Supporting Information

Ligand-modulated phosphine-free Ni(II) complexes for Z-selective semitransfer hydrogenation of alkynes and dual transfer hydrogenation of α , β unsaturated ketones using ammonia-borane

Tanmoy Kumar Ghosh, Anirban Sau, Divya Mahapatra and Sabuj Kundu*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh (U.P.), India

Table of Contents

(1) General Consideration	S 3
(2) Synthesis of Alkynes Derivatives	S 3
(3) Synthesis of α , β -Unsaturated Ketone Derivatives	S 3
(4) Optimization for Transfer Hydrogenation of Alkynes	S 4
(5) Optimization for Dual Transfer Hydrogenation of Chalcones	S 4
(6) Experimental Section	S4-S8
(7) X-ray Crystallographic data collection and refinement	S9-S10
(8) Description of the Structures	S10-S16
(9) Control Experiments	S16-S25
(10) Computational Studies	S25-S56
(11) Spectral Data for alkynes and chalcones	S57-S65
(12) Copies of ¹ H and ¹³ C NMR Spectra of Products	S66-S108
(13) Copies of ¹⁹ F NMR Spectra of Products	S109-S111
(14) References	S111-S114

1. General Consideration

1.1 Reagent Information: All the experiments were carried out under air. The Glass apparatus were oven-dried immediately before use. Solvents were dried according to the literature. HPLC-grade Methanol was used. All commercially available reagents were purchased from Sigma-Aldrich, Alfa-Aesar, TCI, SD-fine, Avra, and Spectrochem. Silica gel was used for column chromatography unless otherwise stated. A gradient elution using hexane/ethyl acetate was performed, based on a silica TLC plate.

1.2 Analytical Information: ¹H and ¹³C spectra were recorded on JEOL 400 MHz, and 500 MHz Spectrometer using CDCl₃, DMSO- d_6 , and CD₃OD. All ¹H NMR experiments were reported in parts per million (ppm) units and were measured relative to the signals for residual chloroform (7.26 ppm), residual DMSO (2.5 ppm), and CD₃OD (3.31) in the deuterated solvent, unless otherwise stated and coupling constant (*J*) was reported in hertz (Hz). All ¹H decoupled ¹³C NMR spectra were reported in ppm relative to deuterated chloroform (77.16 ppm), and DMSO- d_6 (39.5). All the GC analyses were performed using Perkin Elmer Clarus 600 Gas Chromatograph and GC-MS were taken using Agilent 7890A Gas Chromatograph equipped with Agilent 5890 triple-quadrupole mass system.

2. Synthesis of Alkynes Derivatives:¹

The corresponding aryl iodide (1 equiv), $Pd(PPh_3)_4$ (5 mol%), CuI (1-2 mol%), and phenylacetylene (1-1.1 equiv) were added to a 50 mL Schlenk flask with a stir bar under an atmosphere of nitrogen. Then tetrahydrofuran (10 mL) and triethylamine (10 mL) were added sequentially. The reaction mixture was then stirred at room temperature overnight. Afterward, 15 mL of water was added and the reaction mixture was extracted with EtOAc (3 × 15 mL). The combined organic fractions were washed with brine and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether and ethyl acetate as the eluent. All the substrates were characterized by GC-MS analysis and ¹H NMR spectroscopy.

3. Synthesis of α,β-Unsaturated Ketone Derivatives:²

An oven-dried 25 mL round bottom flask (RB) was charged with a magnetic stir-bar, aryl ketone derivative (1.0 mmol), and aldehyde derivative (1.0 mmol), followed by the addition of ethanol (5.0 mL). Then 10% aqueous solution of NaOH (1.5 equiv.) was added dropwise in the stirring solution under ice-cold conditions. The stirring was continued for 5 h. After completion

of the reaction, the reaction mixture was cooled in the refrigerator overnight and a yellowishwhite precipitate was obtained. Then the precipitate was collected through filtration and washed with an ice-cold water-ethanol mixture until the pH of the filtrate becomes 7. Finally, the desired α , β -unsaturated ketone was purified through column chromatography (silica gel) using hexane-ethyl acetate as eluent. All the substrates were characterized by GC-MS analysis and ¹H NMR spectroscopy.

4. Optimization for Transfer Hydrogenation of Alkynes:

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, alkyne **1a** (35.64 mg, 0.20 mmol), Cat. **4** (5 mol%), and AB (9.2 mg, 0.3 mmol), followed by the addition of methanol (1 mL). Then, the vial was sealed and placed in a preheated oil bath at 55 °C (oil bath temperature) for 12 h. After completion of the reaction, the tube was allowed to cool at room temperature. Then, the 25 μ L reaction mixture was syringed out and filtered through a small plug of silica and subjected to GC analysis using mesitylene as an internal standard to determine the conversion and yield of the product.

5. Optimization for Dual Transfer Hydrogenation of Chalcones:

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, chalcone **22a** (41.6 mg, 0.20 mmol), Cat. **1** (3 mol%), and AB (2 equiv), followed by the addition of methanol (1 mL). Then, the tube was sealed and placed in a preheated oil bath at 40 °C (oil bath temperature) for 3 h. After completion of the reaction, the tube was allowed to cool at room temperature. Then, the reaction mixture was subjected to ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard to determine the conversion and yield of the product.

6. Experimental Section

Scheme S1 Synthesis of ligands

Synthesis of ligand bis((1H-benzoimidazol-2-yl)methyl)amine (L1)

The ligand (L₁ = bis(2-benzimidazolylmethyl)amine) was synthesized after slightly modifying the literature methods.³Aminodiacetic acid (0.665 g, 5 mmol) and *o*-phenylenediamine (1.081 g, 10 mmol) were refluxed in 30 mL ethylene glycol at 180 °C for 18 h. After cooling down to room temperature, a reddish crude product was obtained by adding water. Yield 0.915 g (66%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.26 (s, 2H), 7.51 (s, 4H), 7.14 (dd, J = 6.0, 3.1 Hz, 4H), 4.00 (s, 4H).¹³C NMR (100 MHz, DMSO-*d*₆) δ 154.5, 139.2, 122.0, 115.3, 47.0. ESI-MS (positive ion mode, CH₃OH) calcd *m/z*: 278.1406; found at *m/z*, 278.1402, which are assigned as [L₁H]⁺.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Fig. S2 13 C NMR spectrum (100 MHz, DMSO- d_6) of ligand L₁.

Synthesis of ligand tris((1H-benzoimidazol-2-yl)methyl)amine (L₂)

The ligand (L₂ = tris(2-benzimidazolylmethyl)amine) was synthesized following the methods reported earlier.⁴ Aminotriacetic acid (0.9557 g, 5 mmol) and *o*-phenylenediamine (1.622 g, 15 mmol) were refluxed in 30 mL ethylene glycol at 180 °C for 8 h. After cooling down to room temperature, a reddish crude product was obtained by adding water. Colorless crystals of the ligand were obtained upon recrystallization from ethanol. Yield 1.46 g (72%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.46 (s, 3H), 7.56 (s, 6H), 7.20–7.14 (m, 6H), 4.14 (s, 6H).¹³C NMR (100 MHz, DMSO-*d*₆) δ 152.3, 121.7, 51.5, 40.1, 39.9, 39.7, 39.5, 39.3, 39.1, 38.9. ESI-MS (positive ion mode, CH₃OH) calcd *m/z*: 408.1937; found at *m/z*, 408.1934, which are assigned as [L₂H]⁺.

Fig. S3 ¹H NMR spectrum (500 MHz, DMSO- d_6) of ligand L₂.

Fig. S4 13 C NMR spectrum (100 MHz, DMSO- d_6) of ligand L₂.

Synthesis of complex [NiL1Br]Br (Cat. 1)

An acetonitrile solution of ligand L_1 (0.277 g, 1 mmol) was added to the solution (10 mL) of NiBr₂ (0.218 g, 1 mmol) with constant stirring. A red-colored compound was obtained after removing the solvent under reduced pressure.

Cat. **1** Yield 0.382 g (77%) $C_{16}H_{15}Br_2N_5Ni_1$ (495.83). Calculated C, 38.76; H, 3.05; N, 14.12; Found C, 38.63; H, 2.94; N, 14.21. ESI-MS (positive ion mode, CH₃OH) calcd *m/z*: 415.98; found at *m/z*, 415.98, which are assigned as [NiL₁Br]⁺.

Light green colored single crystals for X-ray diffraction were obtained by slow diffusion of diethyl ether into the DMF solution.

Synthesis of complexes and [NiBrL₂CH₃CN][NiL₂(CH₃CN)₂]Br₃ (Cat. 2)

Complex Cat. 2 was synthesized following the same procedure as Cat. 1, using ligand L_2 (0.408 g, 1 mmol) instead of L_1 . Blue crystals were obtained after slowly evaporating the solvent.

Cat. 2. Yield 0.508 g (74%) C₅₄H₅₁Br₄N₁₇Ni₂ (1375.12). Calculated C, 47.17; H, 3.74; N, 17.32; Found C, 47.08; H, 3.67; N, 17.41; IR (cm⁻¹): $v_{(C=N)} = 2306$, 2282. ESI-MS (positive ion mode, CH₃OH) calcd *m/z*: 546.03; found at *m/z*, 546.03, which are assigned as [NiL₂Br]⁺.

Synthesis of complexes [NiL2(CH3CN)2]2PF6 (Cat. 3) and [NiL2(CH3CN)2]2BF4 (Cat. 4)

Both complexes Cat. **3** and Cat. **4** were prepared similarly by dissolving Cat. **2** (0.668 g, 1 mmol) in acetonitrile solution (20 mL) and then, aqueous solution of NH₄PF₆ (0.407 g, 2.5 mmol) for **3** and NH₄BF₄ (0.262 g, 2.5 mmol) for **4** was added to it. The resulting solution was filtered, and the filtrate was evaporated to obtain a light blue solid. Single crystals were obtained by diffusing Et₂O into a concentrated solution of Cat. **3** and Cat. **4** in CH₃CN. ESI-MS (positive ion mode, CH₃OH) calcd *m/z*: 232.56; found at *m/z*, 232.56, which are assigned as [NiL₂]²⁺.

Cat. **3**. Yield 0.746 g (85%) C₃₀H₃₀F₁₂N₁₀NiP₂ (879.29). Calculated C, 40.98; H, 3.44; N, 15.93; Found C, 40.90; H, 3.31; N, 16.01; IR (cm⁻¹): $v_{(C=N)} = 2309$, 2280, $v_{(PF6)} = 832$. ESI-MS (positive ion mode, CH₃OH) calcd *m/z*: 232.56; found at *m/z*, 232.56, which are assigned as [NiL₂]²⁺.

Cat. **4**. Yield 0.679 g (87%) C₆₂H₆₃B₄F₁₆N₂₁Ni₂ (1566.93). Calculated C, 47.52; H, 4.05; N, 18.77; Found C, 47.63; H, 3.91; N, 18.63; IR (cm⁻¹): $v_{(C=N)} = 2305$, 2285, $v_{(BF4)} = 1046$. ESI-

MS (positive ion mode, CH₃OH) calcd m/z: 232.56; found at m/z, 232.56, which are assigned as $[NiL_2]^{2+}$.

Fig. S5 IR spectra of complexes Cat. 2–Cat. 4.

Synthesis of complex [CoBrL2]2Br2 (Cat. 5) and [MnBrL2]Br (Cat. 6)⁵

Both complexes Cat. **5** and Cat. **6** were synthesized by following the same procedure as for Cat. **2**, using $CoBr_2$ (0.218 g, 1 mmol) and $MnBr_2$ (0.214 g, 1 mmol) instead of NiBr_2. The dark blue and white-colored compound was obtained after evaporating solvent for Cat. **5** and Cat. **6** respectively. Single crystals were obtained by diffusing Et₂O into a concentrated solution of Cat. **5** CH₃CN.

Cat. **5**. Yield 0.451 g (72%) C₂₄H₂₁BrCoN₇ (626.22). Calculated C, 46.03; H, 3.38; N, 15.66; Found C, 45.90; H, 3.21; N, 15.75; ESI-MS (positive ion mode, CH₃OH) calcd m/z: 547.03; found at m/z, 547.03, which are assigned as $[CoL_2Br]^+$.

Cat. **6**. Yield 0.746 g (75%) C₂₄H₂₁BrMnN₇ (622.23). Calculated C, 46.33; H, 3.40; N, 15.76; Found C, 46.22; H, 3.30; N, 15.70; ESI-MS (positive ion mode, CH₃OH) calcd m/z: 541.04; found at m/z, 541.04, which are assigned as [MnL₂Br]⁺.

7. X-ray Crystallographic data collection and refinement

Suitable single crystals of complex Cat. $1(DMF)_2$ –Cat. **5** was mounted on a Bruker-AXS SMART APEX II diffractometer equipped with a graphite monochromator and Mo-K α ($\lambda = 0.71073$ Å) radiation. The structure was solved by direct methods and refined by full-matrix least-squares on F² using the SHELXL2018/3 package and OLEX2 program.⁶⁻⁸ Absorption corrections were carried out using the SADABS program.⁹ All other hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. Successful convergence was indicated by the maximum shift/error of 0.001 for the last cycle of the least squares refinement. Data collection, structure refinement parameters, and crystallographic data for complexes Cat. $1(DMF)_2$ –Cat. **5** is given in Table S1. The CCDC numbers of Cat. $1(DMF)_2$ –Cat. **5** are 2400610-2400614.

