Supporting Information for:

An Access to Chiral 3-Benzylchromanones and 2,6-Disubstituted

Cyclohexanones via Rh-Catalyzed Chemo- and Enantioselective Hydrogenation

of Arylidene Chromanones/Cyclohexanones

Qianling Guo,^{‡a} Chaochao Xie,^{‡a} Guofu Zi,^a Yuping Huang,^{*b} and Guohua Hou^{*a}

[a] Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China.

[b] Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China.

*Emails: Yuping Huang: huangyuping.ripp@sinopec.com; Guohua Hou: ghhou@bnu.edu.cn

Contents:

1.	Experimental Section	S2
2.	General procedure for the synthesis of substrates 1, 3, 5 and 6	S2
3.	The characterization data for substrates 1 and 3	S6
4.	General procedure for asymmetric hydrogenation of 1 and 3	S12
5.	NMR, HPLC, optical rotation and HRMS data of compounds 2, 4, 5 and 6	S14
6.	References	S25
7.	NMR, SFC and HPLC spectra	S28
8.	X-ray crystallographic analysis of compound 2a .	S110

1. Experimental Section

General Information: All the air or moisture sensitive reactions and manipulations were performed by using standard Schlenk techniques and in a nitrogen-filled glovebox. THF, dioxane and toluene were distilled from sodium benzophenone ketyl. DCM was distilled from calcium hydride. Anhydrous MeOH was distilled from magnesium. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AV (400 MHz) spectrometers and JEOL JNM-ECX600P and JNM-ECS600 (400 MHz or 600 MHz) spectrometers. (CDCl₃ was the solvent used for the NMR analysis, with TMS as the internal standard). Optical rotation was determined using Autopol III Automatic polarimeter (Rudolph research Analyical). HPLC analysis was conducted on Agilent 1260 series instrument. SFC analysis was conducted on Agilent 1260 series instrument. HRMS were recorded on a Waters LCT Premier XE mass spectrometer with TOF.

2. General procedure for the synthesis of substrates 1, 3, 5 and 6

General Procedure for Synthesis of Products 1

The chroman-4-one (10 mmol, 1.0 equiv.) was added to a single-necked flask, dissolved with EtOH (4 mL) and stirred, then the corresponding aldehyde (10 mmol, 1.0 equiv.) was added. The aqueous solution of NaOH (2.4 mmol, 8 N, 0.24 equiv.) was slowly added to the system and stirred at room temperature for 12 h. The solid precipitate was collected by filtration, the crude product was purified by column chromatography (PE:EA = 10:1). The corresponding products **1a–1n** and **1p** were obtained after recrystallization.¹

In the nitrogen atmosphere, chroman-4-one (10 mmol, 1.0 equiv.) was added to the dried threenecked bottle, and anhydrous DCM (30 mL) was added for stirring and dissolution. TiCl₄ (1.3 mL, 12 mmol, 1.2 equiv.) and Et_3N (2.0 mL, 14 mmol, 1.4 equiv.) were added to the system, the mixture was stirred at -78 °C for 30 minutes. Then isobutyraldehyde (12 mmol, 1.2 equiv.) was added to the system, and stirred at -78 °C for 2 hours. The reaction was quenched by adding water (20 mL) and then cooled to room temperature. The water layer was extracted with DCM (3×30 mL), the combined organic layers were washed with 1 M HCl aqueous solution and dried with anhydrous Na₂SO₄. The solvent was evaporated, and the crude product was purified by column chromatography to obtain product **10**.¹⁹

KOH (1.1 g) was added to a round-bottomed flask and mixed with EtOH (100 mL), then 1-tetralone (20 mmol, 1.0 equiv.) and benzaldehyde (50 mmol, 2.5 equiv.) were slowly added to the system in turn and stirred at room temperature for 24 h. After the reaction was complete, the solid was filtered and separated. The crude product was purified by column chromatography (PE:EA = 10:1), and the corresponding product **1q** was obtained.²

The mixture of benzaldehyde (25 mmol, 1.0 equiv.), cyclohexanone (37.5 mmol, 1.5 equiv.) and 1N KOH solution (25 mL) was refluxed for 3 h. After cooling to room temperature, EA (50 mL) was added, the water layer was separated and extracted with EA (3×30 mL). The combined organic phases were washed with brine and dried with Na₂SO₄. The solvent was evaporated and the crude product was purified by silica gel column chromatography (PE:EA = 10:1) to obtain the substrate **1r**.²

