An Unexpected Lewis Acid-Catalyzed Cascade Reaction of Bicyclo[1.1.0]butanes with Triazinanes to Biscyclobutenyl Amines

Feng Chen,^{#,a} Yijun Duan,^{#,a} Ye Guo,^a Yuncheng Liu,^a Ming Lang,^{*,a} Jinbao Peng^a and Shiyong Peng^{*,a}

^aSchool of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020 (P. R. China)

*E-mail: psy880124@mail.nankai.edu.cn

[#]The authors contributed equally to this work

Supporting Information

Table of Contents

1. General Information	
2. Preparation of Triazinane Substrates	S2
3. Preparation of BCB Substrates	S3
4. Optimization of Reaction Conditions	
5. Substrate Scope	
6. Mechanistic Studies	S16
7. Further Investigations	
7.1 Scale-up Synthesis	
7.2 Transformations	
8. X-Ray Structure	
9. References	S26
10. NMR Spectra	

1. General Information

All available chemicals and solvents were purchased from chemical supplier and directly used without further purification. Thin layer chromatography (TLC) was carried out using precoated silica gel plates (0.25 mm, F254) and visualization was accomplished under UV light (254 nm). Flash column chromatography was performed on silica gel (200–300 mesh) or neutral alumina (400 mesh). Melting points were obtained uncorrected from an OptiMelt MPA100 melting point apparatus. ¹H NMR spectra were recorded in CDCl₃ on a Bruker Ascend 400 or 500 spectrometer (400 MHz or 500 MHz), and chemical shifts (δ values) were reported in parts per million (ppm) relative to internal tetramethylsilane standard (TMS, 0 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet) and m (multiple or unresolved). The number of protons (n) for a given resonance is reported as nH. Coupling constants (*J*) were given in Hertz (Hz). ¹³C NMR spectra were recorded in CDCl₃ on a Bruker Ascend 400 or 500 spectrometer (100 MHz or 125 HMz) relative to internal CDCl₃ standard (77.16 ppm). All high-resolution mass spectra (HRMS) were obtained on a Thermo Scientific Q Exactive UHMR Hybrid Quadrupole-Orbitrap mass spectrometer.

2. Preparation of Triazinane Substrates

The triazinane substrates were all known compounds and synthesized according to related procedures.^[1-3]

General Procedure for 1a, 1c-f

To a stirred suspension of anhydrous MgSO₄ in CH_2Cl_2 (25 mL), paraformaldehyde (18.7 mmol, 1.00 equiv) and freshly distilled benzylamine (18.7 mmol, 1.00 equiv) were added in sequence. The mixture was stirred at rt overnight. The MgSO₄ was filtered off, and the filtrate was concentrated in vacuo to give triazinane products **1a** and **1c-f**, which was used directly without further purification.

General Procedure for 1b

In a 100 mL round-bottomed flask equipped with a Dean-Stark apparatus, a mixture of p-anisidine (3.69 g, 30.0 mmol, 1.00 equiv) and paraformaldehyde (0.99 g, 33.0 mmol, 1.10 equiv) in toluene (50 mL) was heated to reflux in an oil bath for 2 h. Then the solvent was concentrated under reduced pressure, and a precipitate came out from the mixture. The precipitate was collected by filtration, washed with n-hexane several times, and dried to obtain triazinane product **1b** as a white solid.

3. Preparation of BCB Substrates

The BCB ester substrates (except **2p**) were known compounds and synthesized according to related procedures.^[4, 5]

To a solution of ArBr (30.0 mmol, 2.00 equiv) in dry THF (40 mL) was added n-BuLi (20.0 ml, 30.0

mmol, 2.5 M in hexanes, 2.00 equiv) dropwise at -78 °C under argon. The mixture was stirred at -78 °C for 1 h and a solution of 3-oxocyclobutane-1-carboxylic acid (2.9 g, 15.0 mmol, 1.00 equiv) in dry THF (5 mL) was added in one-portion (reaction temperature became 25 °C). The mixture was stirred for 1 h, and quenched with saturated $NH_4Cl_{(aq)}$ (15 mL) and H_2O (10 mL). The organic layer was separated and washed with water (10 mL). The combined aqueous layers were acidified with HCl (2.0 M in H₂O) and extracted with EtOAc (30 mL). The organic layer was washed with brine (15 mL*2), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product **SI-1** was used for the next step without purification.

A round bottom flask equipped with a magnetic stir bar was charged with **SI-1** (15.0 mmol, 1.00 equiv), concentrated HCl (30 mL) and PhMe (30 mL). The reaction was vigorously stirred for 4 h at rt. The aqueous layer was extracted with EtOAc (50 ml*3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude acid **SI-2** was directly used in next step without further purification.

A round bottom flask equipped with a magnetic stir bar was charged with **SI-2** (15.0 mmol, 1.00 equiv) in DMF (75 mL). K₂CO₃ (4.15 g, 30.0 mmol, 2.00 equiv) and MeI (1.4 mL, 22.5 mmol, 1.50 equiv) were added sequentially. The reaction was stirred for 12 h at rt. The resulting mixture was diluted with H₂O (50 mL) and extracted with EtOAc (50 ml*3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 9:1) to afford ester **SI-3**.

An oven-dried round bottom flask equipped with a magnetic stir bar was evacuated and backfilled with argon three times. **SI-3** (5.0 mmol, 1.00 equiv) in THF (25 mL) was injected. The reaction was cooled to 0 °C, and NaHMDS (3.0 ml, 6.0 mmol, 2.0 M in THF, 1.20 equiv) was injected to the solution. The reaction was continued for 0.5 h at 0 °C and stirred at rt for another 2 h. The resulting mixture was quenched by aqueous NH₄Cl and extracted with EtOAc (50 ml*3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc = 20:1) to afford **2a**, **2f-r** and **2p**.

Methyl 3-(3-(trifluoromethoxy)phenyl)bicyclo[1.1.0]butane-1-carboxylate: 2p

2p was obtained as a yellow oil in 29% yield (1.9 g); ¹H NMR (**500** MHz, CDCl₃): δ 7.34–7.29 (m, 1H), 7.24–7.19 (m, 1H), 7.14–7.11 (m, 1H), 7.11–7.07 (m, 1H), 3.49 (s, 3H), 2.94–2.89 (m, 2H), 1.65–1.61 (m, 2H); ¹³C NMR (**100** MHz, CDCl₃): δ 169.6, 149.52, 149.50, 149.48, 149.46, 136.6, 130.0, 124.5, 120.5 (q, *J* = 257.0 Hz), 119.5, 118.5, 51.9, 36.1, 31.7, 24.0; HRMS (ESI): calcd. for [M + H]⁺ C₁₃H₁₂F₃O₃ 273.0733; found 273.0728.