Complex	Cat. 1(DMF) ₂	Cat. 2	Cat. 3	Cat. 4	Cat. 5
Chemical	C22H31Br2N7Ni	C54H51Br4N17Ni2	C30H30F12N10P2Ni2	C124H126B8F32N4	C24H21Br2CoN7
formula	O_3			$_1$ Ni ₄	
Formula	660.03	1375.10	879.29	3119.97	626.21
weight					
Crystal system	Monoclinic	Triclinic	Triclinic	Orthorhombic	Monoclinic
Space group	P21/c	ΡĪ	$P\bar{1}$	Fdd2	P21/c
a(Å)	15.3924(4)	9.7261(4)	11.8948(6)	73.099(3)	14.0083(5)
b (Å)	9.4602(2)	15.9789(6)	13.3449(7)	19.0547(6)	24.0679(8)
c (Å)	18.6459(5)	19.4875(7)	13.5674(6)	19.8088(6)	17.5113(6)
α(°)	90	88.756(1)	85.767(2)	90	90
β (°)	91.876(1)	86.997(1)	66.498(2)	90	90.476(1)
γ(°)	90	81.808(1)	81.303(2)	90	90
$V(\mathring{A})^3$	2713.67(12)	2993.3(2)	1952.04(17)	27591.3(17)	5903.7(4)
Z	4	2	2	8	8
$\rho_{calc}(\text{g cm}^{-3})$	1.615	1.526	1.496	1.502	1.409

Table S1 Crystallographic data and structure refinement of complexes Cat. 1(DMF)2-Cat. 5

T (K)	296	296	296	296	296
μ (Mo Kα) (mm ⁻¹)	3.696	3.349	0.673	0.646	3.311
F(000)	1336	1380	892	12776	2488
R(int)	0.042	0.043	0.051	0.062	0.062
Total reflections	45101	50926	52816	116287	98104
Unique reflections	6775	14541	9731	16061	14749
Reflections with $I > 2\sigma(I)$	5946	11371	8380	14088	11603
$[I \ge 2\sigma(I)]R_1^a,$ wR2 ^b	0.0264, 0.0601	0.1022, 0.3211	0.0330, 0.0855	0.0688, 0.1798	0.0507, 0.1317
R(all data)	0.0330	0.1208	0.0403	0.0794	0.0658
GOF ^c on F ²	1.05	1.09	1.03	1.06	1.01
Residual electron Density, e/Å ⁻³	-1.14, 0.76	-5.80, 5.43	-0.44, 0.41	-0.77, 1.95	-2.81, 1.29

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, {}^{b}wR_{2} (F_{o}^{2}) = \sum [w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w F_{o}^{4}]^{\frac{1}{2}} \text{ and } {}^{c}GOF = \sum [w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{params})]^{\frac{1}{2}}$

8. Description of the Structures

In Cat. $1(DMF)_2$, the metal atom is hexacoordinated with an octahedral environment. It is bonded to two benzimidazole nitrogen atoms (N2 and N4), one amine nitrogen atom N1, two oxygen atoms (O1 and O2) of solvent DMF molecules, and one non-coordinated bromine and one solvent water molecule. The structure of Cat. $1(DMF)_2$ is shown in Scheme 2 together with the selective atomic numbering scheme. The asymmetric unit of Cat. 2 contains two independent mononuclear Ni(II) units (A and B) and three bromine anions. The structure of Cat. 2 is shown in Scheme 2 (unit A) together with the selective atomic numbering scheme. The Ni(II) centers are six-coordinated with distorted octahedral geometry. The Ni1 atom is coordinated by three benzimidazole nitrogen atoms (N2A, N4A, and N6A), one amine nitrogen atom (N1A) from ligand L₂, one acetonitrile molecule, and one bromide ion in unit A. In contrast, unit B has a similar coordination environment, but an acetonitrile molecule is coordinated instead of a bromide ion. The structures of Cat. **3** and Cat. **4** shares the same basic framework as Cat. **2**, but with PF_6^- (in Cat. **3**) and BF_4^- (in Cat. **4**) anions replacing the $Br^$ anion (Scheme 2). In both complexes, the Ni(II) centers are six-coordinated, exhibiting a distorted octahedral geometry. The solid-state structure of Cat. **5** reveals that the asymmetric unit contains two independent cationic complexes (A and B) and two bromide ions that balance the charge. A perspective view of Cat. **5** together with the selective atomic numbering scheme is shown in Scheme 2 (unit A). Both units have an equivalent structure with slight bond length and angle differences. Co(II) center possesses a penta-coordinated distorted trigonal bipyramidal geometry ($\tau^5 \approx 0.94$) being coordinated by three benzimidazole nitrogen atoms (N2A, N4A, and N6A), one amine nitrogen atom (N1A) of the ligand (L₂) and one bromide ion (for unit A). Selected bond lengths and angles of Cat. **1**(DMF)₂–Cat. **5** are given in Table S2-S6.

Bond lengths (Å)			
Ni(1)-Br(1)	2.4990(4)		
Ni(1)-O(1)	2.1201(13)		
Ni(1)-O(2)	2.1100(13)		
Ni(1)–N(1)	2.1145(16)		
Ni(1)–N(2)	2.0561(15)		
Ni(1)-N(4)	2.0733(15)		
Bond an	gles (°)		
Br(1)-Ni(1)-O(1)	96.32(4)		
Br(1)-Ni(1)-O(2)	97.58(4)		
Br(1)-Ni(1)-N(1)	178.51(4)		
Br(1)-Ni(1)-N(2)	100.03(5)		
Br(1)-Ni(1)-N(4)	99.92(5)		
O(1)-Ni(1)-O(2)	166.06(6)		

Table S2 Selected bond lengths (Å) and angles (°) complex Cat. 1(DMF)2

O(1)–Ni(1)–N(1)	82.21(6)
O(1)-Ni(1)-N(2)	87.84(6)
O(1)-Ni(1)-N(4)	85.91(6)
O(2)–Ni(1)–N(1)	83.90(6)
O(2)–Ni(1)–N(2)	88.60(6)
O(2)–Ni(1)–N(4)	92.84(6)
N(1)-Ni(1)-N(2)	80.18(6)
N(1)–Ni(1)–N(4)	79.77(6)
N(2)–Ni(1)–N(4)	159.62(6)

Table S3 Selected bond lengths (Å) and angles (°) complex Cat. 2

Bond lengths (Å)				
Ni(1)–Br(1A)	2.569(16)	Ni(2)-N(1B)	2.172(6)	
Ni(1)-N(1A)	2.224(6)	Ni(2)-N(2B)	2.037(7)	
Ni(1)-N(2A)	2.062(6)	Ni(2)-N(4B)	2.068(6)	
Ni(1)-N(4A)	2.082(6)	Ni(2)-N(6B)	2.060(6)	
Ni(1)-N(6A)	2.065(6)	Ni(2)-N(8B)	2.050(6)	
Ni(1)-N(8A)	2.137(6)	Ni(2)-N(9B)	2.148(8)	
Bond angles (°)				
N(1A)-Ni(1)-N(2A)	78.3(2)	N(1B)-Ni(2)-N(2B)	83.1(3)	
N(1A)-Ni(1)-N(4A)	79.0(2)	N(1B)-Ni(2)-N(4B)	79.4(3)	
N(1A)-Ni(1)-N(6A)	81.6(2)	N(1B)-Ni(2)-N(6B)	79.9(3)	
N(1A)-Ni(1)-N(8A)	87.8(2)	N(1B)-Ni(2)-N(8B)	178.8(3)	

N(2A)-Ni(1)-N(4A)	157.2(2)	N(1B)-Ni(2)-N(9B)	90.8(3)
N(2A)-Ni(1)-N(6A)	91.2(2)	N(2B)-Ni(2)-N(4B)	90.5(3)
N(2A)-Ni(1)-N(8A)	87.1(2)	N(2B)-Ni(2)-N(6B)	89.7(3)
N(4A)-Ni(1)-N(6A)	86.5(2)	N(2B)-Ni(2)-N(8B)	98.1(2)
N(4A)-Ni(1)-N(8A)	91.1(2)	N(2B)-Ni(2)-N(9B)	173.5(2)
N(6A)-Ni(1)-N(8A)	169.3(2)	N(4B)-Ni(2)-N(6B)	159.1(3)
Br(1A)–Ni(1)–N(1A)	175.9(3)	N(4B)-Ni(2)-N(8B)	100.8(2)
Br(1A)–Ni(1)–N(2A)	97.6(3)	N(4B)-Ni(2)-N(9B)	90.8(3)
Br(1A)–Ni(1)–N(4A)	105.2(3)	N(6B)-Ni(2)-N(8B)	99.9(2)
Br(1A)-Ni(1)-N(6A)	100.8(2)	N(6B)-Ni(2)-N(9B)	86.9(3)
Br(1A)-Ni(1)-N(8A)	92.2(4)	N(8B)-Ni(2)-N(9B)	88.0(2)

Table S4 Selected bond lengths (Å) and angles (°) complex Cat. ${\bf 3}$

Bond lengths (Å)				
Ni(1)–N(1)	2.1928(15)			
Ni(1)–N(2)	2.0588(13)			
Ni(1)–N(4)	2.0797(13)			
Ni(1)–N(6)	2.0514(13)			
Ni(1)–N(8)	2.0424(16)			
Ni(1)–N(9)	2.1163(15)			
Bond angles (°)				
N(1)-Ni(1)-N(2)	80.92(5)			
N(1)-Ni(1)-N(4)	78.77(5)			

N(1)-Ni(1)-N(6)	81.65(5)
N(1)-Ni(1)-N(8)	177.18(5)
N(1)-Ni(1)-N(9)	92.82(6)
N(2)-Ni(1)-N(4)	158.86(6)
N(2)-Ni(1)-N(6)	87.43(5)
N(2)-Ni(1)-N(8)	101.90(6)
N(2)-Ni(1)-N(9)	88.20(5)
N(4)-Ni(1)-N(6)	95.36(5)
N(4)-Ni(1)-N(8)	98.42(6)
N(4)-Ni(1)-N(9)	86.99(5)
N(6)-Ni(1)-N(8)	98.46(6)
N(6)-Ni(1)-N(9)	173.43(6)
N(8)–Ni(1)–N(9)	87.24(6)

Table S5 Selected bond lengths (Å) and angles (°) complex Cat. 4

Bond lengths (Å)				
Ni(1)-N(1A)	2.180(5)	Ni(2)-N(1B)	2.192(5)	
Ni(1)-N(2A)	2.064(6)	Ni(2)-N(2B)	2.080(6)	
Ni(1)-N(4A)	2.059(6)	Ni(2)-N(4B)	2.037(6)	
Ni(1)-N(6A)	2.050(6)	Ni(2)-N(6B)	2.070(6)	
Ni(1)-N(8A)	2.047(6)	Ni(2)-N(8B)	2.063(6)	
Ni(1)-N(9A)	2.130(6)	Ni(2)-N(9B)	2.133(6)	
Bond angles (°)				

N(1A)-Ni(1)-N(2A)	80.7(2)	N(1B)-Ni(2)-N(2B)	78.2(2)
N(1A)-Ni(1)-N(4A)	78.6(2)	N(1B)-Ni(2)-N(4B)	81.6(2)
N(1A)-Ni(1)-N(6A)	82.5(2)	N(1B)-Ni(2)-N(6B)	81.2(2)
N(1A)-Ni(1)-N(8A)	178.5(2)	N(1B)-Ni(2)-N(8B)	177.7(2)
N(1A)-Ni(1)-N(9A)	92.1(2)	N(1B)-Ni(2)-N(9B)	93.7(2)
N(2A)-Ni(1)-N(4A)	158.8(2)	N(2B)-Ni(2)-N(4B)	92.7(2)
N(2A)-Ni(1)-N(6A)	90.4(2)	N(2B)-Ni(2)-N(6B)	158.5(2)
N(2A)-Ni(1)-N(8A)	100.8(2)	N(2B)-Ni(2)-N(8B)	100.4(2)
N(2A)-Ni(1)-N(9A)	90.1(2)	N(2B)-Ni(2)-N(9B)	86.9(2)
N(4A)-Ni(1)-N(6A)	91.0(2)	N(4B)-Ni(2)-N(6B)	90.4(2)
N(4A)-Ni(1)-N(8A)	100.0(2)	N(4B)-Ni(2)-N(8B)	96.6(2)
N(4A)-Ni(1)-N(9A)	86.4(2)	N(4B)-Ni(2)-N(9B)	175.2(2)
N(6A)-Ni(1)-N(8A)	97.7(2)	N(6B)-Ni(2)-N(8B)	100.3(2)
N(6A)-Ni(1)-N(9A)	174.4(2)	N(6B)-Ni(2)-N(9B)	88.2(2)
N(8A)-Ni(1)-N(9A)	87.7(2)	N(8B)-Ni(2)-N(9B)	88.2(2)

Table S6 Selected bond lengths (Å) and angles (°) complex Cat. ${\bf 5}$

Bond lengths (Å)				
Co(1)-N(1A)	2.339(3)	Co(2)-N(1B)	2.346(3)	
Co(1)–Br(1A)	2.4451(6)	Co(2)–Br(1B)	2.4659(6)	
Co(1)-N(2A)	2.054(3)	Co(2)-N(2B)	2.051(3)	
Co(1)-N(4A)	2.061(3)	Co(2)-N(4B)	2.045(3)	
Co(1)-N(6A)	2.047(3)	Co(2)-N(6B)	2.057(3)	

Bond angles (°)				
Br(1A)-Co(1)-N(1A)	177.89(8)	Br(1B)-Co(2)-N(1B)	177.96(7)	
Br(1A)-Co(1)-N(2A)	105.50(9)	Br(1B)-Co(2)-N(2B)	103.40(9)	
Br(1A)-Co(1)-N(4A)	101.86(9)	Br(1B)-Co(2)-N(4B)	105.74(9)	
Br(1A)-Co(1)-N(6A)	104.53(10)	Br(1B)-Co(2)-N(6B)	102.29(8)	
N(1A)-Co(1)-N(2A)	75.73(11)	N(1B)-Co(2)-N(2B)	76.98(11)	
N(1A)-Co(1)-N(4A)	76.04(12)	N(1B)-Co(2)-N(4B)	75.93(11)	
N(1A)-Co(1)-N(6A)	76.61(12)	N(1B)-Co(2)-N(6B)	75.88(11)	
N(2A)-Co(1)-N(4A)	115.03(12)	N(2B)-Co(2)-N(4B)	109.34(12)	
N(2A)-Co(1)-N(6A)	106.71(13)	N(2B)-Co(2)-N(6B)	121.17(12)	
N(4A)-Co(1)-N(6A)	121.43(12)	N(4B)-Co(2)-N(6B)	113.02(12)	

9. Control Experiments

9.1 Determination of the dehydrogenation product of ammonia-borane

Dehydrogenation product of AB using Cat. 4

(I)
$$\underbrace{\operatorname{Cat. 4}(5 \text{ mol}\%),}_{1a} \underbrace{\operatorname{Cat. 4}(5 \text{ mol}\%),}_{\operatorname{CH_3OH}} \underbrace{\operatorname{Ch_3OH}}_{1b, 95\%} + \operatorname{NH_4B(OMe)_4} + \operatorname{H_2}}_{100\%}$$

(II)
$$NH_{3} \cdot BH_{3}$$

 $\begin{array}{c} Cat. 4 (2 \mod \%), \\ CH_{3}OH \\ 55^{\circ}C, 12 h \\ \end{array} \qquad \begin{array}{c} NH_{4}B(OMe)_{4} + H_{2} \\ 100\% \\ \end{array}$
(III) $NH_{3} \cdot BH_{3} \qquad \begin{array}{c} CH_{3}OH \\ \hline 55^{\circ}C, 12 h \\ \end{array} \qquad \begin{array}{c} B(OMe)_{3} + H_{2} \\ 4\% \end{array}$

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, alkyne **1a** (36.58 mg, 0.20 mmol), Cat. **4** (5 mol%), and AB (9.2 mg, 0.3 mmol), followed by the addition of methanol (1 mL). Then, the vial was sealed and placed in a preheated oil bath at 55 $^{\circ}$ C (oil bath temperature) for 12 h. After completion of the reaction, the tube was allowed to cool at

room temperature. After this, the solvent was removed and dissolved in THF, then submitted for ¹¹B NMR which shows the complete conversion of AB into NH₄(BOMe)₄.

The above experiment was carried in the absence of **1a** and 100% of $NH_4(BOMe)_4$ was observed. When the experiment was carried out without Cat. **4** then only 4% of B(OMe)₃ was observed.

Fig. S7 ¹¹B NMR spectrum (in THF) in the absence of substrate

Fig. S8¹¹B NMR spectrum (in THF) under catalyst and substrate-free reaction condition

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, alkyne **22a** (41.6 mg, 0.20 mmol), Cat. **1** (3 mol%), and AB (12.4 mg, 0.4 mmol), followed by the addition of methanol (1 mL). Then, the vial was sealed and placed in a preheated oil bath at 40 °C (oil bath temperature) for 3 h. After completion of the reaction, the tube was allowed to cool at room temperature. After this, the solvent was removed and dissolved in THF, then submitted for ¹¹B NMR which shows the complete conversion of AB into NH₄(BOMe)₄.

The above experiment was carried out under identical conditions in the absence of 22a and 100% of NH₄(BOMe)₄ was observed. When the experiment was carried out without Cat. **1** then no conversion was observed.

