Electronic Supplementary Information (ESI)

Enantioselective Synthesis of Vicinal Diamines and β-Amino Amides

by NiH-Catalyzed Hydroamidation of Alkenyl Amides

Xun Tian,^a Shengzu Duan,^{a,b*} Yuan Ma,^a Ailin Pan,^a Yamiao Meng,^a Guogang Deng,^a Hongbin Zhang,^a and Xiaodong Yang^a*

^aKey Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education; Yunnan key Laboratory of Research and Development for Natural Products; Yunnan Characteristic Plant Extraction Laboratory; School of Pharmacy, Yunnan University, Kunming, 650091 (P. R. China). E-mail: xdyang@ynu.edu.cn, duanshengzu@ynu.edu.cn

^bYunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504 (P. R. China).

TABLE OF CONTENT

General information
Preparation and characterization of N-allyl-amides
Preparation of 1,4,2-dioxazol-5-ones7
Preparation of but-3-enamides
Optimisation of conditions for yield and ee value of product 3aa 14
General procedure and characterization of NiH-catalyzed asymmetric hydroamidation of
unactivated olefins
Hydroamidation of natural products and bioactive molecules derivatives
Synthesis of (S)-Nicaraven
Hydrolysis of 3ca
Capture of metal-nitrenoid intermediate
Competitive experiment
X-ray crystal structure of compound 5ba
Supplementary references
NMR spectra of the products
HPLC spectra of the products101

General information

All air- and moisture-sensitive solutions and chemicals were handled under a nitrogen atmosphere of a glovebox and solutions were transferred via "Titan" brand pipettor. Anhydrous solvents, including THF (Tetrahydrofuran), 1,4-Dioxane, 2-Me-THF, DMA (N,N-Dimethylacetamide), MeCN (Acetonitrile), DCE (1,2-Dichloroethane), MTBE (tert-Butyl methyl ether), CPME (Cyclopentyl methyl ether), and DME (1,2-Dimethoxyethane) were purchased from Sigma-Aldrich and used without further purification. Unless otherwise stated, all reagents were commercially available and used as received without further purification. Nickel Catalyst was purchased from Sigma-Aldrich and used as received. Chiral ligands were purchased from Bidepharm. Other chemicals were obtained from Sigma-Aldrich, Acros, TCI, Adamas and Alfa-Aesar. TLC was performed with Merck TLC Silica gel60 F254 plates with detection under UV light at 254 nm. Silica gel (200-300 mesh, Qingdao) was used for flash chromatography. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were obtained using a Brüker DRX 400/600 spectrometer at 400/600 MHz and 100/150 MHz, respectively. Chemical shifts were reported in units of parts per million (ppm) downfield from tetramethylsilane (TMS), and all coupling constants were reported in hertz. X-Ray crystal diffraction data were recorded on Brüker D8 VENTURE. High resolution mass spectra were taken on an AB QSTAR Pulsar mass spectrometer. Melting points were obtained on an XT-4 melting-point apparatus and were uncorrected. The enantiomeric excess was determined by chiral HPLC with *n*-hexane and *i*-propanol as eluents. Optical rotations were measured on a JASCO DIP-370 polarimeter.

Preparation and characterization of N-allyl-amides

The reaction was performed following the literature procedures.^[1]

Step 1: In a dried 100 ml round-bottom flask equipped with a magnetic stir bar, the corresponding acid **S1** (11 mmol, 1.1 equiv) was dissolved in 50ml anhydrous DCM. Then, 10 drops of anhydrous DMF were added. Under ice-bath conditions, oxalyl chloride (15 mmol, 1.5 equiv) was slowly added dropwise. After the completion of the addition, the reaction mixture was allowed to react at room temperature for 4 hours. After 4 hours, the crude product was separated from the solvent under vacuum. The obtained product **S2** was directly used for the next step reaction.

Step 2: In a dried 100 ml round-bottom flask equipped with a magnetic stir bar, the corresponding allylamine **S3** (10 mmol, 1.0 equiv) hydrochloride was dissolved in 50ml anhydrous DCM. Et₃N (35 mmol, 3.5 equiv) was added and stirred for 5 minutes. After 5 minutes, under ice-bath conditions, the crude product **S2** (if it was a solid, dissolved in a small amount of anhydrous DCM before adding) was slowly added dropwise to the mixture. After the completion of the addition, the reaction was allowed to proceed at room temperature for 6 hours, monitored by TLC. The reaction was quenched by slowly adding saturated NaHCO₃ solution and the organic phase was extracted. The aqueous phase was extracted with DCM (20 ml×3), and the organic phases were combined. The combined organic phase was collected and dried over Na₂SO₄. The extract was filtered, concentrated, and purified by silica gel column chromatography (eluent:petroleum ether:ethyl acetate = 4:1 to 3:1) to give *N*-allyl-amides (1).

N-Allyl-4-methoxybenzamide (1a)

1a was prepared from allylamine hydrochloride and *p*-methoxybenzoic acid in 1.75 g, 92% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1). The ¹H and ¹³C{¹H} data for this compound match the literature data.^[1]

N-(But-3-en-2-yl)-4-methoxybenzamide (1b)

1b was prepared from but-3-en-2-amine hydrochloride and *p*-methoxybenzoic acid in 1.84 g, 90% yield as a white solid. Purification of the residue by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1). **Mp:** 144 – 146 °C. **R**_f = 0.25 (petroleum ether : ethyl acetate = 4 : 1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 – 7.64 (m, 2H), 7.00 – 6.84 (m, 2H), 6.03 (d, *J* = 8.4 Hz, 1H), 5.99 – 5.82 (m, 1H), 5.29 – 4.98 (m, 2H), 4.76 (m, 1H), 3.83 (s, 3H), 1.33 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 166.3, 162.2, 139.8, 128.8, 127.1, 114.3, 113.8, 55.5, 47.2, 20.4 ppm. **HRMS** calc'd for C₁₂H₁₆NO₂⁺ 206.1176, found 206.1179 [M+H]⁺.

(S)-4-Methoxy-N-(1-phenylbut-3-en-2-yl)benzamide (1c)

1c was prepared from (*S*)-1-phenylbut-3-en-2-amine hydrochloride and *p*-methoxybenzoic acid in 2.55 g, 91% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1). **Mp:** 151 – 153 °C. **R**_f = 0.23 (petroleum ether : ethyl acetate = 4 : 1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 – 7.56 (m, 2H), 7.36 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 6.94 – 6.84 (m, 2H), 5.99 – 5.87 (m, 2H), 5.21 – 5.09 (m, 2H), 5.03 – 4.89 (m, 1H), 3.84 (s, 3H), 2.99 (d, *J* = 6.4 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 166.4, 162.3, 137.7, 137.3, 129.7, 128.8, 128.6, 127.0, 126.8, 115.5, 113.9, 55.6, 52.3, 41.1 ppm. **HRMS** calc'd for C₁₈H₂₀NO₂⁺ 282.1489, found 282.1492 [M+H]⁺; $[\alpha]_{p}^{20}$ = -35.11 (*c* 1.0, MeOH).

(S)-N-(1-Cyclohexylallyl)-4-methoxybenzamide (1d)

1d was prepared from (S)-1-cyclohexylprop-2-en-1-amine hydrochloride and *p*-methoxybenzoic acid in 2.45 g, 90% yield as a white solid. Purification of the residue by flash chromatography on silica gel

(petroleum ether : ethyl acetate = 4 : 1). **Mp:** 155 – 157 °C. **R**_f = 0.22 (petroleum ether : ethyl acetate = 4 : 1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.86 – 7.62 (m, 2H), 6.96 – 6.82 (m, 2H), 6.03 (d, *J* = 8.8 Hz, 1H), 5.83 (ddd, *J* = 17.2, 10.4, 6.0 Hz, 1H), 5.28 – 5.06 (m, 2H), 4.68 – 4.41 (m, 1H), 3.84 (s, 3H), 1.76 (m, *J* = 12.0, 9.2, 6.4 Hz, 4H), 1.70 – 1.59 (m, 1H), 1.54 (m, 1H), 1.27 – 0.99 (m, 5H) ppm. ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 166. 5, 162.2, 137.2, 128.8, 127.3, 115.8, 113.9, 56.5, 55.5, 42.4, 29.6, 29.0, 26.5, 26.3, 26.2 ppm. **HRMS** calc'd for C₁₇H₂₄NO₂⁺ 274.1802, found 274.1807 [M+H]⁺; $[\alpha]_{p}^{20} = 24.59$ (*c* 1.0, MeOH).

(E)-N-(But-2-en-1-yl)-4-methoxybenzamide (1e)

1e was prepared from (*E*)-but-2-en-1-amine hydrochloride and *p*-methoxybenzoic acid in 1.94 g, 95% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether :

ethyl acetate = 4 : 1). The ¹H and ¹³C $\{^{1}H\}$ data for this compound match the literature data.^[2]

tert-Butyl allylcarbamate (1f)

 $head Book H = \frac{1}{2} head Book H = \frac{1}{2$

silica gel (petroleum ether : ethyl acetate = 4 : 1). Synthetic method and the ¹H and ¹³C{¹H} data for this compound match the literature data.^[3]

(S)-N-Allyl-2-(6-methoxynaphthalen-2-yl)propanamide (1g)

1g was prepared from allylamine hydrochloride and *(S)*-Naproxen in **2.50** g, 93% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1). The ¹H and ¹³C{¹H} data for this compound match the literature data.^[4]

N-Allyl-2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-3-yl)acetamide (1h)

1h was prepared from allylamine hydrochloride and Isoxepac in 2.76 g, 90% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1).

Mp: 182 – 184 °C. **R**_f = 0.20 (petroleum ether : ethyl acetate = 4 : 1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 2.4 Hz, 1H), 7.89 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.57 (td, *J* = 7.2, 1.2 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.42 – 7.34 (m, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 5.97 – 5.69 (m, 1H), 5.53 (s, 1H), 5.20 (s, 2H), 5.11 (dq, *J* = 6.0, 1.6 Hz, 1H), 5.07 (t, *J* = 1.6 Hz, 1H), 3.86 (m, 2H), 3.59 (s, 2H) ppm. ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 191.0, 170.5, 160.8, 140.5, 136.6, 135.6, 134.1, 133.1, 132.6, 129.6, 129.5, 128.8, 128.0, 125.5, 121.8, 116.6, 73.8, 42.9, 42.2 ppm. **HRMS** calc'd for C₁₉H₁₈NO₃⁺ 308.1281, found 308.1280 [M+H]⁺.

N-Allyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetamide (1i)

1i was prepared from allylamine hydrochloride and Indometacin in 3.48 g, 88% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 3 : 1). The ¹H and ¹³C{¹H} data for this compound match the

literature data.^[4]

2-(Allylcarbamoyl)phenyl acetate (1j)

1j was prepared from allylamine hydrochloride and Aspirin in 1.97 g, 90% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 3 : 1). Mp: 61 – 63 °C. $\mathbf{R}_f = 0.28$ (petroleum

ether : ethyl acetate = 3 : 1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.10 (d, J = 2.4 Hz, 1H), 7.89 (dd, J = 7.6, 1.2 Hz, 1H), 7.57 (td, J = 7.2, 1.2 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.42 – 7.34 (m, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.97 – 5.69 (m, 1H), 5.53 (s, 1H), 5.20 (s, 2H), 5.11 (dq, J = 6.0, 1.6 Hz, 1H), 5.07 (t, J = 1.6 Hz, 1H), 3.86 (m, 2H), 3.59 (s, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 191.0, 170.5, 160.8, 140.5, 136.6, 135.6, 134.1, 133.1, 132.6, 129.6, 129.5, 128.8, 128.0, 125.5, 121.8, 116.6, 73.8, 42.9, 42.2. **HRMS** calc'd for C₁₂H₁₄NO₃⁺ 220.0968, found 220.0966 [M+H]⁺.

N-Allylnicotinamide (1k)

1k was prepared from allylamine hydrochloride and nicotinic acid in 1.39 g, 86% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1). The ¹H and ¹³C{¹H} data for this

compound match the literature data.^[5]

Preparation of 1,4,2-dioxazol-5-ones

The reaction was performed following the literature procedures.^[6]

Step 1: To a solution of corresponding carboxylic acid **S4** (10 mmol) in 40 ml anhydrous THF was added 1,1'-carbon-yldiimidazole (CDI, 15 mmol, 1.5 equiv). The reaction mixture was stirred for 1 h before hydroxylamine hydrochloride (20 mmol, 2.0 equiv) was added. The resulting mixture was stirred overnight. The mixture was diluted with 5% aq KHSO₄ (20 mL) and extracted with ethyl acetate. The combined organic phase was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. The extract was filtered and concentrated to give the residue **S5** that was used directly for the next step.

Step 2: To a solution of unpurified hydroxamic acid **S5** (10 mmol) in dry DCM (40 mL) was added CDI (11mmol, 1.1 equiv). The mixture was stirred for 5 min to 1 h until the reaction was completed. 2 N HCl solution (20 mL) was added and extracted with DCM. The combined organic phase was collected and dried over Na₂SO₄. The extract was filtered, concentrated, and purified by silica gel column chromatography (eluent: petroleum ether : ethyl acetate = 10 : 1 to 5 : 1) to give 3-substituted-1,4,2-dioxazol-5-ones (**2**).

3-Phenyl-1,4,2-dioxazol-5-one (2a)

2a was prepared from benzoic acid in 1.31 g, 80% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 :
1). The ¹H and ¹³C{¹H} data for this compound match the literature data.^[7]

3-(*o*-Tolyl)-1,4,2-dioxazol-5-one (2b)

2b was prepared from 2-methylbenzoic acid in 1.47 g, 83% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10:1). The ¹H and ¹³C{¹H} data for this compound match the literature

data.^[7]

3-(2-Methoxyphenyl)-1,4,2-dioxazol-5-one (2c)

2c was prepared from 2-methoxybenzoic acid in 1.58 g, 82% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the literature

data.[8]

3-(*m*-Tolyl)-1,4,2-dioxazol-5-one (2d)

2d was prepared from 3-methylbenzoic acid in 1.51 g, 85% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the

literature data.^[7]

3-(3-Methoxyphenyl)-1,4,2-dioxazol-5-one (2e)

2e was prepared from 3-methoxybenzoic acid in 1.60 g, 84% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this

compound match the literature data.^[9]

3-(4-(tert-Butyl)phenyl)-1,4,2-dioxazol-5-one (2f)

2f was prepared from 4-(*tert*-butyl)benzoic acid in 1.75 g, 80% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match

the literature data.^[9]

3-(4-Methoxyphenyl)-1,4,2-dioxazol-5-one (2g)

2g was prepared from 4-methoxybenzoic acid in 1.58 g, 82% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the

literature data.^[7]

3-(4-Fluorophenyl)-1,4,2-dioxazol-5-one (2h)

2h was prepared from 4-fluorobenzoic acid in 1.35 g, 75% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the

literature data.[8]

3-(4-Chlorophenyl)-1,4,2-dioxazol-5-one (2i)

2i was prepared from 4-chlorobenzoic acid in 1.73 g, 78% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the

literature data.[8]

3-(4-Bromophenyl)-1,4,2-dioxazol-5-one (2j)

2j was prepared from 4-bromobenzoic acid in 1.92 g, 80% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the

literature data.^[9]

3-(4-(Trifluoromethoxy)phenyl)-1,4,2-dioxazol-5-one (2k)

2k was prepared from 4-(trifluoromethoxy)benzoic acid in 1.92 g, 78% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this

compound match the literature data.^[10]

3-(Thiophen-2-yl)-1,4,2-dioxazol-5-one (2l)

21 was prepared from thiophene-2-carboxylic acid in 1.34 g, 80% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the literature

data.^[7]

3-(4-((Trifluoromethyl)thio)phenyl)-1,4,2-dioxazol-5-one (2m)

2m was prepared from 4-((trifluoromethyl)thio)benzoic acid in 1.78 g, 68% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for

this compound match the literature data.^[11]

3-(Benzo[*d*][1,3]dioxol-5-yl)-1,4,2-dioxazol-5-one (2n)

2n was prepared from benzo[*d*][*1,3*]dioxole-5-carboxylic acid in 1.71 g, 83% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 5 : 1). The ¹H and ¹³C{¹H} data for this

compound match the literature data.^[9]

3-(tert-Butyl)-1,4,2-dioxazol-5-one (20)

20 was prepared from pivalic acid in 1.17 g, 82% yield as a colourless liquid. Purification $_{^{t}Bu} \longrightarrow ^{0}$ of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound match the literature data.^[11]

3-(2-(4,5-Diphenyloxazol-2-yl)ethyl)-1,4,2-dioxazol-5-one (2p)

2p was prepared from Oxaprozin in 2.51 g, 78% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 5 : 1). The ¹H and ¹³C{¹H} data for this compound match the literature data.^[12]

(S)-3-(1-(4-Isobutylphenyl)ethyl)-1,4,2-dioxazol-5-one (2q)

2q was prepared from (S)-Ibuprofen in 2.05 g, 83% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 10 : 1). The ¹H and ¹³C{¹H} data for this compound

match the literature data.^[6]

3-(Pyridin-3-yl)-1,4,2-dioxazol-5-one (2r)

2r was prepared from nicotinic acid in 0.98 g, 64% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 5 : 1). **Mp:** 51 – 53 °C. **R**_f = 0.46 (petroleum ether : ethyl acetate = 5 : 1). ¹**H NMR** (400 MHz, Chloroform-d) δ 9.11 (d, J = 2.4 Hz, 1H), 8.89 (dd, J = 4.8, 1.6 Hz, 1H), 8.16 (dt, J = 8.0, 2.0 Hz, 1H), 7.52 (dd, J = 8.0, 4.8 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, Chloroform-d) δ 162.1, 154.5, 153.4, 147.8, 134.0, 124.1, 117.1 ppm. **HRMS** calc'd for C₇H₅N₂O₃⁺ 165.0295, found 165.0296

 $[M+H]^+$

Preparation of but-3-enamides

The reaction was performed following the literature procedures.^[13]

At room temperature, the corresponding amine (10 mmol, 1.0 equiv.) was added to a 100 ml dry round-bottom flask equipped with a magnetic stirrer. After adding 50ml of anhydrous DCM, EDCI (10 mmol, 1.0 equiv.) and DMAP (1 mmol, 0.1 equiv.) were sequentially added. Next, but-3-enoic acid (11 mmol, 1.1 equiv.) was slowly added to the mixture, which was stirred at room temperature for 12 hours. After completion of the reaction, the reaction was quenched using saturated NaHCO₃ solution. The organic phase was collected by extraction, while the aqueous phase was extracted with DCM (20 ml×3). The extract was filtered, concentrated, and purified by silica gel column chromatography (eluent: petroleum ether : ethyl acetate = 4 : 1) to give but-3-enamides (4).

