Supplemental Information

Giese Reaction of Alkyl Bromides using Amine Carboxyboranes

Changhee Park^a, Seyun Gi^a, Seongkyeong Yoon^b, Seong Jung Kwon^{*b} and Sunggi Lee^{*a,c}

^aDepartment of physics and Chemistry, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988 ^bDepartment of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjun-gu, Seoul 05029 ^cCenter for Basic Science, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988

Table of Contents

General Experimental	
Experimental Methods	S2-S4
Optimization of Reaction conditions	S4-S6
Substrate scope	S6-S20
Mechanism Study	S21-S28
Cyclic voltammetry (CV) measurements S33	S29-
DFT calculation studies S36	S34-
NMR Spectra	\$37-\$85
References	S86-S87

1. General Experimental

All chemicals and solvents were used without further purifications. ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded on Bruker Avance III-400 spectrometer. The chemical shifts reported in ppm relative to residual solvent CDCl₃, CD₃CN, C₆D₆ or added TMS as an internal reference. Splitting patterns are designated as follows: br; broad, s; singlet, d; doublet, t; triplet, q; quartet, m; multiplet, dt; doublet of triplet, td; triplet of doublet, dd; doublet of doublet. Flash chromatography was carried out on Merck silica 60 (230-400 mesh ASTM). Analytical thin-layer chromatography (TLC) was performed on E. Merck precoated silica gel 60 F_{254} plates. Mass spectral data were obtained from the Korea Basic Science Institute (Daegu). Blue light LEDs were purchased from Kessil (A160WE, PR 160 440 nm)

2. Experimental Methods

General Procedure: All experiments were performed in flame-dried glassware using argon as a protective gas. Solvents were transferred by using a syringe and were introduced into the vial through a rubber septum. All reactions were monitored by thin-layer chromatography (TLC). NMR yield was measured with dibromomethane or 1,3,5-trimethoxybenzene as an internal standard and isolated yield was obtained by flash chromatography using silica gel.

General Procedure for synthesis of carboxyborane

Synthesis of trimethylamine carboxyborane

Trimethylamine carboxyborane was prepared using a modified procedure from the literature¹, in which NaBH₃CN was reacted under reflux with trimethylammonium hydrochloride (1.0 equiv.) in THF until the evolution of H₂ gas ceased. The resulting product was purified by extraction with CH_2Cl_2/H_2O , then reacted with Et_3OBF_4 or MeOTf (1.1 equiv.) in CH_2Cl_2 under reflux. After the reaction, solvent was removed under reduced pressure. The resulting product was dissolved in H₂O, then the reaction solution was stirred for 3 days. The carboxyborane was extracted with CH_2Cl_2/H_2O and recrystallized in CH_2Cl_2/Hx .

Trimethylamine carboxyborane (1a)

1H NMR (400 MHz, CDCl3) δ 2.75 (s, 9H), 2.00 (p, *J* = 198.2, 95.7 Hz, 2H).

¹¹B NMR (128 MHz, CDCl₃) δ -10.02 (t, *J* = 99.6 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 52.3. (one peak is missing)

HRMS (FAB) m/z:[M]+ calcd. For C₄H₁₂BNO₂117.0961; Found 117.0962

Isolated yield: 6.78 g, 58% (3 steps for 100 mmol scale)

Amine exchange of carboxyborane

Other carboxyboranes were prepared as follows.

Procedure 1) Trimethylamine carboxyborane (1.0 mmol) was dissolved in corresponding amine (1.0 mL), protected from the atmosphere by purged with Ar gas, and maintained at 65 °C for 24 hours. The product was purified by recrystallization in DCM/Hx.

Procedure 2) Trimethylamine carboxyborane (1.0 mmol) and corresponding amine (2.2 equiv.) were dissolved in THF (4.0 mL), protected from the atmosphere by purged with Ar gas, and maintained at 65 °C for 24 hours. The product was purified by recrystallization in DCM/Hx or column chromatography on silica gel.

DMAP-carboxyborane (1b)

DMAP-carboxyborane was synthesized according to procedure 2.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 6.8 Hz, 2H), 6.59 – 6.53 (m, 2H), 3.13 (s, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 147.3, 106.6, 39.7. (Two peaks are missing)

¹¹B NMR (128 MHz, CDCl₃) δ -12.57 (t, *J* = 92.7 Hz).

HRMS (FAB) m/z:[M]+ calcd. For C₈H₁₃BN₂O₂ 180.1070; Found 180.1150

Isolated yield: 171 mg, 95%

DBU-carboxyborane (1c)

DBU-carboxyborane was synthesized according to procedure 1.

¹H NMR (400 MHz, CDCl3) δ 7.91 (s, 1H), 3.39 (dd, *J* = 7.7, 4.4 Hz, 4H), 3.33 (t, *J* = 6.1 Hz, 2H), 2.91 – 2.79 (m, 2H), 1.96 (p, *J* = 6.0 Hz, 2H), 1.67 (dtt, *J* = 9.6, 7.0, 4.1 Hz, 6H).

¹¹B NMR (128 MHz, CDCl₃) δ -15.31 (t, *J* = 96.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 54.0, 49.1, 48.5, 30.4, 29.0, 27.2, 23.4, 21.2. (One peak is missing)

HRMS (FAB) m/z:[M]+ calcd. For C₁₀H₁₉BN₂O₂ 210.1540; Found 211.1620

Isolated yield: 187 mg, 89%

3-Quinuclidinol-carboxyborane (1d)

3-Quinuclidinol-carboxyborane was synthesized according to procedure 2.

¹H NMR (400 MHz, CD3CN) δ 7.67 (s, 1H), 4.02 – 3.94 (m, 1H), 3.35 (ddd, *J* = 13.9, 8.4, 2.8 Hz, 1H), 3.22 (d, *J* = 3.5 Hz, 1H), 3.15 (dddd, *J* = 13.2, 10.6, 6.4, 2.7 Hz, 1H), 3.10 – 3.01 (m, 1H), 3.01 – 2.91 (m, 1H), 2.87 (dt, *J* = 13.8, 2.9 Hz, 1H), 2.06 (ddddd, *J* = 13.0, 10.7, 4.7, 3.6, 2.6 Hz, 1H), 1.97 (dd, *J* = 5.2, 2.5 Hz, 1H), 1.82 (ddt, *J* = 13.1, 10.3, 4.4 Hz, 1H), 1.70 – 1.53 (m, 2H).

¹³C NMR (101 MHz, CD₃CN) δ 61.6, 52.5, 51.5, 28.4, 23.1, 18.7. (One peak is missing)

¹¹B NMR (128 MHz, CD₃CN) δ -11.66 (t, *J* = 98.2 Hz).

HRMS (FAB) m/z:[M]+ calcd. For C₈H₁₆BNO₃ 185.1223; Found 186.1303

Isolated yield: 166 mg, 90%

N-methyl pyrrolidine-carboxyborane (1e)

N-methyl pyrrolidine-carboxyborane was synthesized according to procedure 1.

¹H NMR (400 MHz, CDCl₃) δ 3.40 – 3.25 (m, 2H), 2.98 (dtd, *J* = 13.3, 5.5, 4.9, 1.7 Hz, 2H), 2.78 (s, 3H), 2.11

-1.95 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 61.6, 48.5, 22.5. (One peak is missing)

¹¹B NMR (128 MHz, CDCl₃) δ -11.18 (t, *J* = 99.5 Hz).