Under nitrogen atmosphere, the solution of NaOMe was added to the mixed solution of benzaldehyde (12 mmol, 1.1 equiv.) and MeOH (30 mL). 1-indanone (11.4 mmol, 1.0 equiv.) was dissolved in MeOH (30 mL), dropped into the mixture, and stirred at room temperature for 15 h. The reaction mixture was poured into water (50 mL), acidified with 2N HCl and extracted with DCM (3×30 mL). The combined organic layers were washed with brine, then dried with Na₂SO₄,

and the solvent was removed. The substrate 1s was obtained by column chromatography (PE: EA = 10:1).³

Benzaldehyde (50 mmol, 1.0 equiv.), cyclopentanone (60 mmol, 1.2 equiv.), diethyl ether (50 mL) and 1N NaOH solution (50 mL) were sequentially added into a 250 mL single-necked flask, and the mixture was stirred at room temperature for 72 h. The reaction solution was extracted with EA (3×30 mL), the combined organic phases were washed with brine, dried with Na₂SO₄ and the solvent was evaporated. The crude product was purified by silica gel column chromatography to obtain substrate **1t**.²

In a 250 mL flask, an aqueous solution of KOH (0.1 mol, 2.5 equiv.) was added to the EtOH (80 mL) solution of phenylacetone (40 mmol, 1.0 equiv.) and benzaldehyde (80 mmol, 2.0 equiv.) and stirred at room temperature for 72 h. EtOH was removed under reduced pressure and extracted with EA (3×30 mL). The combined organic layers were washed with aqueous HCl solution and brine, dried with Na₂SO₄, and the solvent was evaporated. The residue was purified by column chromatography (PE:EA = 20:1) to obtain the substrate **1u**.²

The mixture of **1a** (3.0 mmol, 1.0 equiv.), K_2CO_3 (5.1 mmol, 1.7 equiv.) and DMF (36 mL) was refluxed for 3 h, then poured into brine and extracted with EA (3 × 50 mL). The solvent was removed under reduced pressure, and the residue after drying was separated by column chromatography with (PE:EA = 15:1) to obtain the product **2a**'.¹

General Procedure for Synthesis of Products 3

The corresponding mixed solution (10 mL) of aldehyde (15 mmol, 2.0 equiv.), tetrahydro-4*H*-pyran-4-one/cyclohexanone (7.5 mmol, 1.0 equiv.) and EtOH were slowly added to the EtOH/H₂O (v/v = 1/1, 28.5 mL) solution of NaOH (30 mmol, 4.0 equiv.). The reaction mixture was stirred at room temperature for 10 h, the yellow precipitate was filtered and recrystallized from DCM/PE, and dried in vacuum.⁴

General Procedure for Synthesis of Products 5 and 6

The chiral substrate **2a** was added to a dry three-neck flask equipped with a magnetic stirrer, nitrogen was replaced three times, dried DCM was added and cooled to -20 °C. Subsequently, a newly prepared solution of 1 M DIBAL-H (diisobutylaluminum hydride) in toluene (1.2 equiv.) was added. The reaction was stirred at -20 °C and the completion of the reaction was observed by TLC analysis. Subsequently, the reaction was cooled to 0 °C, and water was added to quench the reaction. The aqueous layer was extracted with DCM (2 × 20 mL). The combined organic layers were dried with Na₂SO₄ and concentrated. The crude product was purified by column chromatography, and product **5** was obtained in 96% yield.

Sodium acetate (1.5 equiv.) was added to a stirred **2a** (1.0 equiv.) EtOH/H₂O solution (v/v = 1/3, 15 mL). Hydroxylamine hydrochloride (1.5 equiv.) was added, then heated to 90 °C by oil bath. and stirred for 16 h. The mixture was cooled to room temperature, diluted with EA and washed with water. The organic layer was separated, dried with Na₂SO₄, and separated by column

chromatography after vacuum concentration to obtain product 6 in 94% yield.

