoding of these features allows for comparison between different 

molecules and analysis the substructure features contributions to the ML 

models.

In this study, we aim to investigate the structural features of various 

components involved in chemical reactions, including precursors, solvents, 

coupling reagents, and bases, and their potential impact on reaction outcomes. 

To achieve this, we first compute MACCS fingerprints for each of the four 

components, which encode the molecular structures of these entities into binary 

vectors representing their key chemical features. By generating these 

fingerprints, we can analyze the structural similarities and differences between 

the components based on predefined substructural features. Next, to explore 

the relationship between these components, we perform a Spearman 

correlation analysis on the computed fingerprints. This non-parametric test 

helps to identify any monotonic correlations between the structural features of 

the components, providing insights into how these structural elements may 

interact or influence each other in the context of the reaction (Figure S12). The 

color scale on the right indicates the strength of the correlation between the 

different components and fingerprints. Positive correlations are shown in red, 

indicating a strong positive relationship between the features, while blue shows 

Base-2 Pyridine+Collidine+DtB
P 180 90

Base-3 NMM+NMI+4-Pipecoline 180 90



S18

negative correlations. We kept only those molecular fingerprints with Spearman 

correlations between 0.9 and -0.9 that effectively reducing the complexity of the 

dataset while retaining the most relevant features. This would help improve 

computational efficiency without sacrificing the essential information.

Figure S12. Spearman matrix of MFP features. Each label on the axes represents a bit 
position in the MACCS fingerprint, and the number after the decimal indicates the reaction 

components: none: Precursors 1: Solvents 2: Coupling reagents 3: Bases

Figure S13 shows the top 15 most important features for the random forest 

model in predicting yield. The x-axis represents the importance of each feature, 

and the y-axis lists the corresponding MACCS fingerprint positions. 166.2, 

162.2 and 121.2 has the highest importance related to the coupling reagent, 

which represent the ring structure and amido and heterocyclic groups for 

predicting yield. 148.3 and 138.3 indicate the contribution of the amido groups 

and heterocycle in bases. For solvents, 164.1 and 158.1 represents the C-O 
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bond and the oxygen atoms. Overall, these most important features seem to be 

indicating the significant roles in determining reaction yield. The higher the 

feature importance, the stronger the component’s influence on the model’s 

predictions.

Figure S13. The top 15 most important features for the RF model.

Molecular Fingerprint calculation:

import pandas as pd

from rdkit import Chem

from rdkit.Chem import AllChem

from peptide_mols.Pep_lib_construct import get_structure, pep_seq_transform

from tqdm import  tqdm

import time

# load smiles from files
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pep_lib = Chem.SmilesMolSupplier('peptide_mols/peptide_smiles.smi', 

delimiter='\t')

pep_smi = [Chem.MolToSmiles(mol) for mol in pep_lib] # get smiles of peptides 

in silico library

pep_seq = [mol.GetProp('sequence') for mol in pep_lib] # get sequence of 

peptides in silico library

fps = [AllChem.GetMorganFingerprintAsBitVect(x,2,256) for x in pep_lib]

clusters = ClusterFps(fps,cutoff=0.3)

for i in range(len(clusters)):

    df = pd.DataFrame()

    seq = []

    smi = []

    for j in clusters[i]:

        seq.append(pep_seq[j])

        smi.append(pep_smi[i])

    data_temp = list(zip(clusters[i],seq, smi))

    columns = ['Cluster_{}'.format(i), 'sequence','SMILES']

    data_temp_df = pd.DataFrame(data_temp, columns=columns)

    

data_temp_df.to_csv('peptide_mols/morgan_cluster_0.3/cluster{}.csv'.format(i))
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Train Machin leanring model

import os

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

import matplotlib.patches as mpatches

import random

from ModelFits import fit_models

from ModelFits import fit_models_train_val

from ModelFits import plot_models

from ModelFits import run_fold_pipline

# Import relevant scikit-learn modules

# Used ML methods: MLR, PLS, ANN, SVR, RF, ET, Bag

from sklearn.model_selection import train_test_split

from sklearn import preprocessing

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.cross_decomposition import PLSRegression # n_components=9

from sklearn.linear_model import LinearRegression # Default
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# from sklearn.neighbors import KNeighborsRegressor

from sklearn.neural_network import MLPRegressor #  n_estimators = 300

from sklearn.svm import LinearSVR

from sklearn.neighbors import KNeighborsRegressor

from sklearn.svm import SVR #linearSVR 和 SVR #  Default; C, epsilon and 

gamma optimised per solvent

from sklearn.ensemble import RandomForestRegressor # n_trees = 500

from sklearn.ensemble import ExtraTreesRegressor # n_trees = 500

from sklearn.ensemble import BaggingRegressor # n_trees = 500

df_PLPL = pd.DataFrame(df_ori[270:])

df_fp_PLPL = pd.DataFrame(df_fp_all[270:])

df_dft_PLPL = pd.DataFrame(df_dft[270:])

df_all_desc = {

            # 'onehot':df_oh, 

            'fp':df_fp_PLPL            }

yields = (df_PLPL['yield'])

models = [LinearRegression(),

          PLSRegression(n_components=9),

          MLPRegressor(hidden_layer_sizes=300,max_iter=1000),
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          KNeighborsRegressor(n_neighbors=7), # use k = 7 as in papers

          LinearSVR(),

        #   SVR(),

          RandomForestRegressor(n_estimators=500, random_state=42),

        #   ExtraTreesRegressor(n_estimators=500),

        #   BaggingRegressor(n_estimators=500)

          ]

keys = list(df_all_desc.keys()) # all descriptors will run

for i in range(len(keys)):

    r2 = []

    rmse = []

    df_repr = df_all_desc[keys[i]]

    print(f'The running descriptor: {keys[i]} ')

    for seed in range(70,100):

        random.seed(seed)  