Fig. S11¹¹B NMR spectrum (in THF) under catalyst and substrate-free reaction condition

9.2 Procedure for Rate of Reaction (Electronic Effect).

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, 1-methoxy-4-(phenylethynyl)benzene (**3a**, 48.4 mg, 0.2 mmol) or 1-(phenylethynyl)-4(trifluoromethyl)benzene (**4a**, 49.2 mg, 0.2 mmol), Cat. **4** (5 mol%), and AB (9.2 mg, 0.3 mmol), followed by the addition of methanol (1 mL). Then, the vial was sealed and placed in a preheated oil bath at 55 °C (oil bath temperature). The reaction vessel was taken at regular intervals (5, 10, 20, 30, and 40 min), and an aliquot of sample was withdrawn to the GC vial. The sample was diluted with MeOH and subjected to GC analysis. The data of the concentration of the product **3b** or **4b** versus time (min) plot was drawn (Figure S12) with Origin Pro 9.1, and the rate was determined by the initial rate method (up to 40 min). The initial rate obtained for the transfer hydrogenation of 1-methoxy-4(phenylethynyl)benzene (**3a**) was 9.48×10^{-4} Mmin⁻¹. Similarly, the rate for the transfer hydrogenation of 1-(phenylethynyl)-4-(trifluoromethyl)benzene (**4a**) was 8.06×10^{-4} Mmin⁻¹. Therefore, the rate (4-OMe)/ rate (4-CF₃) = $9.48 \times 10^{-4}/8.06 \times 10^{-4} = 1.18$.

Time(min)	3b[M]	4b[M]
5	0.02538	0.01316
10	0.03054	0.01722
20	0.04084	0.02804
30	0.05004	0.0344
40	0.05842	0.04106

Table S7 Time-dependent formation of product 3b or 4b from 3a and 4

Fig. S12 Time-dependent formation of products 3b and 4b.

9.3 Procedure for Competition Experiment

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, 1-methoxy-4-(phenylethynyl)benzene (**3a**, 48.4 mg, 0.2 mmol) and 1-(phenylethynyl)-4-(trifluoromethyl)benzene (**4a**, 49.2 mg, 0.2 mmol), Cat. **4** (5 mol%), and AB (9.2 mg, 0.3 mmol), followed by the addition of methanol (1 mL). Then, the vial was sealed and placed in a preheated oil bath at 55 °C (oil bath temperature) for 1 h. The yields of alkenes (**3b** (0.0899 mmol) and **4b** (0.0689 mmol)) were determined by GC.

9.4 Isomerisation experiment

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, 1-methoxy-(Z)-1,2-diphenylethene (**1a**, 36 mg, 0.2 mmol), Cat. **4** (5 mol%) or Cat. **1** (5 mol%), and AB (20 mol%), followed by the addition of methanol (1 mL). Then, the vial was sealed and placed in a preheated oil bath at 55 °C (oil bath temperature) for 12 h. Product yields were determined by GC.

9.5 Procedure for Deuterium Labelling Experiment.

Deuterium-labelling experiment using Cat. 4

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, alkyne (**1a**, 89.0 mg, 0.5 mmol), Cat. **4** (5 mol%), and AB (23.1 mg, 0.75 mmol), followed by the

addition of CD₃OD (2 mL). Then, the vial was sealed and placed in a preheated oil bath at 55 °C (oil bath temperature) for 12h. The crude reaction mixture was then purified by flash chromatography using petroleum ether as eluent to obtain deuterated Z-stilbene **1b-D** (79.2 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.16 (m, 10H), 6.60 (s, 1H).

Fig. S13 ¹H NMR spectrum (in CDCl₃) for the reaction of alkyne and AB (1.5 equiv) in under standard reaction conditions.

Deuterium-labelling experiment using Cat. 1

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, chalcone **22a** (41.6 mg, 0.20 mmol), Cat. **1** (3 mol%), and AB (2 equiv), followed by the addition of CD₃OD (1 mL). Then, the tube was sealed and placed in a preheated oil bath at 40 °C (oil bath temperature) for 3 h. After completion of the reaction, the tube was allowed to cool at room temperature. Then, the reaction mixture was subjected to ¹H and ²H NMR analysis.

Fig. S14 ¹H NMR spectrum (in CD₃OD) for the reaction of chalcone and AB (2 equiv) in CD₃OD under standard reaction conditions.

Fig. S15 ²H NMR spectrum (in THF) for the reaction of chalcone and AB (2 equiv) under standard reaction conditions.

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, chalcone **22a** (41.6 mg, 0.20 mmol), Cat. **1** (3 mol%), and NH₃•BD₃ (2 equiv), followed by the addition of CH₃OH (1 mL). Then, the tube was sealed and placed in a preheated oil bath at 40 °C (oil bath temperature) for 3 h. After completion of the reaction, the tube was allowed to cool at room temperature. Then, the reaction mixture was subjected to ¹H and ²H NMR analysis.

Fig. S16 ¹H NMR spectrum (in CDCl₃) for the reaction of chalcone and NH₃•BD₃ (2 equiv) in CH₃OH under standard reaction conditions.

Fig. S17 ²H NMR spectrum (in THF) for the reaction of chalcone and $NH_3 \cdot BD_3$ (2 equiv) in CH₃OH under standard reaction conditions.

9.6 Procedure for time-dependent product distribution study

Time-dependent product distribution study

An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, chalcone **22a** (41.6 mg, 0.20 mmol), Cat. **1** (3 mol%), and AB (2 equiv), followed by the addition of CH₃OH (1 mL). Then, the tube was sealed and placed in a preheated oil bath at 40 °C (oil bath temperature) for 2-180 Min. After completion of the reaction, the tube was allowed to cool at room temperature. Then, the reaction mixture was subjected to ¹H NMR analysis.

9.7 Procedure for the validation of possible intermediates

The intermediates **22b** and **22c** were synthesized according to procedures reported in the literature.² Each of them was independently subjected under standard reaction conditions. An oven-dried 4 mL screw cap vial was taken and charged with a magnetic stir-bar, each intermediate (0.20 mmol), Cat. **1** (3 mol%), and AB (2 equiv), followed by the addition of CH₃OH (1 mL). Then, the tube was sealed and placed in a preheated oil bath at 40 °C (oil bath temperature) for 3 h. After completion of the reaction, the tube was allowed to cool at room temperature. Then, the reaction mixture was subjected to ¹H NMR analysis.

10. Computational Studies:

All the calculations were performed using the Gaussian 09 package.¹⁰ Full geometry optimization followed by energy calculations on the stationary points were carried out to ascertain the nature of the stationary points as minima or first order saddle point. Hybrid functional, M062X was used with the LANL2DZ basis set¹¹ for Ni and 6-31G** basis set¹² for non-metal elements. The transition states (TS) were further confirmed by performing intrinsic reaction coordinate (IRC) calculations using the same method. The effect of solvent (methanol)

during the calculation was incorporated in the manuscript. The solvent effect was incorporated using the conductor-like polarizable continuum model (CPCM) with methanol¹³ at 328.15 K.

Diphenylacetylene:

Diphenylacetylene		
SCF Done: E (RM062X)	-539.074689	
SCF done for solvent	-539.235122	
Thermal correction to Gibbs Free Energy	0.154441	
Temperature	328.15 K	

С	0.19838	4.4279	-0.7951
С	0.21946	3.05049	-1.00029
С	1.4375	2.35896	-0.96973
С	2.63296	3.07048	-0.7724
С	2.60103	4.44472	-0.56745
С	1.3824	5.12481	-0.56698
Н	-0.74665	4.9604	-0.82931
Н	-0.69328	2.49724	-1.20554
Н	3.57546	2.5291	-0.78561
Н	3.52784	4.99038	-0.42208
Н	1.36112	6.19797	-0.40964
С	1.49485	0.92639	-1.15095
С	1.5622	-0.30702	-1.31482
С	1.64046	-1.74047	-1.50527
С	0.61381	-2.61842	-1.14377
С	2.8382	-2.24747	-2.02978

С	0.7785	-3.98693	-1.32134
Н	-0.3007	9 -2.2240	1 -0.711
С	2.99274	-3.61599	-2.20529
н	3.63768	-1.56252	-2.29446
С	1.96357	-4.48792	-1.85411
н	-0.02099	-4.66455	-1.04098
Н	3.92008	-4.00289	-2.61434
Н	2.08736	-5.55693	-1.99247

Ammonia-borane:

Ammonia-borane		
SCF Done: E (RM062X)	-83.116827	
SCF done for solvent	-83.181686	
Thermal correction to Gibbs Free Energy	0.047453	
Temperature	328.15 K	

В	-2.96182	1.4507	2.35068
Н	-2.26455	0.41715	2.31118
Н	-2.77905	1.9752	3.40767
Н	-2.88203	2.18717	1.40043
Ν	-4.49157	0.87494	2.32621
Н	-5.13062	1.65231	2.49035
Н	-4.65776	0.18731	3.05907
Н	-4.73813	0.46438	1.42366

Methanol:

Methanol		
SCF Done: E (RM062X)	-115.632634	
SCF done for solvent	-115.667286	
Thermal correction to Gibbs Free Energy	0.029621	
Temperature	328.15 K	

Coordinates

C	-1.35352	0.97033	0.0
H	-0.99685	1.47473	0.87365
H	-0.99685	1.47473	-0.87365
	-2.42352	0.97035	0.0
0	-0.87687	-0.37789	0.0
Н	-1.19522	-0.83033	0.78457

L₂Ni-H:

L2Ni-H:	
SCF Done: E (RM062X)	-1479.371007
SCF done for solvent	-1479.833624
Thermal correction to Gibbs Free Energy	0.373486
Temperature	328.15 K

Ni	23.16	11.9351	10.1659
Ν	21.054	12.376	10.5858
N	22.2119	11.0765	8.5257
N	20.3427	10.1314	7.7967
Н	19.5288	9.8539	7.7828
N	23,0795	13,8032	9.3577
N	21 88	15 642	8 9754
Н	21.00	16 1664	8 9388
N	21.1500	10.1004 12 7/57	12 0576
N	23.3771	12 6274	12 0007
	22.3337	12 0165	14 2125
п С	21.7154	11 2022	14.5155
	20.3004	11.2025	10.0905
	19.3/01	11.42/	9.9555
	20.3574	10.4766	10.7393
	20.9568	10.8002	8.801
	21.2652	9.9885	6.8162
	21.198	9.3444	5.5643
H	20.4416	8.8821	5.2819
C	22.3347	9.4492	4.7838
Н	22.3113	9.1049	3.9202
C	23.4991	10.0361	5.2216
Н	24.2472	10.0305	4.6694
C	23.581	10.6287	6.4616
Н	24.3605	11.0462	6.7502
C	22.445	10.5773	7.2579
C	20.6658	13.6012	9.8212
Н	20.1609	13.3454	9.0325
Н	20.1007	14.1635	10.3721
С	21.8836	14.3615	9.4092
С	23.168	15.9507	8.603
С	23.7235	17.0997	8.0285
Н	23.2181	17.8617	7.8555
С	25.0576	17.0311	7.7353
Н	25.4752	17.7839	7.3847
С	25.8171	15.884	7.9394
Н	26.7152	15.884	7.6976
С	25.2674	14.7502	8.4881
H	25.7778	13.9847	8.6275
С	23,9231	14.7884	8.8288
C	20.9027	12.5856	12.0497
H	20.6172	11.7611	12.4743
н	20.2287	13,2631	12,2185
C	22 2133	13 022	12 6182
C C	22.2133	13 7422	14 0662
	27.30041	1/ 2730	15 128
	27.5502	14 6767	15 8/06
с С	25.5475	1/ 1077	15 10400
	22.1.22	1/ 5007	15 020
с С	20.2443	12 6/12	1/ 0100 1/ 0100
	20.4240	13 5000	14.010C
п С	21.000	12.2220	12 0172
L	22.1308	13.1210	17.21/3

Н	26.1821	12.7953	12.1864
С	24.3507	13.203	12.9431
Н	24.54691	11.67043	9.83585

IntA:

IntA:	
SCF Done: E (RM062X)	-2018.433248
SCF done for solvent	-2019.062940
Thermal correction to Gibbs Free Energy	0.560326
Temperature	328.15 K

Ni	-0.18164	0.1234	-0.30627
Ν	-0.19732	1.37446	1.57141
Ν	1.92371	-0.53363	1.93632
Ν	3.45722	1.04993	1.5831
Н	3.82926	1.97451	1.4256
Ν	-1.65244	-0.75031	0.64033
Ν	-2.79114	-1.10163	2.50162
Н	-3.02641	-1.07849	3.48241
Ν	-2.09483	1.91629	-0.81109
Ν	-3.48449	1.84045	0.93255
Н	-3.83872	2.01183	1.8611
С	1.12989	1.83436	2.02732
Н	1.082	2.19046	3.0685
Н	1.4261	2.68185	1.40087
С	2.15714	0.75012	1.8725
С	4.11956	-0.15245	1.41176
С	5.43351	-0.46652	1.06061
Н	6.18147	0.29939	0.88559
С	5.73529	-1.81442	0.95165
Н	6.7427	-2.1101	0.67877

C	4,76822	-2.81153	1,19092
ч Н	5 05134	-3 85359	1 08836
C	3 16931	-2 19961	1 54402
L L	2 71946	2 25251	1 71601
п С	2.71040 2.11112	1 12406	1 65009
	5.14145	-1.15490	1.05000
	-0.79004	0.46593	2.58536
H	0.01/63	-0.12581	3.0234
Н	-1.288	1.03815	3.38295
C	-1.74661	-0.46777	1.91732
C	-3.42702	-1.85258	1.51782
С	-4.55536	-2.66991	1.54364
Н	-5.11057	-2.8556	2.45626
С	-4.93211	-3.23436	0.33499
Н	-5.80529	-3.87659	0.30297
С	-4.21488	-2.99229	-0.85214
Н	-4.55682	-3.44798	-1.77488
С	-3.09097	-2.183	-0.87015
Н	-2.54035	-1.97164	-1.78048
C	-2.69778	-1.61425	0.34246
C	-1.08554	2.54821	1.33463
H	-0.50204	3,30173	0.8014
н	-1 41933	2 97871	2 28994
C	-2 24046	2.37.671	0 46315
	-2.24040	1 32706	_0 1375
	-4.1J007 5 /061	0 70071	-0.13/3
	- 3.4001	0.75571	-0.24992
	-0.1030/	0.75250	1 40004
	-5.84//4	0.32519	-1.49964
H C	-6.83534	-0.10205	-1.63618
	-4.96/22	0.380/5	-2.59981
H	-5.3019	-0.00085	-3.5583
	-3.6936	0.90809	-2.48087
Н	-3.00/22	0.95121	-3.31967
C	-3.3058	1.38471	-1.22332
Н	-0.46651	-0.70116	-1.42951
C	1.15374	4.70175	-1.3928
C	0.83815	3.34501	-1.41791
C	1.85536	2.39553	-1.25951
C	3.1882	2.81796	-1.11638
С	3.49045	4.17376	-1.09656
С	2.47172	5.11873	-1.22342
Н	0.36547	5.43637	-1.52129
Н	-0.18489	3.00784	-1.56234
Н	3.97199	2.06938	-1.03838
Н	4.52176	4.49602	-0.9961
Н	2.70978	6.17703	-1.20908
С	1.59774	0.97734	-1.2496
С	1.72348	-0.24672	-1.30492
С	2.18356	-1.59974	-1.49107
С	1.40488	-2.7264	-1.20196
С	3.4994	-1.7587	-1.95167
С	1.9361	-3.99645	-1.39264
Н	0.39554	-2.59915	-0.82559
С	4.01853	-3.03241	-2.13863
Н	4.10406	-0.88088	-2.15613
	. =		