3. The characterization data for substrates 1 and 3

(*E*)-3-Benzylidenechroman-4-one (1a)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 3.1 g, yield: 80%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.88 (d, *J* = 2.0 Hz, 1H), 7.51 – 7.40 (m, 4H), 7.32 (dd, *J* = 7.2, 1.9 Hz, 2H), 7.09 – 7.07 (m, 1H), 6.97 (dd, *J* = 8.3, 1.0 Hz, 1H), 5.36 (d, *J* = 1.9 Hz, 2H). The analytical data are consistent with the literature.^{1b} (*E*)-3-(3-Methylbenzylidene)chroman-4-one (**1b**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 645 mg, yield: 82%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.86

(d, *J* = 2.0 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.13 – 7.10 (m, 2H), 7.09 – 7.06 (m, 1H), 6.97 (dd, *J* = 8.4, 1.0 Hz, 1H), 5.36 (d, *J* = 1.9 Hz, 2H), 2.41 (s, 3H). The analytical data are consistent with the literature.⁵

(*E*)-3-(3-Methoxybenzylidene)chroman-4-one (1c)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 450 mg, yield: 73%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 (dd, *J* = 7.8,

1.8 Hz, 1H), 7.84 (d, J = 2.0 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.09 – 7.06 (m, 1H), 6.97 – 6.95 (m, 2H), 6.89 (d, J = 6.7 Hz, 1H), 6.84 (t, J = 2.1 Hz, 1H), 5.35 (d, J = 1.9 Hz, 2H),
3.84 (s, 3H). The analytical data are consistent with the literature.^{1a}

(*E*)-3-(3-Fluorobenzylidene)chroman-4-one (1d)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 240 mg, yield: 62%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 – 8.02 (m, 1H), 7.81 (s, 1H),

7.53 - 7.49 (m, 1H), 7.45 - 7.41 (m, 1H), 7.27 - 7.26 (m, 1H), 7.14 - 7.07 (m, 3H), 7.02 - 6.97 (m, 2H), 5.33 - 5.32 (m, 2H). The analytical data are consistent with the literature.⁶
(*E*)-3-(4-Methylbenzylidene)chroman-4-one (1e)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 890 mg, yield: 79%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.85 (s,

1H), 7.48 (d, J = 7.6 Hz, 1H), 7.25 – 7.20 (m, 4H), 7.06 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.35 (s, 2H), 2.39 (s, 3H). The analytical data are consistent with the literature.^{1b}

(*E*)-3-(4-Methoxybenzylidene)chroman-4-one (1f)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 710 mg, yield: 75%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 (dd, J = 7.8,

1.8 Hz, 1H), 7.84 (d, J = 1.9 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.29 – 7.27 (m, 2H), 7.08 – 7.05 (m, 1H), 6.98 - 6.95 (m, 3H), 5.38 (d, J = 1.9 Hz, 2H), 3.86 (s, 3H). The analytical data are consistent with the literature.^{1b}

(*E*)-3-(4-Chlorobenzylidene)chroman-4-one (**1g**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 120 mg, yield: 56%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (dd, J = 7.9, 1.7 Hz,

1H), 7.82 – 7.81 (m, 1H), 7.52 – 7.48 (m, 1H), 7.45 – 7.41 (m, 2H), 7.25 (d, J = 8.6 Hz, 3H), 7.10 -7.06 (m, 1H), 6.98 (dd, J = 8.4, 1.0 Hz, 1H), 5.31 (d, J = 1.9 Hz, 2H). The analytical data are consistent with the literature.1b

(E)-3-(2-Methylbenzylidene)chroman-4-one (1h)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 410 mg, yield: 78%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.05 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.97 $(d, J = 1.8 \text{ Hz}, 1\text{H}), 7.51 - 7.48 \text{ (m, 1H)}, 7.33 - 7.30 \text{ (m, 1H)}, 7.28 - 7.23 \text{ (m, 2H)}, 7.09 - 7.07 \text{ ($ 1H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.97 (dd, *J* = 8.4, 1.1 Hz, 1H), 5.21 (d, *J* = 1.8 Hz, 2H), 2.36 (s, 3H). The analytical data are consistent with the literature.⁵

(E)-3-(2-Methoxybenzylidene)chroman-4-one (1i)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 805 mg, yield: 70%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 (dd, *J* = 7.9, 1.8 Hz, 1H), 8.01

(d, J = 1.9 Hz, 1H), 7.49 - 7.46 (m, 1H), 7.41 - 7.38 (m, 1H), 7.08 - 7.05 (m, 2H), 7.01 - 6.99 (m, 1H), 6.95 (d, J = 8.3 Hz, 2H), 5.22 (d, J = 1.8 Hz, 2H), 3.86 (s, 3H). The analytical data are consistent with the literature.^{1b}