HRMS (FAB) m/z:[M]+ calcd. For $C_6H_{14}BNO_2$ 143.1118; Found 143.1120

Isolated yield: 107 mg, 75%

3. Optimization of Reaction conditions

Table S1. Photocatalyst Screening

Entry	Potocatalyst	Yield (%) ^a
1	Mes-Acr-Me ⁺ ClO ₄ ⁻	9
2	$[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$	37

	3	[Ir(dF(Me)ppy) ₂ (dtbbpy)]PF ₆	53	
	4	Ir(ppy) ₃	48	
	5	5CzBN	64	^a Yield
was	6	4CzIPN	75	determined by ¹ H
NMR				using

dibromomethane.

Table S2. Base Screening

Entry	Base	Yield (%) ^a
1	Cs ₂ CO ₃	64
2	K ₂ CO ₃	56
3	Na ₂ CO ₃	6
4	K ₂ HPO ₄	7
5	BTMG	67
6	CsF	57

^aYield was determined by ¹H NMR using dibromomethane.

Table S3. Solvent Screening

1.5 equiv.

0.1 mmol

Entry	Solvent	Yield (%) ^a
1	MeCN	64
2	DMSO	45
3	DMF	83
4	MeCN/H ₂ O 1:1	30
5	MeCN/H ₂ O 9:1	69
6	toluene	40
7	PhCF ₃	49
8	tBuCN	55

^aYield determined by ¹H NMR using dibromomethane.

Table S4. Equivalent Screening

N N H ₂ 1 x ec	OH + OH + I a quiv.	Br N ^{Boc} + 0.1 mmol	$\begin{array}{c} 0 & 5CzE\\ \hline Cs_20\\ \hline D\\ 440\\ y \text{ equiv.} \end{array}$	BN (3.0 mol%) CO ₃ (z equiv.) MF (0.1 M) nm, r.t., 12 h		N _{Boc}
	Entry	Equiv. of 1a	Equiv. of 2a	Equiv. of Cs ₂ CO ₃	Yield (%) ^a	
	1	1.5	1.5	2.0	83	
	2	1.5	2.0	2.0	77	
	3	1.5	2.5	2.0	73	
	4	2.0	1.5	2.5	89	
	5	2.0	2.0	2.5	97	
	6	2.0	2.5	2.5	81	
	7	2.5	1.5	3.0	76	
	8	2.5	2.0	3.0	96	
	9	3.0	2.0	3.5	98	
	10	3.0	2.5	3.5	99	

 \sim

^a Yield determined by ¹H NMR using dibromomethane.

4. Substrate scope

General Procedure for Giese Reaction of Alkyl Bromide by XAT using Carboxyborane

$$\begin{array}{c} & O \\ N \\ B \\ H_2 \\ 2.0 \text{ equiv.} \\ \end{array} \begin{array}{c} O \\ B \\ H_2 \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ H_2 \\ \end{array} \begin{array}{c} O \\ \end{array} \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ \end{array} \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ \end{array} \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ \end{array} \end{array}$$

A 4 mL vial was placed under Ar. The carboxyborane (0.2 mmol, 2.0 equiv.), alkyl bromide (0.1 mmol, 1.0 equiv.), 5CzBN (3.0 mol%), and Cs_2CO_3 (0.25 mmol, 2.5 equiv.) were added followed by DMF/H₂O 9:1 mixture as a solvent (1.0 mL), appropriate Michael acceptor (2.0 mmol, 2.0 equiv.). The reaction was then stirred at room temperature under the irradiation of 440 nm blue LEDs for 12 h. After the reaction, the reaction mixture was diluted with H₂O and Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The solvent was removed under the vacuo and the residue was purified by column chromatography on silica gel to provide the corresponding products.

tert-butyl 4-(3-methoxy-2-methyl-3-oxopropyl)piperidine-1-carboxylate (3a)

¹H NMR (400 MHz, CDCl₃) δ 4.05 (s, 2H), 3.66 (s, 3H), 2.63 (q, *J* = 11.0, 9.1 Hz, 2H), 2.53 (dq, *J* = 8.6, 6.8 Hz, 1H), 1.71 – 1.54 (m, 3H), 1.43 (s, 9H), 1.31 – 1.21 (m, 2H), 1.13 (d, *J* = 7.0 Hz, 3H), 1.05 (qt, *J* = 12.2, 4.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 177.4, 155.0, 79.4, 51.7, 44.0, 40.7, 36.7, 34.0, 32.1, 28.6, 17.8.

The spectroscopic characterization matched with data reported in the literature.²

Isolated yield: 25.7 mg, 90%

tert-butyl 4-(3-(benzyloxy)-2-methyl-3-oxopropyl)piperidine-1-carboxylate (3b)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 5.18 – 5.06 (dd, 2H), 4.02 (s, 2H), 2.66 – 2.38 (m, 3H), 1.69 – 1.52 (m, 3H), 1.44 (s, 9H), 1.35 – 1.28 (m, 2H), 1.16 (d, J = 6.9 Hz, 3H), 1.06 – 0.99 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.7, 154.9, 136.3, 128.7, 128.4, 79.4, 66.2, 44.0, 40.8, 36.9, 34.0, 32.3, 32.0, 28.6, 17.9. (one peak is missing)

The spectroscopic characterization matched with data reported in the literature.³

Isolated yield: 21.7 mg, 62%

tert-butyl 3-(3-methoxy-2-methyl-3-oxopropyl)azetidine-1-carboxylate (3c)

¹H NMR (400 MHz, CDCl₃) δ 3.98 (dt, J = 11.1, 8.3 Hz, 2H), 3.66 (s, 3H), 3.51 (dt, J = 8.5, 6.0 Hz, 2H), 2.57 – 2.46 (m, 1H), 2.45 – 2.34 (m, 1H), 1.95 (dt, J = 13.7, 7.7 Hz, 1H), 1.70 (ddd, J = 14.0, 8.2, 6.1 Hz, 1H), 1.42 (s, 8H), 1.14 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.6, 156.5, 79.4, 54.6, 51.8, 38.5, 37.8, 28.5, 27.3, 17.3.

The spectroscopic characterization matched with data reported in the literature.⁴

Isolated yield: 20.0 mg, 78%

benzyl 3-cyclohexyl-2-methylpropanoate (3d)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 5.11 (dd, 2H), 2.65 – 2.55 (m, 1H), 1.76 – 1.56 (m, 6H), 1.30 – 1.05 (m, 8H), 0.90 – 0.79 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 177.2, 136.5, 128.7, 128.2, 66.1, 41.8, 37.1, 35.5, 33.4, 33.3, 26.7, 26.4, 17.8.

The spectroscopic characterization matched with data reported in the literature.⁵

Isolated yield: 21.4mg, 82%

benzyl 3-cyclopentyl-2-methylpropanoate (3e)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 5H), 5.12 (s, 2H), 2.60 – 2.47 (m, 1H), 1.82 – 1.66 (m, 4H), 1.66 – 1.52 (m, 2H), 1.52 – 1.35 (m, 3H), 1.17 (d, *J* = 6.9 Hz, 3H), 1.12 – 0.99 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 177.1, 136.4, 128.7, 128.2, 128.2, 66.1, 40.4, 39.1, 38.1, 32.8, 32.7, 25.2, 25.2, 17.7.

HRMS (FAB) m/z: [M]+ calcd. For C₁₆H₂₂O₂ 246.1620; Found 246.1618

Isolated yield: 13.5 mg, 55%

benzyl 2,4-dimethylpentanoate (3f)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 5.11 (s, 2H), 2.64 – 2.51 (m, 1H), 1.66 – 1.50 (m, 2H), 1.29 – 1.19 (m, 1H), 1.16 (d, *J* = 6.9 Hz, 3H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.86 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.1, 136.4, 128.7, 128.2, 128.2, 66.1, 43.1, 37.8, 26.0, 22.6, 22.6, 17.6.