3.23798	-4.15299	-1.86316
1.32992	-4.86841	-1.17089
5.03523	-3.14931	-2.4983
3.64567	-5.14744	-2.01163
	3.23798 1.32992 5.03523 3.64567	3.23798 -4.15299 1.32992 -4.86841 5.03523 -3.14931 3.64567 -5.14744

IntA1:

IntA1:		
SCF Done: E (RM062X)	-2018.474930	
SCF done for solvent	-2019.104633	
Thermal correction to Gibbs Free Energy	0.561215	
Temperature	328.15 K	

-0.6418	0.30805	0.38345
-0.75998	0.2794	-2.184
2.00947	0.80882	-1.62346
2.57596	-1.30064	-2.07731
2.48172	-2.25527	-2.38756
-0.16944	2.18945	-0.04303
0.55317	3.68659	-1.49684
0.7928	4.08838	-2.39038
-2.55569	0.47258	-0.05786
-4.34499	0.29427	-1.33837
-4.902	0.12617	-2.16281
0.2787	-0.56329	-2.77218
0.34821	-0.42947	-3.86601
0.00071	-1.60615	-2.58443
1.62137	-0.32173	-2.14517
3.67447	-0.7505	-1.44048
4.91553	-1.26844	-1.07314
5.19995	-2.29162	-1.29273
5.76106	-0.41284	-0.38375
	-0.6418 -0.75998 2.00947 2.57596 2.48172 -0.16944 0.55317 0.7928 -2.55569 -4.34499 -4.902 0.2787 0.34821 0.00071 1.62137 3.67447 4.91553 5.19995 5.76106	-0.64180.30805-0.759980.27942.009470.808822.57596-1.300642.48172-2.25527-0.169442.189450.553173.686590.79284.08838-2.555690.47258-4.344990.29427-4.9020.126170.2787-0.563290.34821-0.429470.00071-1.606151.62137-0.321733.67447-0.75054.91553-1.268445.19995-2.291625.76106-0.41284

н	6.73643	-0.77195	-0.07288
C C	5 38525	0 90815	-0 06793
с Н	6 07979	1 53564	0 17996
П С	4 15407	1 /1005	0.4/990
	4.15407	1.41095	-0.44/2/
H	3.85391	2.43481	-0.20881
C	3.29156	0.57212	-1.15134
C	-0.64417	1.71228	-2.4688
Н	0.00365	1.88462	-3.33903
Н	-1.63559	2.11062	-2.72142
С	-0.09643	2.51327	-1.31425
С	0.9889	4.13098	-0.25735
С	1.73493	5.23782	0.14515
н	2.09565	5.97601	-0.56235
ſ	1,99936	5.34331	1.50263
ч	2 57982	6 185/7	1 86287
с С	1 52220	1 20710	2 42502
	1 76411	4.50/10	2.42302
	1.70411	4.514/4	2.4/0//
	0./8/86	3.292/1	2.01/6
H	0.42281	2.55384	2./2443
C	0.51919	3.17204	0.65275
C	-2.10155	-0.25266	-2.38077
Н	-2.05073	-1.34786	-2.3346
Н	-2.54706	0.02063	-3.35173
С	-2.99464	0.19391	-1.26094
С	-4.81562	0.6531	-0.08297
С	-6.09657	0.88169	0.41876
н	-6.98128	0.79847	-0.20238
ſ	-6.18061	1,21859	1.76032
ч	-7 15574	1 40219	2 19768
C	-5 0351/	1 32507	2 57383
	- 1 - 5 - 0 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	1 50000	2.57505
	-3.15595	1 10200	2.01092
	-3.70549	1.10380	2.00059
H	-2.8/618	1.1802/	2.68597
	-3.66/28	0.76572	0./166/
Н	1.01246	-0.22829	1.00665
C	-3.53883	-3.71338	-0.04189
C	-2.74335	-2.68976	0.46208
C	-1.36821	-2.65671	0.18713
C	-0.81655	-3.66893	-0.61727
С	-1.61821	-4.68221	-1.13137
С	-2.98255	-4.70672	-0.84589
Н	-4.59798	-3.73588	0.19397
н	-3.17771	-1.91157	1.08366
н	0.25197	-3.65087	-0.8206
Н	-1.17806	-5.45837	-1.74925
н	-3 6072	-5 50025	-1 24206
C C	-0 54356	_1 53319	0 60776
	0.74550	-1 2222	1 010770
	1 00710	-1.33323	1 51464
	7.00101	-2.10524	1.51464
	3.00101	-1.01223	1.09211
	1.58998	-3.51223	1.84001
C	4.12522	-2.40203	2.16805
Н	3.26275	-0.57133	1.44428
С	2.63517	-4.29189	2.3166

Н	0.59669	-3.93692	1.73214
С	3,90685	-3.74046	2.47924
H	5,10962	-1.96247	2.29198
Н	2,45649	-5.33139	2.57136
Н	4.72014	-4.35267	2.85466

IntB:

IntB:	
SCF Done: E (RM062X)	-2134.125681
SCF done for solvent	-2134.812523
Thermal correction to Gibbs Free Energy	0.616195
Temperature	328.15 K

Ni	-0.29757	-0.54709	-0.55286
Ν	0.45334	0.93086	1.80968
Ν	2.67339	1.75384	-0.12875
Ν	3.67648	1.96697	1.85835
Н	3.79467	2.2744	2.81227
Ν	1.45413	-1.33322	0.15808
Ν	3.29007	-1.22187	1.39113
Н	3.90688	-0.92768	2.13361
Ν	-1.37063	-1.02147	1.04553
Ν	-2.64856	-0.70412	2.8185
Н	-3.01125	-0.26728	3.65267
С	1.17644	2.2004	1.80303
Н	1.32692	2.59326	2.82511
Н	0.58149	2.92969	1.24619
С	2.50694	2.02409	1.13533
C	4.68562	1.6488	0.96738

С	6.05512	1.43315	1.13008
Н	6.54604	1.55057	2.0904
С	6.76291	1.07348	-0.00643
Н	7.83064	0.89779	0.06869
С	6.1322	0.94642	-1.25934
Н	6.7285	0.67322	-2.12287
С	4.7747	1.16959	-1.41231
Н	4.30125	1.08939	-2.38425
С	4.03281	1.51349	-0.27445
С	1.23454	-0.16889	2.36813
Н	1.94818	0.17262	3.13409
Н	0.56626	-0.88309	2.85701
С	1.97746	-0.90582	1.2885
С	3.66059	-1.8896	0.23784
С	4.88159	-2.3977	-0.20323
Н	5.78538	-2.31166	0.3896
с	4.87916	-3.00478	-1.44763
Н	5.80367	-3.41496	-1.83872
с	3.70365	-3.10689	-2.21855
Н	3.75132	-3.59891	-3.1839
с	2.49545	-2.59671	-1.77442
Н	1.58973	-2.65547	-2.36928
с	2.48531	-1.96758	-0.52489
с	-0.89299	1.04572	2.34049
Н	-1.39105	1.8752	1.81887
Н	-0.92866	1.25807	3.42442
с	-1.63664	-0.22352	2.05528
с	-3.09185	-1.88745	2.2449
C	-4.12027	-2.76995	2.57239
H	-4.75293	-2.62046	3.44007
с	-4.29874	-3.84538	1.71772
H	-5.08826	-4.55932	1.9251
с	-3.48641	-4.03683	0.58245
H	-3.67613	-4.88914	-0.06049
с	-2.46226	-3.16099	0.26872
Н	-1.84235	-3.28934	-0.61299
с	-2.27151	-2.07412	1.12392
Н	-0.47091	2.10173	-0.73284
с	-4.51114	-1.72411	-2.40397
с	-3.32656	-1.00161	-2.29566
с	-3.12151	-0.10484	-1.23902
с	-4.14002	0.03993	-0.28593
с	-5.31367	-0.69891	-0.37872
с	-5.50429	-1.58419	-1.43836
Н	-4.65258	-2.40745	-3.2352
Н	-2.54255	-1.14197	-3.03708
Н	-3.99373	0.73806	0.53621
Н	-6.08415	-0.5836	0.37739
Н	-6.4213	-2.15947	-1.50957
с	-1.80934	0.54527	-1.05762
с	-1.52201	1.85435	-0.93173
с	-2.39746	3.04611	-0.87895
с	-1.87843	4.19841	-0.27144
С	-3.71949	3.08158	-1.34443

С	-2.65925	5.33286	-0.08237
Н	-0.83786	4.20471	0.04706
С	-4.49952	4.2172	-1.15957
Н	-4.13644	2.21944	-1.85235
С	-3.98079	5.3409	-0.51787
Н	-2.23515	6.21037	0.39497
Н	-5.52168	4.22735	-1.52398
Н	-4.59841	6.22129	-0.37411
С	1.56419	0.42366	-2.76059
Н	2.3919	-0.0492	-2.23915
Н	1.70801	0.34705	-3.84116
Н	1.49052	1.46446	-2.44105
Н	-0.38678	0.16184	-2.77254
0	0.37758	-0.30321	-2.39898
IntB1:			

IntB1:				
SCF Done: E (RM062X)	-2134.122712			
SCF done for solvent	-2134.814136			
Thermal correction to Gibbs Free Energy	0.619678			
Temperature	328.15 K			

Ni	-0.40039	-0.45922	-0.84529
Ν	0.32702	1.01582	1.73737
Ν	2.75724	1.64612	0.07516
Ν	3.64727	1.59213	2.12707
Н	3.74678	1.82694	3.10344
Ν	1.15699	-1.34454	0.03336
Ν	2.86569	-1.50059	1.42608
Н	3.4519	-1.28895	2.21997
Ν	-1.59087	-0.70335	0.72931
N	-2.89097	-0.4352	2.48978
---------	---------------------	----------------------	----------------------
Н	-3.27646	-0.01221	3.32097
С	1.20734	2.16453	1.94466
H	1.32884	2.39468	3.01889
H	0.75899	3.03412	1.45959
C C	2,54833	1.86464	1,34277
C C	4 65709	1 182	1 27401
C C	5 96677	0 753 <i>44</i>	1 19809
Ц	6 4078	0.75544	2 18931
() (6 68322	0.74120	0 3810
L L	7 70590	0.001116	0.5012
	6 12009	0.01110	0.50554
L L	6 72177	0.30372	1 75250
	0./21//	0.00525	-1./5559
	4.822/	0.81053	-1.12333
H C	4.39191	0.85183	-2.11/66
	4.0/453	1.21526	-0.00826
	0.90362	-0.21519	2.2/242
H	1.5985	-0.01403	3.101/3
H	0.1174	-0.85688	2.67911
C	1.62815	-1.00103	1.21623
C	3.24121	-2.21301	0.30055
C	4.41235	-2.90103	-0.01493
H	5.25465	-2.93588	0.66687
C	4.439	-3.52877	-1.24756
H	5.32469	-4.08007	-1.54376
C	3.3378	-3.47223	-2.12487
Н	3.40178	-3.98459	-3.0787
C	2.18334	-2.77636	-1.81039
Н	1.34765	-2.69086	-2.49353
C	2.14654	-2.12434	-0.57151
C	-1.04813	1.26407	2.13874
Н	-1.39845	2.15546	1.60043
Н	-1.17295	1.45454	3.22042
C	-1.86831	0.06771	1.75614
C	-3.32163	-1.6075	1.88438
С	-4.32832	-2.52464	2.18903
Н	-4.99231	-2.39041	3.03552
С	-4.43395	-3.62166	1.3496
Н	-5.19847	-4.3649	1.54743
С	-3.57118	-3.80626	0.2501
Н	-3.68993	-4.68882	-0.36873
С	-2.58099	-2.88889	-0.05266
H	-1.9126	-3.01911	-0.89988
С	-2.47241	-1.77352	0.7824
H	-0.70223	1.22253	-2.68794
C	-5.78043	-1.04242	-1.04397
C	-4.57004	-0.80055	-1.68392
- C	-3.71926	0.23019	-1.26318
C C	- <u>4</u> 11000	1 01561	-0 17125
C C	-4.11902	0 77615	0.1/100
C C	-5.5209	-0 25275	0 02570
L L	-0.1044 _6 10010	-0.23273 _1 Q/QEE	-1 30630
н Н	-0.42042	-1 1040JJ	-1,50050 _7 57001
н Ц	-4.20300	-1.423/ 1.21/07	-2.J2001 0 10/71
11	-2.4/000	1.01402	0.104/1

Н	-5.62509	1.39926	1.3067
Н	-7.10989	-0.4351	0.53599
С	-2.436	0.37756	-1.97654
С	-1.52123	1.38692	-1.99537
С	-1.50241	2.72092	-1.35746
С	-0.26817	3.22066	-0.91877
С	-2.62626	3.5564	-1.32498
С	-0.17573	4.51584	-0.41472
Н	0.62195	2.59237	-0.97295
С	-2.52808	4.85003	-0.82325
Н	-3.57283	3.19562	-1.71597
С	-1.30502	5.33024	-0.35844
Н	0.78849	4.89741	-0.09023
Н	-3.40367	5.49047	-0.81362
Н	-1.22741	6.34363	0.02132
С	1.53467	0.12111	-2.7648
Н	2.29487	0.04405	-1.97628
Н	1.96728	-0.27896	-3.69227
Н	1.34796	1.19891	-2.92632
Н	-2.22264	-0.42421	-2.68681
0	0.37215	-0.58988	-2.46197

IntC:

IntC:		
SCF Done: E (RM062X)	-1676.950634	
SCF done for solvent	-1677.520005	
Thermal correction to Gibbs Free Energy	0.481668	
Temperature	328.15 K	

Ni	-1.17568	0.77966	0.75111
Ν	-0.26672	-2.08997	0.50867
Ν	2.4119	-0.9111	1.43909
Ν	3.08718	-2.68831	0.26132
Н	3.12664	-3.65689	-0.01883
Ν	0.29943	0.59106	-0.574
Ν	1.90124	-0.38246	-1.74742
Н	2.46926	-1.12782	-2.12204
Ν	-2.51442	-0.51032	-0.09797
Ν	-3.83167	-2.27928	-0.29263
Н	-4.11937	-3.24676	-0.26255
С	0.78235	-2.77126	1.27432
Н	0.85044	-3.8394	0.99878
Н	0.52781	-2.70761	2.33591
С	2.11077	-2.11405	1.04842
С	4.11707	-1.76656	0.17037
С	5.3417	-1.7739	-0.50047
Н	5.69019	-2.63744	-1.05706
С	6.09849	-0.61524	-0.41112
Н	7.06002	-0.57359	-0.91183
С	5.65331	0.50989	0.31215
Н	6.27804	1.3959	0.34082
С	4.43884	0.50901	0.97506
Н	4.07648	1.37493	1.51903
С	3.66288	-0.6536	0.90468
С	0.08889	-1.88155	-0.89353
Н	0.7561	-2.66953	-1.27509
Н	-0.81334	-1.90567	-1.51045
С	0.74417	-0.54376	-1.06855
С	2.2572	0.95331	-1.67094
С	3.36304	1.64541	-2.16227
Н	4.15261	1.14263	-2.70969
С	3.40552	3.00059	-1.88746
Н	4.24612	3.5884	-2.24025
С	2.38231	3.63399	-1.15377
Н	2.45924	4.69868	-0.96151
С	1.29179	2.93877	-0.66053
Н	0.52497	3.40545	-0.05711
С	1.2387	1.56417	-0.92423
С	-1.56747	-2.68767	0.70426
Н	-1.73796	-2.79026	1.78331
н	-1.66985	-3.69854	0.26509
С	-2.62814	-1.80356	0.11669
С	-4.56066	-1.21909	-0.80651
С	-5.84502	-1.13014	-1.34537
Н	-6.49422	-1.99453	-1.42789
C	-6.24511	0.12464	-1.77562
Н	-7.23338	0.24607	-2.20498
C	-5.39593	1.24561	-1.68219
Н	-5.74797	2.20328	-2.0491
C	-4.12091	1.15141	-1.14736
Н	-3.46053	2.00917	-1.08436
C	-3.70913	-0.10809	-0.69167
С	0.43472	1.66281	2.72971