N-(4-Methoxyphenyl)but-3-enamide (4a)

4a was prepared from but-3-enoic acid and 4-methoxyaniline in 1.72 g, 90% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1). The ¹H and ¹³C{¹H} data for this compound match the literature data^[13].

N-Benzylbut-3-enamide (4b)

4b was prepared from but-3-enoic acid and phenylmethanamine in 1.61 g, 92% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1). The ¹H and ¹³C{¹H} data for

this compound match the literature data^[14].

(E)-N-(4-Methoxyphenyl)hex-3-enamide (4c)

4c was prepared from (*E*)-hex-3-enoic acid and 4-methoxyaniline in 1.99 g, 91% yield as a white solid. Purification of the residue by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1).

The ¹H and ¹³C $\{^{1}H\}$ data for this compound match the literature data.^[15]

(E)-N-(4-Methoxyphenyl)hept-3-enamide (4d)

^{*n*}Pr $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\underset{H}{}$ $\overset{O}{\underset{H}{}}$ $\overset{O}{\overset{O}{}$ $\overset{O}{\overset{O}{}}$ $\overset{O}{\overset{O}{}}$ $\overset{O}{\overset{O}{}}$ $\overset{O}{\overset{O}{}}$ $\overset{$ chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1).

The 1H and $^{13}C\{^1H\}$ data for this compound match the literature data. $^{[16]}$

Optimisation of conditions for yield and ee value of product 3aa

H Ta (1 eq)	^{√le} + 0 + Ph N − 2a (2 eq)	NiBr₂ 10 mol% L 15 mol% (MeO)₃SiH 2 eq Nal 50 mol% DMA 25 °C, 24 h	NH H O 3aa
Entry	L	Yiled of 3aa /%	ee% of 3aa /%
1	L1	50	15
2	L2	60	40
3	L3	80	67
4	L4	<5	-
5	L5	83	93
6	L6	78	86
7	L7	<5	-
8	L8	50	<5
9	L9	<5	-
10	L10	<5	-
11	L11-L14	0	-
12	L15	25	<5
13	L16	<5	-
14	L17	<5	-
15	L18	<5	-
16	L19	<5	-
17	L20	23	<5
18	L21	<5	-
19	L22	<5	/
20	L23	62	32
21	L24	<5	-
22	L25	<5	-
23	L26	60	40
24	L27	55	15
25	L28	<5	-

Table S1. Screening of ligands for enantioselective synthesis of 3aa.^{*a,b,c,d*}

^{*a*}Reactions conducted on a 0.1 mmol scale using 1.0 equiv. of **1a**, and 2.0 equiv. of **2a**, NiBr₂ (10 mol%), Ligand (15 mol%), 2equiv. of (MeO)₃SiH and 50 mol% of NaI in 1 mL of DMA at 25 °C for 48 h. ^{*b*}Isolated yield of **3aa** after flash chromatography on silica gel. ^{*c*}The *ee* (enantiomeric excess) of **3aa** was determined by chiral HPLC. ^{*d*}Racemic **3aa** was obtained when using diethyl [2,2'-bipyridine]-6,6'-dicarboxylate (L1) as ligand.

Table S2. Screening of Ni catalyst for enantioselective synthesis of 3aa.^{*a,b,c*}

H 0 1a (1 eq)	+ 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	at. 10 mol% i 15 mol% D) ₃ SiH 2 eq Ph' 50 mol% DMA °C, 24 h	NH H J J J J J J J J J J J J J J J J J J	,OMe
Entry	Ni Cat.	Yeild of 3 /%	ee% of 3 /%	
1	NiBr ₂	83	93	
2	NiBr ₂ ·DME	81	75	
3	NiCl ₂	45	75	
4	NiCl ₂ ·DME	60	86	
5	NiCl·6H ₂ O	<5	-	
6	NiI ₂	66	89	
7	Ni(acac) ₂	<5	-	
8	Ni(COD) ₂	0	-	

^{*a*}Reactions conducted on a 0.1 mmol scale using 1.0 equiv. of **1a**, and 2.0 equiv. of **2a**, Ni cat. (10 mol%), **L5** (15 mol%), 2equiv. of (MeO)₃SiH and 50 mol% of NaI in 1 mL of DMA at 25 °C for 48 h. ^{*b*}Isolated yield of **3aa** after flash chromatography on silica gel. ^{*c*}The *ee* (enantiomeric excess) of **3aa** was determined by chiral HPLC.

Table S3. Screening of hydrogen source for enantioselective synthesis of 3aa.^{*a,b,c*}

^{*a*}Reactions conducted on a 0.1 mmol scale using 1.0 equiv. of **1a**, and 2.0 equiv. of **2a**, NiBr₂ (10 mol%), **L5** (15 mol%), 2equiv. of hydrogen source and 50 mol% of NaI in 1 mL of DMA at 25 °C for 48 h. ^{*b*}Isolated yield of **3aa** after flash chromatography on silica gel. ^{*c*}The *ee* (enantiomeric excess) of **3aa** was determined by chiral HPLC.

	Table S4.	Screening	of solvent fo	r enantiose	elective	synthesis o	of 3aa. ^{a,b,c}
--	-----------	-----------	---------------	-------------	----------	-------------	--------------------------

H O 1a (1 e	OMe + eq)	O Ph N 2a (2 eq)	NiBr ₂ 10 mol% L5 15 mol% (MeO) ₃ SiH 2 eq Nal 50 mol% Solvent 25 °C, 24 h	→ Ph NH	H O 3aa
-	Entry	Solvent	Yeild of 3 /%	ee% of 3 /%	-
	1	THF	70	90	-
	2	Dioxane	Trace	/	
	3	2-Me-THF	56	90	
	4	DMA	83	93	
	5	MeCN	63	89	
	6	DCE	Trace	/	
	7	MTBE	60	87	
	8	CPME	Trace	/	
	9	DME	Trace	/	

^{*a*}Reactions conducted on a 0.1 mmol scale using 1.0 equiv. of **1a**, and 2.0 equiv. of **2a**, NiBr₂ (10 mol%), **L5** (15 mol%), 2equiv. of (MeO)₃SiH and 50 mol% of NaI in 1 mL of solvent at 25 °C for 48 h. ^{*b*}Isolated yield of **3aa** after flash chromatography on silica gel. ^{*c*}The *ee* (enantiomeric excess) of **3aa** was determined by chiral HPLC.

Table S5. Screening of additive for enantioselective synthesis of 3aa.^{*a,b,c*}

Entry	Additive	Yeild of 3 /%	ee% of 3 /%
1	NaI	83	93
2	NaF	58	87
3	NaCl	60	88
4	NaBr	68	86
5	LiI	56	90
6	CsI	60	89
7	/	50	90

^{*a*}Reactions conducted on a 0.1 mmol scale using 1.0 equiv. of **1a**, and 2.0 equiv. of **2a**, NiBr₂ (10 mol%), L5 (15 mol%), 2equiv. of (MeO)₃SiH and 50 mol% of additive in 1 mL of DMA at 25 °C for 48 h. ^{*b*}Isolated yield of **3aa** after flash chromatography on silica gel. ^{*c*}The *ee* (enantiomeric excess) of **3aa** was determined by chiral HPLC.

H + Ph N $1a (1 eq) 2a (2 eq)$		NiBr₂ 10 mol% L27 15 mol% (MeO)₃SiH 2 eq Pl Nal 50 mol% DMA 25 °C, T		
Entry	T/ h	Yeild of 3 /%	ee% of 3 /%	
1	24	53	93	
2	36	68	91	
3	48	83	91	
4	60	79	90	

Table S6. Screening of reaction time for enantioselective synthesis of 3aa.^{*a,b,c*}

^{*a*}Reactions conducted on a 0.1 mmol scale using 1.0 equiv. of **1a**, and 2.0 equiv. of **2a**, NiBr₂ (10 mol%), **L5** (15 mol%), 2equiv. of (MeO)₃SiH and 50 mol% of NaI in 1 mL of DMA at 25 °C for different reaction time. ^{*b*}Isolated yield of **3aa** after flash chromatography on silica gel. ^{*c*}The *ee* (enantiomeric excess) of **3aa** was determined by chiral HPLC.

General procedure and characterization of NiH-catalyzed asymmetric hydroamidation of unactivated olefins

In a glove box under a nitrogen atmosphere, NiBr₂ (4.4 mg, 0.02 mmol, 10 mol%) and L5 (12.6 mg, 0.03 mmol, 15 mol%) were added to a dry 8 ml reaction vial containing a magnetic stir bar. Then, 2 ml of anhydrous DMA was added to the mixture, which was stirred at room temperature for 10 minutes. Subsequently, (MeO)₃SiH (50 mg, 0.4 mmol, 2.0 equiv.) and NaI (15 mg, 0.1 mmol, 50 mol%) were sequentially added to the mixture and stirred. *N*-allyl-amides **1** or but-3-enamides **3** were then added to the mixture and finally 1,4,2-dioxazol-5-ones **2** were added. The reaction vial was sealed and taken out of the glove box, and the mixture was stirred at room temperature for 48 hours or at 40 °C for 72 hours. After the completion of the reaction, 2 ml of EtOAc was added to the reaction vial for dilution. Extraction was performed using 50 ml of EA and 20 ml of saturated NaCl solution. The organic phase was further extracted using 2×30 ml of saturated NaCl solution. The organic phase was loaded onto a silica gel column and purified by flash chromatography to obtain 1,2-diamines **3** or β -amino amides **5**.

(S)-N-(2-Benzamidopropyl)-4-methoxybenzamide (3aa)

The reaction was performed with *N*-allyl-4-methoxybenzamide **1a** (38.2 mg, 0.2 mmol) and 3-phenyl-1,4,2-dioxazol-5-one **2a** (65.2 mg, 0.4 mmol). The crude product was separated by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3aa** (51.8 mg, 83% yield, 93% *ee*) as a white solid. **Mp**: 210 – 212 °C. **R**_f = 0.28 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.45 (t, *J* = 6.4 Hz, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.73 (m, 4H), 7.54 – 7.48 (m, 1H), 7.45 (dd, *J* = 8.0, 6.4 Hz, 2H), 7.04 – 6.92 (m, 2H), 4.29 – 4.15 (m, 1H), 3.79 (s, 3H), 3.40 (t, *J* = 6.4 Hz, 2H), 1.16 (d, *J* = 6.8 Hz, 3H) ppm. ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ 166.3, 166.0, 161.5, 134.8, 131.0, 129.0, 128.2, 127.2, 126.8, 113.5, 55.3, 45.6, 44.2, 18.0 ppm. **HRMS** calc'd for C₁₈H₂₁N₂O₃⁺ 313.1547, found 313.1545 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 20.99 min, *t_{minor}* = 23.22 min; **[a]**²⁰ = 45.70 (*c* 1.0, MeOH).

(S)-N-(1-(4-Methoxybenzamido)propan-2-yl)-2-methylbenzamide (3ab)

The reaction was performed with *N*-allyl-4-methoxybenzamide **1a** (38.2 mg, 0.2 mmol) and 3-(*o*-tolyl)-1,4,2-dioxazol-5-one **2b** (70.8 mg, 0.4 mmol). The crude product was separated by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ab** (53.5 mg, 82% yield, 97% *ee*) as a white solid. **Mp**: 173 – 175 °C. **R**_f = 0.27 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.36 (t, *J* = 6.0 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.36 – 7.29 (m, 2H), 7.21 (d, *J* = 7.2 Hz, 2H), 7.02 – 6.97 (m, 2H), 4.28 – 4.14 (m, 1H), 3.80 (s, 3H), 3.46 – 3.34 (m, 2H), 2.28 (s, 3H), 1.14 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.7, 166.0, 161.5, 137.5, 135.0, 130.3, 129.1, 129.0, 127.0, 126.8, 125.4, 113.5, 55.3, 44.9, 44.3, 19.2, 18.0 ppm. **HRMS** calc'd for C₁₉H₂₃N₂O₃⁺ 327.1703, found 327.1702 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 6.21 min, t_{minor} = 8.45 min; [α]²⁰ = 24.73 (*c* 1.0, MeOH).

(S)-2-Methoxy-N-(1-(4-methoxybenzamido)propan-2-yl)benzamide (3ac)

The reaction was performed with *N*-allyl-4-methoxybenzamide **1a** (38.2 mg, 0.2 mmol) and 3-(2-methoxyphenyl)-1,4,2-dioxazol-5-one **2c** (77.2 mg, 0.4 mmol). The crude product was separated by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ac** (56.7 mg, 83% yield, 90% *ee*) as a white solid. **Mp**: 160 – 162 °C. **R**_f = 0.20 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.46 (t, *J* = 6.0 Hz, 1H), 8.18 (d, *J* = 7.6 Hz, 1H), 7.89 – 7.79 (m, 2H), 7.72 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.49 – 7.35 (m, 1H), 7.09 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.05 – 6.94 (m, 3H), 4.25- 4.12 (m, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 3.48 – 3.37 (m, 2H), 1.16 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.3, 164.7, 161.6, 157.0, 132.1, 130.3, 129.0, 126.6, 123.2, 120.4, 113.5, 111.9, 55.8, 55.4, 45.7, 43.9, 18.2 ppm. **HRMS** calc'd for C₁₉H₂₃N₂O₄⁺ 343.1652, found 343.1650 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 13.40 min, *t_{minor}* = 15.72 min; [α]²⁰ = 40.37 (*c* 1.0, MeOH).

(S)-N-(1-(4-Methoxybenzamido)propan-2-yl)-3-methylbenzamide (3ad)

The reaction was performed with *N*-allyl-4-methoxybenzamide **1a** (38.2 mg, 0.2 mmol) and 3-(*m*-tolyl)-1,4,2-dioxazol-5-one **2d** (70.8 mg, 0.4 mmol). The crude product was separated by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ad** (56.7 mg, 83% yield, 92% *ee*) as a white solid. **Mp**: 197 – 199 °C. **R**_f = 0.29 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.44 (t, *J* = 6.0 Hz, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.84 – 7.77 (m, 2H), 7.65 (d, *J* = 2.0 Hz, 1H), 7.61 (dt, *J* = 6.4, 2.0 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.02 – 6.95 (m, 2H), 4.28 – 4.15 (m, 1H), 3.79 (s, 3H), 3.44 – 3.38 (m, 2H), 2.35 (s, 3H), 1.16 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.3, 166.1, 161.5, 137.4, 134.8, 131.6, 129.0, 128.1, 127.8, 126.8, 124.4, 113.5, 55.3, 45.5, 44.2, 21.0, 18.0 ppm. **HRMS** calc'd for C₁₉H₂₃N₂O₃+ 327.1703, found 327.1701 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 7.05 min, *t_{minor}* = 8.55 min; **[a]**²⁰ = 41.40 (*c* 1.0, MeOH).

(S)-3-Methoxy-N-(1-(4-methoxybenzamido)propan-2-yl)benzamide (3ae)

mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ae** (58.1 mg, 85% yield, 95% *ee*) as a white solid. **Mp**: 182 – 184 °C. **R**_f = 0.24 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.46 (t, *J* = 6.0 Hz, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.95 – 7.73 (m, 2H), 7.53 – 7.28 (m, 3H), 7.12 –7.04 (m, 1H), 7.02 – 6.87 (m, 2H), 4.32 – 4.15 (m, 1H), 3.80 (s, 6H), 3.49 – 3.37 (m, 2H), 1.17 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.4, 165.7, 161.5, 159.1, 136.3, 129.3, 129.0, 126.8, 119.5, 116.8, 113.5, 112.5, 55.3, 55.3, 45.7, 44.2, 18.0 ppm. **HRMS** calc'd for C₁₉H₂₃N₂O₄⁺ 343.1652, found 343.1649 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 8.97 min, *t_{minor}* = 11.34 min; $[\alpha]_{D}^{20}$ = 26.63 (*c* 1.0, MeOH).