General Procedure for 2b-d

A magnetically stirred solution of **SI-1** (2.1 g, 10.0 mmol, 1.00 equiv) in CH_2Cl_2 (44 mL, 0.20 M) under argon was charged with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) (15.0 mmol, 1.50 equiv), alcohol (10.0 mmol, 1.00 equiv) and DMAP (2.0 mmol, 0.20 equiv). The mixture was stirred for 3 h. CH_2Cl_2 (20 mL) was added to the mixture, which was then quenched with saturated $NH_4Cl_{(aq)}$ (50 mL). The reaction was extracted with CH_2Cl_2 (50 mL*2), dried over Na_2SO_4 , and concentrated under reduced pressure to give **SI-4**.

An oven-dried round bottom flask equipped with a magnetic stir bar was evacuated and backfilled with argon three times. **SI-4** (10.0 mmol, 1.00 equiv) in THF (25 mL) was injected. The reaction was cooled to 0 °C, and NaHMDS (6.0 ml, 12.0 mmol, 2.0 M in THF, 1.20 equiv) was injected to the solution. The reaction was continued for 0.5 h at 0 °C and stirred at rt for another 2 h. The resulting mixture was quenched by $NH_4Cl_{(aq)}$ and extracted with EtOAc (50 ml*3). The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexanes/EtOAc) to afford **2b-d**.

4. Optimization of Reaction Conditions

Table S1 Screening catalysts.^[a]

	Bn N Bn ^N N Bn	Ph OMe _	$\begin{array}{ccc} cat. \\ \hline CH_2Cl_2, rt \\ \hline Ph \hline \hline Ph \\ \hline Ph \hline \hline Ph$
	1a	2a	3a
entry		catalyst	yield (3a) ^[b]
1		-	-
2		Cu(OTf) ₂	60
3		FeCl ₃ •6H ₂ O	28
4		Co(OTf) ₂	54
5		Mg(OTf) ₂	44
6		Zn(OTf) ₂	62
7		Ga(OTf) ₃	43

8	Sc(OTf) ₃	58
9	Yb(OTf) ₃	58
10	Bi(OTf) ₃	53
11	In(OTf) ₃	62
12	BF ₃ •OEt ₂	50
13	$B(C_{6}F_{5})_{3}$	58
14	TMSOTf	46
15 ^[c]	PtCl ₂	-
16 ^[c,d]	AuPPh ₃ Cl	23
17 ^[c]	Rh ₂ (esp) ₂	-
18	PdCl ₂	-

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), catalyst (10 mol%), CH₂Cl₂ (2.0 mL), rt, 24 h. [b] Isolated yield. [c] 5 mol% catalyst was added. [d] 5 mol% NaBAr_F was added.

Table S6. Screening solvent.^[a]

	Bn N Bn ^N N Bn 1a	PhOMe 2a	$\frac{\text{In(OTf)}_3 (10 \text{ mol}\%)}{\text{solvent, rt}} \xrightarrow{\text{MeO}} \xrightarrow{\text{O}} \text{$
entry		solvent	yield (3a) ^[b]
1		DCM	57
2		CHCl ₃	41
3		DCE	59
4		PhCl	58
5		toluene	58
6		<i>p</i> -xylene	53
7		anisole	58
8		benzene	44
9		1,4-dioxane	42
10		DME	47
11		acetone	-
12		MeCN	43
13		THF	50

14	EtOAc	48
15	HFIP	63
16	DMF	-
17	DMSO	-

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), In(OTf)₃ (10 mol%), solvent (2.0 mL), rt, 24 h.
[b] Isolated yield.

Table S7 Screening other parameters.^[a]

	Bn N Bn ^{-N} N Bn	Ph OMe _	In(OTf) ₃ (x mol%) HFIP, rt Ph Ph
	1a	2a	3a
entry		Х	yield (3a) ^[b]
1		10	63
2 ^[c]		10	99
3 ^[c]		10	99
4 ^[c]		5	99
5 ^[c]		1	99
6 ^[c,d]		1	49
7 ^[e]		1	50
8 ^[f]		10	83

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), In(OTf)₃ (10 mol%), HFIP (2.0 mL), rt, 24 h. [b] Isolated yield. [c] **2a** (0.5 mmol). [d] 4Å MS (100 mg) was added. [e] **2a** (0.2 mmol). [f] **2a** (0.4 mmol).

5. Substrate Scope

In an oven-dried reaction vial equipped with a magnetic stir bar, **1** (0.20 mmol, 1.00 equiv) and **2** (0.50 mmol, 2.50 equiv) were added into HFIP (2.0 mL). In(OTf)₃ (1.1 mg, 0.002 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure.

The residue was purified by flash column chromatography (hexanes/EtOAc) on silica gel to afford the corresponding products.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-carboxylate): 3a

The title compound **3a** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 99% yield (101.8 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.29 (m, 8H), 7.29–7.20 (m, 7H), 6.39 (d, *J* = 3.6 Hz, 2H), 3.72–3.58 (m, 8H), 3.19–3.07 (m, 4H), 2.97 (d, *J* = 13.3

Hz, 2H), 2.71 (dd, J = 13.0, 6.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 174.71, 174.69, 146.4, 146.3, 139.5, 133.8, 129.39, 129.37, 128.6, 128.54, 128.48, 128.46, 128.2, 127.06, 127.05, 125.0, 61.2, 60.0, 59.9, 51.94, 51.87, 51.8, 38.2, 38.1; HRMS (ESI): calcd. for [M + H]⁺ C₃₃H₃₄NO₄ 508.2482; found 508.2473.

Diethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-carboxylate): 3b

The title compound **3b** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a colorless oil in 96% yield (103.9 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.49–7.08 (m, 15H), 6.48–6.32 (m, 2H), 4.25–3.92 (m, 4H), 3.85–3.56 (m, 2H), 3.30–2.89 (m, 6H), 2.80–2.65 (m, 2H), 1.26–1.12 (m,

6H); ¹³C NMR (100 MHz, CDCl₃): δ 174.5, 174.4, 146.2, 146.1, 139.6, 133.9, 129.2, 128.82, 128.78, 128.5, 128.4, 128.2, 127.0, 125.0, 61.23, 61.21, 60.8, 59.9, 59.8, 52.0, 51.9, 38.2, 38.0, 14.3; HRMS (ESI): calcd. for [M + H]⁺ C₃₅H₃₇NO₄ 536.2795; found 536.2791.

Diisopropyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-carboxylate): 3c

The title compound **3c** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 99% yield (112.5 mg); ¹H NMR (500 MHz, **CDCl3**): δ 7.34–7.16 (m, 15H), 6.45–6.27 (m, 2H), 5.05–4.90 (m, 2H), δ 3.89–3.81 (m, 0.5H), 3.76 (s, 1H), 3.71–3.64 (m, 0.5H), 3.20 (t, *J* =

13.0 Hz, 2H), 3.08–2.97 (m, 4H), 2.77–2.66 (m, 2H), 1.28–1.21 (m, 6H), 1.21–1.15 (m, 6H); ¹³C NMR (**100 MHz, CDCl₃**): δ 174.2, 146.0, 145.9, 139.6, 134.0, 129.1, 128.93, 128.89, 128.4, 128.29, 128.28, 128.2, 127.0, 124.9, 68.1, 61.0, 60.9, 59.7, 59.6, 52.11, 52.05, 38.0, 37.9, 21.9; **HRMS (ESI)**: calcd. for [M + H]⁺ C₃₇H₄₂NO₄ 564.3108; found 564.3099.

Dibenzyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-carboxylate): 3d

The title compound **3d** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 83% yield (110.4 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.22 (m, 22H), 7.22–7.13 (m, 3H), 6.41 (s, 1H), 6.38 (s, 1H), 5.14–5.06 (m, 2H), 5.05–4.97 (m, 2H), 3.69 (s, 2H), 3.25–3.16

(m, 2H), 3.12–3.05 (m, 2H), 3.02–2.92 (m, 2H), 2.76–2.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 146.2, 146.1, 139.4, 136.28, 136.26, 133.8, 129.2, 128.6, 128.54, 128.52, 128.43, 128.40, 128.24, 128.23, 128.2, 128.1, 127.0, 124.9, 66.4, 61.34, 61.28, 59.8, 52.1, 52.0, 38.1, 38.0; HRMS (ESI): calcd. for [M + H]⁺ C₄₅H₄₂NO₄ 660.3108; found 660.3098.

$\underline{1,1'-((Benzylazanediyl) bis(methylene))} bis(N-methoxy-N-methyl-3-phenylcyclobut-2-ene-1-phenylcyclobut-2-ene-2-phenylcyclobut-2-ene-$

carboxamide): 3e

The title compound **3e** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 53% yield (60.6 mg); ¹H NMR (**500 MHz, CDCl**₃): δ 7.41–7.23 (m, 12H), 7.22–7.13 (m, 3H), 6.53–6.42 (m, 2H), 3.89 (d, *J* = 13.6 Hz, 0.5H), 3.78–3.76 (m, 1H),

3.68–3.62 (m, 1H), 3.57–3.51 (m, 5H), 3.29–2.98 (m, 12.5H), 2.88–2.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 144.8, 134.0, 134.22, 134.18, 129.6, 129.54, 129.52, 129.2, 128.4, 128.1, 128.04, 128.01, 126.9, 126.8, 125.0, 124.9, 61.0, 60.7, 60.6, 60.5, 59.81, 59.75, 53.1, 53.0, 38.6, 38.5, 33.2; HRMS (ESI): calcd. for [M + H]⁺ C₃₅H₄₀N₃O₄ 566.3013; found 566.3011.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(p-tolyl)cyclobut-2-ene-1-carboxylate): 3f

The title compound **3f** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 97% yield (104.3 mg); ¹H NMR (**500 MHz, CDCl₃**): δ 7.32–7.24 (m, 4H), 7.24–7.17 (m, 5H), 7.17–7.07 (m, 4H), 6.38–6.27 (m, 2H), 3.75–3.56 (m, 8H), 3.17–3.04 (m, 4H), 2.95 (d, *J* = 13.1 Hz, 2H), 2.75–2.63 (m, 2H), 2.34 (s, 6H); ¹³C NMR (**125 MHz, CDCl₃**): δ 174.73, 174.70, 146.2, 146.1, 139.4, 138.3, 131.1,

129.29, 129.26, 129.0, 128.0, 127.33, 127.28, 126.91, 126.89, 124.8, 61.11, 61.09, 59.8, 59.7, 51.81, 51.80, 51.70, 51.65, 38.2, 38.0, 21.4; **HRMS (ESI):** calcd. for [M + H]⁺ C₃₅H₃₈NO₄ 536.2795; found 536.2791.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(4-(tert-butyl)phenyl)cyclobut-2-ene-1-

<u>carboxylate)</u>: 3g

The title compound **3g** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 73% yield (90.3 mg); ¹H NMR (**500 MHz, CDCl3**): δ 7.38–7.32 (m, 4H), 7.32–7.18 (m, 9H), 6.37–6.30 (m, 2H), 3.74–3.59 (m, 8H), 3.17–3.05 (m, 4H), 3.00–2.91 (m, 2H), 2.74– 2.63 (m, 2H), 1.31 (s, 18H); ¹³C NMR (**100** MHz, CDCl3): δ 174.70, 174.67, 151.5, 146.1, 146.0, 139.4, 131.1, 129.3, 129.2, 128.0, 127.64,

127.59, 126.9, 125.3, 124.6, 61.1, 59.7, 59.6, 51.79, 51.77, 51.7, 38.2, 38.1, 34.7, 31.3; **HRMS (ESI):** calcd. for [M + H]⁺ C₄₁H₅₀NO₄ 620.3734; found 620.3737.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-([1,1'-biphenyl]-4-yl)cyclobut-2-ene-1-

The title compound **3h** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a white solid in 94% yield (124.7 mg); **mp:** 135–136 °C; ¹**H NMR (400 MHz, CDCl₃):** δ 7.65–7.50 (m, 8H), 7.49–7.32 (m, 10H), 7.32–7.19 (m, 5H), 6.51–6.35 (m, 2H), 3.82–3.54 (m, 8H), 3.24– 3.08 m, 4H), 3.00 (d, *J* = 13.2 Hz, 2H), 2.85–2.67 (m, 2H); ¹³C NMR (125MHz, CDCl₃): δ 174.7, 146.0, 145.9, 141.2, 141.1, 140.7, 139.5,