Н	1.12855	0.8336	2.53509
Н	1.02523	2.51553	3.09236
Н	-0.24583	1.3693	3.54888
0	-0.25726	2.06578	1.58299
В	-2.88837	1.74899	2.13745
Н	-2.22018	0.69392	2.17835
Н	-2.64597	2.36924	3.12896
Н	-2.83259	2.38104	1.11589
Ν	-4.43154	1.21645	2.24283
Н	-5.04226	2.02714	2.34084
Н	-4.58048	0.62552	3.05929
Н	-4.73006	0.70973	1.40636

IntC1:

IntC1:	
SCF Done: E (RM062X)	-1676.983428
SCF done for solvent	-1677.535689
Thermal correction to Gibbs Free Energy	0.481818
Temperature	328.15 K

-1.18529	0.70824	0.64667
-0.2912	-2.08272	0.48528
2.36366	-0.84192	1.44284
3.0711	-2.65565	0.34172
3.11488	-3.63187	0.08915
0.28426	0.54521	-0.65756
	-1.18529 -0.2912 2.36366 3.0711 3.11488 0.28426	-1.18529 0.70824 -0.2912 -2.08272 2.36366 -0.84192 3.0711 -2.65565 3.11488 -3.63187 0.28426 0.54521

Ν	1.92772	-0.42521	-1.76666
Н	2.51062	-1.16807	-2.12426
Ν	-2.5064	-0.50717	-0.13354
Ν	-3.87437	-2.22941	-0.29112
Н	-4.21092	-3.17732	-0.2091
C	0.74747	-2.72658	1.29571
Н	0.83816	-3.80093	1.05456
Н	0.46492	-2.63773	2.34827
C	2.07411	-2.05987	1.08248
C	4.10305	-1.73817	0.24702
C	5.34455	-1.77151	-0.39118
Н	5.70267	-2.65405	-0.91053
C	6.10635	-0.61546	-0.31662
Н	7.08138	-0.59363	-0.79158
C	5.64931	0.53072	0.36438
Н	6.28041	1.41228	0.3907
C	4.41761	0.55443	0.99454
H	4.06084	1.43884	1.51191
C	3.6319	-0.60315	0.93557
C	0.09271	-1.92531	-0.9169
H	0.75935	-2.72944	-1.2642
H	-0.80202	-1.95456	-1.54498
	0.75602	-0.59424	-1.11/93
	2.26536	0.91/44	-1./024/
	3.3/6/8	1.6246	-2.15/2/
H	4.19392	1.13292	-2.6/315
	3.38969	2.983	-1.88962
H C	4.23380	3.5/9/9	-2.21/04
	2.33203	3.01002	-1.19905
	2.303/0	4.0///0	-1.01/84
	0 12612	2.9009	-0.74724
с С	1 21301	1 52/00	-0.20144
	-1 59632	-2 68737	-1.0022J 0 6728
н	-1 77174	-2 79271	1 75003
н	-1 6879	-3 69468	0 22733
C	-2.65315	-1.79473	0.09335
C	-4.58977	-1.14077	-0.76579
c	-5.89595	-0.99965	-1.23031
H	-6.57564	-1.84121	-1.30191
С	-6.28518	0.28233	-1.58765
Н	-7.29222	0.44494	-1.95555
С	-5.40683	1.37975	-1.48851
Н	-5.75936	2.36289	-1.77955
С	-4.10837	1.22952	-1.02926
Н	-3.43146	2.07377	-0.93828
С	-3.70847	-0.05708	-0.66455
С	0.70957	1.79157	2.46703
Н	1.56105	1.66013	1.79911
Н	0.87815	2.62438	3.1522
Н	0.55111	0.86786	3.03068
0	-0.43685	2.1017	1.66385
В	-1.76659	2.07167	2.30639
Н	-2.27422	0.91425	1.79925

Н	-1.76369	1.82299	3.47748
Н	-2.50361	2.91738	1.8792
Ν	-4.88996	0.49448	2.08382
Н	-4.49764	1.43294	2.07113
Н	-5.26351	0.36478	3.02061
Н	-5.69451	0.52813	1.46083

Ni-OMe:

Ni-OMe:		
SCF Done: E (RM062X)	-1593.817077	
SCF done for solvent	-1594.311066	
Thermal correction to Gibbs Free Energy	0.413816	
Temperature	328.15 K	

Ni	-0.40039	-0.45922	-0.84529
Ν	0.32702	1.01582	1.73737
Ν	2.75724	1.64612	0.07516
Ν	3.64727	1.59213	2.12707
Н	3.74678	1.82694	3.10344
Ν	1.15699	-1.34454	0.03336
Ν	2.86569	-1.50059	1.42608
Н	3.4519	-1.28895	2.21997
Ν	-1.59087	-0.70335	0.72931
Ν	-2.89097	-0.4352	2.48978
Н	-3.27646	-0.01221	3.32097
С	1.20734	2.16453	1.94466
Н	1.32884	2.39468	3.01889

Н	0.75899	3.03412	1.45959
С	2.54833	1.86464	1.34277
С	4.65709	1.182	1.27401
С	5.96677	0.75344	1.49809
Н	6.4078	0.74128	2.48934
С	6.68322	0.3516	0.3812
Н	7.70589	0.01116	0.50354
С	6.12008	0.38372	-0.90955
Н	6.72177	0.06525	-1.75359
С	4.8227	0.81653	-1.12333
Н	4.39191	0.85183	-2.11766
С	4.07453	1.21526	-0.00826
С	0.90362	-0.21519	2.27242
Н	1.5985	-0.01403	3.10173
Н	0.1174	-0.85688	2.67911
С	1.62815	-1.00103	1.21623
С	3.24121	-2.21301	0.30055
С	4.41235	-2.90103	-0.01493
Н	5.25465	-2.93588	0.66687
С	4.439	-3.52877	-1.24756
Н	5.32469	-4.08007	-1.54376
С	3.3378	-3.47223	-2.12487
Н	3.40178	-3.98459	-3.0787
С	2.18334	-2.77636	-1.81039
Н	1.34765	-2.69086	-2.49353
C	2.14654	-2.12434	-0.57151
C	-1.04813	1.26407	2.13874
Н	-1.39845	2.15546	1.60043
Н	-1.17295	1.45454	3.22042
C	-1.86831	0.06771	1.75614
C	-3.32163	-1.6075	1.88438
C	-4.32832	-2.52464	2.18903
Н	-4.99231	-2.39041	3.03552
C	-4.43395	-3.62166	1.3496
Н	-5.19847	-4.3649	1.54743
C	-3.57118	-3.80626	0.2501
Н	-3.68993	-4.68882	-0.36873
C	-2.58099	-2.88889	-0.05266
Н	-1.9126	-3.01911	-0.89988
C	-2.47241	-1.77352	0.7824
С	1.53467	0.12111	-2.7648
Н	2.29487	0.04405	-1.97628
Н	1.96728	-0.27896	-3.69227
Н	1.34796	1.19891	-2.92632
0	0.37215	-0.58988	-2.46197

L₁Ni-H:

L ₁ Ni-H:	
SCF Done: E (RM062X)	-1061.659215
SCF done for solvent	-1061.999681
Thermal correction to Gibbs Free Energy	0.262426
Temperature	328.15 K

Ni	3.2724	4.6653	6.0293
Ν	5.3534	4.4113	6.3051
Н	5.4875	3.5086	6.6622
Ν	3.7896	3.9619	4.1677
Ν	5.4327	3.3694	2.7967
Н	6.2307	3.2564	2.4966
Ν	3.4821	5.4069	7.954
Ν	4.8651	6.4267	9.3658
Н	5.6022	6.6975	9.7164
С	6.0472	4.469	5.0011
Н	6.8549	3.9321	5.0251
Н	6.2901	5.3834	4.7885
С	5.0938	3.9303	3.9756
С	4.2588	3.0093	2.1606
С	4.0049	2.3565	0.959
Н	4.6928	2.1036	0.3864
С	2.6811	2.1011	0.6575
Н	2.4725	1.6654	-0.1372
C	1.6463	2.4824	1.5192
Н	0.7674	2.2938	1.2808
С	1.8943	3.1323	2.7167
Н	1.2031	3.3856	3.2849
С	3.2238	3.3871	3.0296
С	5.8653	5.3526	7.3107
Н	6.2027	6.1523	6.8778
Н	6.5899	4.9453	7.8106
С	4.7372	5.7019	8.2309
C	3.5926	6.6525	9.8591
С	3.1308	7.3979	10.9443

Н	3.7125	7.8509	11.5114
С	1.7645	7.4263	11.1295
Н	1.4138	7.9235	11.833
C	0.8914	6.7281	10.2874
Н	-0.0214	6.7475	10.4642
С	1.3551	6.0053	9.1923
Н	0.771	5.5489	8.631
C	2.7281	5.9944	8.9719
Н	1.85123	4.87627	5.8337

IntA':

IntA'		
SCF Done: E (RM062X)	-1600.727311	
SCF done for solvent	-1601.233183	
Thermal correction to Gibbs Free Energy	0.438564	
Temperature	328.15 K	

Ni	0.76041	-0.57108	-0.63591
Ν	0.61734	-2.07743	0.94587
Ν	-0.64111	0.22379	1.87602
Ν	-2.66787	-0.70953	1.78292
Н	-3.36559	-1.4345	1.71341
Ν	2.5869	-0.53756	-0.02022
Ν	4.07319	-0.90466	1.57038
Н	4.46539	-1.23322	2.44027
С	-0.6817	-2.24051	1.62611
Н	-0.55661	-2.73478	2.59943
Н	-1.32001	-2.87917	1.01027
С	-1.3157	-0.89123	1.78758
С	-2.8899	0.65505	1.86394
С	-4.05412	1.42479	1.86821
Н	-5.04118	0.97719	1.82522

C	-3.88257	2.79797	1.93216
Н	-4.75707	3.43974	1.93751
C	-2.60157	3.38296	1.99443
Н	-2.51923	4.46356	2.03979
C	-1.45305	2.61134	1.99644
Н	-0.4646	3.0554	2.03915
C	-1.60426	1.22228	1.92727
C	1.69454	-1.74996	1.90611
Н	1.28623	-1.02274	2.61533
Н	2.0429	-2.63159	2.45825
C	2.80281	-1.09184	1.15241
C	4.73161	-0.15757	0.5984
C	6.03356	0.33378	0.51368
H	6.76643	0.15953	1.29315
C	6.34069	1.06534	-0.62238
H	7.33945	1.47247	-0.73371
C	5.39094	1.29484	-1.63689
Н	5.68126	1.8724	-2.5073
C	4.10078	0.8002	-1.54908
Н	3.36169	0.96589	-2.32527
C	3.77733	0.06623	-0.40607
Н	1.15429	0.26915	-1.72158
C	-1.36762	-4.54723	-1.74955
C	-0.89086	-3.24048	-1.76819
C	-1.74825	-2.18072	-1.44207
C	-3.09136	-2.44199	-1.1277
C	-3.55914	-3.75028	-1.11678
C	-2.69646	-4.80455	-1.41619
Н	-0.70552	-5.36639	-2.00923
Н	0.1373	-3.02848	-2.05205
Н	-3.75073	-1.60944	-0.90139
Н	-4.59938	-3.95005	-0.88196
H	-3.0643	-5.82484	-1.4062
C	-1.284	-0.82194	-1.37795
C	-1.12043	0.39382	-1.31453
C	-1.23059	1.82914	-1.3142
C	-0.1332	2.68824	-1.18087
C	-2.52524	2.35903	-1.43105
C	-0.33355	4.0632	-1.18629
Н	0.86355	2.27545	-1.07087
C	-2.71171	3.73434	-1.43428
H	-3.37308	1.68647	-1.51228
C	-1.61718	4.58849	-1.31677
H	0.51806	4.7282	-1.08969
H	-3.71366	4.13943	-1.52719
Н	-1.7653	5.66328	-1.32293
Н	0.84772	-2.95782	0.48648

IntA1':

IntA1'		
SCF Done: E (RM062X)	-1600.744372	
SCF done for solvent	-1601.258042	
Thermal correction to Gibbs Free Energy	0.443536	
Temperature	328.15 K	
Thermal correction to Gibbs Free Energy Temperature	0.443536 328.15 K	

Ni	0.80808	-0.7365	-0.42439
Ν	0.82676	-2.29649	0.94826
Ν	-0.42118	0.01886	1.95274
Ν	-2.45069	-0.89919	1.79986
Н	-3.14336	-1.61092	1.61944
Ν	2.67418	-0.47991	0.14479
Ν	4.25615	-1.01923	1.58624
Н	4.70599	-1.44951	2.38063
С	-0.48417	-2.44697	1.62885
Н	-0.36471	-2.98866	2.57642
Н	-1.1337	-3.0407	0.97897
С	-1.1012	-1.092	1.83969
C	-2.66427	0.46735	1.83949
C	-3.82208	1.24328	1.76479
Н	-4.80906	0.7986	1.69496
C	-3.64308	2.61742	1.77864
Н	-4.51119	3.26484	1.7157
C	-2.36182	3.19658	1.87018
Н	-2.27238	4.27736	1.86781
C	-1.22019	2.41763	1.95697
Н	-0.23199	2.85961	2.02709
C	-1.37717	1.02733	1.94162
C	1.90713	-1.96911	1.92127
Н	1.46451	-1.33237	2.69376
Н	2.31547	-2.87111	2.39036
C	2.96402	-1.17568	1.21893
С	4.84971	-0.15281	0.67294

С	6.14524	0.34798	0.54874
Н	6.93103	0.09372	1.25087
С	6.37797	1.191	-0.52636
Н	7.37025	1.60553	-0.66483
С	5.36414	1.52362	-1.44622
Н	5.6007	2.18346	-2.27331
С	4.08029	1.02368	-1.31782
Н	3.29483	1.26694	-2.02611
С	3.83309	0.17644	-0.23571
Н	0.42764	0.80441	-0.97474
С	-1.98276	-4.26038	-1.79556
С	-1.22359	-3.0993	-1.71547
С	-1.80799	-1.87089	-1.35756
С	-3.18653	-1.83563	-1.10305
С	-3.94336	-3.00305	-1.17055
С	-3.34552	-4.21699	-1.50768
Н	-1.51439	-5.19624	-2.0824
Н	-0.16004	-3.12486	-1.94184
Н	-3.65091	-0.89304	-0.82538
Н	-5.00869	-2.9651	-0.9665
Н	-3.94279	-5.12112	-1.55731
С	-0.91239	-0.74106	-1.17227
С	-0.67703	0.5469	-1.28373
С	-1.26098	1.87051	-1.53452
С	-0.42547	2.99306	-1.46255
С	-2.63522	2.05101	-1.71535
С	-0.94783	4.27425	-1.56366
Н	0.64267	2.85729	-1.30561
С	-3.15704	3.3366	-1.80879
Н	-3.28935	1.18647	-1.76808
С	-2.31979	4.44818	-1.7292
Н	-0.2893	5.13427	-1.50548
Н	-4.2257	3.47258	-1.93827
Н	-2.73715	5.44716	-1.79846
Н	1.05153	-3.18172	0.49667