(S)-4-(tert-Butyl)-N-(1-(4-methoxybenzamido)propan-2-yl)benzamide (3af)

mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3af** (58.1 mg, 79% yield, 94% *ee*) as a white solid. Mp: 210 - 212°C. $\mathbf{R}_f = 0.28$ (petroleum ether : ethyl acetate = 1 : 1.5). ¹H NMR (400 MHz, DMSO- d_6) δ 8.44 (t, J = 6.0 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.89 – 7.79 (m, 2H), 7.76 (dd, J = 8.4, 1.2 Hz, 2H), 7.45 (dd, J = 8.4, 1.2 Hz, 2H), 7.06 – 6.90 (m, 2H), 4.21 (h, J = 6.8 Hz, 1H), 3.79 (s, 3H), 3.40 (q, J = 6.0 Hz, 2H), 1.28 (s, 9H), 1.16 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ 166.3, 165.9, 161.5, 153.8, 132.1, 129.0, 127.1, 126.8, 125.0, 113.5, 55.3, 45.5, 44.3, 34.6, 31.0, 18.0 ppm. HRMS calc'd for C₂₂H₂₉N₂O₃⁺ 369.2173, found 369.2172 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 6.52$ min, $t_{minor} =$ 9.31 min; $[\alpha]_{p}^{20} = 22.44$ (*c* 1.0, MeOH).

(S)-N,N'-(Propane-1,2-diyl)bis(4-methoxybenzamide) (3ag)

mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product 3ag (56.7 mg, 83% yield, 96% ee) as a white solid. Mp: 206 - 208 °C. $\mathbf{R}_f = 0.19$ (petroleum ether : ethyl acetate = 1 : 1.5). ¹H NMR (400 MHz, DMSO- d_6) δ 8.44 (t, J = 6.0 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.88 - 7.75 (m, 4H), 7.05 - 6.91 (m, 4H), 4.25 - 4.16 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.39 (td, J = 6.4, 2.4 Hz, 2H), 1.15 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-d₆) δ 166.3, 165.4, 161.5, 161.5, 129.0, 127.0, 126.8, 113.5, 113.4, 55.3, 45.5, 44.3, 18.1 ppm. HRMS calc'd for C₁₉H₂₃N₂O₄⁺ 343.1652, found 343.1654 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 11.22 \text{ min}, t_{minor} = 14.47 \text{ min}; [\alpha]_{p}^{20} = 9.84 (c \ 1.0, \text{ MeOH}).$

0.2

mmol)

and

(S)-4-Fluoro-N-(1-(4-methoxybenzamido)propan-2-yl)benzamide (3ah)

The reaction was performed with *N*-allyl-4-methoxybenzamide **1a** (38.2 mg, 0.2 mmol) and 3-(4-fluorophenyl)-1,4,2-dioxazol-5-one **2h** (72.4 mg, 0.4 mmol). The crude product was separated by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ah** (46.2 mg, 70% yield, 97% *ee*) as a white solid. **Mp**: 227 – 229 °C. **R**_f = 0.26 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.44 (t, *J* = 6.0 Hz, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 7.97 – 7.86 (m, 2H), 7.85 – 7.66 (m, 2H), 7.41 – 7.19 (m, 2H), 7.12 – 6.78 (m, 2H), 4.31 – 4.12 (m, 1H), 3.79 (s, 3H), 3.39 (dt, *J* = 6.4, 4.0 Hz, 2H), 1.16 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.8, 165.4, 165.2 (d, *J*₁ = 246.4 Hz), 162.0, 131.7 (d, *J*₄ = 2.3 Hz), 130.3 (d, *J*₃ = 9.1 Hz), 129.5, 127.3, 115.5 (d, *J*₂ = 21.9 Hz), 113.9, 55.8, 46.1, 44.6, 18.4 ppm. ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -109.78 ppm. **HRMS** calc'd for C₁₈H₂₀FN₂O₃⁺ 331.1452, found 331.1450 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 9.30 min, t_{minor} = 11.74 min; **[a]**²⁰_p = 69.56 (*c* 1.0, MeOH).

(S)-4-Chloro-N-(1-(4-methoxybenzamido)propan-2-yl)benzamide (3ai)

The reaction was performed with N-allyl-4-methoxybenzamide1a(38.2mg,0.2mmol)and3-(4-chlorophenyl)-1,4,2-dioxazol-5-one2i (78.8mg,0.4mmol).

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ai** (49.8 mg, 72% yield, 94% *ee*) as a white solid. **Mp**: 235 – 237 °C. **R**_f = 0.27 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.44 (t, *J* = 6.0 Hz, 1H), 8.37 (d, *J* = 8.0 Hz, 1H), 7.88 – 7.83 (m, 2H), 7.83 – 7.76 (m, 2H), 7.58 – 7.50 (m, 2H), 7.02 – 6.93 (m, 2H), 4.28 – 4.13 (m, 1H), 3.79 (s, 3H), 3.39 (dt, *J* = 6.4, 3.6 Hz, 2H), 1.15 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.8, 165.3, 162.0, 136.3, 134.0, 129.7, 129.5, 128.8, 127.2, 113.9, 55.8, 46.1, 44.6, 18.4 ppm. **HRMS** calc'd for C₁₈H₂₀ClN₂O₃⁺ 347.1157, found 347.1161 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 12.70 min, *t_{minor}* = 11.11 min; **[a**]²⁰ = 56.85 (*c* 1.0, MeOH).

(S)-4-Bromo-N-(1-(4-methoxybenzamido)propan-2-yl)benzamide (3aj)

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3aj** (58.5 mg, 75% yield, 95% *ee*) as a white solid. **Mp**: 240 – 242 °C. **R**_f = 0.28 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.44 (t, *J* = 6.0 Hz, 1H), 8.37 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.83 – 7.72 (m, 2H), 7.59 – 7.49 (m, 2H), 7.04 – 6.92 (m, 2H), 4.30 – 4.12 (m, 1H), 3.79 (s, 3H), 3.39 (td, *J* = 6.4, 1.6 Hz, 2H), 1.15 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.3, 164.9, 161.5, 135.9, 133.6, 129.2, 129.0, 128.3, 126.8, 113.5, 55.3, 45.7, 44.1, 18.0 ppm. **HRMS** calc'd for C₁₈H₂₀BrN₂O₃⁺ 391.0652, found 391.0650 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 11.50$ min, $t_{minor} = 10.36$ min; [**a**]²⁰ = 30.55 (*c* 1.0, MeOH).

(S)-4-Methoxy-N-(2-(4-(trifluoromethoxy)benzamido)propyl)benzamide (3ak)

The reactionwasperformedwithN-allyl-4-methoxybenzamide1a(38.2 mg, 0.2 mmol) and3-(4-(trifluoromethoxy)phenyl)-1,4,2-dioxazol-5-one2k(98.8

mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ak** (61.8 mg, 78% yield, 99% *ee*) as a white solid. **Mp**: 203 – 205 °C. **R**_f = 0.23 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.46 – 8.37 (m, 2H), 7.98 – 7.93 (m, 2H), 7.83 – 7.78 (m, 2H), 7.49 – 7.42 (m, 2H), 7.00 – 6.94 (m, 2H), 4.29 – 4.16 (m, 1H), 3.79 (s, 3H), 3.45 – 3.36 (m, 2H), 1.16 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.3, 164.7, 161.5, 150.2, 134.0, 129.6, 129.0, 126.8, 120.6, 119.9 (q, *J*₁ = 255.1 Hz), 113.5, 55.3, 45.7, 44.1, 17.9 ppm. ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -56.70 ppm. **HRMS** calc'd for C₁₉H₂₀F₃N₂O₄⁺ 397.1370, found 397.1372 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 15.93 min, *t_{minor}* = 13.69 min; **[a]**²⁰_P = 50.56 (*c* 1.0, MeOH).

(S)-N-(1-(4-Methoxybenzamido)propan-2-yl)thiophene-2-carboxamide (3al)

The reaction was performed with *N*-allyl-4-methoxybenzamide **1a** (38.2 mg, 0.2 mmol) and 3-(thiophen-2-yl)-1,4,2-dioxazol-5-one **2l** (67.6 mg, 0.4 mmol). The crude product was separated by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3al** (45.2 mg, 71% yield, 93% *ee*) as a white solid. **Mp**: 190 – 192 °C. **R**_f = 0.25 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.45 (t, *J* = 6.0 Hz, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 7.84 – 7.79 (m, 2H), 7.74 – 7.68 (m, 2H), 7.14 (dd, *J* = 5.2, 3.6 Hz, 1H), 7.03 – 6.93 (m, 2H), 4.24 – 4.11 (m, 1H), 3.79 (s, 3H), 3.41 (td, *J* = 12.4, 11.6, 6.0 Hz, 2H), 1.15 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.3, 161.5, 160.7, 140.3, 130.6, 129.1, 128.0, 127.8, 126.7, 113.5, 55.3, 45.5, 44.1, 18.0 ppm. **HRMS** calc'd for C₁₆H₁₉N₂O₃S⁺ 319.1111, found 319.1114 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 9.13 min, t_{minor} = 11.36 min; $[\alpha]_{n}^{20}$ = 54.54 (c 1.0, MeOH).

N-((3S)-3-Benzamidobutan-2-yl)-4-methoxybenzamide (3ba)

The reaction was performed with N-(but-3-en-2-yl)-4-methoxybenzamide **1b** (41.0 mg, 0.2 mmol) and 3-phenyl-1,4,2-dioxazol-5-one **2a** (65.2 mg, 0.4 mmol). The crude

product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ba** in two diastereoisomers (dr = 1.2:1) as a white solid.

Major diastereoisomer: (22.1 mg, 34% yield, 90% ee), **Mp**: 181 – 183 °C. **R**_f = 0.28 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.23 (d, *J* = 7.8 Hz, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.84 – 7.73 (m, 4H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.44 (dd, *J* = 8.4, 6.6 Hz, 2H), 7.03 – 6.93 (m, 2H), 4.18 (m, 2H), 3.79 (s, 3H), 1.17 (d, *J* = 5.8 Hz, 6H) ppm. ¹³**C NMR** (150 MHz, DMSO-*d*₆) δ 166.4, 165.8, 161.4, 135.0, 131.0, 129.1, 128.2, 127.2, 127.1, 55.3, 49.4, 49.2, 17.8, 17.8 ppm. **HRMS** calc'd for C₁₉H₂₃N₂O₃⁺ 327.1703, found 327.1706 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 12.53 min, t_{minor} = 14.05 min; **[a]**²⁰ = 36.53 (*c* 1.0, MeOH).

Minor diastereoisomer: (18.4 mg, 28% yield, 82% ee), Mp: 178 - 180 °C. $\mathbf{R}_f = 0.26$ (petroleum ether :

ethyl acetate = 1 : 1.5). ¹**H** NMR (600 MHz, DMSO-*d*₆) δ 8.39 (d, *J* = 7.2 Hz, 1H), 8.24 (d, *J* = 7.2 Hz, 1H), 7.85 (t, *J* = 7.2 Hz, 4H), 7.52 (t, *J* = 7.2Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 4.20 (m, 2H), 3.81 (s, 3H), 1.14 (d, *J* = 5.3 Hz, 6H) ppm. ¹³**C** NMR (150 MHz, DMSO-*d*₆) δ 166.0, 165.5, 161.5, 134.8, 131.1, 129.1, 128.2, 127.3, 126.9, 113.4, 55.4, 49.2, 49.1, 17.5, 17.4 ppm. HRMS calc'd for C₁₉H₂₃N₂O₃⁺ 327.1703, found 327.1704 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 19.03 min, *t_{minor}* = 20.07 min; [**α**]²⁰_p = 16.87 (*c* 1.0, MeOH).

N-((2S,3S)-3-Benzamido-1-phenylbutan-2-yl)-4-methoxybenzamide (3ca)

Thereactionwasperformedwith(S)-4-methoxy-N-(1-phenylbut-3-en-2-yl)benzamide1c(56.2 mg, 0.2mmol)and 3-phenyl-1,4,2-dioxazol-5-one2a(65.2 mg, 0.4 mmol).

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ca** (62.7 mg, 78% yield, 92% de) as a white solid. **Mp**: 201 – 203 °C. **R**_f = 0.26 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.27 (d, *J* = 8.4 Hz, 1H), 8.14 (d, *J* = 8.8 Hz, 1H), 7.89 – 7.80 (m, 2H), 7.76 – 7.68 (m, 2H), 7.54 – 7.45 (m, 3H), 7.28 – 7.19 (m, 4H), 7.16 – 7.10 (m, 1H), 6.99 – 6.93 (m, 2H), 4.39 – 4.23 (m, 2H), 3.78 (s, 3H), 2.96 (dd, *J* = 13.6, 4.4 Hz, 1H), 2.85 (dd, *J* = 13.6, 9.6 Hz, 1H), 1.20 (d, *J* = 6.4 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 166.4, 166.3, 161.5, 139.2, 135.1, 131.1, 129.1, 129.0, 128.3, 128.1, 127.3, 127.1, 126.0, 113.4, 55.3, 54.9, 48.5, 37.2, 18.1 ppm. **HRMS** calc'd for C₂₅H₂₇N₂O₃⁺ 403.2016, found 403.2011 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: *t_{major}* = 5.14 min, *t_{minor}* = 7.82 min; **[a]**²⁰ = 68.50 (*c* 1.0, MeOH).

N-((1S,2S)-2-Benzamido-1-cyclohexylpropyl)-4-methoxybenzamide (3da)

The reaction was performed with (S)-N-(1-cyclohexylallyl)-4-methoxybenzamide 1d (54.6 mg, 0.2 mmol) and 3-phenyl-1,4,2-dioxazol-5-one 2a (65.2 mg, 0.4 mmol).

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3da** (53.6 mg, 68% yield, 90% de) as a white solid. **Mp**: 206 – 208 °C. **R**_f = 0.25 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.38 (t, *J* = 5.6 Hz,

1H), 7.99 (d, J = 8.8 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.84 – 7.77 (m, 2H), 7.54 – 7.47 (m, 1H), 7.47 – 7.39 (m, 2H), 7.02 – 6.93 (m, 2H), 3.87 (d, J = 3.1 Hz, 1H), 3.81 (s, 3H), 3.47 – 3.36 (m, 1H), 3.20 – 3.04 (m, 1H), 1.95– 1.85 (m, 1H), 1.83 – 1.64 (m, 5H), 1.63 – 1.55 (m, 1H), 1.55 – 1.44 (m, 1H), 1.22 – 1.09 (m, 3H), 1.03 – 0.89 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ 166.5, 166.4, 161.9, 135.2, 131.5, 129.6, 128.7, 127.5, 113.8, 55.8, 52.2, 41.8, 37.4, 31.4, 29.9, 29.5, 26.5, 26.3, 26.2 ppm. HRMS calc'd for C₂₄H₃₁N₂O₃⁺ 395.2329, found 395.2327 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 8.53$ min, $t_{minor} = 14.05$ min; $[\alpha]_{20}^{20} = 42.98$ (*c* 1.0, MeOH).

(S)-N-(2-Benzamidobutyl)-4-methoxybenzamide (3ea)

product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3ea** (26.7 mg, 41% yield, 93% *ee*) as a white solid. **Mp**: 219 – 221 °C. **R**_f = 0.35 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.37 (t, *J* = 6.6 Hz, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 6.6 Hz, 2H), 7.80 (d, *J* = 8.4 Hz, 2H), 7.54 – 7.49 (t, *J* = 8.4 Hz, 1H), 7.45 (t, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 2H), 4.15 – 4.04 (m, 1H), 3.79 (s, 3H), 3.48 – 3.37 (m, 2H), 1.60 (m, 1H), 1.57 – 1.49 (m, 1H), 0.89 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (150 MHz, DMSO-*d*₆) δ 166.4, 166.2, 161.5, 134.9, 131.0, 129.0, 128.2, 127.3, 126.9, 113.4, 55.3, 51.2, 42.9, 24.6, 10.6 ppm. **HRMS** calc'd for C₁₉H₂₁N₂O₃ 325.1558, found 235.1556 [M-H]⁻; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: $t_{major} = 11.06 \min, t_{minor} = 10.21 \min; [$ **a** $]_p²⁰ = 33.56 (c 1.0, MeOH).$

tert-Butyl-(S)-(2-(4-methoxybenzamido)propyl)carbamate (3fg)

The reaction was performed with *tert*-butyl allylcarbamate **1f** (31.4 mg, 0.2 mmol) and 3-(4-methoxyphenyl)-1,4,2-dioxazol-5-one **2g** (77.2 mg, 0.4 mmol). The crude product was separated by flash chromatography

on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **3fg** (22.2 mg, 36% yield, 94% *ee*) as a white solid. **Mp**: 158 – 160 °C. **R**_f = 0.50 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR**

(400 MHz, DMSO-*d*₆) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 6.93 (t, *J* = 6.0 Hz, 1H), 4.02 (m, 1H), 3.80 (s, 3H), 3.05 (m, 2H), 1.35 (s, 9H), 1.07 (d, *J* = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.2, 161.4, 156.0, 129.1, 126.9, 113.3, 77.7, 55.3, 45.5, 44.8, 28.2, 17.9 ppm. HRMS calc'd for C₁₆H₂₅N₂O₄⁺ 309.1809, found 309.1807 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK OJ-H *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 3.94 min, *t_{minor}* = 4.66 min; [**a**]²⁰_p = 45.68 (*c* 1.0, MeOH).