(*E*)-3-(2-Bromobenzylidene)chroman-4-one (1j)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 150 mg, yield: 60%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 – 8.04 (m, 1H), 7.90 (s, 1H),

7.68 - 7.67 (m, 1H), 7.51 - 7.48 (m, 1H), 7.39 - 7.36 (m, 1H), 7.28 - 7.25 (m, 1H), 7.13 - 7.07 (m, 2H), 6.98 - 6.96 (m, 1H), 5.16 (t, J = 1.8 Hz, 2H). The analytical data are consistent with the literature.⁵

(E)-3-(2-Fluorobenzylidene)chroman-4-one (1k)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 300 mg, yield: 62%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.85

(q, J = 1.6 Hz, 1H), 7.51 - 7.48 (m, 1H), 7.43 - 7.39 (m, 1H), 7.22 - 7.20 (m, 2H), 7.18 - 7.14 (m, 1H), 7.09 - 7.07 (m, 1H), 6.97 (dd, J = 8.4, 1.1 Hz, 1H), 5.19 (t, J = 1.7 Hz, 2H). The analytical data are consistent with the literature.⁷

(E)-3-(Furan-2-ylmethylene)chroman-4-one (11)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 680 mg, yield: 86%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.62

(d, J = 1.8 Hz, 1H), 7.52 (t, J = 1.9 Hz, 1H), 7.50 - 7.47 (m, 1H), 7.07 - 7.04 (m, 1H), 6.99 (dd, J = 8.3, 1.0 Hz, 1H), 6.75 (d, J = 3.5 Hz, 1H), 6.55 (dd, J = 3.5, 1.8 Hz, 1H), 5.60 (d, J = 1.9 Hz, 2H).The analytical data are consistent with the literature.^{1b}

(*E*)-3-(Naphthalen-2-ylmethylene)chroman-4-one (1m)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as pale yellow solid; 980 mg, yield: 88%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (dd, *J* =

7.9, 1.8 Hz, 1H), 8.03 (d, *J* = 2.1 Hz, 1H), 7.91 – 7.87 (m, 3H), 7.76 (s, 1H), 7.58 – 7.54 (m, 2H), 7.52 – 7.49 (m, 1H), 7.44 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.11 – 7.08 (m, 1H), 6.99 (dd, *J* = 8.3, 1.1 Hz,

1H), 5.46 (d, J = 1.9 Hz, 2H). The analytical data are consistent with the literature.^{1b}

(*E*)-3-(Naphthalen-1-ylmethylene)chroman-4-one (1n)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as pale yellow solid; 500 mg, yield: 80%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 8.10 (dd, *J* =

7.9, 1.8 Hz, 1H), 8.01 – 7.98 (m, 1H), 7.93 – 7.90 (m, 2H), 7.58 – 7.54 (m, 2H), 7.53 – 7.49 (m, 2H), 7.25 – 7.23 (m, 1H), 7.12 – 7.09 (m, 1H), 6.97 (dd, J = 8.3, 1.0 Hz, 1H), 5.23 (d, J = 1.8 Hz, 2H). The analytical data are consistent with the literature.⁵

(*E*)-3-(2-methylpropylidene)chroman-4-one (10)

Purification by column chromatography (silica gel, PE:EA = 20:1) afforded the product as pale yellow oil; 254 mg, yield: 65%; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.09 –

6.97 (m, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.72 (dt, *J* = 10.2, 1.7 Hz, 1H), 5.00 (d, *J* = 1.8 Hz, 2H), 2.69 – 2.57 (m, 1H), 1.06 (d, *J* = 6.6 Hz, 6H). The analytical data are consistent with the literature.²⁰ (*E*)-3-Benzylidene-6-methylchroman-4-one (**1p**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as pale yellow solid; 202 mg, yield: 45%; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 – 7.87 (m, 1H), 7.82

(dd, J = 2.3, 1.0 Hz, 1H), 7.46 - 7.43 (m, 2H), 7.42 - 7.39 (m, 1H), 7.32 - 7.29 (m, 3H), 6.87 (d, J = 8.4 Hz, 1H), 5.32 (d, J = 1.9 Hz, 2H), 2.34 (s, 3H). The analytical data are consistent with the literature.^{1b}

(*E*)-2-Benzylidene-3,4-dihydronaphthalen-1(2*H*)-one (**1q**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 1.3 g, yield: 89%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.14 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.88 (d,