        A = list(range(0,270,1)) # index

        train_num = [] #index number

        test_num = []

        train_num = random.sample(A, int(270*0.7))

        for j in A:
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            if j not in train_num:

                test_num.append(j)

        train_set = []

        test_set = []

        train_yield = []

        test_yield = []

        train_set = df_repr.iloc[train_num]

        test_set = df_repr.iloc[test_num]

        train_yield = yields.iloc[train_num].values

        test_yield = yields.iloc[test_num].values

        x = pd.DataFrame(train_set)

        y = np.array(train_yield)

        preds, r2_values, rmse_values = 

fit_models(x,y,test_set,test_yield,models)

        r2.append(r2_values)

        rmse.append(rmse_values)

        print(f'******************The {seed} time run******************')

    df_r2 = pd.DataFrame(r2,columns= models)
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    df_rmse = pd.DataFrame(rmse,columns=models)

    df = pd.concat([df_r2,df_rmse], axis=1, names=['R2','RMSE'])

    df.to_csv(f'results/HTE_Cyclopep/Diff_descriptors/Descriptor-{keys[i]}-

240918.csv') # change exact folder to save trained results

    print(f'The {keys[i]} run complete')



S26

NMR-spectra

Cyclo-(Pro-Leu)2
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1H NMR (400 MHz, Chloroform-d) δ 7.58 (d, J = 9.6 Hz, 2H), 4.96 – 4.75 (m, 

2H), 4.51 (d, J = 8.2 Hz, 2H), 3.62 – 3.48 (m, 2H), 3.37 (d, J = 11.5 Hz, 2H), 

2.38 (s, 2H), 2.19 – 1.93 (m, 4H),1.64 – 1.60 (m, 2H), 1.48 (q, J = 8.7, 6.3 Hz, 
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4H), 0.93 (dd, J = 17.1, 6.3 Hz, 14H).

13C NMR (101 MHz, Chloroform-d) δ 172.4, 171.1, 61.8, 49.4, 48.2, 41.1, 31.9, 

24.4, 23.8, 22.2, 21.9.

HRMS (ESI): m/z [M+Na]+ calcd. for C22H37N4O4: 443.2809; found: 443.2823. 

IR (KBr, cm-1): 3549, 3473, 3414, 3324, 2957, 2929, 1669, 1651, 1636, 1532, 

1421, 1400, 1204, 1185, 1134, 599, 480.

Melting Point: 156-158 °C
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Cyclo-(Pro-Leu-Pro-D-Leu) 
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1H NMR (400 MHz, Chloroform-d) δ 7.08 (d, J = 10.1 Hz, 1H), 7.02 (d, J = 5.3 

Hz, 1H), 4.77 (td, J = 9.6, 4.5 Hz, 1H), 4.52 (d, J = 8.3 Hz, 1H), 4.46 – 4.37 (m, 

1H), 4.31 (d, J = 8.1 Hz, 1H), 3.72 (ddd, J = 11.9, 8.7, 3.1 Hz, 1H), 4.61 – 4.49 

(m, 3H),, 2.40 – 2.30 (m, 1H), 2.25 – 2.10 (m, 3H),, 2.03 – 1.94 (m, 2H), 1.93 – 

1.84 (m, 2H), 1.76 – 1.69 (m, 2H),, 1.51 – 1.39 (m, 2H), 0.96 (d, J = 6.1 Hz, 

3H), 0.90 (dd, J = 6.3, 4.1 Hz, 11H).

13C NMR (101 MHz, Chloroform-d) δ 173.5, 172.8, 172.7, 168.5, 61.7, 58.7, 

56.4, 49.6, 48.5, 48.0, 41.6, 38.3, 33.2, 31.7, 25.5, 24.6, 23.7, 22.9, 22.2, 21.8, 

21.7, 21.3.

HRMS (ESI): m/z [M+Na]+ calcd. for C22H37N4O4: 443.2809; found: 443.2817. 

IR (KBr, cm-1): 3472, 3414, 3324, 3238, 2929, 2870, 1652, 1636, 1617, 1531, 

1452, 1421, 1204, 1185, 1134, 599, 480.

Melting Point: 156-158 °C
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Cyclo-(Pro-Val)2
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1H NMR (400 MHz, Chloroform-d) δ 7.18 (d, J = 9.9 Hz, 2H), 4.56 – 4.43 (m, 

4H), 3.61 (td, J = 11.5, 7.4 Hz, 2H), 3.47 – 3.36 (m, 2H), 2.34 (dd, J = 12.8, 6.4 

Hz, 2H), 2.13 (dt, J = 12.9, 7.6 Hz, 4H),2.03 – 1.97 (m, 2H), 1.81– 1.73 (m, 2H), 

0.97 (d, J = 6.5 Hz, 6H), 0.87 (d, J = 6.8 Hz, 6H).

13C NMR (101 MHz, Chloroform-d) δ 171.4, 171.2, 61.7, 56.4, 47.7, 32.0, 29.4, 

22.2, 20.9, 18.0. 
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HRMS (ESI): m/z [M+Na]+ calcd. for C20H33N4O4: 415.2496; found: 415.2485. 

IR (KBr, cm-1): 3447, 3434, 2962, 2930, 2847, 1668, 1652, 1649, 1640, 1637, 

1534, 1417, 1384, 1203, 1136, 627, 612.

Melting point: 178-180 °C
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