(S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)benzamide (5aa)

The reaction was performed with *N*-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-phenyl-1,4,2-dioxazol-5-one **2a** (65.2 mg, 0.4 mmol). The crude

product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5aa** (50.5 mg, 81% yield, 98% *ee*) as a white solid. **Mp**: 209 – 211 °C. **R**_f = 0.32 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 9.80 (s, 1H), 8.34 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.48 – 7.35 (m, 5H), 6.86 (d, *J* = 8.4 Hz, 2H), 4.56 – 4.24 (m, 1H), 3.70 (s, 3H), 2.61 (dd, *J* = 14.4, 6.6 Hz, 1H), 2.49 – 2.45 (dd, *J* = 14.4, 6.6 Hz, 1H), 1.22 (d, *J* = 6.6 Hz, 3H) ppm. ¹³**C NMR** (150 MHz, DMSO-*d*₆) δ 168.7, 165.5, 155.1, 134.8, 132.3, 131.1, 128.2, 127.2, 120.8, 113.8, 55.1, 43.0, 42.9, 20.3 ppm. **HRMS** calc'd for C₁₈H₂₁N₂O₃⁺ 313.1547, found 313.1552 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 8.57 min, *t_{minor}* = 17.81 min; **[a]**²⁰_D = 62.58 (*c* 1.0, MeOH).

(S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-2-methylbenzamide (5ab)

The reaction was performed with N-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-(o-tolyl)-1,4,2-dioxazol-5-one **2b** (70.8 mg, 0.4 mmol). The crude

product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ab** (54.1 mg, 83% yield, 99% *ee*) as a white solid. **Mp**: 196 – 198 °C. **R**_f = 0.31 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.46 – 7.39 (m, 2H), 7.35 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.29 (td, *J* = 7.6, 1.6 Hz, 1H), 7.21 – 7.14 (m, 2H), 6.90 –

6.81 (m, 2H), 6.72 (d, J = 8.4 Hz, 1H), 4.57 (dt, J = 13.2, 6.4 Hz, 1H), 3.79 (s, 3H), 2.75 (dd, J = 15.2, 4.8 Hz, 1H), 2.63 (dd, J = 15.2, 4.8 Hz, 1H), 2.42 (s, 3H), 1.41 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 169.2, 156.7, 136.3, 136.1, 131.2, 130.9, 130.1, 127.0, 126.0, 122.1, 114.3, 55.6, 43.4, 43.3, 20.6, 19.9 ppm. HRMS calc'd for C₁₉H₂₃N₂O₃⁺ 327.1703, found 327.1705 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 6.96$ min, $t_{minor} = 10.80$ min; $[\alpha]_{p}^{20} = 20.91$ (*c* 1.0, MeOH).

(S)-2-Methoxy-N-(4-((4-methoxyphenyl)amino)-4-oxobutan-2-yl)benzamide (5ac)

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ac** (59.5 mg, 87% yield, 97% *ee*) as a white solid. **Mp**: 198 – 200 °C. **R**_f = 0.21 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.90 (s, 1H), 8.56 (d, *J* = 8.0 Hz, 1H), 7.79 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.61 – 7.49 (m, 2H), 7.47 – 7.40 (m, 1H), 7.12 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.03 (td, *J* = 7.6, 1.2 Hz, 1H), 6.93 – 6.78 (m, 2H), 4.47 – 4.29 (m, 1H), 3.88 (s, 3H), 3.72 (s, 3H), 2.60 (dd, *J* = 14.4, 6.0 Hz, 1H), 2.54 – 2.51 (dd, *J* = 14.4, 6.0 Hz, 1H), 1.23 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.9, 163.9, 157.0, 155.2, 132.2, 130.5, 122.9, 120.8, 120.5, 113.8, 112.1, 55.8, 55.1, 42.7, 42.1, 20.1 ppm. **HRMS** calc'd for C₁₉H₂₃N₂O₄⁺ 343.1652, found 343.1647 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 12.78 min, *t_{minor}* = 15.98 min; [**a**]²⁰ = 19.24 (*c* 1.0, MeOH).

(S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-3-methylbenzamide (5ad)

The reaction was performed with N-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-(m-tolyl)-1,4,2-dioxazol-5-one **2d** (70.8 mg, 0.4 mmol). The

crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ad** (52.1 mg, 80% yield, 97% *ee*) as a white solid. **Mp**: 160 – 162 °C. **R**_f = 0.29 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.81 (s, 1H), 8.30 (d,

J = 8.0 Hz, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.61 (dt, J = 6.0, 2.4 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.38 – 7.29 (m, 2H), 6.89 – 6.83 (m, 2H), 4.50 – 4.34 (m, 1H), 3.71 (s, 3H), 2.61 (dd, J = 14.4, 6.4 Hz, 1H), 2.50 – 2.44 (dd, J = 14.4, 6.4 Hz, 1H), 2.35 (s, 3H), 1.22 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ 168.7, 165.6, 155.1, 137.4, 134.8, 132.3, 131.6, 128.1, 127.7, 124.4, 120.8, 113.8, 55.1, 42.9, 20.9, 20.3 ppm. HRMS calc'd for C₁₉H₂₃N₂O₃⁺ 327.1703, found 327.1702 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 5.30$ min, $t_{minor} = 8.32$ min; $[\alpha]_{p}^{20} = 12.35$ (*c* 1.0, MeOH).

(S)-3-Methoxy-N-(4-((4-methoxyphenyl)amino)-4-oxobutan-2-yl)benzamide (5ae)

The reaction was performed with N-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-(3-methoxyphenyl)-1,4,2-dioxazol-5-one **2e** (77.2 mg,

0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ae** (58.1 mg, 85% yield, 98% *ee*) as a white solid. **Mp**: 175 – 177 °C. **R**_f = 0.20 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.81 (s, 1H), 8.34 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.42 – 7.33 (m, 3H), 7.09 – 7.05 (m, 1H), 6.91 – 6.77 (m, 2H), 4.53 – 4.46 (m, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 2.62 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.47 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.22 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.7, 165.3, 159.1, 155.2, 136.3, 132.3, 129.4, 120.8, 119.5, 116.8, 113.8, 112.6, 55.3, 55.1, 43.1, 42.9, 20.3 ppm. **HRMS** calc'd for C₁₉H₂₃N₂O₄⁺ 343.1652, found 343.1656 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 8.28 min, *t_{minor}* = 16.84 min; **[a]**²⁰ = 28.39 (*c* 1.0, MeOH).

(S)-4-Fluoro-N-(4-((4-methoxyphenyl)amino)-4-oxobutan-2-yl)benzamide (5ah)

The reaction was performed with N-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-(4-fluorophenyl)-1,4,2-dioxazol-5-one **2h** (72.4 mg, 0.4 mmol).

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ah** (49.5 mg, 75% yield, 96% *ee*) as a white solid. **Mp**: 227 – 229 °C. **R**_f = 0.28 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.80 (s, 1H), 8.38

(d, J = 8.0 Hz, 1H), 7.98 – 7.90 (m, 2H), 7.54 – 7.43 (m, 2H), 7.31 – 7.26 (m, 2H), 6.96 – 6.77 (m, 2H), 4.51 – 4.30 (m, 1H), 3.70 (s, 3H), 2.61 (dd, J = 14.4, 6.4 Hz, 1H), 2.46 (dd, J = 14.4, 6.4 Hz, 1H), 1.21 (d, J = 6.8 Hz, 3H) ppm. ¹³**C** NMR (100 MHz, DMSO- d_6) δ 168.6, 164.5, 163.8 (d, $J_I = 246.5$ Hz), 155.2, 132.3, 131.2(d, $J_4 = 3.2$ Hz), 129.9 (d, $J_3 = 8.6$ Hz), 120.8, 115.1 (d, $J_2 = 21.3$ Hz), 113.8, 55.1, 43.1, 42.9, 20.2 ppm. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -109.75 ppm. HRMS calc'd for C₁₈H₂₀FN₂O₃+ 331.1452, found 331.1453 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 6.76$ min, $t_{minor} = 11.65$ min; $[a]_{p}^{20} =$ 10.65 (*c* 1.0, MeOH).

(S)-4-Chloro-N-(4-((4-methoxyphenyl)amino)-4-oxobutan-2-yl)benzamide (5ai)

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ai** (50.5 mg, 73% yield, 91% *ee*) as a white solid. **Mp**: 236 – 238 °C. **R**_f = 0.26 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.81 (s, 1H), 8.45 (d, *J* = 8.0 Hz, 1H), 7.97 – 7.82 (m, 2H), 7.57 – 7.52 (m, 2H), 7.51 – 7.45 (m, 2H), 6.90 – 6.83 (m, 2H), 4.56 – 4.23 (m, 1H), 3.71 (s, 3H), 2.62 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.48 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.22 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.6, 164.5, 155.2, 135.9, 133.5, 132.3, 129.2, 128.3, 120.8, 113.8, 55.1, 43.1, 42.9, 20.2 ppm. **HRMS** calc'd for C₁₈H₂₀ClN₂O₃⁺ 347.1157, found 347.1155 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 9.12 min, *t_{minor}* = 13.10 min; **[a]**²⁰ = 27.38 (*c* 1.0, MeOH).

(S)-4-Bromo-N-(4-((4-methoxyphenyl)amino)-4-oxobutan-2-yl)benzamide (5aj)

The reaction was performed with N-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-(4-bromophenyl)-1,4,2-dioxazol-5-one **2j** (96.8 mg, 0.4 mmol).

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5aj** (59.4 mg, 76% yield, 99% *ee*) as a white solid. **Mp**: 253 - 255 °C. **R**_f

= 0.27 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 9.80 (s, 1H), 8.45 (d, *J* = 8.0 Hz, 1H), 7.85 – 7.73 (m, 2H), 7.73 – 7.62 (m, 2H), 7.51 – 7.46 (m, 2H), 6.89 – 6.84 (m, 2H), 4.52 – 4.40 (m, 1H), 3.71 (s, 3H), 2.61 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.46 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.22 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 168.5, 164.5, 155.1, 133.9, 132.3, 131.2, 129.4, 124.8, 120.8, 113.8, 55.1, 43.1, 42.8, 20.2 ppm. HRMS calc'd for C₁₈H₂₀BrN₂O₃⁺ 391.0652, found 391.0647 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 12.09 min, *t_{minor}* = 17.14 min; [*a*]²⁰_D = 19.20 (*c* 1.0, MeOH).

(S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-4-(trifluoromethoxy)benzamide (5ak)

The reaction was performed with N-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-(4-(trifluoromethoxy)phenyl)-1,4,2-dioxazol-5-one **2k**

(98.8 mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ak** (61.8 mg, 78% yield, 91% *ee*) as a white solid. **Mp**: 242 – 244 °C. **R**_f = 0.22 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.82 (s, 1H), 8.48 (d, *J* = 8.0 Hz, 1H), 7.98 – 7.89 (m, 2H), 7.47 (dd, *J* = 9.2, 7.2 Hz, 4H), 6.89 – 6.83 (m, 2H), 4.52 – 4.30 (m, 1H), 3.70 (s, 3H), 2.61 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.47 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.21 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.5, 164.3, 155.2, 150.2, 133.9, 132.3, 129.6, 120.8, 120.6, 119.9(q, *J*₁ = 255.3 Hz), 113.8, 55.1, 43.1, 42.8, 20.2 ppm. ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -56.71 ppm. **HRMS** calc'd for C₁₉H₂₀F₃N₂O₄⁺ 397.1370, found 397.1373 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 8.38 min, *t_{minor}* = 11.37 min; [*a*]²⁰ = 36.35 (*c* 1.0, MeOH).

(S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-4-((trifluoromethyl)thio)benzamide (5am)

ThereactionwasperformedwithN-(4-methoxyphenyl)but-3-enamide4a (38.2 mg, 0.2 mmol)and3-(4-((trifluoromethyl)thio)phenyl)-1,4,2-dioxazol-5-one

2m (104.8 mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel

(petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5am** (54.4 mg, 66% yield, 99% *ee*) as a white solid. **Mp**: 246 – 248 °C. **R**_f = 0.24 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.82 (s, 1H), 8.56 (d, *J* = 8.0 Hz, 1H), 8.01 – 7.90 (m, 2H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.53 – 7.41 (m, 2H), 6.91 – 6.81 (m, 2H), 4.52 – 4.36 (m, 1H), 3.70 (s, 3H), 2.61 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.47 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.22 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.5, 164.6, 155.2, 137.5, 135.9, 132.3, 129.5(q, *J*_{*I*} = 306.3 Hz), 128.7, 126.0, 120.8, 113.8, 55.1, 43.2, 42.8, 20.2 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -41.70 ppm. **HRMS** calc'd for C₁₉H₂₀F₃N₂O⁺ 413.1141, found 413.1139 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 7.16 min, *t_{minor}* = 15.35 min; [*a*]²⁰ = 22.30 (*c* 1.0, MeOH).

(S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)benzo[d][1,3]dioxole-5-carboxamide (5an)

The reaction was performed with N-(4-methoxyphenyl)but-3-enamide **4a** (38.2 mg, 0.2 mmol) and 3-(benzo[d][1,3]dioxol-5-yl)-1,4,2-dioxazol-5-one **2n** (82.8 mg,

0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5an** (60.5 mg, 85% yield, 99% *ee*) as a white solid. **Mp**: 256 – 258 °C. **R**_f = 0.18 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.42 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.37 (d, *J* = 1.6 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.89 – 6.82 (m, 2H), 6.08 (s, 2H), 4.48 – 4.24 (m, 1H), 3.70 (s, 3H), 2.59 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.46 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.20 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.7, 164.6, 155.2, 149.6, 147.3, 132.3, 128.8, 122.2, 120.8, 113.8, 107.8, 107.4, 101.6, 55.1, 43.0, 43.0, 20.3 ppm. **HRMS** calc'd for C₁₉H₂₁N₂O₅⁺ 357.1445, found 357.1444 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 12.01 min, *t_{minor}* = 29.74 min; **[a]**²⁰ = 12.18 (*c* 1.0, MeOH).

(S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)thiophene-2-carboxamide (5al)

The reaction was performed with *N*-(4-methoxyphenyl)but-3-enamide 4a (38.2 mg, 0.2 mmol) and 3-(thiophen-2-yl)-1,4,2-dioxazol-5-one **21** (67.6 mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5al** (51.5 mg, 81% yield, 94% *ee*) as a white solid. **Mp**: 244 – 246 °C. **R**_f = 0.20 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 8.36 (d, *J* = 8.0 Hz, 1H), 7.79 – 7.70 (dd, *J* = 8.0, 4.4 Hz, 2H), 7.53 – 7.44 (m, 2H), 7.13 (dd, *J* = 5.2, 3.6 Hz, 1H), 6.91 – 6.81 (m, 2H), 4.44 – 4.28 (m, 1H), 3.70 (s, 3H), 2.61 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.46 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.21 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.5, 160.3, 155.1, 140.3, 132.3, 130.6, 127.9, 127.8, 120.8, 113.8, 55.1, 43.0, 42.9, 20.3 ppm. **HRMS** calc'd for C₁₆H₁₉N₂O₃S⁺ 319.1111, found 319.1115 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 6.91 min, t_{minor} = 14.26 min; $[\mathbf{a}]_{\mathbf{p}}^{20}$ = 21.04 (*c* 1.0, MeOH).

(S)-N-(4-Methoxyphenyl)-3-pivalamidobutanamide (5ao)

The reaction was performed with *N*-(4-methoxyphenyl)but-3-enamide 4a (38.2 mg, 0.2 mmol) and 3-(tert-butyl)-1,4,2-dioxazol-5-one 2o (57.2 mg, 0.4 mmol). The crude product was separated by flash

chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ao** (38.5 mg, 66% yield, 91% *ee*) as a white solid. **Mp**: 153 – 155 °C. **R**_f = 0.30 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.72 (s, 1H), 7.51 – 7.42 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 1H), 6.91 – 6.79 (m, 2H), 4.17 (dt, *J* = 14.0, 6.8 Hz, 1H), 3.70 (s, 3H), 2.47 (dd, *J* = 14.0, 7.2 Hz, 1H), 2.37 (dd, *J* = 14.0, 7.2 Hz, 1H), 1.10 (d, *J* = 6.8 Hz, 3H), 1.06 (s, 9H) ppm. ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ 176.5, 168.9, 155.1, 132.3, 120.8, 113.8, 55.1, 42.7, 42.4, 37.9, 27.4, 20.2 ppm. **HRMS** calc'd for C₁₆H₂₅N₂O₃⁺ 293.1860, found 293.1855 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 4.72 min, *t_{minor}* = 10.44 min; [**a**]²⁰ = 20.20 (*c* 1.0, MeOH).