The spectroscopic characterization matched with data reported in the literature.⁶

Isolated yield: 9.4 mg, 43%

benzyl 2-methylnonanoate (3g)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 5.12 (s, 2H), 2.49 (dq, *J* = 13.9, 7.0 Hz, 1H), 1.74 – 1.61 (m, 1H), 1.49 – 1.36 (m, 1H), 1.35 – 1.18 (m, 10H), 1.16 (d, *J* = 7.0 Hz, 3H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.9, 136.5, 128.7, 128.2, 128.2, 66.1, 39.7, 34.0, 31.9, 29.6, 29.3, 27.3, 22.8, 17.2, 14.2.

HRMS (FAB) m/z: [M]+ calcd. For C₁₇H₂₆O₂ 262.1933; Found 262.1935

Isolated yield: 16.3 mg, 62%

methyl 2-methyl-5-phenylpentanoate(3h)

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.17 (m, 2H), 7.13 – 7.07 (m, 3H), 3.59 (s, 3H), 2.56 – 2.50 (m, 2H), 2.45 – 2.34 (m, 1H), 1.68 – 1.49 (m, 3H), 1.43 – 1.33 (m, 1H), 1.07 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.3, 142.3, 128.5, 128.4, 125.9, 51.6, 39.5, 35.9, 33.6, 29.2, 17.2.

The spectroscopic characterization matched with data reported in the literature.⁷

Isolated yield: 13.0 mg, 63%

benzyl 5-(4-fluorophenyl)-2-methylpentanoate (3i)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 7.09 – 7.03 (m, 2H), 6.97 – 6.90 (m, 2H), 5.11 (d, *J* = 1.4 Hz, 2H), 2.58 – 2.53 (m, 2H), 2.52 – 2.46 (m, 1H), 1.76 – 1.64 (m, 1H), 1.64 – 1.50 (m, 2H), 1.51 – 1.43 (m, 1H), 1.17 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.6, 161.4 (d), 137.8 (d), 136.3, 129.8 (d), 128.68, 128.29, 128.25, 115.1 (d), 66.2, 39.5, 35.0, 33.4, 29.2, 17.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -117.92 (ddd, J = 14.3, 8.9, 5.4 Hz).

HRMS (FAB) m/z: [M]+ calcd. For C₁₉H₂₁FO₂ 300.15; Found 300.1523

Isolated yield: 12.9 mg, 43%

methyl 5-(4-chlorophenyl)-2-methylpentanoate (3j)

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 7.10 – 7.06 (m, 2H), 3.66 (s, 3H), 2.62 – 2.54 (m, 2H), 2.52 – 2.40 (m, 1H), 1.73 – 1.63 (m, 1H), 1.63 – 1.54 (m, 2H), 1.48 – 1.38 (m, 1H), 1.14 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.2, 140.7, 131.6, 129.8, 128.5, 51.7, 39.5, 35.2, 33.4, 29.1, 17.3.

HRMS (FAB) m/z: [M]+ calcd. For C₁₃H₁₇ClO₂ 240.0917; Found 240.0919

Isolated yield: 14.9 mg, 62%

benzyl 6-chloro-2-methylhexanoate (3k)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 5.12 (d, J = 1.0 Hz, 2H), 3.49 (t, J = 6.7 Hz, 2H), 2.50 (dq, J = 13.1, 7.0 Hz, 1H), 1.79 – 1.65 (m, 3H), 1.49 – 1.36 (m, 3H), 1.18 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.5, 136.3, 128.7, 128.3, 128.3, 66.2, 44.9, 39.6, 33.1, 32.6, 24.7, 17.2.

HRMS (FAB) m/z: [M]+ calcd. For C14H19ClO2 254.1074; Found 254.1076

Isolated yield: 15.0 mg, 59%

methyl 2-methyl-6-phenoxyhexanoate (31)

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.12 (m, 2H), 6.88 – 6.83 (m, 1H), 6.83 – 6.78 (m, 2H), 3.87 (t, *J* = 6.5 Hz, 2H), 3.59 (s, 3H), 2.43 – 2.33 (m, 1H), 1.75 – 1.55 (m, 3H), 1.44 – 1.24 (m, 55H), 1.08 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.4, 159.2, 129.5, 120.6, 114.6, 67.8, 51.6, 39.5, 33.9, 29.3, 27.2, 26.1, 17.2.

HRMS (FAB) m/z: [M]+ calcd. For C15H22O3 250.1569; Found 250.1569

Isolated yield: 18.3 mg, 77%

benzyl 6-methoxy-2-methylhexanoate (3m)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.11 (s, 2H), 3.33 (t, J = 6.6 Hz, 2H), 3.31 (s, 3H), 2.54 – 2.44 (m, 1H), 1.70 (dddd, J = 15.7, 7.4, 3.9, 1.6 Hz, 1H), 1.55 (dtd, J = 8.3, 6.9, 6.1 Hz, 2H), 1.50 – 1.38 (m, 1H), 1.38 – 1.27 (m, 2H), 1.17 (d, J = 7.0 Hz, 3H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 176.7, 136.4, 128.7, 128.2, 128.2, 72.7, 66.1, 58.7, 39.7, 33.7, 29.6, 24.0, 17.1.

HRMS (FAB) m/z: [M]+ calcd. For C₁₅H₂₂O₃ 250.16; Found 250.1566

Isolated yield: 13.8 mg, 55%

benzyl 2-methyl-3-(tetrahydro-2H-pyran-4-yl)propanoate (3n)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 5.12 (dd, J = 12.3 Hz, 2H), 3.93 – 3.87 (m, 2H), 3.27 (tdd, J = 11.8, 6.8, 2.1 Hz, 2H), 2.60 (ddt, J = 13.0, 8.8, 6.9 Hz, 1H), 1.67 (ddd, J = 13.5, 8.9, 5.9 Hz, 1H), 1.61 (ddd, J = 8.5, 3.8, 1.6 Hz, 1H), 1.50 – 1.36 (m, 2H), 1.34 – 1.27 (m, 1H), 1.27 – 1.18 (m, 2H), 1.17 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.7, 136.3, 128.7, 128.4, 68.0, 66.2, 41.2, 36.7, 33.2, 33.0, 17.8.

HRMS (FAB) m/z: [M]+ calcd. For C₁₆H₂₂O₃ 262.16; Found 262.1571

The spectroscopic characterization matched with data reported in the literature.⁸

Isolated yield: 18.1 mg, 69%

1-benzyl 7-ethyl 2-methylheptanedioate (30)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 5.11 (s, 2H), 4.11 (dd, J = 7.1 Hz, 2H), 2.54 – 2.43 (m, 1H), 2.25 (t, J = 7.5 Hz, 2H), 1.74 – 1.64 (m, 2H), 1.64 – 1.56 (m, 2H), 1.50 – 1.39 (m, 1H), 1.35 – 1.27 (m, 1H), 1.24 (t, J = 7.1 Hz, 4H), 1.16 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.6, 173.7, 136.3, 128.7, 128.3, 128.2, 66.2, 60.3, 39.5, 34.3, 33.5, 26.8, 24.9, 17.1, 14.4.