J = 1.9 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.46 – 7.42 (m, 4H), 7.39 – 7.34 (m, 2H), 7.26 (d, *J* = 5.5 Hz, 2H), 3.15 – 3.13 (m, 2H), 2.97 – 2.94 (m, 2H). The analytical data are consistent with the literature.²

(*E*)-2-Benzylidenecyclohexan-1-one (1r)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 3.3 g, yield: 92%; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.49 (t, *J* = 2.3 Hz, 1H), 7.40 – 7.35 (m, 4H), 7.32

- 7.29 (m, 1H), 2.84 - 2.81 (m, 2H), 2.52 (t, J = 6.7 Hz, 2H), 1.95 - 1.89 (m, 2H), 1.77 - 1.73 (m, 2H). The analytical data are consistent with the literature.²

(*E*)-2-Benzylidene-2,3-dihydro-1*H*-inden-1-one (1s)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as pale yellow solid; 1.1 g, yield: 85%; ¹H NMR (600 MHz, Chloroform-d) δ 7.92 (dd, J = 7.9, 3.3 Hz, 1H), 7.69 –

7.68 (m, 3H), 7.63 - 7.61 (m, 1H), 7.57 - 7.55 (m, 1H), 7.48 - 7.39 (m, 4H), 4.06 (s, 2H). The analytical data are consistent with the literature.³

(*E*)-2-Benzylidenecyclopentan-1-one (1t)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as pale yellow solid; 1.5 g, yield: 88%; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.52 (m, 2H), 7.44 – 7.34 (m, 4H), 3.00

-2.96 (m, 2H), 2.41 (t, J = 7.9 Hz, 2H), 2.03 (p, J = 7.6 Hz, 2H). The analytical data are consistent with the literature.²

(*E*)-2-Methyl-1,3-diphenylprop-2-en-1-one (1u)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as light yellow oil; 1.3 g, yield: 67%; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 7.2 Hz, 2H), 7.57 – 7.33

(m, 8H), 7.20 (s, 1H), 2.29 (s, 3H). The analytical data are consistent with the literature.²

3-Benzyl-4*H*-chromen-4-one (2a')

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as white solid; 460 mg, yield: 93%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.24 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.65

- 7.63 (m, 1H), 7.61 (t, J = 1.1 Hz, 1H), 7.42 - 7.37 (m, 2H), 7.33 - 7.30 (m, 4H), 7.24 - 7.21 (m, 1H), 3.83 (d, J = 1.1 Hz, 2H). The analytical data are consistent with the literature.^{1b}

3,5-di((*E*)-benzylidene)tetrahydro-4*H*-pyran-4-one (**3a**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 440 mg, yield: 65%; ¹H NMR (600 MHz, Chloroform-d) δ 7.85 (s, 2H), 7.49

-7.37 (m, 6H), 7.33 (d, J = 7.8 Hz, 4H), 4.94 (s, 4H). The analytical data are consistent with the literature.4a

3,5-bis((*E*)-4-methylbenzylidene)tetrahydro-4*H*-pyran-4-one (**3b**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 510 mg, yield: 68%; ¹H NMR (600 MHz, Chloroform-d) δ 7.82

(s, 2H), 7.23 (s, 8H), 4.93 (d, J = 1.9 Hz, 4H), 2.39 (s, 6H). The analytical data are consistent with the literature.4a

2,6-Di((*E*)-benzylidene)cyclohexan-1-one (**3c**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 2.0 g, yield: 89%; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.81 (s, 2H), 7.47 (d, *J* =

7.6 Hz, 4H), 7.42 (d, J = 6.8 Hz, 4H), 7.36 – 7.33 (m, 2H), 2.94 (t, J = 6.5 Hz, 4H), 1.82 – 1.78 (m, 2H). The analytical data are consistent with the literature.^{4b}

2,6-Bis((*E*)-3-methylbenzylidene)cyclohexan-1-one (**3d**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 1.9 g, yield: 91%; ¹H NMR (600 MHz, Chloroform-d) δ 7.78 (d,

J = 2.1 Hz, 2H), 7.32 - 7.27 (m, 6H), 7.17 - 7.15 (m, 2H), 2.94 - 2.92 (m, 4H), 2.39 (s, 6H), 1.81 -1.77 (m, 2H). The analytical data are consistent with the literature.^{4b}