(S)-N-(4-(Benzylamino)-4-oxobutan-2-yl)benzamide (5ba)

The reaction was performed with *N*-benzylbut-3-enamide **4b** (35.0 mg, 0.2 mmol) and 3-phenyl-1,4,2-dioxazol-5-one **2a** (57.2 mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel

(petroleum ether : ethyl acetate = 1 : 1.5) to give the product 5ba (50.9 mg, 86% yield, 96% ee) as a

white solid. **Mp**: 192 – 194 °C. **R**_f = 0.33 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.41 (t, *J* = 6.0 Hz, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 7.91 – 7.74 (m, 2H), 7.59 – 7.52 (m, 1H), 7.50 – 7.39 (m, 2H), 7.33 – 7.11 (m, 5H), 4.44 – 4.34 (m, 1H), 4.36 – 4.19 (m, 2H), 2.53 (dd, *J* = 14.0, 7.6 Hz, 1H), 2.37 (dd, *J* = 14.0, 7.6 Hz, 1H), 1.18 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 170.2, 165.4, 139.5, 134.8, 131.0, 128.2, 127.2, 127.1, 126.7, 43.0, 42.0, 42.0, 20.3 ppm. **HRMS** calc'd for C₁₈H₂₁N₂O₂⁺ 297.1598, found 297.1593 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 12.23 min, t_{minor} = 32.67 min; $[\alpha]_{20}^{20}$ = 21.66 (*c* 1.0, MeOH).

(S)-N-(1-((4-Methoxyphenyl)amino)-1-oxohexan-3-yl)benzamide (5ca)

product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5ca** (25.8 mg, 38% yield, 98% *ee*) as a white solid. **Mp**: 200 – 202 °C. **R**_f = 0.35 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.88 – 7.77 (m, 2H), 7.54 – 7.49 (m, 1H), 7.49 – 7.43 (m, 4H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.38 (m, 1H), 3.71 (s, 3H), 2.54 (m, 2H), 1.63 – 1.50 (m, 2H), 1.40 – 1.27 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.7, 165.8, 155.1, 134.9, 132.3, 131.0, 128.2, 127.2, 120.8, 113.8, 55.2, 46.7, 42.0, 36.2, 19.0, 13.9 ppm. **HRMS** calc'd for C₂₀H₂₃N₂O₃⁻ 339.1714, found 339.1733 [M-H]⁻; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 8.59 min, *t_{minor}* = 12.96 min; **[a]**²⁰_p = 32.58 (*c* 1.0, MeOH).

(S)-N-(1-((4-Methoxyphenyl)amino)-1-oxoheptan-3-yl)benzamide (5da)

Thereactionwasperformedwith(E)-N-(4-methoxyphenyl)hept-3-enamide4d (46.6 mg, 0.2 mmol) and3-phenyl-1,4,2-dioxazol-5-one2a (57.2 mg, 0.4 mmol). The crude

product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **5da** (21.2 mg, 30% yield, 95% *ee*) as a white solid. **Mp**: 208 – 210 °C. **R**_f = 0.33 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.78 (s, 1H), 8.25 (d, *J* =

8.4 Hz, 1H), 7.90 – 7.74 (m, 2H), 7.55 – 7.48 (m, 1H), 7.48 – 7.42 (m, 4H), 6.90 – 6.78 (m, 2H), 4.36 (h, J = 7.2 Hz, 1H), 3.70 (s, 3H), 2.53 (m, 2H), 1.57 (d, J = 6.8 Hz, 2H), 1.28 (m, 4H), 0.88 – 0.82 (t, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ 168.7, 165.8, 155.1, 134.9, 132.3, 131.0, 128.2, 127.2, 120.8, 113.8, 55.1, 46.9, 42.0, 33.6, 27.9, 22.0, 14.0 ppm. HRMS calc'd for C₂₁H₂₅N₂O₃⁻ 353.1871, found 353.1873 [M-H]⁻; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 10.47$ min, $t_{minor} = 13.40$ min; $[\alpha]_{p}^{20} = 35.39$ (*c* 1.0, MeOH).
Hydroamidation of natural products and bioactive molecules derivatives

Same as standard condition, in a glove box under a nitrogen atmosphere, NiBr₂ (4.4 mg, 0.02 mmol, 10 mol%) and L5 (12.6 mg, 0.03 mmol, 15 mol%) were added to a dry 8 ml reaction vial containing a magnetic stir bar. Then, 2 ml of anhydrous DMA was added to the mixture, which was stirred at room temperature for 10 minutes. Subsequently, (MeO)₃SiH (50 mg, 0.4 mmol, 2.0 equiv.) and NaI (15 mg, 0.1 mmol, 50 mol%) were sequentially added to the mixture and stirred. *N*-allyl-amides **1** or but-3-enamides **3** were then added to the mixture and finally 1,4,2-dioxazol-5-ones **2** were added. The reaction vial was sealed and taken out of the glove box, and the mixture was stirred at room temperature for 48 hours. After the completion of the reaction, 2 ml of EA was added to the reaction. The organic phase was further extracted using 2×30 ml of saturated NaCl solution. The organic phase was then dried using anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude material was loaded onto a silica gel column and purified by flash chromatography to to obtain **6-11**.

N-((S)-1-((S)-2-(6-Methoxynaphthalen-2-yl)propanamido)propan-2-yl)benzamide (6)

Thereactionwasperformedwith(S)-N-allyl-2-(6-methoxynaphthalen-2-yl)propanamide1g(53.8mg, 0.2 mmol) and 3-phenyl-1,4,2-dioxazol-5-one2a(57.2 mg, 0.4

mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **6** (60.1 mg, 77% yield, 96% de) as a white solid. **Mp**: 202 – 204 °C. **R**_{*J*} = 0.23 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.22 – 8.05 (m, 2H), 7.78 – 7.72 (m, 2H), 7.72 – 7.67 (m, 2H), 7.65 (d, J = 8.4 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.39 (td, J = 8.4, 1.6 Hz, 3H), 7.22 (d, J = 2.4 Hz, 1H), 7.11 (dd, J = 9.2, 2.4 Hz, 1H), 4.16 – 4.00 (m, 1H), 3.85 (s, 3H), 3.74 (q, J = 7.2 Hz, 1H), 3.20 (td, J = 6.4, 3.6 Hz, 2H), 1.41 (d, J = 7.2 Hz, 3H), 1.06 (d, J = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 174.0, 165.9, 157.0, 137.3, 134.7, 133.1, 131.0, 129.1, 128.4, 128.1, 127.2, 126.6, 126.5, 125.2, 118.5, 105.7, 55.1, 45.4, 45.1, 43.6, 18.5, 18.0 ppm. **HRMS** calc'd for C₂₄H₂₇N₂O₃⁺ 391.2016, found 391.2013 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 11.62 min, t_{minor} = 13.28 min; [**a**]²⁰ = 5.55 (*c* 1.0, MeOH).

(S)-N-(1-(2-(11-oxo-6,11-Dihydrodibenzo[b,e]oxepin-3-yl)acetamido)propan-2-yl)benzamide (7)

(57.2 mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product 7 (68.5 mg, 80% yield, 90% ee) as a white solid. **Mp**: 216 – 218 °C. **R**_f = 0.20 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.24 (t, *J* = 6.0 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* = 2.4 Hz, 1H), 7.77 (td, *J* = 7.6, 7.2, 1.2 Hz, 3H), 7.66 (td, *J* = 7.2, 1.2 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.50 – 7.38 (m, 4H), 6.96 (d, *J* = 8.4 Hz, 1H), 5.25 (s, 2H), 4.19 – 3.96 (m, 1H), 3.46 (s, 2H), 3.22 (t, *J* = 6.8 Hz, 2H), 1.10 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 190.2, 170.6, 165.8, 159.6, 140.0, 136.5, 135.9, 134.7, 133.0, 131.4, 131.0, 130.2, 129.2, 128.8, 128.3, 128.1, 127.2, 124.5, 120.5, 72.7, 45.4, 43.6, 41.2, 18.0 ppm. **HRMS** cale'd for C₂₆H₂₅N₂O₄⁺ 429.1809, found 429.1812 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 35.23 min, *t_{minor}* = 37.60 min; [**a**]²⁰ = 19.64 (*c* 1.0, MeOH).

(*S*)-*N*-(1-(2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetamido)propan-2-yl)benz amide (8)

product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 2) to give the product **8** (83.9 mg, 81% yield, 91% ee) as a white solid. **Mp**: 196 – 198 °C. **R**_f = 0.25 (petroleum ether : ethyl acetate = 1 : 2). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.16 (d, *J* = 8.0 Hz, 1H), 8.12 (t, *J* = 6.0 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.69 – 7.57 (m, 4H), 7.52 – 7.43 (m, 1H), 7.38 (dd, *J* = 8.4, 6.8 Hz, 2H), 7.11 (d, *J* = 2.4 Hz, 1H), 6.95 (d, *J* = 9.2 Hz, 1H), 6.69 (dd, *J* = 9.2, 2.4 Hz, 1H), 4.08 (dq, *J* = 15.2, 8.4 Hz, 1H), 3.73 (s, 3H), 3.53 (s, 2H), 3.32 – 3.13 (m, 2H), 2.17 (s, 3H), 1.10 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 170.0, 167.8, 165.9, 155.6, 137.5, 135.2, 134.7, 134.3, 131.1, 131.0, 130.9, 130.3, 129.0, 128.1, 127.2, 114.6, 114.2, 111.4, 101.7, 55.4, 45.5, 43.8, 31.1, 18.0, 13.3 ppm. **HRMS** calc'd for $C_{29}H_{29}ClN_3O_4^+$ 518.1841, found 518.1844 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 7.58 min, t_{minor} = 11.02 min; $[\alpha]_p^{20}$ = -7.43 (c 1.0, MeOH).

(S)-2-((2-(4-Methoxybenzamido)propyl)carbamoyl)phenyl acetate (9)

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 2) to give the product **9** (59.9 mg, 81% yield, 99% ec) as a white solid. **Mp**: 220 – 222 °C. **R**_f = 0.22 (petroleum ether : ethyl acetate = 1 : 2). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.39 (t, *J* = 6.0 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.84 – 7.80 (m, 2H), 7.55 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.49 (td, *J* = 7.6, 1.6 Hz, 1H), 7.31 (td, *J* = 7.6, 1.2 Hz, 1H), 7.16 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.00 – 6.96 (m, 2H), 4.19 (dt, *J* = 13.6, 6.8 Hz, 1H), 3.80 (s, 3H), 3.32 (t, *J* = 11.6 Hz, 2H), 2.16 (s, 3H), 1.15 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.9, 165.7, 165.4, 161.5, 148.0, 131.2, 129.5, 129.1, 128.9, 127.0, 125.8, 123.3, 113.4, 55.4, 45.2, 44.1, 20.7, 18.0 ppm. **HRMS** calc'd for C₂₀H₂₃N₂O₅⁺ 371.1601, found 371.1598 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 12.16 min, *t_{minor}* = 17.74 min; **[a]**²⁰ = 18.22 (*c* 1.0, MeOH).

(S)-3-(3-(4,5-Diphenyloxazol-2-yl)propanamido)-N-(4-methoxyphenyl)butanamide (10)

3-(2-(4,5-diphenyloxazol-2-yl)ethyl)-1,4,2-dioxazol-5-one **2p** (133.6 mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 2) to give the product **10** (69.6 mg, 72% yield, 93% ee) as a white solid. **Mp**: 232 – 234 °C. **R**_f = 0.18 (petroleum ether : ethyl acetate = 1 : 2). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.76 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.58 – 7.50 (m, 4H), 7.50 – 7.46 (m, 2H), 7.46 – 7.34 (m, 6H), 6.89 – 6.77 (m, 2H), 4.25 – 4.16 (m, 1H), 3.70 (s, 3H), 3.09 – 2.97 (m, 2H), 2.61 (td, *J* = 7.2, 1.6 Hz, 2H), 2.49 – 2.43 (m, 1H),

2.34 (dd, J = 14.0, 8.0 Hz, 1H), 1.09 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ 169.6, 168.4, 162.7, 155.1, 144.5, 134.3, 132.3, 132.1, 129.0, 128.8, 128.7, 128.5, 128.1, 127.4, 126.4, 120.8, 113.8, 55.1, 43.1, 42.3, 31.9, 23.4, 20.2 ppm. HRMS calc'd for C₂₉H₃₀N₃O₄⁺ 484.2231, found 484.2229 [M+H]⁺; HPLC analysis: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{major} = 8.45$ min, $t_{minor} = 12.54$ min; $[\alpha]_{\rm D}^{20} = 31.51$ (*c* 1.0, MeOH).

(S)-3-((S)-2-(4-Isobutylphenyl)propanamido)-N-(4-methoxyphenyl)butanamide (11)

(*S*)-3-(1-(4-isobutylphenyl)ethyl)-1,4,2-dioxazol-5-one **2q** (98.8 mg, 0.4 mmol). The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 1.5) to give the product **11** (53.8 mg, 68% yield, 96% de) as a white solid. **Mp**: 194 – 196 °C. **R**_{*f*} = 0.22 (petroleum ether : ethyl acetate = 1 : 1.5). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.68 (s, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.36 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.89 – 6.79 (m, 2H), 4.18 – 4.10 (m, 1H), 3.71 (s, 3H), 3.52 (q, *J* = 7.2 Hz, 1H), 2.40 (dd, *J* = 14.4, 6.0 Hz, 1H), 2.35 (d, *J* = 7.1 Hz, 2H), 2.26 (dd, *J* = 14.4, 6.0 Hz, 1H), 1.82 – 1.69 (m, 1H), 1.28 (d, *J* = 7.2 Hz, 3H), 1.11 (d, *J* = 6.8 Hz, 3H), 0.83 (d, *J* = 6.8 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 172.6, 168.4, 155.1, 139.5, 139.0, 132.3, 128.7, 126.9, 120.7, 113.7, 55.1, 44.6, 44.3, 42.8, 42.3, 29.6, 22.2, 20.2, 18.4 ppm. **HRMS** calc'd for C₂₄H₃₃N₂O₃⁺ 397.2486, found 397.2490 [M+H]⁺; **HPLC analysis:** Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 5.09 min, *t_{minor}* = 10.91 min; **[a]**²⁰ = 72.05 (*c* 1.0, MeOH).

Synthesis of (S)-Nicaraven

Same as standard condition, in a glove box under a nitrogen atmosphere, NiBr₂ (4.4 mg, 0.02 mmol, 10 mol%) and L5 (12.6 mg, 0.03 mmol, 15 mol%) were added to a dry 8 ml reaction vial containing a magnetic stir bar. Then, 2 ml of anhydrous DMA was added to the mixture, which was stirred at room temperature for 10 minutes. Subsequently, (MeO)₃SiH (50 mg, 0.4 mmol, 2.0 equiv.) and NaI (15 mg, 0.1 mmol, 50 mol%) were sequentially added to the mixture and stirred. N-allylnicotinamide 1k (32.4 1.0 mg, 0.2 mmol, equiv.) was then added to the mixture and finally 3-(pyridin-3-yl)-1,4,2-dioxazol-5-one 2r (65.6 mg, 0.4 mmol, 2.0 equiv.) were added. The reaction vial was sealed and taken out of the glove box, and the mixture was stirred at room temperature for 48 hours. After the completion of the reaction, 2 ml of EA was added to the reaction vial for dilution. Extraction was performed using 50 ml of EA and 20 ml of saturated NaCl solution. The organic phase was further extracted using 2×30 ml of saturated NaCl solution. The organic phase was then dried using anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude material was loaded onto a silica gel column and purified by flash chromatography to to obtain (S)-Nicaraven.

(S)-N,N'-(Propane-1,2-diyl)dinicotinamide ((S)-Nicaraven)

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 1 : 2) to give the product (40.3 mg, 71% yield, 99% *ee*) as a white solid. **Mp**: 154 – 156 °C. **R**_f = 0.16 (petroleum

ether : ethyl acetate = 1 : 2). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.05 – 8.95 (m, 2H), 8.79 (t, *J* = 6.0 Hz, 1H), 8.68 (dt, *J* = 4.8, 1.2 Hz, 2H), 8.50 (d, *J* = 8.4 Hz, 1H), 8.15 (dd, *J* = 7.8, 5.6 Hz, 2H), 7.55 – 7.42 (m, 2H), 4.40 – 4.19 (m, 1H), 3.45 – 3.36 (m, 2H), 1.19 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 165.4, 164.6, 151.8, 151.7, 148.5, 148.4, 135.1, 135.0, 130.3, 130.2, 123.5, 123.4, 45.4, 44.2, 17.9.ppm. **HRMS** calc'd for C₁₅H₁₇N₄O₂⁺ 285.1346, found 285.1347 [M+H]⁺; **HPLC analysis**: Daicel CHIRALPAK AD-3 *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *t_{major}* = 24.04 min; **[a]**²⁰ = 28.02 (*c* 1.0, MeOH).