TS1:

TS1	
SCF Done: E (RM062X)	-2018.430683

	SCF done for so	lvent	-2019.061749
	Thermal correction to Gib	y 0.561750	
	Temperatur	e	328.15 K
		Coordinates	
Ni	23.16	11.9351 1	0.1659
Ν	21.19457	11.90024	10.55486
Ν	21.82036	10.62608	8.49475
Ν	19.84175	10.15127	7.59593
Н	18.84544	10.01303	7.52105
Ν	23.8506	13.50169	9.59864
Ν	22.39643	15.1376	9.24544
Н	21.52	15.62105	9.22403
Ν	23.59326	12.61803	12.00886
Ν	22.43446	13.81054	13.48648
Н	21.63828	14.2147	13.94761
С	20.07449	11.04408	10.1434
Н	19.14345	11.56815	10.13496
Н	19.97226	10.2119	10.81004
C	20.5318	10.59006	8.72551
C	20.77141	9.93749	6.60499
C	20.68804	9.5132	5.25549
H	19.75338	9.25414	4.7882
C	21.8/288	9.44298	4.530/1
H C	21.84575	9.12891	3.5037
	23.09/73	9.70130	2.1001 4.51225
п С	23.99994	9.72925	4.51555
с ц	23.1705	10.12001	6 88500
C C	24.12500	10.04010	7 12456
c	21.33343	13 02851	9 5968
н	21,20507	12,63193	8,61722
н	20.42165	13,70506	9.8638
C	22.53724	13.84527	9.50854
C	23.5488	15.67961	9.01147
C	23.76808	16.97074	8.65615
Н	22.95408	17.66265	8.62548
С	25.03214	17.33737	8.34084
Н	25.2098	18.34596	8.0326
С	26.11204	16.39272	8.40548
Н	27.10524	16.69844	8.11502
С	25.88008	15.08902	8.84623
Н	26.68712	14.36849	8.94276
С	24.53262	14.75359	9.14428
С	21.06088	12.34284	11.95011
Н	20.81467	11.49636	12.54864
Н	20.28634	13.0694	12.03409
C	22.38392	12.92102	12.46424
С	23.7012	14.04651	13.78497

С	24.20628	14.81376	14.76563
Н	23.5659	15.36721	15.42213
С	25.5639	14.85946	14.9015
Н	25.99862	15.43336	15.70569
C	26.39696	14.14537	13.98355
Н	27.46458	14.18813	14.07219
C	25.83768	13.3948	12.97166
Н	26.44725	12.86178	12.25765
С	24.48728	13.34859	12.91358
Н	24.84216	10.93793	9.68798
С	24.12235	7.00955	14.05641
C	24.51596	7.81609	12.96251
C	23.54984	8.23625	12.01017
C	22.22286	7.79027	12.11553
C	21.83775	6.98422	13.20194
C	22.78069	6.59079	14.16774
Н	24.83799	6.7111	14.7919
Н	25.54278	8.11558	12.84341
Н	21.49414	8.05341	11.37643
Н	20.81814	6.67108	13.28794
Н	22.46844	5.97288	14.98709
C	23.93685	9.19749	10.839
C	24.39915	9.39027	9.60606
C	25.1201	8.86746	8.32005
C	26.07974	9.67099	7.65025
С	24.8191	7.58508	7.83432
C	26.79914	9.13923	6.55461
Н	26.25495	10.6796	7.98456
C	25.53282	7.06322	6.73957
Н	24.05004	6.99317	8.2846
С	26.5183	7.83487	6.09922
Н	27.54624	9.72767	6.0667
Н	25.31986	6.07314	6.39443
Н	27.05321	7.42127	5.2672

TS2:

TS2			
SCF Done: E (RM062X)	-2134.101864		
SCF done for solvent	-2134.783724		
Thermal correction to Gibbs Free Energy	0.611051		
Temperature	328.15 K		

Ni	-0.18377	-0.39382	-0.53502
Ν	0.40941	0.46035	1.96627
Ν	2.55893	1.54259	0.08326
Ν	3.55246	1.83555	2.04514
Н	3.64772	2.09971	3.01456
Ν	1.55776	-1.34588	0.03574
Ν	3.33512	-1.56325	1.33813
Н	3.91161	-1.5001	2.16342
Ν	-1.2954	-1.38122	0.78473
Ν	-2.65406	-1.45247	2.52545
Н	-3.08907	-1.18126	3.3945
С	1.04927	1.76761	2.07978
Н	1.21302	2.07296	3.12841
Н	0.38875	2.50415	1.61229
С	2.37081	1.75053	1.36236
С	4.58005	1.6808	1.13047
С	5.9705	1.66917	1.25605
Н	6.465	1.84069	2.20585
С	6.68882	1.42738	0.09639
Н	7.77235	1.41342	0.14029
С	6.0502	1.19583	-1.13952
Н	6.65759	0.99443	-2.01494
С	4.67202	1.21724	-1.2583
Н	4.1733	1.02348	-2.20268
С	3.93248	1.47566	-0.09886
С	1.24604	-0.65142	2.41292
Н	1.9425	-0.34887	3.21108
Н	0.61204	-1.44179	2.82692
С	2.02636	-1.21366	1.25482
С	3.75687	-1.92826	0.06965
С	4.99715	-2.32286	-0.43046
Н	5.86866	-2.4195	0.20737
С	5.05921	-2.56741	-1.79218
Н	6.00202	-2.87307	-2.23267
С	3.92676	-2.43285	-2.62039
Н	4.0247	-2.64166	-3.68011
С	2.69766	-2.04528	-2.11449
н	1.82495	-1.94343	-2.74994
С	2.62067	-1.78619	-0.74217
С	-0.95861	0.42365	2.46014

Н	-1.47942	1.30926	2.07224
Н	-1.03301	0.43535	3.56124
C	-1.63599	-0.80073	1.91381
C	-3.01989	-2.52004	1.71928
С	-4.00103	-3.50226	1.84858
Н	-4.67601	-3.53155	2.69647
C	-4.06798	-4.43869	0.831
Н	-4.81632	-5.22192	0.88272
C	-3.18812	-4.40375	-0.26927
Н	-3.28127	-5.16169	-1.0391
C	-2.21561	-3.42684	-0.38948
Н	-1.53902	-3.39036	-1.23767
C	-2.14424	-2.46776	0.62457
Н	-1.26412	3.00482	-0.59098
C	-5.25604	-0.87949	-2.27739
C	-4.06445	-0.1635	-2.20497
C	-3.81575	0.71696	-1.14576
C	-4.8071	0.87182	-0.16445
C	-5.9874	0.14003	-0.22268
C	-6.21283	-0.74653	-1.27492
Н	-5.42767	-1.56105	-3.10475
Н	-3.30036	-0.29609	-2.96818
Н	-4.64014	1.57717	0.64701
Н	-6.73879	0.26389	0.55153
Н	-7.13208	-1.32119	-1.31697
C	-2.48756	1.34833	-0.99282
C	-2.28866	2.65899	-0.76718
C	-3.29275	3.74844	-0.69042
C	-3.12814	4.7521	0.27248
C	-4.40966	3.80914	-1.53268
C	-4.06591	5.76881	0.41988
Н	-2.25232	4.7309	0.91938
С	-5.34098	4.8326	-1.39689
Н	-4.54408	3.04568	-2.29251
С	-5.17832	5.81018	-0.41659
Н	-3.92634	6.52998	1.1811
Н	-6.19912	4.86814	-2.06012
Н	-5.91084	6.60336	-0.31089
С	-0.91381	0.7817	-3.63347
Н	-1.92542	1.18346	-3.58034
Н	-0.19596	1.60386	-3.69744
Н	-0.81064	0.148	-4.51739
Н	-0.9787	0.59934	-1.49825
0	-0.61212	-0.08558	-2.39719

TS3			
-1676.938564			
-1677.494845			
0.479020			
328.15 K			

Coordinates

Ni	1.27979	0.80937	-0.52363
Ν	0.47562	-1.97461	-1.07318
Ν	-2.23537	-0.5813	-1.45954
Ν	-2.84608	-2.67087	-0.94495
Н	-2.86438	-3.67784	-1.01186
Ν	-0.04999	0.19017	0.80366
Ν	-1.57792	-1.09919	1.74074
Н	-2.12598	-1.92808	1.92069
Ν	2.66942	-0.53023	-0.13229
Ν	4.03814	-2.24816	-0.3316
Н	4.37699	-3.15715	-0.61098
С	-0.58818	-2.36169	-2.00504
Н	-0.64807	-3.45891	-2.11933
Н	-0.36133	-1.92906	-2.98366
С	-1.9109	-1.84095	-1.5248
С	-3.87268	-1.8617	-0.49063
С	-5.05985	-2.13278	0.19294
Н	-5.37179	-3.14475	0.42897
С	-5.829	-1.03548	0.54959
Н	-6.76352	-1.19481	1.07686
С	-5.43144	0.28083	0.23928
Н	-6.06497	1.10687	0.54359
С	-4.25485	0.54017	-0.44194
Н	-3.94268	1.55318	-0.67409
C	-3.46225	-0.55288	-0.81434
С	0.15473	-2.24741	0.32449
Н	-0.50691	-3.11881	0.44375

TS3:

Н	1,07547	-2.47207	0.87134
C	-0.47891	-1.04327	0.95683
C	-1.91015	0.1957	2.10748
C	-2.95991	0.71707	2.86179
Н	-3.72063	0.08034	3.29972
С	-2.98867	2.09474	3.00031
Н	-3.78669	2.55318	3.57404
С	-2.00887	2.91881	2.41075
Н	-2.07579	3.99281	2.54685
С	-0.96944	2.39454	1.66093
Н	-0.22554	3.02328	1.18294
С	-0.93155	1.00376	1.5112
С	1.78973	-2.44454	-1.46672
Н	1.93712	-2.20293	-2.52634
Н	1.92723	-3.53596	-1.35799
С	2.82753	-1.72961	-0.64848
С	4.72711	-1.30736	0.42369
С	5.99737	-1.29914	0.99965
Н	6.67647	-2.13925	0.90935
С	6.34874	-0.15154	1.69233
Н	7.32705	-0.09449	2.15657
С	5.47349	0.94709	1.80763
Н	5.7996	1.82393	2.35586
С	4.21304	0.93148	1.23643
Н	3.53551	1.77631	1.31448
С	3.84661	-0.22283	0.53984
С	-0.92322	2.72849	-2.49652
Н	-1.69774	2.47966	-1.76965
Н	-1.14841	3.64355	-3.04765
Н	-0.79009	1.8813	-3.17648
0	0.29125	2.98055	-1.76396
В	1.81839	3.38667	-2.87498
Н	2.81087	1.42723	-1.97773
Н	1.72738	3.15087	-4.0481
Н	2.52497	4.27064	-2.4792
Ν	1.76487	5.49385	-4.59883
Н	1.16476	6.29847	-4.43869
Н	1.87516	5.41414	-5.60876
Н	2.68388	5.7199	-4.2289

TS1':

TS1'			
SCF Done: E (RM062X)	-1600.716218		
SCF done for solvent	-1601.224506		
Thermal correction to Gibbs Free Energy	0.440622		
Temperature	328.15 K		

Ni	-0.16361	0.14457	-0.16143
N	-0.28154	1.43699	1.65546
N	1.80882	-0.48078	1.99326
Ν	3.35945	1.08461	1.6347
Н	3.73686	2.00472	1.46243
Ν	-1.6566	-0.74769	0.73588
N	-2.88891	-1.03483	2.54814
Н	-3.17109	-0.98131	3.51522
С	1.04444	1.89339	2.1246
Н	0.99322	2.23676	3.16925
Н	1.34472	2.7466	1.50788
С	2.06252	0.8007	1.95146
С	3.99216	-0.12349	1.40609
С	5.2872	-0.44987	0.99892
Н	6.0441	0.30771	0.8255
С	5,55675	-1.79845	0.83112
Н	6.54712	-2.1041	0.5109
С	4,5786	-2.78533	1.06868
H	4.8362	-3.82788	0.91687
С	3.30079	-2.45262	1.48252
H	2.54218	-3.20723	1.65878
С	3.00376	-1.09525	1.64712
C	-0.8894	0.53759	2.67151
H	-0.08617	-0.03427	3.14252
Н	-1.41528	1.11816	3.44441
С	-1.81403	-0.42272	1.99547
C	-3.47809	-1.81596	1.55849
C	-4.61235	-2.62583	1.55121
H	-5.21477	-2.78107	2,43936
C	-4.93236	-3.22308	0.34186
H	-5.80759	-3.86083	0.28491
C	-4.15538	-3.02026	-0.81466
H	-4.45503	-3.5004	-1.73973
C	-3.02587	-2.21883	-0.79943
H	-2.43178	-2.0347	-1.68854
C	-2.68944	-1.61721	0.41438
H	-0.15713	-0.86379	-1.18608
C	1.33599	4.672	-1.2657
C	0.92956	3.33992	-1.2791
С	1.8821	2.31856	-1.16845

С	3.2453	2.64901	-1.08598
С	3.64043	3.9814	-1.07224
С	2.68556	4.99611	-1.15057
Н	0.59518	5.45931	-1.36139
Н	-0.11721	3.07121	-1.39475
Н	3.97848	1.84806	-1.03599
Н	4.69508	4.23099	-1.01501
Н	2.99745	6.03512	-1.14258
С	1.49485	0.92639	-1.15095
С	1.5622	-0.30702	-1.31482
С	2.14935	-1.59689	-1.61259
С	1.49219	-2.8094	-1.38145
С	3.46247	-1.59904	-2.10499
С	2.1367	-4.00963	-1.65629
Н	0.48605	-2.80404	-0.97279
С	4.09745	-2.80303	-2.37836
Н	3.97333	-0.65521	-2.26814
С	3.43607	-4.00985	-2.15716
Н	1.62282	-4.9481	-1.47696
Н	5.1122	-2.79915	-2.76209
Н	3.93498	-4.94914	-2.37178
Н	-0.88056	2.21596	1.47005

11. Spectral Data for alkynes and chalcones

(Z)-1,2-diphenylethene (1b):¹

Purified by column chromatography using silica gel and hexane as eluent 89% (80.1mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.29 – 7.19 (m, 10H), 6.62 (s, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.4, 130.4, 129.0, 128.3, 127.2.

(Z)-1-methyl-4-styrylbenzene (2b):¹⁴

Purified by column chromatography using silica gel and hexane as eluent 95% (92.15 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.30 – 7.18 (m, 5H), 7.15 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 7.8 Hz, 2H), 6.56 (s, 2H), 2.32 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.6, 136.9, 134.4, 130.3, 129.6, 129.0, 128.9, 128.9, 128.3, 127.0, 21.3.

(Z)-1-methoxy-4-styrylbenzene (3b):¹⁵

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 92% (96.6 mg) isolated yield; yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.33 – 7.25 (m, 4H), 7.25 – 7.19 (m, 3H), 6.81 – 6.77 (m, 2H), 6.56 (s, 2H), 3.82 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.8, 137.8, 130.3, 129.9, 129.0, 128.9, 128.4, 127.0, 113.7, 55.3.