HRMS (FAB) m/z: [M]+ calcd. For C17H24O4 292.1675; Found 293.1753

Isolated yield: 17.4 mg, 60%

methyl 3-((1s,3s)-adamantan-1-yl)-2-methylpropanoate (3p)

¹H NMR (400 MHz, CDCl₃) δ 3.66 (s, 3H), 2.55 (dqd, J = 9.1, 7.1, 3.2 Hz, 1H), 1.92 (p, J = 3.2 Hz, 3H), 1.77 – 1.63 (m, 5H), 1.65 – 1.55 (m, 3H), 1.49 (dq, J = 12.1, 2.6 Hz, 3H), 1.39 (dq, J = 12.2, 2.6 Hz, 3H), 1.13 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 178.6, 51.7, 48.7, 42.4, 37.2, 34.3, 32.8, 28.8, 20.6.

HRMS (FAB) m/z: [M]+ calcd. For C₁₅H₂₄O₂ 236.1776; Found 236.1778

Isolated yield: 14.0 mg, 59%

methyl 3-((1S,3R)-3,5-dimethyladamantan-1-yl)-2-methylpropanoate (3q)

¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 3H), 2.55 (dqd, J = 9.0, 7.0, 3.2 Hz, 1H), 2.00 (dq, J = 6.3, 3.2 Hz, 1H), 1.75 (dd, J = 14.2, 9.2 Hz, 1H), 1.35 – 1.17 (m, 6H), 1.13 (d, J = 7.1 Hz, 4H), 1.12 – 1.01 (m, 4H), 1.03 – 0.94 (m, 2H), 0.78 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 178.6, 51.7, 51.3, 48.9, 48.7, 48.0, 43.4, 43.4, 40.9, 34.5, 34.5, 31.3, 30.8, 29.8, 20.6.

HRMS (FAB) m/z: [M]+ calcd. For C₁₇H₂₈O₂ 264.21; Found 264.2090

Isolated yield : 19.3 mg, 73%

benzyl 2,4,4-trimethylpentanoate (3r)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 5.10 (s, 2H), 2.56 (dqd, *J* = 9.1, 7.1, 3.2 Hz, 1H), 1.88 (dd, *J* = 14.1, 9.1 Hz, 1H), 1.23 – 1.14 (m, 4H), 0.86 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 177.9, 136.3, 128.7, 128.3, 128.3, 66.3, 48.0, 36.4, 30.9, 29.6, 20.5.

The spectroscopic characterization matched with data reported in the literature.9

Isolated yield: 7.5 mg, 32%

tert-butyl 4-(3-ethoxy-3-oxopropyl)piperidine-1-carboxylate (3s)

¹H NMR (400 MHz, CDCl₃) δ 4.17 – 4.01 (m, 4H), 2.71 – 2.60 (m, 2H), 2.31 (t, *J* = 7.7 Hz, 2H), 1.69 – 1.53 (m, 4H), 1.44 (s, 8H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.08 (qd, *J* = 12.3, 4.3 Hz, 2H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 173.8, 155.0, 79.4, 60.5, 44.0, 35.7, 32.0, 31.7, 31.6, 28.6, 14.4.

The spectroscopic characterization matched with data reported in the literature.²

Isolated yield: 12.1 mg, 42%

tert-butyl 4-(3-(benzyloxy)-3-oxopropyl)piperidine-1-carboxylate (3t)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 5.11 (s, 2H), 4.06 (s, 2H), 2.63 (t, *J* = 12.7 Hz, 2H), 2.38 (t, *J* = 7.7 Hz, 2H), 1.62 (dq, *J* = 14.8, 7.7 Hz, 4H), 1.45 (s, 9H), 1.37 (ddt, *J* = 11.4, 7.6, 3.9 Hz, 1H), 1.07 (qd, *J* = 12.4, 4.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.6, 155.0, 136.2, 128.7, 128.4, 79.4, 66.4, 44.0, 35.6, 31.9, 31.7, 31.5, 28.6.

The spectroscopic characterization matched with data reported in the literature.²

Isolated yield: 18.9 mg, 36%

tert-butyl 4-(3-(dimethylamino)-3-oxopropyl)piperidine-1-carboxylate (3u)

Boc

¹H NMR (400 MHz, CDCl₃) δ 4.11 – 3.99 (m, 2H), 2.96 (d, J = 22.7 Hz, 6H), 2.66 (t, 2H), 2.31 (t, J = 7.7 Hz, 2H), 1.76 – 1.62 (m, 2H), 1.57 (q, J = 7.3 Hz, 2H), 1.43 (s, 10H), 1.09 (qd, J = 12.5, 4.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 155.0, 79.3, 44.0, 37.4, 35.7, 35.5, 32.1, 31.7, 30.4, 28.6.

HRMS (FAB) m/z: [M]+ calcd. For C₁₅H₂₈N₂O₃ 284.2100; Found 284.2099

Isolated yield: 17.1 mg, 60%

tert-butyl 4-(2-cyanoethyl)piperidine-1-carboxylate (3v)

¹H NMR (400 MHz, CDCl3) δ 4.11 (s, 2H), 2.69 (t, *J* = 12.9 Hz, 2H), 2.38 (t, *J* = 7.0 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.63 – 1.58 (m, 2H), 1.45 (s, 9H), 1.11 (tdd, *J* = 12.7, 10.9, 4.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.9, 119.7, 79.6, 43.7, 35.1, 31.9, 31.6, 28.6, 14.7.

The spectroscopic characterization matched with data reported in the literature.²

Isolated yield: 11.2 mg, 47%

tert-butyl 4-(2-(phenylsulfonyl)ethyl)piperidine-1-carboxylate (3w)

¹H NMR (400 MHz, CDCl3) δ 7.94 – 7.87 (m, 2H), 7.71 – 7.62 (m, 1H), 7.58 (dd, *J* = 8.2, 6.9 Hz, 2H), 4.06 (s, 2H), 3.14 – 3.05 (m, 2H), 2.62 (t, *J* = 12.8 Hz, 2H), 1.73 – 1.62 (m, 2H), 1.63 – 1.55 (m, 2H), 1.48 (ddt, *J* = 11.5, 7.7, 3.9 Hz, 1H), 1.43 (s, 9H), 1.06 (qd, *J* = 12.4, 4.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl3) δ 154.8, 139.2, 133.9, 129.4, 128.1, 79.5, 54.0, 43.8, 35.0, 31.7, 29.0, 28.5.

The spectroscopic characterization matched with data reported in the literature.²

Isolated yield: 10.5 mg, 30%

diethyl 2-(1-(1-(tert-butoxycarbonyl)piperidin-4-yl)ethyl)malonate (3x)

¹H NMR (400 MHz, CDCl₃) δ 4.28 – 4.09 (m, 6H), 3.40 (d, J = 8.7 Hz, 1H), 2.72 – 2.47 (m, 2H), 2.22 (m, J = 8.6, 6.8, 4.4, 1.9 Hz, 1H), 1.63 – 1.53 (m, 2H), 1.47 (s, 1H), 1.45 (s, 9H), 1.27 (m, J = 7.1, 0.6 Hz, 7H), 1.15 (m, J = 12.7, 4.9 Hz, 1H), 0.92 (s, 3H).

¹³C NMR (101 MHz, CDCl3) δ 169.2, 154.9, 79.5, 61.5, 55.5, 44.1, 38.9, 37.9, 30.5, 28.6, 14.3, 13.2

The spectroscopic characterization matched with data reported in the literature.²

Isolated yield: 7.6 mg, 20%

tert-butyl 4-(3-oxocyclohexyl)piperidine-1-carboxylate (3y)

¹H NMR (400 MHz, CDCl₃) δ 4.13 (s, 2H), 2.63 (t, *J* = 12.9 Hz, 2H), 2.43 – 2.33 (m, 2H), 2.32 – 2.19 (m, 1H), 2.11 – 2.01 (m, 2H), 1.90 (d, *J* = 13.3 Hz, 1H), 1.62 (pd, *J* = 13.3, 12.1, 5.9 Hz, 4H), 1.45 (s, 9H), 1.42 – 1.08 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 211.98, 154.94, 79.54, 45.54, 43.95, 41.63, 41.24, 29.84, 29.21, 28.61, 28.42, 25.46.