Hydrolysis of 3ca

According to the literature.^[17] In a dry 8 ml reaction vial containing a magnetic stirrer, **3ca** (38.7 mg, 0.1 mmol, 1.0 equiv), NaOH (80 mg, 2 nnol, 20.0 equiv), and finally 2 ml of anhydrous ethanol were added sequentially and after sealing the reaction vial, the reaction was carried out at 90°C for 24 h. After monitoring the completion of the reaction, the solvent was removed under vacuum. The crude product was dissolved using 10 ml of water and 20 ml of ethyl acetate, next 10 ml of 2N HCl solution was added to the mixture and the aqueous phase was collected. The aqueous phase was washed with ethyl acetate 20 ml×3 and the aqueous phase was evaporated directly under vacuum to give the product **12** in 22.5 mg, 95% yield.

(2S,3S)-1-Phenylbutane-2,3-diaminium chloride (12)

The product was obtained as white solid. **Mp**: 284 – 286 °C. ¹**H NMR** (400 MHz, NH₂·HCl Deuterium Oxide) δ 7.74 (m, 5H), 4.38 – 4.23 (m, 2H), 3.58 (dd, *J* = 14.4, 3.2 Hz, 1H), 3.23 (dd, *J* = 14.4, 3.2 Hz, 1H), 1.83 (d, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, Deuterium Oxide) δ 134.4, 130.0, 128.7, 54.7, 48.9, 32.8, 13.5 ppm, one resonance was not observed due to overlapping peaks. **HRMS** calc'd for C₁₀H₁₇N₂⁺ ((2*S*,3*S*)-3-amino-1-phenylbutan-2-aminium) 165.1386, found 165.1380 [M+H]⁺; $[\alpha]_{\rm p}^{20}$ = -44.50 (*c* 1.0, MeOH).

Capture of metal-nitrenoid intermediate.

In a glove box under a nitrogen atmosphere, NiBr₂ (4.4 mg, 0.02 mmol, 10 mol%) and L5 (12.6 mg, 0.03 mmol, 15 mol%) were added to a dry 8 ml reaction vial containing a magnetic stir bar. Then, 2 ml of anhydrous DMA was added to the mixture, which was stirred at room temperature for 10 minutes. Subsequently, (MeO)₃SiH (50 mg, 0.4 mmol, 2.0 equiv.) and NaI (15 mg, 0.1 mmol, 50 mol%) were sequentially added to the mixture and stirred. Finally 3-phenyl-1,4,2-dioxazol-5-one **2a** (65.2 mg, 0.4 mmol) and **PPh₃** (209.8 mg, 0.8 mmol, 2.0 equiv.) were added. The reaction vial was sealed and taken out of the glove box, and the mixture was stirred at room temperature for 48 hours. After the completion of the reaction, 2 ml of EA was added to the reaction vial for dilution. Extraction was performed using 50 ml of EA and 20 ml of saturated NaCl solution. The organic phase was then dried using anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude material was loaded onto a silica gel column and purified by flash chromatography to to obtain metal-nitrenoid intermediate **13**. In addition, no generation of **13** was detected in the absence of the Ni catalyst.

N-(Triphenyl-15-phosphanylidene)benzamide (13)

The crude product was separated by flash chromatography on silica gel (petroleum ether : ethyl acetate = 4 : 1) to give the product (61.9 mg, 71% yield) as a white solid. $\mathbf{R}_f = 0.45$ (petroleum ether : ethyl acetate = 4 : 1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 – 8.34 (m, 2H), 7.93 – 7.80 (m, 6H), 7.60 – 7.53 (m, 3H), 7.53 – 7.39 (m, 9H) ppm. ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.4 (d, $J_{C-P} = 7.7$ Hz), 138.6 (d, $J_{C-P} = 20.5$ Hz), 133.2 (d, $J_{C-P} = 3.0$ Hz), 130.8, 129.6 (d, $J_{C-P} = 2.4$ Hz), 128.8 (d, $J_{C-P} = 12.1$ Hz), 128.4 (d, $J_{C-P} = 99.0$ Hz), 127.7 ppm. ³¹P NMR (162 MHz, Chloroform-*d*) δ 20.73 ppm. The ¹H ,

 $^{13}C{^{1}H}$ and ^{31}P data for this compound match the literature data.^[18]

Competitive experiment

In a glove box under a nitrogen atmosphere, NiBr₂ (2.2 mg, 0.01 mmol, 10 mol%) and L5 (6.3 mg, 0.015 mmol, 15 mol%) were added to a dry 8 ml reaction vial containing a magnetic stir bar. Then, 1 ml of anhydrous DMA was added to the mixture, which was stirred at room temperature for 10 minutes. Subsequently, (MeO)₃SiH (25 mg, 0.2 mmol, 2.0 equiv.) and NaI (7.5 mg, 0.05 mmol, 50 mol%) were sequentially added to the mixture and stirred. Finally *N*-allyl-4-methoxybenzamide **1a** (19.1 mg, 0.1 mmol, 1.0 equiv.), 3-(4-Methoxyphenyl)-1,4,2-dioxazol-5-one **2g** (38.6 mg, 0.2 mmol, 2.0 equiv.) and 3-(4-Bromophenyl)-1,4,2-dioxazol-5-one **2j** (48.2 mg, 0.2 mmol, 2.0 equiv.) were added. The reaction vial was sealed and taken out of the glove box, and the mixture was stirred at room temperature for 48 hours. After the completion of the reaction, 2 ml of EA was added to the reaction vial for dilution. Extraction was performed using 50 ml of EA and 20 ml of saturated NaCl solution. The organic phase was further extracted using 2×30 ml of saturated NaCl solution. The organic phase was further extracted using 2×30 ml of saturated NaCl solution. The crude material was loaded onto a silica gel column and purified by flash chromatography to to obtain **3ag** (24.6 mg, 36% yield) and **3aj** (23.4 mg, 30% yield),yield of **3ag** : **3aj** = 1.2 : 1

X-ray crystal structure of compound 5ba

Crystal structure of 5ba (CCDC 2293468)

A specimen of $C_{18}H_{20}N_2O_2$, approximate dimensions 0.100 mm x 0.120 mm x 0.210 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 1.54178$ Å).

The integration of the data using a monoclinic unit cell yielded a total of 25726 reflections to a maximum θ angle of 77.36° (0.79 Å resolution), of which 3249 were independent (average redundancy 7.918, completeness = 99.7%, R_{int} = 5.30%, R_{sig} = 2.98%) and 3192 (98.25%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 36.827(3) Å, <u>b</u> = 5.0991(3) Å, <u>c</u> = 8.2493(6) Å, β = 92.460(2)°, volume = 1547.66(18) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 $\sigma(I)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5856 and 0.7541.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C 1 2 1, with Z = 4 for the formula unit, $C_{18}H_{20}N_2O_2$. The final anisotropic full-matrix least-squares refinement on F² with 176 variables converged at R1 = 6.06%, for the observed data and wR2 = 16.04% for all data. The goodness-of-fit was 1.091. The largest peak in the final difference electron density synthesis was 0.438 e⁻/Å³ and the largest hole was -0.265 e⁻/Å³ with an RMS deviation of 0.074 e⁻/Å³. On the basis of the final model, the calculated density was 1.272 g/cm³ and F(000), 632 e⁻.

Table S7.	Sample a	and crystal	l data f	for 5ba.
-----------	----------	-------------	----------	----------

Identification code	5ba
Chemical formula	$C_{18}H_{20}N_2O_2$
Formula weight	296.36 g/mol
Wavelength	1.54178 Å

Crystal size	0.100 x 0.120 x 0.210 mm	
Crystal system	monoclinic	
Space group	C 1 2 1	
Unit cell dimensions	$a = 36.827(3) \text{ Å} \alpha = 90^{\circ}$	
	$b = 5.0991(3) \text{ Å} \beta = 92.460(2)^{\circ}$	
	$c = 8.2493(6) \text{ Å} \gamma = 90^{\circ}$	
Volume	1547.66(18) Å ³	
Z	4	
Density (calculated)	1.272 g/cm ³	
Absorption coefficient	0.668 mm ⁻¹	
F(000)	632	

Table S8. Data collection and structure refinement for 5ba.

2.40 to 77.36°		
-46<=h<=46, -6<=k<=6, -10<=l<=10		
25726		
3249 [R(int) = 0.0530]		
0.7541 and 0.5856		
direct methods		
SHELXT 2018/2 (Sheldrick, 2018)		
Full-matrix least-squares on F ²		
SHELXL 2018/3 (Sheldrick, 2015)		
$\Sigma w (F_o^2 - F_c^2)^2$		
3249 / 1 / 176		
1.091		
3192 data; Ι>2σ(I)	R1 = 0.0606, wR2 = 0.1600	
all data	R1 = 0.0613, wR2 = 0.1604	
w=1/[$\sigma^2(F_o^2)$ +(0.0589P) ² +5.1821P] where P=(F_o^2 +2 F_c^2)/3		
0.04(16)		
0.438 and -0.265 eÅ ⁻³		
0.074 eÅ ⁻³		
	2.40 to 77.36° -46<=h<=46, -6<=k 25726 3249 [R(int) = 0.053 0.7541 and 0.5856 direct methods SHELXT 2018/2 (S Full-matrix least-sq SHELXL 2018/3 (S $\Sigma w(F_o^2 - F_c^2)^2$ 3249 / 1 / 176 1.091 3192 data; I>2 σ (I) all data w=1/[$\sigma^2(F_o^2)$ +(0.05) where P=(F_o^2 +2 F_c^2) 0.04(16) 0.438 and -0.265 eÅ 0.074 eÅ ⁻³	

Supplementary references

- [1] Yang, P.-F.; Liang, J.-X.; Zhao, H.-T.; Shu, W. ACS Catal. 2022, 12, 9638-9645.
- [2] Zhao, H.; Gao, Q.; Zhang, Y.; Zhang, P.; Xu, S. Org. Let. 2020, 22, 2861-2866.
- [3] Han, X.; Floreancig, P. E. Angew. Chem. Int. Ed. 2014, 53, 11075-11078.
- [4] Makhal, P. N.; Dannarm, S. R.; Shaikh, A. S.; Ahmed, R.; Chilvery, S.; Dayare, L. N.; Sonti, R.; Godugu, C.; Kaki, V. R. Chem. Commun. 2023, 59, 3767-3770.
- [5] Le Saux, E.; Georgiou, E.; Dmitriev, I. A.; Hartley, W. C.; Melchiorre, P. J. Am. Chem. Soc. 2023, 145, 47-52.
- [6] Wang, Q.; Ni, S.; Yu, L.; Pan, Y.; Wang, Y. ACS Catal. 2022, 12, 11071-11077.
- [7] Liu, W.; Yang, W.; Zhu, J.; Guo, Y.; Wang, N.; Ke, J.; Yu, P.; He, C. ACS Catal. 2020, 10, 7207-7215.
- [8] Huang, Y.; Pi, C.; Tang, Z.; Wu, Y.; Cui, X. Chin. Chem. Let. 2020, 31, 3237-3240.
- [9] Adegboyega, A. K.; Son, J. Org. Lett. 2022, 24, 4925-4929.
- [10] Liang, Z.; Wang, K.; Sun, Q.; Peng, Y.; Bao, X. Chem. Commun. 2023, 59, 752-755.
- [11] Lee, M.; Heo, J.; Kim, D.; Chang, S. J. Am. Chem. Soc. 2022, 144, 3667-3675.
- [12] Chen, S. Y.; Zheng, Y. C.; Liu, X. G.; Song, J. L.; Shu, B.; Zheng, T.; Xiao, L.; Zhang, S. S.;Cao, H. Adv. Synth. Catal. 2022, 364, 3302-3309.
- [13] Zhang, J. X.; Shu, W. Org. Lett. 2022, 24, 3844-3849.
- [14] Gurak, J. A., Jr.; Yang, K. S.; Liu, Z.; Engle, K. M. J. Am. Chem. Soc. 2016, 138, 5805-5808.
- [15] Wang, G.; Liang, X.; Chen, L.; Gao, Q.; Wang, J.-G.; Zhang, P.; Peng, Q.; Xu, S. Angew. Chem. Int. Ed. 2019, 58, 8187-8191.
- [16] Bernardim, B.; Burtoloso, A. C. B. Tetrahedron 2014, 70, 3291-3296.
- [17] Ai, W.; Shi, R.; Zhu, L.; Jiang, D.; Ma, X.; Yuan, J.; Wang, Z. RSC Adv. 2015, 5, 24044-24048.
- [18] Tang, J. J.; Yu, X.; Wang, Y.; Yamamoto, Y.; Bao, M. Angew. Chem. Int. Ed. 2021, 60, 16426-16435.

NMR spectra of the products

Figure S1. ¹H NMR spectra (400 MHz, Chloroform-*d*) of (*N*-(But-3-en-2-yl)-4-methoxybenz amide (1b).

Figure S2. ¹³C NMR spectra (100 MHz, Chloroform-*d*) of *N*-(But-3-en-2-yl)-4-methoxybenz amide (1b).

Figure S3. ¹H NMR spectra (400 MHz, Chloroform-*d*) of (*S*)-4-Methoxy-*N*-(1-phenylbut-3-e n-2-yl)benzamide (1c).

Figure S4. ¹³C NMR spectra (100 MHz, Chloroform-*d*) of (*S*)-4-Methoxy-*N*-(1-phenylbut-3-e n-2-yl)benzamide (1c).

Figure S5. ¹H NMR spectra (400 MHz, Chloroform-*d*) of (*R*)-*N*-(1-Cyclohexylallyl)-4-metho xybenzamide (1d).

Figure S6. ¹³C NMR spectra (100 MHz, Chloroform-d) of (*R*)-*N*-(1-Cyclohexylallyl)-4-metho xybenzamide (1d).

Figure S7. ¹H NMR spectra (400 MHz, Chloroform-*d*) of *N*-Allyl-2-(11-oxo-6,11-dihydrodib enzo[*b*,*e*]oxepin-3-yl)acetamide (1f).

Figure S8. ¹³C NMR spectra (100 MHz, Chloroform-*d*) of *N*-Allyl-2-(11-oxo-6,11-dihydrodib enzo[*b*,*e*]oxepin-3-yl)acetamide (1f).

Figure S9. ¹H NMR spectra (400 MHz, Chloroform-*d*) of 2-(Allylcarbamoyl)phenyl acetate (1h).

Figure S10. ¹³C NMR spectra (100 MHz, Chloroform-*d*) of 2-(Allylcarbamoyl)phenyl acetate (1h).

Figure S11. ¹H NMR spectra (400 MHz, Chloroform-*d*) of 3-(Pyridin-3-yl)-1,4,2-dioxazol-5-one (2r).

Figure S12. ¹³C NMR spectra (100 MHz, Chloroform-*d*) of 3-(Pyridin-3-yl)-1,4,2-dioxazol-5-one (2r).

Figure S13. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(2-Benzamidopropyl)-4-methox ybenzamide (3aa).

Figure S14. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(2-Benzamidopropyl)-4-metho xybenzamide (3aa).

Figure S15. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-(4-Methoxybenzamido)prop an-2-yl)-2-methylbenzamide (3ab).

Figure S16. ¹³C NMR spectra (100 MHz, DMSO-*d*6) of (*S*)-*N*-(1-(4-Methoxybenzamido)prop an-2-yl)-2-methylbenzamide (3ab).

Figure S18. ¹³C NMR spectra (100 MHz, DMSO- d_6) of (S)-2-Methoxy-N-(1-(4-methoxybenz amido)propan-2-yl)benzamide (3ac).

Figure S17. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-2-Methoxy-*N*-(1-(4-methoxybenza mido)propan-2-yl)benzamide (3ac).

Figure S19. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-(4-Methoxybenzamido)prop an-2-yl)-3-methylbenzamide (3ad).

Figure S20. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-(4-Methoxybenzamido)prop an-2-yl)-3-methylbenzamide (3ad).

Figure S22. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-3-Methoxy-*N*-(1-(4-methoxybenz amido)propan-2-yl)benzamide (3ae).

Figure S23. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-(*tert*-Butyl)-*N*-(1-(4-methoxyben zamido)propan-2-yl)benzamide (3af).

Figure S24. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-4-(*tert*-Butyl)-*N*-(1-(4-methoxybe nzamido)propan-2-yl)benzamide (3af).

Figure S26. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*,*N'*-(Propane-1,2-diyl)bis(4-met hoxybenzamide) (3ag).

Figure S27. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-Fluoro-*N*-(1-(4-methoxybenzam ido)propan-2-yl)benzamide (3ah).

Figure S28. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-4-Fluoro-*N*-(1-(4-methoxybenza mido)propan-2-yl)benzamide (3ah).

Figure S29. ¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of (*S*)-4-Fluoro-*N*-(1-(4-methoxybenzam ido)propan-2-yl)benzamide (3ah).

20 10 0 -10 -20 -30 -40 -50 -80 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 ft(gen)

F NH H OMe

Figure S30. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-Chloro-*N*-(1-(4-methoxybenzam ido)propan-2-yl)benzamide (3ai).