132.8, 129.41, 129.39, 129.0, 128.8, 128.7, 128.2, 127.6, 127.2, 127.1, 125.5, 61.2, 60.0, 59.9, 52.0, 51.9, 38.3, 38.1; **HRMS (ESI):** calcd. for [M + H]⁺ C₄₅H₄₂NO₄ 660.3108; found 660.3115.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(4-fluorophenyl)cyclobut-2-ene-1-

The title compound **3i** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 85% yield (92.8 mg); ¹H NMR (**500 MHz, CDCl₃**): δ 7.36–7.17 (m, 9H), 7.08–6.93 (m, 4H), 6.36– 6.27 (m, 2H), 3.75–3.56 (m, 8H), 3.17–3.03 (m, 4H), 2.95 (d, *J* = 13.2 Hz, 2H), 2.76–2.63 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 174.64, 174.61, 162.9 (d, *J* = 248.1 Hz), 145.3, 145.2, 139.4, 130.2

(d, J = 3.3 Hz), 129.37, 129.35, 128.19, 128.18, 128.0 (d, J = 6.1 Hz), 127.9 (d, J = 6.1 Hz), 127.1 (d, J

= 2.3 Hz), 126.8, 126.7, 115.6, 115.4, 61.13, 61.11, 60.1, 60.0, 52.0, 51.8, 51.7, 38.2, 38.1; **HRMS** (**ESI**): calcd. for [M + H]⁺ C₃₃H₃₂F₂NO₄ 544.2294; found 544.2285.

<u>Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(4-chlorophenyl)cyclobut-2-ene-1-</u> carboxylate): 3j

The title compound **3j** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 97% yield (112.3 mg); ¹H NMR (**500 MHz, CDCl₃):** δ 7.37–7.13 (m, 13H), 6.42–6.33 (m, 2H), 3.76–3.54 (m, 8H), 3.17–3.02 (m, 4H), 2.95 (d, *J* = 13.3 Hz, 2H), 2.75–2.64 (m, 2H); ¹³C NMR (**125 MHz, CDCl₃**): δ 174.5, 174.4, 145.2, 145.1, 139.3, 134.20, 134.18, 132.2, 129.3, 129.19, 129.15, 128.7, 128.19,

128.17, 127.12, 127.10, 126.2, 61.1, 61.0, 60.1, 60.0, 52.0, 51.9, 51.8, 38.1, 37.9; **HRMS (ESI):** calcd. for [M + H]⁺ C₃₃H₃₂Cl₂NO₄ 576.1703; found 576.1696.

<u>Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(4-bromophenyl)cyclobut-2-ene-1-</u> carboxylate): 3k

The title compound **3k** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 99% yield (132.2 mg); ¹H NMR (500 MHz, CDCl₃): δ 7.52–7.37 (m, 4H), 7.35–7.19 (m, 5H), 7.19–7.08 (m, 4H), 6.47–6.32 (m, 2H), 3.79–3.52 (m, 8H), 3.19–3.01 (m, 4H), 2.95 (d, *J* = 13.2 Hz, 2H), 2.78–2.61 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 174.41, 174.39, 145.3, 145.1, 139.3, 132.6, 131.6, 129.4, 129.34,

129.32, 128.18, 128.17, 127.12, 127.10, 126.5, 122.44, 122.42, 61.03, 61.00, 60.1, 60.0, 52.0, 51.9, 51.8, 38.0, 37.9; **HRMS (ESI):** calcd. for [M + Na]⁺ C₃₃H₃Br₂NNaO₄ 686.0512; found 686.0521.

<u>Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(4-(trifluoromethyl)phenyl)cyclobut-2-ene-</u> <u>1-carboxylate)</u>: 3l

The title compound **3l** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a colorless oil in 98% yield (126.6 mg); ¹H NMR (**500 MHz, CDCl**₃): δ 7.62–7.52 (m, 4H), 7.44–7.34 (m, 4H), 7.33– 7.19 (m, 5H), 6.54–6.47 (m, 2H), 3.75–3.60 (m, 8H), 3.21–3.08 (m, 4H), 2.98 (d, *J* = 13.3 Hz, 2H), 2.81–2.68 (m, 2H); ¹³C NMR (125

MHz, CDCl₃): δ 174.3, 145.1, 145.0, 139.2, 136.9, 131.5, 131.4, 130.2 (q, *J* = 32.4 Hz), 130.1 (q, *J* = 32.4 Hz), 129.3, 128.3, 128.2, 127.22, 127.20, 125.5 (q, *J* = 3.8 Hz), 125.2, 124.2 (q, *J* = 271.9 Hz), 61.10, 61.05, 60.2, 60.1, 52.12, 52.06, 38.1, 37.9; **HRMS (ESI):** calcd. for [M + H]⁺ C₃₅H₃₂F₆NO₄ 644.2230; found 644.2220.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(m-tolyl)cyclobut-2-ene-1-carboxylate): 3m

The title compound **3m** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 93% yield (100.7 mg); ¹H NMR (**500 MHz, CDCl₃**): δ 7.33–7.17 (m, 7H), 7.17–7.03 (m, 6H), 6.41– 6.35 (m, 2H), 3.73–3.59 (m, 8H), 3.17–3.06 (m, 4H), 3.00–2.91 (m, 2H), 2.76–2.64 (m, 2H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃):

 δ 174.7, 174.6, 146.4, 146.2, 139.4, 138.0, 133.7, 129.28, 129.26, 129.2, 128.29, 128.26, 128.1, 126.93, 126.91, 125.5, 122.0, 61.13, 61.11, 59.8, 59.7, 51.8, 51.74, 51.69, 38.2, 38.1, 21.4; **HRMS (ESI):** calcd. for [M + H]⁺ C₃₅H₃₈NO₄ 536.2795; found 536.2788.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(3-methoxyphenyl)cyclobut-2-ene-1-

carboxylate): 3n

The title compound **3n** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 89% yield (101.6 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.19 (m, 7H), 6.94–6.88 (m, 2H), 6.86–6.78 (m, 4H), 6.43–6.36 (m, 2H), 3.79 (s, 6H), 3.74–3.60 (m, 8H), 3.17–3.06 (m, 4H), 2.96

(d, *J* = 13.2 Hz, 2H), 2.76–2.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.62, 174.59, 159.8, 146.2, 146.1, 139.4, 135.2, 129.5, 129.4, 129.3, 128.94, 128.90, 128.2, 127.0, 117.5, 114.37, 114.35, 110.0, 61.2, 59.9, 59.8, 55.3, 51.9, 51.8, 51.7, 38.3, 38.2; HRMS (ESI): calcd. for [M + H]⁺ C₃₅H₃₈NO₆ 568.2694; found 568.2687.