2,6-Bis((E)-3-fluorobenzylidene)cyclohexan-1-one (3e)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 1.8 g, yield: 90%; ¹H NMR (600 MHz, Chloroform-d) δ 7.73

(d, J = 2.2 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.23 (d, J = 7.0 Hz, 2H), 7.17 – 7.14 (m, 2H), 7.06 – 7.03 (m, 2H), 2.93 – 2.90 (m, 4H), 1.83 – 1.79 (m, 2H). The analytical data are consistent with the literature.8

2,6-Bis((*E*)-4-methylbenzylidene)cyclohexan-1-one (**3f**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 2.2 g, yield: 94%; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.78 (s,

2H), 7.39 – 7.38 (m, 4H), 7.22 (t, *J* = 5.7 Hz, 4H), 2.93 (q, *J* = 5.4 Hz, 4H), 2.39 (d, *J* = 4.0 Hz, 6H), 1.79 (p, *J* = 5.1 Hz, 2H). The analytical data are consistent with the literature.^{4b}

2,6-Bis((*E*)-2-fluorobenzylidene)cyclohexan-1-one (**3g**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 1.5 g, yield: 86%; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.83 (s, 2H), 7.43 – 7.28

(m, 4H), 7.17 (d, J = 6.7 Hz, 2H), 7.10 (d, J = 9.4 Hz, 2H), 2.81 (d, J = 6.1 Hz, 5H), 1.77 (q, J = 5.8 Hz, 2H). The analytical data are consistent with the literature.⁹

2,6-Bis((*E*)-3,4-dichlorobenzylidene)cyclohexan-1-one (**3h**)

Purification by column chromatography (silica gel, PE:EA = 10:1) and recrystallization afforded the product as yellow solid; 413 mg, yield: 60%; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 5.3 Hz, 4H),

6.66 (d, J = 4.4 Hz, 2H), 6.52 (s, 2H), 3.01 (d, J = 6.7 Hz, 4H), 1.89 (q, J = 6.1 Hz, 2H). The analytical data are consistent with the literature.⁸

4. General procedure for asymmetric hydrogenation of 1 and 3

General procedure: In a nitrogen-filled glove box, $[Rh(COD)Cl]_2$ (0.5 mol%) and (*S*,*S*)-f-spiroPhos (1.0 mol%) were mixed in MeOH at room temperature for 40 minutes to prepare a stock solution. Aliquots of catalyst solution (1.0 mL, 0.00125 mmol) were transferred to vials containing different substrates **1** or **3** (0.125 mmol) by syringe. Subsequently, the reaction vial was transferred

to an autoclave filled with hydrogen gas and the mixture was stirred at room temperature under H_2 (10 atm) for 2 h. After that, the hydrogen gas was released slowly and carefully and the reaction mixture was passed through a silica gel short column to remove the metal complex. (**4a** and **4b**: DCM was added for dissolution, and three equivalents of PCC and appropriate amount of diatomite were added. The reaction proceeded at room temperature for 4 h. After filtration, column chromatography was used for purification). The conversion was determined by ¹H NMR analysis. The crude products were concentrated and purified by silica gel column chromatography, and the ee values were determined by HPLC analysis on chiral stationary phase.

Gram scale experiment: In a nitrogen-filled glove box, $[Rh(COD)Cl]_2$ (0.025 mol%) and (*S*,*S*)f-spiroPhos (0.05 mol%) were mixed in MeOH at room temperature and stirred for 40 minutes to prepare a stock solution. The catalyst solution (0.00215 mmol) was transferred by syringe into a vial containing substrate **1a** (4.3 mmol). Subsequently, the reaction vial was transferred to an autoclave filled with hydrogen gas and the reaction was carried out at room temperature and H₂ (10 atm) for 72 h. After the reaction, the hydrogen gas was released slowly and carefully. The reaction mixture was passed through a silica gel short column to remove the metal complex and the ee value was determined by HPLC analysis on chiral stationary phase. Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product **2a** as white soild; 0.99 g, yield: 97%; 90% ee; HPLC (Lux 5u Cellulose-1, *i*-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, *l* = 210 nm) t_R = 7.0 min (minor), 7.6 min (major).