Figure S31. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-4-Chloro-*N*-(1-(4-methoxybenza mido)propan-2-yl)benzamide (3ai).

Figure S32. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-Bromo-*N*-(1-(4-methoxybenzam ido)propan-2-yl)benzamide (3aj).

Figure S33. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-4-Bromo-*N*-(1-(4-methoxybenza mido)propan-2-yl)benzamide (3aj).

Figure S34. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-Methoxy-*N*-(2-(4-(trifluorometh oxy)benzamido)propyl)benzamide (3ak).

Figure S35. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-4-Methoxy-*N*-(2-(4-(trifluoromet hoxy)benzamido)propyl)benzamide (3ak).

Figure S36. ¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of (*S*)-4-Methoxy-*N*-(2-(4-(trifluorometh oxy)benzamido)propyl)benzamide (3ak).

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -220 -221 -22 ff(gm)

Figure S37. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-(4-Methoxybenzamido)prop an-2-yl)thiophene-2-carboxamide (3al).

Figure S38. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-(4-Methoxybenzamido)prop an-2-yl)thiophene-2-carboxamide (3al).

Figure S39. ¹H NMR spectra (600 MHz, DMSO-*d*₆) of *N*-(3*S*-3-Benzamidobutan-2-yl)-4-met hoxybenzamide (3ba) (Major diastereoisomer).

Figure S40. ¹³C NMR spectra (150 MHz, DMSO- d_6) of *N*-((3*S*)-3-Benzamidobutan-2-yl)-4-m ethoxybenzamide (3ba) (Major diastereoisomer).

Figure S41. ¹H NMR spectra (600 MHz, DMSO-*d*₆) of *N*-((3*S*)-3-Benzamidobutan-2-yl)-4-m ethoxybenzamide (3ba) (Minor diastereoisomer).

Figure S42. ¹³C NMR spectra (150 MHz, DMSO- d_6) of *N*-((3*S*)-3-Benzamidobutan-2-yl)-4-m ethoxybenzamide (3ba) (Minor diastereoisomer).

Figure S44. ¹³C NMR spectra (100 MHz, DMSO- d_6) of *N*-((2*S*,3*S*)-3-Benzamido-1-phenylbut an-2-yl)-4-methoxybenzamide (3ca).

Figure S45. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of *N*-((1*S*,2*S*)-2-Benzamido-1-cyclohexyl propyl)-4-methoxybenzamide (3da).

Figure S46. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of *N*-((1*S*,2*S*)-2-Benzamido-1-cyclohexy lpropyl)-4-methoxybenzamide (3da).

Figure S47. ¹H NMR spectra (600 MHz, DMSO-*d*₆) of (*S*)-*N*-(2-Benzamidobutyl)-4-methoxy benzamide (3ea)

Figure S48. ¹³C NMR spectra (150 MHz, DMSO-*d*₆) of (*S*)-*N*-(2-Benzamidobutyl)-4-methoxy benzamide (3ea)

Figure S49. ¹H NMR spectra (600 MHz, DMSO-*d*₆) of *tert*-Butyl (*S*)-(2-(4-methoxybenzam ido)propyl)carbamate (3fg)

Figure S50. ¹³C NMR spectra (150 MHz, DMSO-*d*₆) of *tert*-Butyl (S)-(2-(4-methoxybenza mido)propyl)carbamate (3fg)

Figure S51. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4 -oxobutan-2-yl)benzamide (5aa).

Figure S52. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)benzamide (5aa).

Figure S53. ¹H NMR spectra (400 MHz, Chloroform-*d*) of (*S*)-*N*-(4-((4-Methoxyphenyl)amin o)-4-oxobutan-2-yl)-2-methylbenzamide (5ab).

Figure S54. ¹³C NMR spectra (100 MHz, Chloroform-*d*) of (*S*)-*N*-(4-((4-Methoxyphenyl)ami no)-4-oxobutan-2-yl)-2-methylbenzamide (5ab).

Figure S55. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-2-Methoxy-*N*-(4-((4-methoxyphen yl)amino)-4-oxobutan-2-yl)benzamide (5ac).

Figure S56. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-2-Methoxy-*N*-(4-((4-methoxyphe nyl)amino)-4-oxobutan-2-yl)benzamide (5ac).

Figure S57. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4 -oxobutan-2-yl)-3-methylbenzamide (5ad).

Figure S58. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-3-methylbenzamide (5ad).

Figure S59. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-3-Methoxy-*N*-(4-((4-methoxyphen yl)amino)-4-oxobutan-2-yl)benzamide (5ae).

Figure S60. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-3-Methoxy-*N*-(4-((4-methoxyphe nyl)amino)-4-oxobutan-2-yl)benzamide (5ae).

Figure S61. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-Fluoro-*N*-(4-((4-methoxyphenyl) amino)-4-oxobutan-2-yl)benzamide (5ah).

Figure S62. ¹³C NMR spectra (100 MHz, DMSO- d_6) of (S)-4-Fluoro-N-(4-((4-methoxyphenyl) amino)-4-oxobutan-2-yl)benzamide (5ah).

Figure S63. ¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of (*S*)-4-Fluoro-*N*-(4-((4-methoxyphenyl) amino)-4-oxobutan-2-yl)benzamide (5ah).

-80 -100 -110 -120 -130 -140 -150 -160 -170 -180 -150 -200 -210 -22 f1(ppm)

F NH O H O H O H O H

-30 -40 -50

-70 -80

-60

20 10 0 -10 -20

Figure S64. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-Chloro-*N*-(4-((4-methoxyphenyl) amino)-4-oxobutan-2-yl)benzamide (5ai).

Figure S65. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-4-Chloro-*N*-(4-((4-methoxypheny l)amino)-4-oxobutan-2-yl)benzamide (5ai).

Figure S66. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-4-Bromo-*N*-(4-((4-methoxyphenyl) amino)-4-oxobutan-2-yl)benzamide (5aj).

Figure S67. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-4-Bromo-*N*-(4-((4-methoxyphenyl) amino)-4-oxobutan-2-yl)benzamide (5aj).

Figure S68. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4 -oxobutan-2-yl)-4-(trifluoromethoxy)benzamide (5ak).

Figure S69. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-4-(trifluoromethoxy)benzamide (5ak).

Figure S70. ¹⁹F NMR spectra (376 MHz, DMSO-d₆) of (S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-4-(trifluoromethoxy)benzamide (5ak).

0

Figure S71. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4 -oxobutan-2-yl)-4-((trifluoromethyl)thio)benzamide (5am).

Figure S72. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-4-((trifluoromethyl)thio)benzamide (5am).

Figure S73. ¹⁹F NMR spectra (376 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)-4-((trifluoromethyl)thio)benzamide (5am).

> -80 -80 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1(epm)

---41.70 NH O OMe F₃CS²

20

10 0

-10

-20 -30 -40 -50

-60 -70

Figure S74. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4 -oxobutan-2-yl)benzo[*d*][*1*,*3*]dioxole-5-carboxamide (5an).

Figure S75. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)benzo[*d*][*1*,*3*]dioxole-5-carboxamide (5an).

Figure S76. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4 -oxobutan-2-yl)thiophene-2-carboxamide (5al).

Figure S77. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl)thiophene-2-carboxamide (5al).

Figure S78. ¹ H NMR	spectra (400	MHz, DI	MSO-d6)	of (S)-N-(4-Methoxyphenyl)-3-pivalami
dobutanamide (5ao).				

Figure S79. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-Methoxyphenyl)-3-pivalami dobutanamide (5ao).

Figure S81. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-(Benzylamino)-4-oxobutan-2-yl)benzamide (5ba).

Figure S80. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(4-(Benzylamino)-4-oxobutan-2 -yl)benzamide (5ba).

Figure S82. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-((4-Methoxyphenyl)amino)-1 -oxohexan-3-yl)benzamide (5ca)

Figure S83. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-((4-Methoxyphenyl)amino)-1-oxohexan-3-yl)benzamide (5ca)

Figure S84 ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-((4-Methoxyphenyl)amino)-1-oxoheptan-3-yl)benzamide (5da)

Figure S85. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-((4-Methoxyphenyl)amino)-1-oxoheptan-3-yl)benzamide (5da)

Figure S86. ¹H NMR spectra (400 MHz, DMSO- d_6) of *N*-((*S*)-1-((*S*)-2-(6-Methoxynaphthale n-2-yl)propanamido)propan-2-yl)benzamide (6).

Figure S87. ¹³C NMR spectra (100 MHz, DMSO- d_6) of *N*-((*S*)-1-((*S*)-2-(6-Methoxynaphthale n-2-yl)propanamido)propan-2-yl)benzamide (6).

Figure S88. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-(2-(11-oxo-6,11-Dihydrodibe nzo[*b*,*e*]oxepin-3-yl)acetamido)propan-2-yl)benzamide (7).

Figure S89. ¹³C NMR spectra (100 MHz, DMSO- d_6) of (S)-N-(1-(2-(11-oxo-6,11-Dihydrodibe nzo[b,e]oxepin-3-yl)acetamido)propan-2-yl)benzamide (7).

Figure S90. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*-(1-(2-(1-(4-Chlorobenzoyl)-5-m ethoxy-2-methyl-1H-indol-3-yl)acetamido)propan-2-yl)benzamide (8).

Figure S91. ¹³C NMR spectra (100 MHz, DMSO- d_6) of (S)-N-(1-(2-(1-(4-Chlorobenzoyl)-5-m ethoxy-2-methyl-1H-indol-3-yl)acetamido)propan-2-yl)benzamide (8).

Figure S92. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-2-((2-(4-Methoxybenzamido)prop yl)carbamoyl)phenyl acetate (9).

Figure S93. ¹³C NMR spectra (100 MHz, DMSO- d_6) of (S)-2-((2-(4-Methoxybenzamido)prop yl)carbamoyl)phenyl acetate (9).

Figure S94. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-3-(3-(4,5-Diphenyloxazol-2-yl)pro panamido)-*N*-(4-methoxyphenyl)butanamide (10).

Figure S95. ¹³C NMR spectra (100 MHz, DMSO- d_6) of (S)-3-(3-(4,5-Diphenyloxazol-2-yl)pro panamido)-N-(4-methoxyphenyl)butanamide (10).

Figure S96. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-3-((*S*)-2-(4-Isobutylphenyl)propan amido)-*N*-(4-methoxyphenyl)butanamide (11).

Figure S97. ¹³C NMR spectra (100 MHz, DMSO- d_6) of (S)-3-((S)-2-(4-Isobutylphenyl)propa namido)-N-(4-methoxyphenyl)butanamide (11).

Figure S98. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of (*S*)-*N*,*N*'-(Propane-1,2-diyl)dinicotinamide ((*S*)-Nicaraven).

Figure S99. ¹³C NMR spectra (100 MHz, DMSO-*d*₆) of (*S*)-*N*,*N'*-(Propane-1,2-diyl)dinicotinamide ((*S*)-Nicaraven).

Figure S100. ¹H NMR spectra (400 MHz, Deuterium Oxide) of (2*S*,3*S*)-1-Phenylbutane-2,3diaminium chloride (12).

Figure S101. ¹³C NMR spectra (400 MHz, Deuterium Oxide) of (2*S*,3*S*)-1-Phenylbutane-2,3 -diaminium chloride (12).

HPLC spectra of the products

Figure S102. HPLC Chromatography of the Racemic *N*-(2-Benzamidopropyl)-4-methoxyben zamide (3aa).

Figure S103. HPLC Chromatography of (S)-N-(2-Benzamidopropyl)-4-methoxybenzamide (3aa).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.991	BB	0.6023	7098.85742	179.14470	96.3106
2	23.215	BBA	0.6946	271.93640	4.67494	3.6894
Total	s:			7370.79382	183.81964	

Figure S104. HPLC Chromatography of the Racemic *N*-(1-(4-Methoxybenzamido)propan-2-yl)-2-methylbenzamide (3ab).

Totals :

2

1.17666e5 3399.93781

Figure S105. HPLC Chromatography of (S)-N-(1-(4-Methoxybenzamido)propan-2-yl)-2-meth ylbenzamide (3ab).

Totals : 4702.39845 239.51230

8.450 VBAE 0.6939 62.41358

1.09343

1.3273

Figure S106. HPLC Chromatography of the Racemic 2-Methoxy-*N*-(1-(4-methoxybenzamido) propan-2-yl)benzamide (3ac).

Figure S107. HPLC Chromatography of (S)-2-Methoxy-N-(1-(4-methoxybenzamido)propan-2vl)benzamide (3ac).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.403	BBA	0.3647	1.02842e4	427.38065	95.0796
2	15.724	BBA	0.5428	532.21387	14.54898	4.9204
Total	s :			1.08164e4	441.92963	

Figure S108. HPLC Chromatography of the Racemic *N*-(1-(4-Methoxybenzamido)propan-2-yl)-3-methylbenzamide (3ad).

Figure S109. HPLC Chromatography of (S)-N-(1-(4-Methoxybenzamido)propan-2-yl)-3-meth ylbenzamide (3ad).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	7.049	 BB	0.2615	1.55910e4	894.00549	95.7676
2 Total	8.553 .s :	вва	0.4224	1.62801e4	918.78908	4.2324

Figure S110. HPLC Chromatography of the Racemic 3-Methoxy-*N*-(1-(4-methoxybenzamido) propan-2-yl)benzamide (3ae).

Totals :

Figure S111. HPLC Chromatography of (S)-3-Methoxy-N-(1-(4-methoxybenzamido)propan-2-yl)benzamide (3ae).

4.57804e4 1197.14719

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.967	BBA	0.3237	7990.33740	345.63705	97.6094
2	11.335	BBA	0.5238	195.69550	5.23842	2.3906
Tota	ls :			8186.03290	350.87548	

Figure S112. HPLC Chromatography of the Racemic 4-(tert-Butyl)-N-(1-(4-methoxybenzami do)propan-2-yl)benzamide (3af).

Figure S113. HPLC Chromatography of (S)-4-(tert-Butyl)-N-(1-(4-methoxybenzamido)propan -2-yl)benzamide (3af).

0.4387 3.07216e4 1010.57623

6.18944e4 2639.96417

2

Totals :

Peak Re	etTime [min] 	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	6.521 9.305	BBA BB	0.2460 0.4811	2.58408e4 772.79749	1586.63135 22.25761	97.0962 2.9038
Totals	:			2.66136e4	1608.88896	

mide) (3ag).

Figure S114. HPLC Chromatography of the Racemic *N*,*N'*-(Propane-1,2-diyl)bis(4-methoxyb enzamide) (3ag).

Signal 1: DAD1 B, Sig=254,4 Ref=off

75

10

100

50

0

Peak	RetTime Ty	/pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	11.197 BE	0.4552	1.14838e4	358.95984	51.1003
2	14.393 BE	BA 0.7697	1.09893e4	197.93706	48.8997
Total	ls :		2.24731e4	556.89690	

12.5

17.5

22 5

15

Figure S115. HPLC Chromatography of (S)-N,N'-(Propane-1,2-diyl)bis(4-methoxybenzamide) (3ag).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	 11.220 BBA	0.4547	2.56343e4	798.23718	98.0145
2	14.471 BBA	0.6518	519.28333	11.18212	1.9855
Tota	ls :		2.61536e4	809.41930	

Figure S116. HPLC Chromatography of the Racemic 4-Fluoro-*N*-(1-(4-methoxybenzamido)p ropan-2-yl)benzamide (3ah).

Totals :

Figure S117. HPLC Chromatography of (S)-4-Fluoro-N-(1-(4-methoxybenzamido)propan-2-yl) benzamide (3ah).

1742.32776

51.85524

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	9.304 BBA	0.3762	2609.54102	98.14292	99.1677
2	11.738 BV	0.4094	21.90266	7.57336e-1	0.8323
Tota	ls :		2631.44367	98.90026	
Figure S118. HPLC Chromatography of the Racemic 4-Chloro-*N*-(1-(4-methoxybenzamido)p ropan-2-yl)benzamide (3ai).

Figure S119. HPLC Chromatography of (S)-4-Chloro-N-(1-(4-methoxybenzamido)propan-2-yl) benzamide (3ai).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	11.107 12.702	BB BBA	0.5013 0.4028	63.28051 2129.46045	1.83962 80.96626	2.8859 97.1141
Total	s:			2192.74096	82.80588	

Figure S120. HPLC Chromatography of the Racemic 4-Bromo-*N*-(1-(4-methoxybenzamido)p ropan-2-yl)benzamide (3aj).

Totals : 1.69850e4 539.87224

Figure S121. HPLC Chromatography of (S)-4-Bromo-N-(1-(4-methoxybenzamido)propan-2-yl) benzamide (3aj).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak # 	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU] 	Area %
1 2	10.361 11.502	BV E VBAR	0.4446 0.4349	438.09735 1.58767e4	14.01827 527.89636	2.6853 97.3147
Total	s:			1.63148e4	541.91463	

Figure S122. HPLC Chromatography of the Racemic 4-Methoxy-*N*-(2-(4-(trifluoromethoxy) benzamido)propyl)benzamide (3ak).