<u>Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(3-chlorophenyl)cyclobut-2-ene-1-</u> <u>carboxylate)</u>: 30

The title compound **30** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 95% yield (110.5 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.21 (m, 11H), 7.20–7.14 (m, 2H), 6.41 (s, 2H), 3.73–3.57 (m, 8H), 3.17–3.02 (m, 4H), 2.99– 2.89 (m, 2H), 2.76–2.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃):

δ 174.4, 145.1, 144.9, 139.2, 135.5, 134.6, 130.24, 130.18, 129.8, 129.3, 128.43, 128.41, 128.22, 128.20, 127.2, 127.1, 125.1, 123.1, 61.1, 61.0, 60.1, 60.0, 52.01, 51.96, 51.9, 38.1, 38.0; **HRMS (ESI):** calcd. for [M + H]⁺ C₃₃H₃₂Cl₂NO₄ 576.1703; found 576.1696.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(3-(trifluoromethoxy)phenyl)cyclobut-2-ene-

1-carboxylate): 3p

The title compound **3p** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 88% yield (119.3 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.38– 7.31 (m, 2H), 7.30–7.19 (m, 7H), 7.17–7.08 (m, 4H), 6.47– 6.40 (m, 2H), 3.76–3.57 (m, 8H), 3.20–3.05 (m, 4H), 2.97

(d, J = 13.2 Hz, 2H), 2.78–2.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.3, 149.6, 145.0, 144.9, 139.2, 135.8, 130.54, 130.50, 130.0, 129.4, 128.23, 128.21, 127.20, 127.18, 123.3, 120.8, 120.6 (q, J = 257.2 Hz), 117.4, 61.1, 61.1, 60.2, 60.1, 52.03, 51.98, 51.9, 38.1, 38.0; HRMS (ESI): calcd. for [M + H]⁺ C₃₅H₃₂F₆NO₆ 676.2128; found 676.2136.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(o-tolyl)cyclobut-2-ene-1-carboxylate): 3q

The title compound **3q** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 93% yield (100.3 mg); ¹H NMR (500 MHz, CDCl₃): δ 7.31–7.24 (m, 4H), 7.23–7.16 (m, 5H), 7.16–7.10 (m, 4H), 6.33 (s, 1H), 6.26 (s, 1H), 3.82 (d, *J* = 13.6 Hz, 0.5H), 3.71–3.60 (m, 7H), 3.58 (d, *J* = 13.6 Hz, 0.5H), 3.24 (s, 0.5H), 3.21 (d, *J* = 3.9

Hz, 1H), 3.18 (d, J = 3.9 Hz, 1H), 3.15 (s, 0.5H), 3.10–3.02 (m, 2H), 2.99 (d, J = 13.2 Hz, 1H), 2.81 (d, J = 3.3 Hz, 1H), 2.78 (d, J = 3.3 Hz, 1H), 2.35 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 174.8, 174.7, 146.2, 146.1, 139.5, 137.4, 132.4, 132.3, 132.1, 130.8, 129.34, 129.31, 128.3, 128.2, 127.1, 127.0, 126.81,

126.78, 125.9, 61.5, 61.2, 60.0, 59.8, 52.08, 52.06, 51.9, 39.8, 39.7, 21.89, 21.88; **HRMS (ESI):** calcd. for [M + H]⁺ C₃₅H₃₈NO₄ 536.2795; found 536.2786.

<u>Dimethyl 1,1'-((benzylazanediyl)bis(methylene))bis(3-(naphthalen-2-yl)cyclobut-2-ene-1-</u> carboxylate): 3r

The title compound **3r** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a white solid in 97% yield (118.4 mg); **mp:** 144– 145 °C; **¹H NMR (500 MHz, CDCl₃):** δ 7.85–7.68 (m, 6H), 7.66– 7.59 (m, 2H), 7.54–7.42 (m, 6H), 7.34–7.19 (m, 5H), 6.55–6.47 (m, 2H), 3.82–3.60 (m, 8H), 3.27–3.13 (m, 4H), 3.08–3.00 (m, 2H), 2.91–2.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.6, 146.3,

146.2, 139.39, 139.37, 133.27, 133.25, 131.2, 129.3, 129.1, 128.2, 128.10, 128.06, 128.0, 127.8, 127.00, 126.97, 126.4, 126.3, 124.0, 122.7, 61.2, 61.1, 60.1, 60.0, 51.94, 51.90, 51.88, 38.1, 38.0; **HRMS (ESI):** calcd. for $[M + H]^+ C_{41}H_{38}NO_4$ 608.2795; found 608.2792.

<u>Dimethyl 1,1'-(((4-methoxybenzyl)azanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-</u> <u>carboxylate)</u>: 3s

The title compound **3s** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 95% yield (102.4 mg); ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.24 (m, 10H), 7.20–7.15 (m, 2H), 6.83–6.77 (m, 2H), 6.44–6.33 (m, 2H), 3.79–3.76 (m, 3H), 3.68–3.51 (m, 8H),

3.15–3.05 (m, 4H), 2.99–2.91 (m, 2H), 2.75–2.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.74, 174.72, 158.7, 146.3, 146.2, 133.8, 131.5, 130.5, 128.61, 128.58, 128.5, 128.4, 124.9, 113.5, 61.0, 59.2, 59.1, 55.3, 51.93, 51.85, 51.8, 38.2, 38.1; HRMS (ESI): calcd. for [M + H]⁺ C₃₄H₃₆NO₅ 538.2588; found 538.2579.

Dimethyl 1,1'-((isopropylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-carboxylate): 3t

The title compound **3t** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 32% yield (29.6 mg); ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.30 (m, 8H), 7.29–7.25 (m, 2H), 6.49–6.41 (m, 2H), 3.74–3.61 (m, 6H), 3.15–3.04 (m, 4H), 2.84–2.70 (m, 4H), 0.99–

0.87 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 174.90, 174.88, 146.1, 134.0, 128.9, 128.8, 128.5, 128.4, 124.9, 56.7, 52.1, 52.0, 51.8, 50.0, 49.8, 38.04, 37.95, 17.6, 17.4, 17.3; HRMS (ESI): calcd. for [M + H]⁺ C₂₉H₃₄NO₄ 460.2482; found 460.2477.