Isolated yield: 11.5 mg, 41%

General Procedure for Giese Reaction of Boryl Radical

A 4 mL vial was placed under Ar. The carboxyborane (2.0-3.0 equiv.), 5CzBN (3.0 mol%) and Cs_2CO_3 (2.5-3.5 equiv.) were added, followed by DMA or MeCN as a solvent (1.0 mL), appropriate Michael acceptor (0.1 mmol, 1.0 equiv.). The reaction was then stirred at room temperature under the irradiation of 440 nm blue LEDs for 12 h. The solvent was removed under the vacuo, and the residue was purified by column chromatography on alumina grade III to provide the corresponding products.

methyl 3-boraneyl-2-methylpropanoate DMAP complex (4b)

¹H NMR (400 MHz, C_6D_6) δ 8.02 – 7.96 (m, 2H), 5.60 – 5.56 (m, 2H), 3.53 (s, 3H), 2.88 (dt, *J* = 7.8, 6.8 Hz, 1H), 1.96 (s, 6H), 1.64 (s, 1H), 1.62 (d, *J* = 6.8 Hz, 3H), 1.36 (tt, *J* = 13.3, 5.4 Hz, 1H).

¹³C NMR (101 MHz, C₆D₆) δ 179.8, 154.4, 146.5, 106.3, 50.7, 40.3, 38.3, 20.0. (one peak is missing)

¹¹B NMR (128 MHz, C_6D_6) δ -6.39 (t, J = 105.9 Hz).

Isolated yield: 18.3 mg, 78%

methyl 3-boraneyl-2-methylpropanoate DBU complex (4c)

¹H NMR (400 MHz, C₆D₆) δ 3.56 (s, 3H), 3.22 (td, *J* = 5.4, 2.2 Hz, 2H), 2.93 (dp, *J* = 8.1, 6.7 Hz, 1H), 2.75 (pt, *J* = 8.5, 4.7 Hz, 2H), 2.35 (ddd, *J* = 7.1, 3.0, 1.2 Hz, 2H), 2.29 – 2.21 (m, 2H), 1.65 (d, *J* = 6.8 Hz, 3H), 1.43 – 1.27 (m, 5H), 1.23 – 1.02 (m, 5H), 0.90 – 0.81 (m, 2H).

 ^{13}C NMR (101 MHz, $C_6D_6)$ δ 180.2, 164.7, 52.8, 50.6, 48.4, 47.7, 40.5, 29.9, 29.0, 27.3, 24.4, 21.5, 20.0. (one peak is missing)

¹¹B NMR (128 MHz, C_6D_6) δ -9.69 (t, J = 97.5 Hz).

Isolated yield: 24.8 mg, 93%

dimethyl 2-trimethylamine-boranylsuccinate (4f)

$$\begin{array}{c} \mathsf{CO}_2\mathsf{Me}\\ \mathsf{Me}_3\mathsf{N}_{\mathsf{N}_2} & \mathsf{CO}_2\mathsf{Me}\\ \mathsf{H}_2 \end{array}$$

¹H NMR (400 MHz, CDCl₃) δ 3.63 (d, *J* = 4.8 Hz, 6H), 2.75 (dd, *J* = 17.3, 10.4 Hz, 1H), 2.62 (s, 9H), 2.38 – 2.26 (m, 1H), 2.20 (d, *J* = 10.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 181.4, 175.0, 52.5, 52.0, 51.5, 51.0, 36.6.

¹¹B NMR (128 MHz, CDCl₃) δ -1.79 (t).

The spectroscopic characterization matched with data reported in the literature.¹⁰

Isolated yield: 14.5 mg, 67%

((2-trimethylamine-boranylethyl)sulfonyl)benzene (4g)

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.88 (m, 2H), 7.62 – 7.55 (m, 1H), 7.55 – 7.46 (m, 2H), 3.02 – 2.94 (m, 2H), 2.54 (s, 9H), 0.86 – 0.74 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.3, 133.1, 129.1, 128.1, 57.0, 52.2.

¹¹B NMR (128 MHz, CDCl₃) δ -2.79 (t).

The spectroscopic characterization matched with data reported in the literature.¹⁰

Isolated yield: 20.7 mg, 86%

((DMAP-boranylethyl)sulfonyl)benzene (4h)

_N ,"N _B H₂ ∠SO₂Ph

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.92 (m, 2H), 7.91 – 7.83 (m, 2H), 7.60 – 7.54 (m, 1H), 7.50 (dd, *J* = 8.2, 6.7 Hz, 2H), 6.52 – 6.46 (m, 2H), 3.10 (s, 6H), 2.99 – 2.91 (m, 2H), 0.84 (tq, *J* = 9.9, 5.1, 4.4 Hz, 2H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 155.1, 146.2, 139.9, 132.9, 129.6, 128.9, 128.4, 106.7, 57.9, 39.6.

¹¹B NMR (128 MHz, CDCl₃) δ -6.68.

Isolated yield: 13.7 mg, 45%

benzyl 3-bornaeylpropanoate trimethylamine complex (4a)

Figure S1. Crude ¹H NMR spectroscopy of 4a

benzyl 3-bornaeylpropanoate 3-quinuclidinol complex (4d)

Figure S2. Crude ¹H NMR spectroscopy of 4d

benzyl 3-bornaeylpropanoate N-methyl pyrrolidine complex (4e)

Figure S3. Crude ¹H NMR spectroscopy of 4e

4a, 4d, and 4e converted to benzyl 3-hydroxypropanoate 5 by oxidation.

General Procedure for oxidation of C-B bond

After the Giese reaction of boryl radical, DMA was removed by extraction with Et₂O and water. The crude reaction mixture was dissolved in THF (2.0 mL). The reaction solution was cooled to 0 °C and an aqueous solution of 2 M NaOH and 30% H_2O_2 (2:1 v/v, 6 mL) was added dropwise. The solution was stirred vigorously for 2 h. Then it was warmed to room temperature and diluted with water and EtOAc. The layers were separated, the organic layer was washed with Brine and the combined aqueous layers were extracted with EtOAc. The organic layers were combined, dried over MgSO₄, and concentrated under vacuum. The solvent was removed under the vacuo and the residue was purified by column chromatography on silica gel to provide the corresponding products.

benzyl 3-hydroxypropanoate (5)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 5.16 (s, 2H), 3.89 (t, *J* = 5.6 Hz, 2H), 2.63 (t, *J* = 5.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 135.8, 128.8, 128.5, 128.4, 66.7, 58.4, 37.0. HRMS (FAB) m/z:[M]+ calcd. For C₁₀H₁₂O₃ 180.0786; Found 180.0788

Reduction of benzylacrylate by DBU-BH₃

A 4 mL vial was placed under Ar. The DBU-BH₃ (0.1 mmol, 1.0 equiv.) was added followed by DMA as a solvent (1.0 mL), and benzyl acrylate (1.0 mmol, 1.0 equiv.). The reaction was then stirred at room temperature for 12 h. After the reaction, the reaction mixture was diluted with H_2O and Et_2O . The layers were separated, and the aqueous layer was extracted with Et_2O . The solvent was removed under the vacuo and the residue was purified by column chromatography on silica gel to provide the corresponding products.

benzyl propionate

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 5H), 5.12 (s, 2H), 2.39 (q, J = 7.6 Hz, 2H), 1.16 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 136.3, 128.7, 128.3, 66.0, 27.8, 9.3.