(Z)-1-styryl-4-(trifluoromethyl)benzene (4b):¹⁶

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 80% (99.3 mg) isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 7.9 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.27 – 7.17 (m, 5H), 6.71 (d, J = 12.2 Hz, 1H), 6.58 (d, J = 12.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.0, 136.7, 132.4, 129.3, 129.0, 128.9, 128.6, 128.5 (q, J_{C,F})

 $= 22.9 \text{ Hz}, 127.7, 125.3 \text{ (q, } J_{C,F} = 3.8 \text{ Hz}), 124.3 \text{ (q, } J_{C,F} = 271.6 \text{ Hz}).^{19} F\{^{1}H\}$ NMR (470 MHz, CDCl₃): δ –62.4.

(Z)-1-fluoro-4-styrylbenzene (5b):¹⁵

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 74% (73.4 mg) isolated yield; colourless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.26 – 7.16 (m, 7H), 6.91 (t, J = 8.7 Hz, 2H), 6.60 (d, J = 12.2 Hz, 1H), 6.55 (d, J = 12.2 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.9 (d, J_{C,F} = 245 Hz), 137.2, 133.3 (d, J_{C,F} = 3.7 Hz), 130.6 (d, J_{C,F} = 8.3 Hz), 130.4, 129.2, 129.0,

128.4, 127.3, 115.3 (d, $J_{C,F} = 21.2 \text{ Hz}$). ¹⁹F{¹H} NMR (470 MHz, CDCl₃): δ –114.6.

(Z)-1-chloro-4-styrylbenzene (6b):¹⁵

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 82% (88.1 mg) isolated yield; colourless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.35 – 7.14 (m, 9H), 6.64 (d, J = 12.2 Hz, 1H), 6.54 (d, J = 12.2 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.0, 135.8, 132.9, 131.1, 129.1, 128.9,

128.5, 128.5, 127.5, 126.8.

(Z)-1-bromo-4-styrylbenzene (7b):¹⁵

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 77% (99.8 mg) isolated yield; yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.35 (s, 2H), 7.26 – 7.21 (m, 5H), 7.11 (d, J = 8.5 Hz, 2H), 6.64 (d, J = 12.2 Hz, 1H), 6.51 (d, J = 12.2 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 136.3, 131.5, 131.2, 130.7, 129.1, 128.9, 128.5, 127.5, 121.1.

(Z)-(4-styrylphenyl)methanol (8b):¹⁵

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 81% (85.1 mg) isolated yield; brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.09 (m, 9H), 6.61 (d, J = 12.2 Hz, 1H), 6.58 (d, J = 12.2 Hz, 1H), 4.65 (s, 2H), 1.71 (s, 1H).¹³C{¹H} NMR (100 MHz, CDCl₃): δ 139.8, 137.3, 136.8, 130.5, 130.0, 129.2, 129.0, 128.4, 127.3, 127.0, 65.3.

methyl (Z)-4-styrylbenzoate (9b):¹

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 79% (94.1 mg) isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.92 – 7.87 (m, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.25 – 7.19 (m, 5H), 6.71 (d, J = 12.2 Hz, 1H), 6.61 (d, J = 12.2 Hz, 1H), 3.90 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 167.0, 142.2, 136.8, 132.4, 129.7,

129.4, 129.0, 128.7, 128.5, 127.6, 52.2.

ethyl (Z)-4-styrylbenzoate (10b):¹⁷

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 76% (95.8 mg) isolated yield; yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.22 (s, 5H), 6.71 (d, J = 12.2 Hz, 1H), 6.61 (d, J = 12.2 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.3 Hz, 3H).¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.6,

142.1, 136.8, 132.3, 129.6, 129.4, 129.0, 129.0, 128.5, 127.6, 61.0, 14.5.

(Z)-2-(4-styrylphenyl)acetonitrile (11b):¹⁸

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 70% (76.7 mg) isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29 – 7.20 (m, 7H), 7.18 (d, J = 8.2 Hz, 2H), 6.65 (d, J = 12.2 Hz, 1H), 6.57 (d, J = 12.2 Hz, 1H), 3.71 (s, 2H).¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.3, 137.1, 131.2, 129.8, 129.4, 128.9, 128.6, 128.5, 128.0,

127.5, 118.0, 23.5.

(Z)-1-(tert-butyl)-4-styrylbenzene (12b):¹⁵

Purified by column chromatography using silica gel and hexane as eluent 83% (98.1 mg) isolated yield; colourless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.35 – 7.18 (m, 9H), 6.57 (s, 2H), 1.31 (s, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 150.3, 137.8, 134.3, 130.3, 129.7, 129.0, 128.7, 128.4, 127.1, 125.2, 34.7,

31.4.

(Z)-1,3-dimethyl-5-styrylbenzene (13b):¹⁵

Purified by column chromatography using silica gel and hexane as eluent 82% (85.4 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29 – 7.23 (m, 3H), 7.21 (d, J = 8.3 Hz, 2H), 6.88 (s, 2H), 6.84 (s, 1H), 6.55 (s, 2H), 2.21 (s, 6H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.8, 137.3, 130.6,

130.0, 129.0, 128.9, 128.2, 127.2, 126.7, 21.3.

(Z)-1-methyl-2-styrylbenzene (14b):¹⁵

Purified by column chromatography using silica gel and hexane as eluent 89% (86.4 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.21 – 7.02 (m, 9H), 6.68 – 6.59 (m, 2H), 2.28 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 137.2, 136.2, 131.7, 130.6, 130.2, 129.7, 129.1, 129.0, 128.2,

127.4, 127.2, 125.8, 20.0.

(Z)-2-styryl-1,1'-biphenyl (15b):¹⁸

Purified by column chromatography using silica gel and hexane as eluent 78% (99.9 mg) isolated yield; colourless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.47 – 7.44 (m, 2H), 7.40 – 7.27 (m, 8H), 7.23 – 7.14 (m, 4H), 6.52 (d, J = 12.2 Hz, 1H), 6.43 (d, J = 12.1 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃):

δ 141.3, 137.2, 135.9, 131.7, 130.6, 130.1, 130.1, 129.6, 129.1, 128.3, 128.2, 127.6, 127.2, 127.2, 77.4, 77.2, 76.9.

(Z)-1-methoxy-2-styrylbenzene (16b):¹⁹

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 90% (94.6 mg) isolated yield; yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.28 – 7.13 (m, 7H), 6.91 (dd, J = 8.4, 1.1 Hz, 1H), 6.77 (td, J = 7.5, 1.1 Hz, 1H), 6.71 (d, J = 12.2 Hz, 1H), 6.65 (d, J = 12.2 Hz,

1H), 3.84 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.4, 137.5, 130.4, 130.3, 129.0, 128.7, 128.6, 128.2, 127.0, 126.0, 120.4, 110.8, 55.6.

(*Z*)-2-styrylaniline (17b):¹⁸

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 83% (81.1 mg) isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.24 – 7.16 (m, 5H), 7.09 (t, J = 7.6 Hz, 2H), 6.70 (dd, J = 7.7, 4.0 Hz, 2H), 6.66 (d, J = 12.2 Hz, 1H), 6.52 (d, J = 12.2 Hz, 1H), 3.70 (s,

2H).¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.8, 136.8, 131.8, 129.7, 128.9, 128.5, 128.3, 127.6, 126.6, 123.3, 118.6, 115.7.

(Z)-2-styrylpyridine (18b):²⁰

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 81% (73.3 mg) isolated yield; yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 8.59 (d, J = 4.9 Hz, 1H), 7.44 (td, J = 7.7, 1.7 Hz, 1H), 7.31 – 7.19 (m, 5H), 7.16 (d, J = 7.9 Hz, 1H), 7.09 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 6.84 (d, J = 12.2 Hz, 1H), 6.70 (d, J = 12.2 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 156.4, 149.6,

136.8, 135.9, 133.5, 130.5, 129.0, 128.4, 127.8, 124.0, 121.9.

(Z)-1-methyl-3-styrylbenzene (19b):¹

Purified by column chromatography using silica gel and hexane as eluent 90% (87.4 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.28 – 7.18 (m, 5H), 7.09 (dd, J = 12.3, 7.4 Hz, 3H), 7.01 (d, J = 7.3 Hz, 1H), 6.58 (s, 2H), 2.27 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.9, 137.5, 137.3,

130.5, 130.2, 129.7, 129.0, 128.3, 128.2, 128.0, 127.2, 126.0, 77.5, 77.2, 76.8, 21.5.

(Z)-1-methoxy-3-styrylbenzene (20b):²⁰

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 91% (95.7 mg) isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.28 – 7.12 (m, 6H), 6.84 (d, J = 7.7 Hz, 1H), 6.79 (t, J = 2.1 Hz, 1H), 6.75 (dd, J = 8.1, 2.7 Hz, 1H), 6.62 (d, J = 12.2 Hz, 1H), 6.57

(d, J = 12.2 Hz, 1H), 3.65 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.5, 138.7, 137.4, 130.6, 130.3, 129.4, 129.1, 128.4, 127.3, 121.7, 113.9, 113.5, 55.2.

(Z)-3-phenylprop-2-en-1-ol (21b):¹⁴

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 68% (45.6 mg) isolated yield; yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.35 (dd, J = 8.2, 6.8 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.22 (dd, J = 7.0, 1.7 Hz, 2H), 6.58 (d, J = 11.7 Hz, 1H), 5.88 (dt, J = 11.7, 6.4 Hz, 1H), 4.44

(dd, J = 6.3, 1.7 Hz, 2H).¹³C{¹H} NMR (125 MHz, CDCl₃): 136.7, 131.3, 131.2, 128.9, 128.4, 127.4, 59.8.

1,3-diphenylpropan-1-ol (22d):²

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 88% (93.4 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 3.7 Hz, 4H), 7.29 (dd, *J* = 9.0, 5.9 Hz, 3H), 7.23 – 7.16 (m, 3H), 4.68 (dd, *J* = 7.9, 5.5 Hz, 1H), 2.77 – 2.64 (m, 2H), 2.16 – 1.99 (m,

3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.7, 141.9, 128.6, 128.6, 128.5, 127.7, 126.0, 126.0, 74.0, 40.6, 32.2.

3-phenyl-1-(*p***-tolyl)propan-1-ol** (**23d**):²¹

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 86% (97.3 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, J = 8.5 Hz, 5H), 7.22–7.17 (m, 4H), 4.67 (t, J

= 6.7 Hz, 1H), 2.72 (ddd, J = 25.4, 12.9, 6.5 Hz, 2H), 2.36 (s, 3H), 2.10 (ddd, J = 38.8, 13.1, 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.0, 141.7, 137.5, 129.3, 128.6, 128.5, 126.0, 126.0, 73.9, 40.5, 32.2, 21.2.

1-(4-methoxyphenyl)-3-phenylpropan-1-ol (24d):²¹

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 81% (98.1 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 8.3, 6.3 Hz, 4H), 7.23–7.15 (m, 3H),

6.94–6.84 (m, 2H), 4.64 (dd, J = 7.7, 5.7 Hz, 1H), 3.82 (s, 3H), 2.76–2.62 (m, 2H), 2.22–1.90 (m, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.2, 142.0, 136.8, 128.6, 128.5, 127.3, 126.0, 114.0, 73.6, 55.4, 40.4, 32.2.

1-(4-fluorophenyl)-3-phenylpropan-1-ol (25d):²²

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 89% (102.4 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, J = 14.3, 7.2 Hz, 5H), 7.19 (d, J = 7.4 Hz, 3H), 7.04 (t, J = 8.5 Hz, 2H), 4.69 (t, J = 6.7 Hz, 1H), 2.71 (ddt, J = 23.8,

15.3, 7.7 Hz, 2H), 2.20 – 1.93 (m, 3H).¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.3 (d, J_{C,F} = 245.5 Hz), 141.7, 140.4 (d, J_{C,F} = 3 Hz), 128.6, 128.5, 127.6 (d, J_{C,F} = 8 Hz), 126.1, 115.4 (d, J_{C,F} = 21.3 Hz), 73.4, 40.7, 32.1.¹⁹F{¹H} NMR (470 MHz, CDCl₃): δ –114.9.

1-(4-chlorophenyl)-3-phenylpropan-1-ol (26d):²²

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 88% (108.56 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, *J* = 18.6, 9.6 Hz, 7H), 7.18 (d, *J* = 8.3 Hz, 2H), 4.67 (t, *J* = 7.0 Hz, 1H), 2.69 (td, *J* = 14.8, 7.5 Hz, 2H), 2.27–1.92 (m,

3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.2, 141.6, 133.4, 128.8, 128.6, 128.6, 127.4, 126.1, 73.3, 40.6, 32.1.

3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-ol (27d):²

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 92% (128.9 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃). δ 7.62 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.20 (d, J = 7.6 Hz, 3H), 4.77 (dd, J = 7.9, 5.0 Hz,

1H), 2.81–2.67 (m, 2H), 2.18 – 1.97 (m, 3H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 148.7, 141.5, 130.8 (q, J_{C,F} = 32.6 Hz), 128.6, 128.5, 128.3, 126.2, 125.6 (q, J_{C,F} = 3.8 Hz), 124.1 (q, J_{C,F} = 271.4 Hz), 73.3, 40.7, 32.0. ¹⁹F{¹H} **NMR** (470 MHz, CDCl₃): δ –62.3.

1-(3-chlorophenyl)-3-phenylpropan-1-ol (28d):²³

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 80% (98.7 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃). δ 7.36 (s, 1H), 7.29 (dd, J = 13.1, 6.9 Hz, 4H), 7.20 (d, J = 8.1 Hz, 4H), 4.67 (s, 1H), 2.73 (tt, J = 14.6, 7.2 Hz, 2H), 2.05 (ddq, J = 29.1, 13.8, 6.7 Hz,

3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 146.8, 141.6, 134.5, 129.9, 128.6, 127.8, 126.2, 126.1, 124.2, 73.3, 40.6, 32.0.

1-mesityl-3-phenylpropan-1-ol (29d):²

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 79% (100 mg) isolated yield; colourless oil. ¹H NMR (500 MHz, CDCl₃). δ 7.33–7.28 (m, 2H), 7.26–7.18 (m, 3H), 6.82 (s, 2H), 5.14 (dd, J = 9.3, 4.7 Hz, 1H), 2.91 (ddd, J = 14.3, 9.6, 5.0 Hz, 1H), 2.70

(ddd, J = 13.8, 9.3, 7.3 Hz, 1H), 2.41–2.37 (m, 1H), 2.35 (s, 6H), 2.26 (s, 3H), 2.02–1.95 (m, 1H), 1.73

(s, 1H).¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.0, 136.9, 136.1, 130.3, 128.6, 128.5, 126.0, 70.7, 37.2, 32.9, 20.8, 20.7.

3-phenyl-1-(pyridin-3-yl)propan-1-ol (30d):²

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 83% (88.5 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃). δ 8.38 (s, 1H), 8.34 (d, J = 4.9 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.30 – 7.14 (m, 6H), 4.68 (dd, J = 8.2, 5.2 Hz, 1H), 4.42 (s, 1H),

2.71 (dddd, J = 20.8, 14.1, 9.8, 5.8 Hz, 2H), 2.12 (ddd, J = 16.7, 8.2, 4.0 Hz, 1H), 1.99 (ddd, J = 14.4, 9.6, 5.2 Hz, 1H).¹³C{¹H} NMR (100 MHz, CDCl₃): δ 148.3, 147.6, 141.5, 140.7, 134.1, 128.5, 128.5, 126.0, 123.7, 71.0, 40.6, 32.0.

3-phenyl-1-(thiophen-2-yl)propan-1-ol (31d):²⁴

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 80% (87.3 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃). δ 7.34–7.28 (m, 3H), 7.21 (d, J = 6.9 Hz, 4H), 7.11 (d, J = 5.0 Hz, 1H), 4.80 (t, J = 6.6 Hz, 1H), 2.84–2.67 (m, 2H), 2.20–2.06 (m,

2H), 1.87 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 146.1, 141.8, 128.6, 128.6, 126.4, 126.0, 125.8, 121.1, 70.0, 39.9, 32.1.