Dimethyl 1,1'-((cyclopropylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-carboxylate): 3u

The title compound **3u** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a yellow oil in 75% yield (69.6 mg); ¹H NMR (500 MHz, CDCl₃): δ 7.46–7.29 (m, 8H), 7.29–7.17 (m, 2H), 6.54–6.34 (m, 2H), 3.86–3.50 (m, 6H), 3.36–3.03 (m, 6H), 2.82–2.68 (m, 2H), 1.94–

1.79 (m, 1H), 0.63–0.33 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 175.1, 175.0, 146.4, 146.1, 133.9, 129.2, 129.0, 128.5, 128.44, 128.42, 124.9, 63.02, 62.98, 51.9, 51.83, 51.79, 38.3, 38.2, 37.8, 37.5, 8.6, 8.5, 8.4; HRMS (ESI): calcd. for [M + H]⁺ C₂₉H₃₂NO₄ 458.2326; found 458.2320.

<u>Dimethyl 1,1'-((prop-2-yn-1-ylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1-</u> carboxylate): 3v

The title compound **3v** was prepared via general procedure, purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel and obtained as a white solid in 56% yield (51.8 mg); **mp:** 154–155 °C; ¹**H NMR (500 MHz, CDCl₃):** δ 7.44–7.31 (m, 8H), 7.30–7.25 (m, 2H), 6.37 (dd, *J* = 5.1, 1.6 Hz, 2H), 3.74–3.61 (m, 6H), 3.58–3.50 (m,

2H), 3.25–3.09 (m, 4H), 3.03–2.93 (m, 2H), 2.85–2.74 (m, 2H), 2.26–2.11 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 174.51, 174.47, 147.1, 146.9, 133.8, 128.6, 128.7, 128.5, 128.0, 127.8, 125.0, 78.6, 78.5, 73.99, 73.95, 60.5, 60.3, 52.0, 51.9, 51.8, 42.6, 37.7, 37.6; HRMS (ESI): calcd. for [M + H]⁺ C₂₉H₃₀NO₄ 456.2169; found 456.2160.

Unsuccessful Substrates

No target biscyclobutenyl amine product was observed when the following BCBs were used under standard conditions.

In an oven-dried reaction vial equipped with a magnetic stir bar, **1b** (81.1 mg, 0.20 mmol, 1.00 equiv) and **2a** (94.1 mg, 0.50 mmol, 2.50 equiv) were added into HFIP (2.0 mL). In(OTf)₃ (1.1 mg, 0.002 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc = 20:1-10:1) on silica gel to afford two separable products **4b** (14.0 mg, 21 %, yellow oil) and **5b** (36.2 mg, 55 %, yellow oil). The product **3w** was not observed.

Methyl (1R,4R)-2-(4-methoxyphenyl)-1-phenyl-2-azabicyclo[2.1.1]hexane-4-carboxylate: 4b

Data of **4b**: ¹**H NMR (500 MHz, CDCl₃):** δ 7.41–7.35 (m, 2H), 7.35–7.28 (m, 2H), 7.28–7.21 (m, 1H), 6.65–6.57 (m, 2H), 6.57–6.50 (m, 2H), 3.79–3.70 (m, 5H), 3.67 (s, 3H), 2.46–2.38 (m, 2H), 2.36–2.27 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 171.4, 153.4, 145.0, 139.6, 128.8, 127.4, 126.3, 120.6, 114.0, 72.1, 61.7, 55.5, 52.0, 49.5, 46.1; HRMS (ESI): calcd. for [M + H]⁺ C₂₀H₂₂NO₃ 324.1594; found 324.1584.

Methyl 1-(((4-methoxyphenyl)amino)methyl)-3-phenylcyclobut-2-ene-1-carboxylate: 5b

Data of **5b**: ¹**H NMR (500 MHz, CDCl₃):** δ 7.40–7.32 (m, 4H), 7.32–7.28 (m, 1H), 6.80–6.74 (m, 2H), 6.66–6.59 (m, 2H), 6.40 (s, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 3.61–3.55 (m, 1H), 3.54–3.49 (m, 1H), 3.18 (d, *J* = 13.1 Hz, 1H), 2.82 (d, *J* = 13.1 Hz, 1H); ¹³**C NMR (125 MHz, CDCl₃):** δ 174.9, 152.4, 147.8, 142.6, 133.6, 128.8, 128.6, 127.5, 125.0, 115.0, 114.7, 55.9, 52.3, 51.4, 50.8, 37.0; **HRMS (ESI):** calcd. for [M + H]⁺ C₂₀H₂₂NO₃ 324.1594; found 324.1586.

In an oven-dried reaction vial equipped with a magnetic stir bar, **1a** (71.5 mg, 0.20 mmol, 1.00 equiv), **2a** (47.1 mg, 0.25 mmol, 1.25 equiv) and **2g** (61.1 mg, 0.25 mmol, 1.25 equiv) were added into HFIP (2.0 mL). In(OTf)₃ (1.1 mg, 0.002 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc = 35:1-20:1) on silica gel to afford three separable products **3a** (54.3 mg, 53 %, yellow oil), **3g** (21.1 mg, 17 %, yellow oil) and **3x** (25.4 mg, 22 %, dr = 1:1, yellow oil).

Methyl 1-((benzyl((1-(methoxycarbonyl)-3-phenylcyclobut-2-en-1-yl)methyl)amino)methyl)-3-(4-(tert-butyl)phenyl)cyclobut-2-ene-1-carboxylate: 3x

Data of **3x**: ¹**H NMR (400 MHz, CDCl₃):** δ 7.43–7.13 (m, 14H), 6.43–6.30 (m, 2H), 3.81–3.53 (m, 8H), 3.22–3.03 (m, 4H), 3.02–2.89 (m, 2H), 2.78–2.61 (m, 2H), 1.31 (s, 9H); ¹³C NMR (**100 MHz, CDCl₃**): δ 174.8, 174.7, 151.7, 146.3, 146.2, 146.1, 139.5, 133.8, 131.2, 129.39, 129.37, 128.64, 128.58, 128.48, 128.45, 128.2, 127.71, 127.67, 127.0, 125.4, 125.0, 124.8, 61.3, 61.2, 61.1, 59.9, 59.8, 51.94, 51.90, 51.88, 51.8, 38.3, 38.2, 38.1, 34.9, 31.4; **HRMS (ESI):** calcd. for [M + H]⁺ C₃₇H₄₂NO₄ 564.3108; found 564.3098.

In an oven-dried reaction vial equipped with a magnetic stir bar, **1a** (71.5 mg, 0.20 mmol, 1.00 equiv), **2a** (94.1 mg, 0.50 mmol, 2.50 equiv) and PMB-NH₂ (82.3 mg, 0.60 mmol, 3.00 equiv) were added into HFIP (2.0 mL). In(OTf)₃ (1.1 mg, 0.002 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc= 20:1) on silica gel to afford two separable products **3a** (68.5 mg, 67 %, yellow oil) and **3s** (27.2 mg, 55 %, yellow oil).