The spectroscopic characterization matched with data reported in the literature.¹¹

Isolated yield: 7.7 mg, 47%

5. Mechanism Study

Table S5. Control Experiments

^a Yield determined by 1H NMR using dibromomethane, NR = no reaction.

Radical inhibition experiment

A 4 mL vial was placed under Ar. Carboxyborane (1a) (0.2 mmol, 2.0 equiv.), *N*-boc-bromopiperidine (0.1 mmol, 1.0 equiv.), 5CzBN (3.0 mol%), TEMPO (0.3 mmol, 3.0 equiv.), and Cs_2CO_3 (0.25 mmol, 2.5 equiv.) were added followed by DMF/H₂O 9:1 mixture as a solvent (1.0 mL), appropriate methyl methacrylate (2a) (2.0 mmol, 2.0 equiv.). The reaction was then stirred at room temperature under the irradiation of 440 nm blue LEDs for 12 h. The solvent was removed under the vacuo then, reaction was monitored by TLC and crude NMR.

When TEMPO (3.0 equiv.) was introduced into the model reactions under the standard reaction conditions, no desired product was observed according to both TLC and NMR analysis. This result indicated that a free radical process was involved.

Scheme S1. Radical clock experiment

A 4 mL vial was placed under Ar. Carboxyborane (1a) (0.2 mmol, 2.0 equiv.), 5CzBN (3.0 mol%), and Cs_2CO_3 (0.25 mmol, 2.5 equiv.) were added followed by DMF/H₂O 9:1 mixture as a solvent (2.0 mL), 6-bromo-1-hexene (0.1 mmol, 1.0 equiv.), and methyl methacrylate (2a) (2.0 mmol, 2.0 equiv.). The reaction was then stirred at room temperature under the irradiation of 440 nm blue LEDs for 12 h. The solvent was removed under the vacuo and the residue was purified by column chromatography on silica gel to provide the corresponding products.

benzyl 4-cyclopentyl-2-methylbutanoate (3z)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 5.12 (s, 2H), 2.47 (h, *J* = 7.0 Hz, 1H), 1.69 (dtdd, *J* = 13.3, 9.7, 6.2, 4.7 Hz, 4H), 1.60 – 1.37 (m, 5H), 1.31 – 1.22 (m, 2H), 1.16 (d, *J* = 7.0 Hz, 3H), 1.09 – 0.96 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.9, 136.5, 128.7, 128.2, 66.1, 40.1, 39.9, 33.8, 33.1, 32.8, 32.7, 25.3, 17.2. (One peak is missing)

The spectroscopic characterization matched with data reported in the literature.¹²

Isolated yield: 14.2 mg, 55%

Isolation of Byproduct: Probing Boryl Radical-Mediated XAT

A 4 mL vial was placed under Ar. Carboxyborane (1a) (0.2 mmol, 2.0 equiv.), *N*-boc-bromopiperidine (0.1 mmol, 1.0 equiv.), 5CzBN (3.0 mol%), and Cs_2CO_3 (0.25 mmol, 2.5 equiv.) were added followed by MeCN- d_3 as a solvent (1.0 mL), appropriate methyl methacrylate (2a) (2.0 mmol, 2.0 equiv.). The reaction was then stirred at

room temperature under the irradiation of 440 nm blue LEDs for 12 h. The solvent was removed under the vacuo and the residue was purified by column chromatography on silica gel to provide the corresponding products.

¹H NMR (400 MHz, CDCl₃) δ 2.76 (s, 9H).

¹¹B NMR (128 MHz, CDCl₃) δ -2.49 (t, *J* = 127.7 Hz).

Isolated yield: 7.5 mg, 49%

To obtain evidence of the XAT between the amine-boryl radical and the alkyl bromides, we synthesized $Me_3NBH_2Br(6)$ and confirmed its formation by comparing crude NMR of reaction mixture and isolation.

Preparation of Me₃NBH₂Br¹³

$$H_3B-N$$
 + HBr H_2B-N Br H_2B-N
10.0 mmol 1.86 equiv. r.t.

A 20 mL vial was placed under Ar. Trimethylamine-borane (729 mg, 10.0 mmol) was partially dissolved in 8.0 mL of CH_2Cl_2 . Hydrogen bromide (48%, 2.1 mL, 1.86 equiv.) was added and then the reaction mixture was stirred at room temperature till gas evolution ceases. After the reaction, the solvent was removed under the vacuo, and the residue was purified by column chromatography on silica gel to provide the corresponding products.

¹H NMR (400 MHz, CDCl₃) δ 2.76 (s, 9H). ¹¹B NMR (128 MHz, CDCl₃) δ -2.49 (t, *J* = 127.7 Hz).

Figure S4. ¹H-NMR spectroscopy studies probing boryl radical mediated XAT

Figure S5. ¹¹B-NMR spectroscopy studies probing boryl radical mediated XAT

Light on/off experiments

To a 10 mL Schlenk flask equipped with a magnetic stir bar was added *N*-Boc-4-bromo piperidine (0.5 mmol, 1.0 equiv.), trimethylamine carboxyborane (**1a**) (1.0 mmol, 2.0 equiv.), 5CzBN (3.0 mol%), Cs_2CO_3 (1.25 mmol, 2.5 equiv.), and 1,3,5-trimethoxybenzene (0.2 mmol, 0.4 equiv.) as an internal standard. Dry MeCN- d_3 (5.0 mL) was added, after that the methyl methacrylate (**1a**) (1.0 mmol, 2.0 equiv.) was added. The reaction solution was stirred under the irradiation of 440 nm at room temperature. After being stirred for 0.5 h, 0.5 mL sample of the reaction mixture was taken with a syringe and measured by ¹H NMR. The Schlenk flask was wrapped in tin foil and stirred for 0.5 h, then 0.5 mL sample of the reaction mixture was taken with a syringe and measured by ¹H NMR. Repeating this process.

These experiments revealed that the reaction was completely halted in the absence of light and resumed once illumination was restored, indicating that light is essential for the reaction to proceed. Although it was not possible

to entirely exclude the possibility of a radical-chain mechanism, the findings suggested that any such chainpropagation would be short-lived.

on/off experiment

Figure S6. on/off experiment

Stern-Volmer quenching experiments

Stern-Volmer quenching experiments were conducted using a 3.0×10^{-5} M solution of 5CzBN in MeCN and variable quencher concentrations.

The excitation wavelength was 390 nm, and the fluorescence wavelength was 523 nm.

Trimethylamine carboxyborane (1a) and tetrabutylammonium hydroxide were used as carboxyborane and base, respectively.

Figure S7. Fluorescence quenching study of carboxyborane + base

Figure S8. Fluorescence quenching study of carboxyborane

Figure. 89. Fluorescence quenching study of 1-N-boc bromopiperidine

Figure S10. Fluorescence quenching study of methyl methacrylate

Detection of CO₂

To obtain evidence of the release of CO_2 gas during the reaction, we detected CO_2 from gas phase of the reaction mixture by using gas chromatography (GC). GC analyses were performed on a PerkinElmer Clarus GC equipped with packed column (ShinCarbon ST 100/120, 2m 1mmID 1/16OD Silico).