Figure S123. HPLC Chromatography of (S)-4-Methoxy-N-(2-(4-(trifluoromethoxy)benzamido) propyl)benzamide (3ak).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	 13.690	 BB	0.5053	13.61694	 3.44384e-1	 0.6733
2	15.926	BBA	0.5490	2008.79065	54.63310	99.3267
Total	ls :			2022.40759	54.97748	

Figure S124. HPLC Chromatography of the Racemic N-(1-(4-Methoxybenzamido)propan-2yl)thiophene-2-carboxamide (3al).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.198	BB	0.3156	2.77920e4	1298.90918	50.4623
2	11.331	BBA	0.5459	2.72828e4	733.59882	49.5377
Total	ls :			5.50748e4	2032.50800	

Figure S125. HPLC Chromatography of (S)-N-(1-(4-Methoxybenzamido)propan-2-yl)thiophe ne-2-carboxamide (3al).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.134	BB	0.3498	5.56589e4	2389.24463	96.4150
2	11.360	BBA	0.4827	2069.58618	64.79060	3.5850
Tota	ls :			5.77284e4	2454.03523	

Figure S126. HPLC Chromatography of the Racemic *N*-((3*S*)-3-Benzamidobutan-2-yl)-4-met hoxybenzamide (3ba) (Major diastereoisomer).

Figure S127. HPLC Chromatography of *N*-((3*S*)-3-Benzamidobutan-2-yl)-4-methoxybenzamid e (3ba) (Major diastereoisomer).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.528	BB	0.3347	5599.23145	260.59082	94.9045
2	14.053	BBA	0.4542	300.62674	10.24944	5.0955
Total	s:			5899.85818	270.84026	

Figure S128. HPLC Chromatography of the Racemic *N*-((3*S*)-3-Benzamidobutan-2-yl)-4-met hoxybenzamide (3ba) (Minor diastereoisomer).

Figure S129. HPLC Chromatography of *N*-((3*S*)-3-Benzamidobutan-2-yl)-4-methoxybenzamid e (3ba) (Minor diastereoisomer).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.125 MM	0.4328	136.83942	5.27004	9.2738
2	20.066 MM	0.6007	1338.70789	37.14119	90.7262
Tota	ls :		1475.54730	42.41123	

Figure S130. HPLC Chromatography of the Racemic *N*-((2*S*)-3-Benzamido-1-phenylbutan-2-yl)-4-methoxybenzamide (3ca).

9672.74902 598.62262

Peak Re # [etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	·	·				
1	5.140	BBA	0.2435	1.51653e4	924.04755	96.1965
2	7.818	BBA	0.3174	599.62103	27.39000	3.8035
Totals	:			1.57649e4	951.43755	

Figure S132. HPLC Chromatography of the Racemic *N*-((1*S*)-2-Benzamido-1-cyclohexylprop yl)-4-methoxybenzamide.

Figure S133. HPLC Chromatography of *N*-((1*S*,2*S*)-2-Benzamido-1-cyclohexylpropyl)-4-meth oxybenzamide (3da).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.526	BBA	0.3528	7584.44971	329.24692	95.3609
2	14.047	BBA	0.5720	368.96878	10.05705	4.6391
Tota	ls :			7953.41849	339.30397	

Figure S134. HPLC Chromatography of the Racemic *N*-(2-Benzamidobutyl)-4-methoxybenz amide (3ea)

Figure S135. HPLC Chromatography of (S)-N-(2-Benzamidobutyl)-4-methoxybenzamide (3e a)

oigilai. Wib		iA, wavelen	gui=204 mm		
RT [min]	Туре	Width [min]	Area	Height Area%	
10.209	BV	1.02	564.06	34.48	3.50
11.057	VB	1.97	15565.12	738.75	96.50
		Total	16129.18		

Figure S136. HPLC Chromatography of the Racemic *tert*-Butyl-(2-(4-methoxybenzamido)pr opyl)carbamate (3fg)

Figure S137. HPLC Chromatography of *tert*-Butyl (S)-(2-(4-methoxybenzamido)propyl)carba mate (3fg)

Signal: VWD1A,Wavelength=254 nm

RT [min]	Туре	Width [min]	Area	Height	Area%
3.941	BM m	0.75	25102.22	3245.01	97.00
4.658	MM m	0.63	777.68	53.86	3.00
		Total	25879.91		

Figure S138. HPLC Chromatography of the Racemic *N*-(4-((4-Methoxyphenyl)amino)-4-oxo butan-2-yl)benzamide (5aa).

Figure S139. HPLC Chromatography of (S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl) benzamide (5aa).

0.6676 6860.60107

1.34964e4

155.23618

466.04108

50.8330

Signal 1: DAD1 B, Sig=254,4 Ref=off

2

Totals :

17.573 BB

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.566	BB	0.2818	1.81780e4	964.86133	99.0712
2	17.813	BBA	0.6050	170.41130	3.77243	0.9288
Total	.s :			1.83484e4	968.63375	

Figure S140. HPLC Chromatography of the Racemic N-(4-((4-Methoxyphenyl)amino)-4-oxo butan-2-yl)-2-methylbenzamide (5ab).

Totals :

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.955	VBA	0.2707	8995.57617	502.92819	99.4083
2	10.800	MM	1.0580	53.54111	8.43457e-1	0.5917
Total	s :			9049.11728	503.77165	

Figure S142. HPLC Chromatography of the Racemic 2-Methoxy-*N*-(4-((4-methoxyphenyl)a mino)-4-oxobutan-2-yl)benzamide (5ac).

Totals :

4.39735e4 1376.34991

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.776	BBA	0.4136	3157.29907	113.83295	98.4077
2	15.983	MM	1.1800	51.08746	7.21572e-1	1.5923
Total	s :			3208,38653	114.55453	

Figure S144. HPLC Chromatography of the Racemic *N*-(4-((4-Methoxyphenyl)amino)-4-oxo butan-2-yl)-3-methylbenzamide (5ad).

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.309	BBA	0.2013	1892.05151	144.03728	51.9002
2	8.255	BB	0.3124	1753.50256	85.81213	48.0998
Total	s :			3645.55408	229.84940	

Figure S145. HPLC Chromatography of (S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl) -3-methylbenzamide (5ad).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	5.297 8.321	 BBA BB	0.2232 0.3285	1.86152e4 285.67627	1268.51575 13.41293	98.4886 1.5114
Totals	:			1.89008e4	1281.92868	

Figure S146. HPLC Chromatography of the Racemic 3-Methoxy-*N*-(4-((4-methoxyphenyl)a mino)-4-oxobutan-2-yl)benzamide (5ae).

Figure S147. HPLC Chromatography of (S)-3-Methoxy-N-(4-((4-methoxyphenyl)amino)-4-oxo butan-2-yl)benzamide (5ae).

1.94499e4

501.49261

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.283	BBA	0.3591	6.23340e4	2515.13745	99.0371
2	16.836	BB	0.7093	606.03662	12.46344	0.9629
Tota	ls :			6.29400e4	2527.60089	

Figure S148. HPLC Chromatography of the Racemic 4-Fluoro-*N*-(4-((4-methoxyphenyl)amin o)-4-oxobutan-2-yl)benzamide (5ah).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.754	BB	0.2874	785.34296	38.92079	50.3107
2	11.638	BBA	0.5597	775.64203	19.85961	49.6893
Tota]	ls :			1560.98499	58.78041	

Figure S149. HPLC Chromatography of (S)-4-Fluoro-N-(4-((4-methoxyphenyl)amino)-4-oxob utan-2-yl)benzamide (5ah).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	6.757 11.651	BV R BB	0.2748 0.5367	3392.02368 73.10411	173.94601 1.93527	97.8903 2.1097
Total	.s :			3465.12779	175.88129	

Figure S150. HPLC Chromatography of the Racemic 4-Chloro-*N*-(4-((4-methoxyphenyl)ami no)-4-oxobutan-2-yl)benzamide (5ai).

Figure S151. HPLC Chromatography of (S)-4-Chloro-N-(4-((4-methoxyphenyl)amino)-4-oxob utan-2-yl)benzamide (5ai).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak # 	RetTime [min]	Туре	Width [min] 	Area [mAU*s]	Height [mAU]	Area %
1 2	9.122 13.095	MM MM	0.3504 0.5428	843.70477 40.82583	40.13346 1.25351	95.3845 4.6155
Total	s:			884.53060	41.38697	

Figure S152. HPLC Chromatography of the Racemic 4-Bromo-*N*-(4-((4-methoxyphenyl)ami no)-4-oxobutan-2-yl)benzamide (5aj).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.099	BB	0.4341	3913.12769	133.46248	49.2719
2	17.044	BBA	0.8753	4028.77905	64.98422	50.7281
Total	ls :			7941.90674	198.44670	

Figure S153. HPLC Chromatography of (S)-4-Bromo-N-(4-((4-methoxyphenyl)amino)-4-oxob utan-2-yl)benzamide (5aj).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	12.090 17.137	 BB BB	0.4418 0.6171	1383.19226 8.54301	45.86885 1.64711e-1	99.3862 0.6138
Total	ls :			1391.73528	46.03356	

Figure S154. HPLC Chromatography of the Racemic N-(4-((4-Methoxyphenyl)amino)-4-oxo butan-2-yl)-4-(trifluoromethoxy)benzamide (5ak).

Totals :

Figure S155. HPLC Chromatography of (S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl) -4-(trifluoromethoxy)benzamide (5ak).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.376	BBA	0.3162	2363.60889	112.02225	95.6344
2	11.365	BBA	0.4759	107.89490	3.26232	4.3656
Total	s:			2471.50378	115.28457	

Figure S156. HPLC Chromatography of the Racemic N-(4-((4-Methoxyphenyl)amino)-4-oxo butan-2-yl)-4-((trifluoromethyl)thio)benzamide (5am).

Totals :

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	7.160 15.351	BBA BBA	0.2934 0.6538	 1.49414e4 106.00166	716.21411 2.19359	99.2955 0.7045
Total	.s :			1.50474e4	718.40770	

Figure S158. HPLC Chromatography of the Racemic *N*-(4-((4-Methoxyphenyl)amino)-4-oxo butan-2-yl)benzo[d][1,3]dioxole-5-carboxamide (5an).

Figure S159. HPLC Chromatography of (S)-N-(4-((4-Methoxyphenyl)amino)-4-oxobutan-2-yl) benzo[d][1,3]dioxole-5-carboxamide (5an).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.005	BB	0.5959	3635.67871	84.16940	99.5410
2	29.742	BB	1.0434	16.76502	1.91862e-1	0.4590
Tota	ls :			3652.44373	84.36127	

Figure S160. HPLC Chromatography of the Racemic *N*-(4-((4-Methoxyphenyl)amino)-4-oxo butan-2-yl)thiophene-2-carboxamide (5al).

Totals :

4.69305e4 1910.08923

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.913	BBA	0.2849	1.26949e4	670.32104	97.1797
2	14.262	BBA	0.5319	368.42691	10.43538	2.8203
Total	s:			1.30633e4	680.75642	

Figure S162. HPLC Chromatography of the Racemic *N*-(4-Methoxyphenyl)-3-pivalamidobut anamide (5ao).

Totals :

Figure S163. HPLC Chromatography of (S)-N-(4-Methoxyphenyl)-3-pivalamidobutanamide (5ao).

5.02131e4 2679.82318

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.720	BB	0.1960	2343.42725	166.67308	95.6796
2	10.440	VBA	0.3913	105.81750	4.07076	4.3204
Tota	s:			2449.24475	170.74384	

Figure S164. HPLC Chromatography of the Racemic *N*-(4-(Benzylamino)-4-oxobutan-2-yl)b enzamide (5ba).

Figure S165. HPLC Chromatography of (S)-N-(4-(Benzylamino)-4-oxobutan-2-yl)benzamide (5ba).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak # 	RetTime [min]	Туре	Width [min]	Area [mAU*s] 	Height [mAU]	Area %
1	12.226	BBA	0.6094	2.69970e4	651.57886	98.2689
2	32.686	MM	2.3160	475.56491	3.42232	1.7311
Total	s :			2.74726e4	655.00118	

Figure S166. HPLC Chromatography of the Racemic *N*-(1-((4-Methoxyphenyl)amino)-1-oxo hexan-3-yl)benzamide (5ca)

Figure S167. HPLC Chromatography of (S)-N-(1-((4-Methoxyphenyl)amino)-1-oxohexan-3-yl) benzamide (5ca)

4589.95

Total

VWD1A,Wavelength=254 nm x10² 10.516 2.4 Ph ЧU 2.2-365 ^{n}P 2.0-1.8-1.6mAU 1.4-1.2-1.0-0.8-0.6-0.4 0.2 0.0 2 14 15 1 3 4 7 9 10 11 12 13 16 17 18 19 20 21 22 23 24 25 5 8 Ò 6 Time [min]

Signal:	VWD				
RT [min]	Туре	Width [min]	Area	Height	Area%
10.516	VB	1.19	3921.53	237.50	50.17
13.365	BM m	1.81	3895.34	182.86	49.83
		Total	7816.87		

Figure S169. HPLC Chromatography of (S)-N-(1-((4-Methoxyphenyl)amino)-1-oxoheptan-3-yl) benzamide (5da)

:	VWD1A,Wavelength=254 nm
---	-------------------------

RT [min]	Туре	Width [min]	Area	Height	Area%
10.467	VB	1.56	26102.47	1552.07	97.20
13.403	MM m	1.21	752.69	34.69	2.80
		Total	26855.16		

Figure S170. HPLC Chromatography of the Racemic *N*-(1-((*S*)-2-(6-Methoxynaphthalen-2-yl) propanamido)propan-2-yl)benzamide (6).

Figure S171. HPLC Chromatography of N-((S)-1-((S)-2-(6-Methoxynaphthalen-2-yl)propana mido)propan-2-yl)benzamide (6).

Figure S172. HPLC Chromatography of the Racemic *N*-(1-(2-(11-oxo-6,11-Dihydrodibenzo[*b*, *e*]oxepin-3-yl)acetamido)propan-2-yl)benzamide (7).

Figure S173. HPLC Chromatography of (S)-N-(1-(2-(11-oxo-6,11-Dihydrodibenzo[*b,e*]oxepin-3 -yl)acetamido)propan-2-yl)benzamide (7).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	35.226 BBA	0.8494	2853.53882	51.90400	97.7819
2	37.595 BB	0.6812	64.73160	1.16331	2.2181
Total	ls :		2918.27042	53.06730	

Figure S174. HPLC Chromatography of the Racemic *N*-(1-(2-(1-(4-Chlorobenzoyl)-5-methox y-2-methyl-1H-indol-3-yl)acetamido)propan-2-yl)benzamide (8).

Totals :

6.59234e4 1359.51790

Figure S175. HPLC Chromatography of (S)-N-(1-(2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl -1H-indol-3-yl)acetamido)propan-2-yl)benzamide (8).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.582	BB	0.4432	5705.28906	189.52417	96.7637
2	11.016	BBA	1.2104	190.81352	1.86391	3.2363
Total	ls :			5896.10258	191.38808	

Figure S176. HPLC Chromatography of the Racemic 2-((2-(4-Methoxybenzamido)propyl)car bamoyl)phenyl acetate (9).

Figure S177. HPLC Chromatography of (S)-2-((2-(4-Methoxybenzamido)propyl)carbamoyl)p henyl acetate (9).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.159	BB	0.4802	3730.09302	113.26410	99.8613
2	17.738	BB	0.7580	5.18255	8.10523e-2	0.1387
Tota	ls :			3735.27557	113.34515	

Figure S178. HPLC Chromatography of the Racemic 3-(3-(4,5-Diphenyloxazol-2-yl)propana mido)-*N*-(4-methoxyphenyl)butanamide (10).

Figure S179. HPLC Chromatography of (S)-3-(3-(4,5-Diphenyloxazol-2-yl)propanamido)-N-(4 -methoxyphenyl)butanamide (10).

0.6541 4001.17041

90.44542

8374.09033 212.30474

47.7804

Signal 1: DAD1 B, Sig=254,4 Ref=off

12.582 BBA

2

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.447	BBA	0.4709	7806.74121	241.65436	96.2610
2	12.538	BBA	0.5430	303.23257	8.40382	3.7390
Tota	ls :			8109.97379	250.05818	

Figure S180. HPLC Chromatography of the Racemic 3-((S)-2-(4-Isobutylphenyl) propanamid o)-N-(4-methoxyphenyl) butanamide (11).

Figure S181. HPLC Chromatography of (S)-3-((S)-2-(4-Isobutylphenyl)propanamido)-N-(4-m ethoxyphenyl)butanamide (11).

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak # 	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	5.090 10.912	BBA BBA	0.2174 0.5326	8243.94238 181.35062	524.38672 5.05427	97.8475 2.1525
Total	s :			8425.29300	529,44098	

Figure S182. HPLC Chromatography of the Racemic *N*,*N*'-(Propane-1,2-diyl)dinicotinamide (Nicaraven).

Figure S183. HPLC Chromatography of (S)-N,N'-(Propane-1,2-diyl)dinicotinamide ((S)-Nicar aven).

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.381 BBA	0.8206	1.93085e4	310.89749	100.0000
Totals :			1.93085e4	310.89749	