In an oven-dried reaction vial equipped with a magnetic stir bar, $[D_6]$ -1a (72.7 mg, 0.20 mmol, 1.00 equiv) and 2a (94.1 mg, 0.50 mmol, 2.50 equiv) were added into HFIP (2.0 mL). In(OTf)₃ (1.1 mg, 0.002 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to afford product $[D_4]$ -3a (91.4 mg, 89 %) as a yellow oil. Based on the following ¹H NMR analysis, no deuterium loss was observed for product $[D_4]$ -3a.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene-d2))bis(3-phenylcyclobut-2-ene-1-carboxylate): [D4]-3a

Data of **[D4]-3a**:¹**H NMR (500 MHz, CDCl₃):** δ 7.35–7.18 (m, 15H), 6.43–6.36 (m, 2H), 3.75–3.58 (m, 8H), 3.11 (d, *J* = 13.0 Hz, 2H), 2.78–2.65 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 174.74, 174.7, 146.3, 146.2, 139.5, 133.8, 129.4, 129.3, 128.6, 128.5, 128.47, 128.4, 128.2, 127.04, 127.0, 124.9, 59.9, 59.7, 51.9, 51.7, 51.68, 38.2, 38.0; HRMS (ESI): calcd. for [M + H]⁺ C₃₃H₃₀D₄NO₄ 512.2733; found 512.2726.

In an oven-dried reaction vial equipped with a magnetic stir bar, [**D**₆]-1a (72.7 mg, 0.20 mmol, 1.00 equiv), 2a (94.1 mg, 0.50 mmol, 2.50 equiv) and CH₂O_(aq) [81.2 mg, 1.00 mmol, 37.0-40.0% (with polymerization inhibitor) in H₂O, 5.00 equiv] were added into HFIP (2.0 mL). In(OTf)₃ (1.1 mg, 0.002 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to afford an inseparable mixture of [**D**]-3a (90.6 mg, 88 %) as a yellow oil. Based the analysis of the ¹H NMR of 3a, [**D**4]-3a and [**D**]-3a, the hydrogenation rate of [**D**]-3a is 50%.

Dimethyl 1,1'-((benzylazanediyl)bis(methylene-d))bis(3-phenylcyclobut-2-ene-1-carboxylate): [D]-3a

Data of **[D]-3a:** ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.18 (m, 15H), 6.47–6.32 (m, 2H), 3.76–3.57 (m, 8H), 3.18–3.05 (m, 3H), 2.97 (d, *J* = 13.1 Hz, 1H), 2.77–2.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.7, 146.4, 146.2, 139.5, 133.8, 129.4, 128.6, 128.57, 128.54, 128.5, 128.48, 128.45, 128.2, 127.0, 125.0, 61.2, 61.16, 60.0, 59.9, 59.87, 59.8, 51.9, 51.88, 51.8, 51.75, 51.7, 38.2, 38.16, 38.1, 38.0; HRMS (ESI): calcd. for [M + H]⁺ C₃₃H₃₂D₂NO₄ 510.2608; found 510.2600.

In an oven-dried nuclear magnetic tube, **1a** or **1b** (0.10 mmol, 1.00 equiv) was added into D_2 -HFIP (1.0 mL). In(OTf)₃ (0.6 mg, 0.001 mmol, 1 mol%) was added. The reaction system was shaken well and ¹H NMR analysis was performed directly after 24 hours. CH₂O was observed by ¹H NMR analysis in the reaction of **1a**, but not detected in the reaction of **1b**.

In an oven-dried nuclear magnetic tube, **1a** (17.9 mg, 0.05 mmol, 1.00 equiv) and **2a** (23.5 mg, 0.125 mmol, 2.50 equiv) were added into D₂-HFIP (0.5 mL). In(OTf)₃ (0.3 mg 0.0005 mmol, 1 mol%) was added. The reaction system was shaken well. Then, ¹H NMR analysis was performed directly at 5 min, 10 min, 2 h, 4 h, 8 h, and 12 h of the reaction respectively. The results are as follows. Unfortunately, we did not detect the existence of the intermediate **5a**.

In an oven-dried reaction vial equipped with a magnetic stir bar, **1a** (71.5 mg, 0.20 mmol, 1.00 equiv) and 4Å MS (100 mg) were added into HFIP (2.0 mL), the mixture was stirred at rt for 1 h. Then **2a** (94.1 mg, 0.50 mmol, 2.50 equiv) and benzaldehyde or phenylacetaldehyde (0.20 mmol, 1.00 equiv) and In(OTf)₃ (1.1 mg, 0.002 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was filtrated and concentrated under reduced pressure. Then carried out the separation and purification of the reaction by PTLC (Preparative Thin-Layer Chromatography). It was found that regardless of whether benzaldehyde or phenylacetaldehyde was added to the system, only the product **3a** could be generated in 90% yield, while **3y** or **3y**' could not be produced.

7. Further Investigations

7.1 Exploration of other imines

In an oven-dried reaction vial equipped with a magnetic stir bar, **1c** (39.1 mg, 0.2 mmol, 1.00 equiv) and **2a** (94.1 mg, 0.5 mmol, 2.50 equiv) were added into HFIP (2.0 mL). In(OTf)₃ (1.1 mg, 0.02 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to afford **5c** as a yellow oil in 47% yield (36.0 mg). But we did not detect **3z** and **4c**.

Methyl 1-((benzylamino)(phenyl)methyl)-3-phenylcyclobut-2-ene-1-carboxylate: 5c

Data of **5c**: ¹**H NMR (400 MHz, CDCl₃):** δ 7.37–7.21 (m, 15H), 6.37 (s, 1H), 4.16 (s, 1H), 3.74 (d, *J* = 13.5 Hz, 1H), 3.54 (s, 4H), 3.11–2.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.5, 147.7, 140.6, 140.2, 133.7, 128.51, 128.45, 128.4, 128.31, 128.28, 128.0, 127.5, 127.0, 126.4, 125.0, 64.7, 56.3, 51.9, 51.2, 35.4; HRMS (ESI): calcd. for [M + H]⁺ C₂₆H₂₆NO₂ 384.1964; found 384.1960.