 \mathbf{ss}

Sample	Detection time (min)
CO ₂	10.659
Reaction mixture	11.059

6. Cyclic voltammetry (CV) measurements

6-1. Reagent

Tetrabutylammonium perchlorate (TBAP, $CH_3CH_2CH_2CH_2)_4N(ClO_4)$), anhydrous acetonitrile (CH_3CN) were obtained from Sigma Aldrich (St. Louis, MO, USA) and without further purification. TBAP was dried at 120 °C overnight in a vacuum oven.

Borane carboxylate Tetrabutylammonium salt, 1.0 M in methanol used. The salts were prepared in the vials by stoichiometric neutralization of the acid with tetrabutylammonium hydroxide in methanol in the presence of a 3 Å molecular sieve.

6-2. Cyclic voltammetry (CV) measurements

The electrochemical experiment was performed by using a CHI 660D potentiostat (CH Instruments, Austin, TX, USA). All electrochemical measurements were conducted in the Faraday cage. Sample (5.0 mM) and tetrabutylammonium perchlorate (0.1 M) in anhydrous CH_3CN were used for test solutions. The solutions were purged with N₂ gas for 30 mins. All electrochemical measurements were performed with a three-electrode system at room temperature. Measurements were conducted using a glassy carbon electrode as a working electrode, platinum wire as a counter electrode, and Ag/Ag⁺ reference electrode at a scan rate of 0.1 V/s. Ferrocene (+0.4 V vs SCE) was added at the end of the measurements as an internal standard to determine the precise potential scale.

Samplaa	E ^{°x}	VS.	ہ _{p/2}	^x vs.
Samples	SCE	Fc/Fc ⁺	SCE	Fc/Fc ⁺
NHC-BH ₃	1.11 V	0.71 V	0.98 V	0.58 V
Me ₃ N-BH ₃	2.18 V	1.78 V	1.74 V	1.34 V
DMAP-BH ₃	0.96 V	0.56 V	0.85 V	0.45 V
DBU-BH ₃	1.42 V	1.02 V	1.29 V	0.89 V
Me ₃ N-BH ₂ COO ⁻	1.22 V	0.82 V	1.09 V	0.69 V
DMAP-BH ₂ COO	1.26 V	0.86 V	1.09 V	0.69 V
DBU-BH ₂ COO	1.31 V	0.91 V	1.12 V	0.72 V
Me ₃ N-BH ₂ COOH	2.11 V	1.71 V	1.94 V	1.54 V

Figure S12. Cyclic voltammetry of NHC-BH₃. $E_{p/2}^{ox}$ = +0.98 V (vs SCE).

Figure S13. Cyclic voltammetry of Me₃N-BH₃. $E_{p/2}^{ox}$ = +1.74 V (vs SCE).

Figure S14. Cyclic voltammetry of DMAP-BH₃. $E_{p/2}^{ox}$ = +0.85 V (vs SCE).

Figure S15. Cyclic voltammetry of DBU-BH₃. $E_{p/2}^{ox}$ = +1.29 V (vs SCE).

Figure S17. Cyclic voltammetry of DMAP-BH₂-COO⁻. $E_{p/2}^{ox} = +1.09 V$ (vs. SCE).

Figure S18. Cyclic voltammetry of DBU-BH₂-COO⁻. $E_{p/2}^{ox} = +1.12$ V (vs. SCE).

Figure S19. Cyclic voltammetry of of Me₃N-BH₂-COOH. $E_{p/2}^{ox}$ = +1.94 V

7. DFT calculation studies

The spin densities were calculated by the natural bond orbital (NBO) analysis¹⁴ at the UM06-2X-D3/6-31+G(d,p)/SMD(MeCN) level of theory¹⁵⁻¹⁷ using the Gaussian 16 suite of programs.¹⁸

Spin density of amine-boryl radicals

	Me ₃ N-BH ₂	DMAP-BH ₂	DBU-BH ₂
spin density on B =	1.026	0.387	0.147

- Cartesian coordinates for Me_3N - BH_2 •, I

Х	Y	Z
0.00008300	0.79069200	1.21258900
-1.20851800	-0.83499800	-0.10835800
1.20835800	-0.83522400	-0.10837200
1.04406000	1.61675300	-1.39905800
-1.04376800	1.61695500	-1.39904400
0.00002600	0.09142600	2.05494900
0.89258000	1.41683400	1.24759500
-0.89229400	1.41700100	1.24761100
-1.20004200	-1.51199300	0.75053600
-1.19841200	-1.40624700	-1.03813300
-2.09562400	-0.20105000	-0.07583100
2.09558200	-0.20144200	-0.07585700
1.19976500	-1.51221400	0.75052400
1.19813300	-1.40647400	-1.03814500
0.00008900	1.02914800	-1.30281900
0.00000200	0.03027100	-0.06945800
	X 0.00008300 -1.20851800 1.20835800 1.04406000 -1.04376800 0.00002600 0.89258000 -0.89229400 -1.20004200 -1.19841200 2.09558200 1.19976500 1.19813300 0.00008900 0.0000200	XY0.000083000.79069200-1.20851800-0.834998001.20835800-0.835224001.044060001.61675300-1.043768001.616955000.000026000.091426000.892580001.41683400-0.892294001.41700100-1.20004200-1.51199300-1.19841200-1.406247002.0955200-0.20142001.19976500-1.512214001.19813300-1.406474000.000089001.029148000.00002000.03027100

- Cartesian coordinates for DMAP-BH2•, II

Atom	Х	Y	Z
С	-0.16453500	-1.19960800	-0.06318500
С	-1.52922400	-1.18153300	-0.00339400
Ν	-2.27717800	-0.00002700	0.02162700
С	-1.52924200	1.18150500	-0.00361700
С	-0.16457600	1.19959800	-0.06337600
С	0.59749700	-0.00002100	-0.10960500
В	-3.70523400	-0.00000500	0.07905900
Н	-4.26370200	1.05298700	0.10182200

Н	-4.26372800	-1.05298100	0.10201000
Ν	1.97924400	0.00003200	-0.22538000
С	2.68320500	1.23027700	0.10530700
С	2.68334600	-1.23022400	0.10491400
Н	0.31375400	2.17147100	-0.07106600
Н	-2.11130100	2.09384800	0.03393800
Н	-2.11124300	-2.09389300	0.03434900
Н	0.31376800	-2.17150300	-0.07059500
Н	3.75047300	1.07521900	-0.05600800
Н	2.36334200	2.04683700	-0.54620900
Н	2.52357700	1.53248200	1.15217100
Н	3.75046900	-1.07538000	-0.05758800
Н	2.36274600	-2.04687200	-0.54611800
Н	2.52472100	-1.53218500	1.15200500

- Cartesian coordinates for DBU-BH₂•, III

Atom	Х	Y	Z
Ν	0.10122700	-0.79751600	-0.56716900
С	0.26613400	0.51952300	-0.12009800
Ν	1.61130400	0.95401400	0.01539200
С	2.46002100	0.01839400	0.77258200
С	2.38356000	-1.36364000	0.14351100
С	0.93252700	-1.81391800	0.08513400
С	-1.25632700	-1.25565000	-0.86348900
С	-2.27140500	-1.13871900	0.28335700
С	-2.95681900	0.22732800	0.32419500
С	-2.01890500	1.39748900	0.61325800
С	-0.81649000	1.53505100	-0.34297400
В	2.14735000	2.12898700	-0.52700000
Н	1.48051100	2.84266400	-1.21233700
Н	3.28687400	2.39504700	-0.28097900
Н	3.48099800	0.40209400	0.77349200
Н	2.09801300	-0.02572300	1.80868900
Н	2.80170500	-1.32518600	-0.86939700
Н	2.96835700	-2.07885600	0.72971900
Н	0.84042400	-2.74170200	-0.48578400
Н	0.56468300	-2.00556200	1.10837900
Н	-1.15835800	-2.29976900	-1.17224500
Н	-1.63227600	-0.70279300	-1.73282700
---	-------------	-------------	-------------
Н	-1.77151600	-1.35021900	1.23867800
Н	-3.03488700	-1.91297100	0.14657800
Н	-3.44517900	0.39361200	-0.64662500
Н	-3.75332000	0.21721500	1.07763000
Н	-2.59743400	2.32792800	0.56351400
Н	-1.63474500	1.31709800	1.63883200
Н	-1.17546000	1.53240400	-1.38580100
Н	-0.37663200	2.51914300	-0.17493200