1-phenyl-3-(p-tolyl)propan-1-ol (32d):²³

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 84% (95.1 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃). δ 7.37 (d, J = 4.3 Hz, 4H), 7.31–7.28 (m, 1H), 7.10 (s, 4H), 4.70 (dd, J = 7.8, 5.4 Hz, 1H), 2.69 (ddd, J = 18.3, 9.3, 6.0 Hz,

2H), 2.33 (m, 3H), 2.21 – 1.91 (m, 3H).¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.7, 138.8, 135.4, 129.2, 128.6, 128.4, 127.8, 126.1, 74.1, 40.7, 31.7, 21.1.

3-(4-chlorophenyl)-1-phenylpropan-1-ol (33d):²⁴

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 83% (102 mg) isolated yield; colourless oil. ¹H NMR (400 MHz, CDCl₃). δ 7.36 (s, 4H), 7.30 (s, 1H), 7.26 (d, J = 8.9 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 4.68 (t, J = 7.0 Hz, 1H), 2.71 (dt, J = 25.6,

8.2 Hz, 2H), 2.06 (dp, J = 38.1, 7.2 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.5, 140.4, 131.7, 129.9, 128.7, 128.7, 128.6, 127.9, 126.0, 73.9, 40.5, 31.5.

3-(4-bromophenyl)-1-phenylpropan-1-ol (34d):²⁴

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 78% (113.1 mg) isolated yield; colourless oil. ¹**H NMR** (400 MHz, CDCl₃). δ 7.47 – 7.28 (m, 7H), 7.07 (d, J = 8.0 Hz, 2H), 4.67 (dd, J = 7.8, 5.3 Hz, 1H), 2.67 (ddd, J = 16.6, 9.4, 6.1 Hz, 2H), 2.19 – 1.85 (m, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.5, 140.9, 131.6, 128.7, 128.5, 127.9, 126.0, 119.7, 73.8, 40.4, 31.6.

3-(4-nitrophenyl)-1-phenylpropan-1-ol (35d):²

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 78% (99 mg) isolated yield; colourless oil. ¹H NMR (500 MHz, CDCl₃). δ 8.15 (d, J = 8.5 Hz, 2H), 7.39 – 7.31 (m, 7H), 4.71 (dd, J = 8.1, 5.2 Hz, 1H), 2.88 (td, J = 9.9, 9.3, 4.8 Hz, 1H), 2.83

 $-2.78 \text{ (m, 1H)}, 2.19 - 2.13 \text{ (m, 1H)}, 2.08 - 2.03 \text{ (m, 1H)}, 1.91 \text{ (s, 1H)}. {}^{13}C{}^{1}H} NMR (125 \text{ MHz}, CDCl_3): \delta 144.3, 129.4, 128.8, 128.1, 126.0, 123.8, 73.8, 40.0, 32.1.$

3-(6-methoxynaphthalen-2-yl)-1-phenylpropan-1-ol (36d):²⁴

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 75% (109.5 mg) isolated yield; colourless oil. ¹**H NMR** (500 MHz, CDCl₃). δ 7.67 (dd, J = 8.4, 2.3 Hz, 2H), 7.57 (s, 1H), 7.37 (d, J = 4.2 Hz, 4H), 7.31 (td, J =

7.4, 6.4, 3.0 Hz, 2H), 7.15–7.11 (m, 2H), 4.72 (t, J = 6.8 Hz, 1H), 3.92 (s, 3H), 2.92–2.80 (m, 2H), 2.25–2.19 (m, 1H), 2.11 (ddd, J = 20.3, 9.6, 6.0 Hz, 1H), 1.95 (d, J = 3.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.3, 144.7, 137.0, 133.1, 129.2, 129.0, 128.7, 127.9, 127.8, 127.0, 126.5, 126.1, 118.8, 105.8, 74.0, 55.4, 40.6, 32.1.

1-cyclopropyl-3-phenylpropan-1-ol (37d):²¹

Purified by column chromatography using silica gel and ethyl acetatehexane as eluent 81% (71.3 mg) isolated yield; colourless oil. ¹**H NMR** (400 MHz, CDCl₃). δ 7.36 – 7.13 (m, 5H), 2.99 – 2.63 (m, 3H), 1.92 (q, J = 7.3 Hz, 2H), 1.63 (s, 2H), 0.93 (dq, J = 8.1, 4.3, 3.5 Hz, 1H), 0.51 (qt, J = 11.8,

5.9 Hz, 2H), 0.22 (ddq, J = 22.3, 8.2, 4.1 Hz, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.4, 128.5, 128.5, 125.9, 76.3, 38.8, 32.2, 18.2, 2.9, 2.7.

cyclohexanol (38d):²¹

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 78% (38.5 mg) isolated yield; colourless oil. ¹**H NMR** (400 MHz, CDCl₃). δ 3.57 (hept, J = 4.1 Hz, 1H), 1.87 (td, J = 11.4, 10.9, 6.2 Hz, 3H), 1.70 (dd, J = 8.9, 4.5 Hz, 2H), 1.56 – 1.45 (m, 1H), 1.32–1.11 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 70.4, 35.6, 25.5, 24.2.

1-phenylpentan-1-ol (39d):²

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 73% (59.9 mg) isolated yield; colourless oil. ¹H NMR (500 MHz, CDCl₃). δ 7.36 (d, J = 4.6 Hz, 4H), 7.31 – 7.27 (m, 1H), 4.70 – 4.65 (m, 1H), 1.77 (ddd, J = 37.6, 9.2, 4.4 Hz, 2H), 1.43 (dd, J = 13.0, 6.8 Hz, 1H), 1.27 (s,

20H), 0.90 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.1, 128.6, 127.6, 126.0, 74.9, 39.3, 32.1, 29.8, 29.7, 29.5, 26.0, 22.8, 14.3.

pentan-2-ol (40d)²⁵

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 78% NMR yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃). δ 3.81 (td, *J* = 6.4, 4.3 Hz, 1H), 1.42 (tdd, *J* = 14.0, 6.7, 4.0 Hz, 4H), 1.19 (d, *J*

= 6.1 Hz, 3H), 0.97 – 0.89 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 68.1, 41.7, 23.6, 19.1, 14.2.

butan-2-ol (41d)²⁵

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 71% NMR yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃). δ 3.72 (h, *J* = 6.1 Hz, 1H), 1.53 – 1.40 (m, 2H), 1.18 (d, *J* = 5.9 Hz, 3H), 0.92 (t, *J* =

7.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): 69.6, 32.1, 23.0, 10.1.

3-(4-methoxyphenyl)-1-(p-tolyl)propan-1-ol (42d):²

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 76% (97.4 mg) isolated yield; colourless oil. ¹**H NMR** (500 MHz, CDCl₃). δ 7.26 (d, J = 7.7 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 9.0 Hz,

2H), 4.65 (dd, J = 7.7, 5.4 Hz, 1H), 3.81 (s, 3H), 2.72 – 2.60 (m, 2H), 2.38 (s, 3H), 2.15 – 1.97 (m, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.8, 137.3, 134.0, 129.4, 129.2, 126.0, 113.9, 73.7, 31.2, 21.2. **3,3'-(1,3-phenylene)bis(1-(4-(trifluoromethyl)phenyl)propan-1-ol) (43d):**²

3,5 -(1,5-phenylene)bis(1-(4-(trinuorometnyr)phenyl)propan-1-bi) (4

Purified by column chromatography using silica gel and ethyl acetate-hexane as eluent 80% (192 mg) isolated yield; colourless oil. ¹**H NMR** (500 MHz, CDCl₃). δ 7.55 (s, 2H),

7.40 – 7.37 (m, 2H), 7.37 (d, J = 1.6 Hz, 4H), 7.31 (d, J = 7.8 Hz, 4H), 4.69 (dd, J = 7.7, 5.3 Hz, 2H), 2.83 (ddd, J = 15.1, 9.8, 5.6 Hz, 2H), 2.78 – 2.70 (m, 2H), 2.19 – 2.11 (m, 2H), 2.05 (ddd, J = 14.2, 10.1, 5.0 Hz, 2H), 2.00 (d, J = 9.9 Hz, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 146.1, 144.4, 128.8 (q, J_{C,F} = 32.2 Hz), 128.0, 126.0, 125.4 (q, J_{C,F} = 5 Hz), 124.5 (q, J_{C,F} = 271.9 Hz), 73.8, 40.2, 32.0.¹⁹F{¹H} NMR (470 MHz, CDCl₃): δ –62.3.

12. Copies of ¹H and ¹³C NMR Spectra of Products

S67

¹**H NMR** (CDCl₃, 500 MHz), **6b**

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

¹³C{¹H} NMR (125 MHz, CDCl₃), 15b

¹H NMR (CDCl₃, 500 MHz), **16b**

f1 (ppm)

 $^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃), 29d

¹H NMR (400 MHz, CDCl₃), **32d**

190 180 170 160 150 140 130 120 110 100 90 80

f1 (ppm)

f1 (ppm)

80 70

190 180 170 160 150 140 130 120 110 100 90

¹H NMR (400 MHz, CDCl₃), 38d

¹H NMR (400 MHz, CDCl₃), **40d**

13. Copies of ¹⁹F NMR Spectra of Products

$^{19}F\{^{1}H\}$ NMR (470 MHz, CDCl₃), 25d

14. References

1. S. Fu, N.-Y. Chen, X. Liu, Z. Shao, S.-P. Luo and Q. Liu,Ligand-Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of *Z*- and *E*-Alkenes, *J. Am. Chem. Soc.*, 2016, **138**, 8588–8594.

2. A. Sau, D. Mahapatra, S. Dey, D. Panja, S. Saha and S. Kundu, Utilization of Methanol for Condensation Interrupted Chemoselective Transfer Hydrogenation of C=C, C=O, and C=N Bonds under Low Catalyst Loading, *Org. Chem. Front.*, 2023, **10**, 2274–2286.

3. R. Cariou, J. J. Chirinos, V. C. Gibson, G. Jacobsen, A. K. Tomov, G. J. P. Britovsek and A. J. P. White, The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4 polymerisation of butadiene, *Dalton Trans.*, 2010, **39**, 9039–9045.

4. V. O. Rodionov, S. I. Presolski, S. Gardinier, Y.-H. Lim and M. G. Finn, Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition, *J. Am. Chem. Soc.*, 2007, **129**, 12696–12704.

5. G.-L. Li, Z. Zhuo, B. Wang, X.-L. Cao, H.-F. Su, W. Wang, Y.-G. Huang and M. Hong, Constructing π -Stacked Supramolecular Cage Based Hierarchical Self-Assemblies via $\Pi \cdots \pi$ Stacking and Hydrogen Bonding, *J. Am. Chem. Soc.*, 2021, **143**, 10920–10929.

6. G. M. Sheldrick, A short history of SHELX, *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 2008, **64**, 112–122.

7. G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, **71**, 3–8.

8. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.

9. SAINT and SADABS, versions 6.02 and 2.03, Bruker AXS Inc., Madison, WI, 2002.

10. G. W. T. M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G., V. B.Scalmani, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P., A. F. I. Hratchian, J.Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,, J. H. R. Fukuda, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A., J. E. P. Montgomery, F. Ogliaro, M.Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N., R. K. Staroverov, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, M. C. J. Tomasi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C., J. J. Adamo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R.Cammi, C., J. W. O. Pomelli, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, S. D. J.J. Dannenberg, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D. J. Fox, inGaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, (2016).

11. Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, **120**, 215-241.

12. R. Ditchfield, W. J. Hehre, J. A. Pople, Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules, *J. Chem. Phys.* 1971, **54**, 724-728

13. (a) J. Tomasi and M. Persico, Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent, *Chem. Rev.*, 1994, **94**, 2027–2094. (b) A. J. Jesus, L. I. Tomé, M. E. Eusébio, M. T. Rosado and J. S. Redinha, Hydration of cyclohexylamines: CPCM calculation of hydration Gibbs energy of the conformers, *The journal of physical chemistry*. *A* 2007, **111**, 3432-7.

14. V. G. Landge, J. Pitchaimani, S. P. Midya, M. Subaramanian, V. Madhu and E. Balaraman, Phosphine-free cobalt pincer complex catalyzed Z-selective semi-hydrogenation of unbiased alkynes, *Catal. Sci. Technol.*, 2018, **8**, 428–433.

15. D. M. Sharma, C. Gouda, R. G. Gonnade and B. Punji, Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent (NNN)Co(II) catalysts, *Catal. Sci. Technol.*, 2022, **12**, 1843–1849.

16. A. Brzozowska, L. M. Azofra, V. Zubar, I. Atodiresei, L. Cavallo, M. Rueping and O. El-Sepelgy, Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-Defined Manganese(II) Complex, *ACS Catal.*, 2018, **8**, 4103–4109.

17. Z. Huang, Y. Wang, X. Leng and Z. Huang, An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne cis-Semihydrogenation with Ethanol: From Elementary Steps to Catalysis, *J. Am. Chem. Soc.*, 2021, **143**, 4824–4836.

18. R. Kusy and K. Grela, Ligand-free (Z)-selective transfer semihydrogenation of alkynes catalyzed by in situ generated oxidizable copper nanoparticles, *Green Chem.*, 2021, **23**, 5494–5502.

19. G.-H. Wang, H.-Y. Bin, M. Sun, S.-W. Chen, J.-H. Liu and C.-M. Zhong, Copper-catalyzed Z-selective Semihydrogenation of Alkynes with Hydrosilane: a Convenient Approach to Cis-Alkenes, *Tetrahedron*, 2014, **70**, 2175–2179.

20. M. Das and D. F. O'Shea, Z-Stereoselective Aza-Peterson Olefinations with Bis(trimethylsilane) Reagents and Sulfinyl Imines, *Org. Lett.*, 2016, **18**, 336.

21. A. Mandal, K. Ganguli, M. Pradhan, A. Gorai and S. Kundu, Selective transfer hydrogenation of C=O and conjugated C=C bonds using an NHC-based pincer (CNC)MnI complex in methanol, *ChemSusChem*, 2023, **16**, e202300683.

22. B. C. Roy, S. Debnath, K. Chakrabarti, B. Paul, M. Maji and S. Kundu, *ortho*-Amino group functionalized 2,2'-bipyridine based Ru(ii) complex catalysed alkylation of secondary alcohols, nitriles and amines using alcohols, *Org. Chem. Front.*, 2018, **5**, 1008–1018.

23. S. Shee, B. Paul, D. Panja, B. C. Roy, K. Chakrabarti, K. Ganguli, A. Das, G. K. Das and S. Kundu, Tandem Cross Coupling Reaction of Alcohols for Sustainable Synthesis of β-Alkylated Secondary Alcohols and Flavan Derivatives, *Adv. Synth. Catal.*, 2017, **359**, 3888–3893.

24. Q. Xu, J. Chen, H. Tian, X. Yuan, S. Li, C. Zhou and J. Liu, Catalyst-Free Dehydrative α-Alkylation of Ketones with Alcohols: Green and Selective Autocatalyzed Synthesis of Alcohols and Ketones, *Angew. Chem., Int. Ed.*, 2014, **53**, 225–229.

25. A. Kanchanadevi, R. Ramesh and D. Semeril, Efficient and recyclable Ru(II) arene thioamide catalysts for transfer hydrogenation of ketones: Influence of substituent on catalytic outcome, *J. Organomet. Chem.*, 2016, **808**, 68–77.