7.2 Scale-up Synthesis

In an oven-dried reaction vial equipped with a magnetic stir bar, **1a** (2.0 mmol, 1.00 equiv) and **2a** (5.0 mmol, 2.50 equiv) were added into HFIP (20.0 mL). In(OTf)₃ (11.2 mg, 0.02 mmol, 1 mol%) was added. The reaction was stirred at rt for 24 h. The resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to afford **3a** as a yellow oil in 95% yield (964.5 mg).

7.3 Transformation

A solution of **3a** (50.7 mg, 0.10 mmol, 1.0 equiv) in THF (0.5 mL) was added dropwise over 5 min to a suspension of LiAlH₄ (15.2 mg, 0.20 mmol, 2.0 equiv) in THF (1 mL) at -30 °C. After the addition was complete, the mixture was then stirred at -30 °C overnight. The mixture was aqueous NH₄Cl (3 mL). The mixture was then extracted with EtOAc. After the removal of solvent by rotate evaporation, the residue was purified by column chromatography (hexanes/EtOAc = 10:1) to give the desired product **7** as a colorless oil in 75% yield (33.9 mg).

(((Benzylazanediyl)bis(methylene))bis(3-phenylcyclobut-2-ene-1,1-diyl))dimethanol: 7

¹H NMR (400 MHz, CDCl₃): δ 7.43–7.20 (m, 15H), 6.60 (s, 1H), 6.49 (s, 1H), 4.49 (s, 2H), 3.91 (d, *J* = 12.9 Hz, 1H), 3.82–3.68 (m, 4H), 3.63 (s, 1H), 3.35 (d, *J* = 12.9 Hz, 1H), 3.08 (d, *J* = 13.1 Hz, 1H), 2.92–2.80 (m, 2H), 2.67–2.48 (m, 4H), 2.42 (d, *J* = 13.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 145.5, 138.5, 134.3, 131.2, 131.0, 129.59, 129.56, 128.90, 128.86, 128.5, 128.3, 128.2, 127.80, 127.76, 124.71, 69.1, 69.0, 62.0, 61.6, 60.8, 60.7, 46.9, 46.8, 37.4, 37.3; HRMS (ESI): calcd. for [M + H]⁺ C₃₁H₃₄NO₂ 452.2584; found 452.2579.

8. X-Ray Structure

The suitable crystals were obtained by interlayer diffusion of hexanes into $CHCl_3$ solution at ambient temperature. A colorless crystal of the corresponding compound was mounted on a glass fiber at a random orientation. The data were collected at 100 K by a diffractometer Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation (1.54178 Å) by using a w scan mode.

Table S9 Crystal data and structure refinement for 3h.

CCDC	2363143	
Empirical formula	$C_{182}H_{166}Cl_6N_4O_{16}$	
Formula weight	2877.88	
Temperature/K	264(50)	
Crystal system	monoclinic	
Space group	Cc	
a/Å	18.3009(3)	
b/Å	19.4720(2)	
c/Å	43.4558(8)	
a/°	90	
β/°	90.201(2)	
γ/°	90	
Volume/Å ³	15485.6(4)	
Z	4	
$\rho_{calc}g/cm^3$	1.234	
μ/mm^{-1}	1.536	
F(000)	6064.0	
Crystal size/mm ³	$? \times ? \times ?$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
2Θ range for data collection/° 6.928 to 133.198		
Index ranges	$-21 \leq h \leq 21, \ -20 \leq k \leq 23, \ -51 \leq l \leq 51$	
Reflections collected	94806	
Independent reflections	25804 [$R_{int} = 0.0527$, $R_{sigma} = 0.0465$]	
Data/restraints/parameters	25804/176/1870	
Goodness-of-fit on F ²	1.039	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1=0.0853,wR_2=0.2504$	
Final R indexes [all data]	$R_1 = 0.0912, wR_2 = 0.2569$	

Largest diff. peak/hole / e Å⁻³ 0.68/-0.43 Flack parameter 0.11(3)

9. References

- S. Duan, H. Meng, S. T. Jablasone Jr., H. Luo, Z.-F. Xu and C.-Y. Li, Rhodium(II)-Catalyzed
 [4+2] Annulation of Ester-Tethered 1-Sulfonyl-1,2,3-Triazoles and Hexahydro-1,3,5-Triazines.
 Asian J. Org. Chem., 2021, 10, 1076-1080.
- [2] C. Zhu, G. Xu and J. Sun, Gold-Catalyzed Formal [4+1]/[4+3] Cycloadditions of Diazo Esters with Triazines. *Angew. Chem. Int. Ed.*, 2016, 55, 11867-11871.
- [3] N. Guranova, D. Dar'in and M. Krasavin, Facile Access to 3-Unsubstituted Tetrahydroisoquinolonic Acids via the Castagnoli–Cushman Reaction. *Synthesis*, 2018, 50, 2001-2008.
- [4] S.-L. Lin, Y.-H. Chen, H.-H. Liu, S.-H. Xiang and B. Tan, Enantioselective Synthesis of Chiral Cyclobutenes Enabled by Brønsted Acid-Catalyzed Isomerization of BCBs. *J. Am. Chem. Soc.*, 2023, 145, 21152-21158.
- [5] Y. Liang, F. Paulus, C. G. Daniliuc and F. Glorius, Catalytic Formal $[2\pi+2\sigma]$ Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes. *Angew. Chem. Int. Ed.*, 2023, **62**, e202305043.

10. NMR Spectra

SUPPORTING INFORMATION 522 52

S31

SUPPORTING INFORMATION 5.2.2

SUPPORTING INFORMATION 3.72 3.69 3.64 3.65 3.66 3.66 3.61 3.65 3.65 3.66 3.61 3.65 3.65 3.66 3.67 3.68 3.69 3.61 3.61 3.62 3.61 </tr 0 -OMe MeO Β'n 3g (500 MHz; in CDCl₃) 누너 egge18.05₁ ۲ Ч Ч 4.09 9.38 1.83 2.00 2.00 8.00 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 7.5 3.0 174.70 174.67 151.54 146.09 145.98 139.39 131.05 129.27 129.24 127.64 127.64 127.59 126.89 126.89 125.28 61.14 59.66 59.56 51.79 51.775 O, MeO OMe Β'n 3g (100 MHz; in CDCl₃)

100 90 f1 (ppm) 0 -1(200 190 80 70 60 40 30 180 170 160 150 140 130 120 110 50 20 10

S41

SUPPORTING INFORMATION 8.2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.8 2.2.2 2.2.8 2.2.2 2.2.

-10 f1 (ppm)

-10 f1 (ppm)