8. NMR spectra

Trimethylamine carboxyborane (1a)

DMAP-carboxyborane (1b)

DBU-carboxyborane (1c)

3-Quinuclidinol-carboxyborane (1d)

S44

N-methyl pyrrolidine-carboxyborane (1e)

tert-butyl 4-(3-methoxy-2-methyl-3-oxopropyl)piperidine-1-carboxylate (3a)

tert-butyl 4-(3-(benzyloxy)-2-methyl-3-oxopropyl)piperidine-1-carboxylate (3b)

^{210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

tert-butyl 3-(3-methoxy-2-methyl-3-oxopropyl)azetidine-1-carboxylate (3c)

benzyl 3-cyclohexyl-2-methylpropanoate (3d)

benzyl 3-cyclopentyl-2-methylpropanoate (3e)

benzyl 2,4-dimethylpentanoate (3f)

benzyl 2-methylnonanoate (3g)

methyl 2-methyl-5-phenylpentanoate (3h)

benzyl 5-(4-fluorophenyl)-2-methylpentanoate (3i)

methyl 5-(4-chlorophenyl)-2-methylpentanoate (3j)

benzyl 6-chloro-2-methylhexanoate (3k)

methyl 2-methyl-6-phenoxyhexanoate (3l)

benzyl 6-methoxy-2-methylhexanoate (3m)

benzyl 2-methyl-3-(tetrahydro-2H-pyran-4-yl)propanoate(3n)

1-benzyl 7-ethyl 2-methylheptanedioate (30)

methyl 3-((1s,3s)-adamantan-1-yl)-2-methylpropanoate (3p)

methyl 3-((1S,3R)-3,5-dimethyladamantan-1-yl)-2-methylpropanoate (3q)

benzyl 2,4,4-trimethylpentanoate (3r)

tert-butyl 4-(3-ethoxy-3-oxopropyl)piperidine-1-carboxylate (3s)

tert-butyl 4-(3-(benzyloxy)-3-oxopropyl)piperidine-1-carboxylate (3t)

tert-butyl 4-(3-(dimethylamino)-3-oxopropyl)piperidine-1-carboxylate (3u)

tert-butyl 4-(2-cyanoethyl)piperidine-1-carboxylate (3v)

tert-butyl 4-(2-(phenylsulfonyl)ethyl)piperidine-1-carboxylate (3w)

diethyl 2-(1-(1-(tert-butoxycarbonyl)piperidin-4-yl)ethyl)malonate (3x)

S74

benzyl 4-cyclopentyl-2-methylbutanoate (3z)

methyl 3-boraneyl-2-methylpropanoate DMAP complex (4b)

methyl 3-boraneyl-2-methylpropanoate DBU complex (4c)

dimethyl 2-trimethylamine-boranylsuccinate (4f)

((2-trimethylamine-boranylethyl)sulfonyl)benzene (4g)

((DMAP-boranylethyl)sulfonyl)benzene (4h)

benzyl 3-hydroxypropanoate (5)

Me₃NBH₂Br (6)

References

1. B. A. Spielvogel, F. U. Ahmed, A. T. Mcphail, K. W. Morse, T. J. Lofthouse, Boron Analogs of Amino Acids. In Inorganic Syntheses. *John Wiley & Sons, Ltd.* **1989**.

2. H. M. Guo, X. Wu, Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations, *Nat. Commun.*, **2021**, *12*, 5365.

3. W. Zhou, I. A. Dmitriev, P. Melchiorre, Reductive Cross-Coupling of Olefins via a Radical Pathway, J. Am. Chem. Soc., 2023, 145, 25098-25102.

4. T. Constantin, M. Zanini, A. Regni, N. S. Sheikh, F. Julia, D. Leonori, Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides, *Science*, **2020**, *367*, 1021-1026.

5. V. R. Yatham, W. Harnying, D. Kootz, J. M. Neudorfl, N. E. Schlorer, A. Berkessel, 1,4-Bis-Dipp/Mes-1,2,4-Triazolylidenes: Carbene Catalysts That Efficiently Overcome Steric Hindrance in the Redox Esterification of alpha- and beta-Substituted alpha,beta-Enals, *J. Am. Chem. Soc.*, **2016**, *138*, 2670-2677.

6. T. van Leeuwen, L. Buzzetti, L. A. Perego, P. Melchiorre, A Redox-Active Nickel Complex that Acts as an Electron Mediator in Photochemical Giese Reactions, *Angew. Chem. Int. Ed.*, **2019**, *58*, 4953-4957.

7. P. Shukla, Y. C. Hsu, C. H. Cheng, Cobalt-catalyzed reductive coupling of saturated alkyl halides with activated alkenes, *J. Org. Chem.*, **2006**, *71*, 655-658.

8. A. ElMarrouni, C. B. Ritts, J. Balsells, Silyl-mediated photoredox-catalyzed Giese reaction: addition of nonactivated alkyl bromides, *Chem. Sci.*, **2018**, *9*, 6639-6646.

9. J. Q. Chen, R. Chang, Y. L. Wei, J. N. Mo, Z. Y. Wang, P. F. Xu, Direct Decarboxylative-Decarbonylative Alkylation of alpha-Oxo Acids with Electrophilic Olefins via Visible-Light Photoredox Catalysis, *J. Org. Chem.*, **2018**, *83*, 253-259.

 H. W. Jiang, H. N. Qin, A. L. Wang, R. Zhang, P. F. Xu, Photocatalytic Borylation of Imines and Alkenes via Decarboxylation of Trimethylamine Carboxyborane: A New Approach for Generating Boryl Radicals, *Org. Lett.*, 2024, *26*, 9282-9287.

11. M. A. Tehfe, S. Schweizer, A. C. Chany, C. Ysacco, J. L. Clement, D. Gigmes, F. Morlet-Savary, J. P. Fouassier, M. Neuburger, T. Tschamber, N. Blanchard, J. Lalevee, On the synthesis, characterization and reactivity of *N*-heteroaryl-boryl radicals, a new radical class based on five-membered ring ligands, *Chemistry*, **2014**, *20*, 5054-5063.

12. T. Morofuji, Y. Matsui, M. Ohno, G. Ikarashi, N. Kano, Photocatalytic Giese-Type Reaction with Alkylsilicates Bearing C,O-Bidentate Ligands, *Chemistry*, **2021**, *27*, 6713-6718.

13. G. E. Rysciikewitscii, J. W. Wiggins, R. L. Sneath, L. J. Todd, Trimethylamine-Haloboranes. In *Inorganic Syntheses*, 1970; pp 116-126.

14. E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1.

15. a) Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.*, **2008**, *120*, 215–241; b) Y. Zhao, D. G. Truhlar, *Acc. Chem. Res.* **2008**, *41*, 157–167.

16. a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) R. Peverati, K. K. Baldridge, J. Chem. Theory Comput., 2008, 4, 2030–2048.

17. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.

Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, **2019**.