Deuteration experiment: In a nitrogen-filled glove box, $[Rh(COD)Cl]_2$ (0.5 mol%) and (*S*,*S*)-fspiroPhos (1.0 mol%) were mixed in MeOH for 40 minutes at room temperature to prepare a stock solution. An aliquot of the catalyst solution (1.0 mL, 0.00125 mmol) was transferred to a vial containing the substrate **1a** (0.125 mmol) by syringe. The reaction vial was then transferred to an autoclave filled with D₂. Then the mixture was stirred at room temperature under D₂ (10 atm) for 4.5 h. After that, the D₂ gas was released slowly and carefully. The solution was subjected to silica gel column chromatography to remove metal complexes and purified. The product **2a-D** was analyzed by ¹H NMR. **2a-D**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.35 – 7.30 (m, 2H), 7.26 – 7.22 (m, 3H), 7.05 – 7.01 (m, 1H), 6.96 (dd, *J* = 8.4, 1.0 Hz, 1H), 4.36 (d, *J* = 11.5 Hz, 1H), 4.17 (d, *J* = 11.6 Hz, 1H), 2.69 (s, 1H).

5. NMR, HPLC, optical rotation and HRMS data of compounds 2, 4, 5 and 6

(S)-3-Benzylchroman-4-one (2a)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 29.1 mg, yield: 98%; 96% ee; $[\alpha]_D^{25}$ = + 49.9 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Cellulose-1, *i*-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, *l* = 210 nm) t_R = 6.9 min (minor), 7.6 min (major); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.94 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.35 – 7.32 (m, 2H), 7.26 – 7.24 (m, 3H), 7.05 – 7.03 (m, 1H), 6.97 (dd, *J* = 8.4, 1.0 Hz, 1H), 4.38 (dd, *J* = 11.5, 4.3 Hz, 1H), 4.18 (dd, *J* = 11.5, 8.4 Hz, 1H), 3.30 (dd, *J* = 14.0, 4.5 Hz, 1H), 2.96 – 2.91 (m, 1H), 2.72 (dd, *J* = 14.0, 10.4 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.9, 161.7, 138.4, 136.0, 129.2, 128.8, 127.6, 126.8, 121.6, 120.6, 117.9, 69.5, 47.8, 32.5. The analytical data are consistent with the literature.¹¹

3-(3-Methylbenzyl)chroman-4-one (2b)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as yellow oil; 31.1 mg, yield: 99%; 97% ee; $[\alpha]_D^{25}$ = + 9.2 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-

hexane = 10/90, flow rate = 1.0 mL/min, l = 254 nm) t_R = 6.9 min (major), 9.5 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.94 (dd, J = 7.9, 1.8 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.24 – 7.20 (m, 1H), 7.07 – 7.03 (m, 4H), 6.98 (d, J = 8.3 Hz, 1H), 4.38 (dd, J = 11.5, 4.3 Hz, 1H), 4.19 (dd, J = 11.5, 8.4 Hz, 1H), 3.26 (dd, J = 14.0, 4.3 Hz, 1H), 2.95 – 2.90 (m, 1H), 2.67 (dd, J = 14.0, 10.6 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 194.0, 161.7, 138.4, 138.3, 136.0, 129.9, 128.7, 127.6, 127.5, 126.2, 121.6, 120.7, 117.9, 69.5, 47.8, 32.4, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇O₂ 253.1223; Found 253.1218.

3-(3-Methoxybenzyl)chroman-4-one (2c)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 32.2 mg, yield: 96%; 97% ee; $[\alpha]_D^{25} = +10.2$ (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-1, *i*-

propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 254 nm) t_R = 9.9 min (major), 10.9 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (dd, J = 7.9, 1.8 Hz, 1H), 7.49 – 7.47 (m, 1H), 7.26 – 7.23 (m, 1H), 7.05 – 7.02 (m, 1H), 6.97 (dd, J = 8.4, 1.0 Hz, 1H), 6.84 – 6.82 (m, 1H), 6.80

-6.78 (m, 2H), 4.38 (dd, J = 11.5, 4.4 Hz, 1H), 4.18 (dd, J = 11.5, 8.5 Hz, 1H), 3.81 (s, 3H), 3.27 (dd, J = 14.0, 4.5 Hz, 1H), 2.96 -2.91 (m, 1H), 2.68 (dd, J = 14.0, 10.5 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.9, 161.7, 160.0, 140.0, 136.0, 129.8, 127.6, 121.6, 121.5, 120.6, 117.9, 114.9, 112.1, 69.5, 55.3, 47.7, 32.5. The analytical data are consistent with the literature.¹² 3-(3-Fluorobenzyl)chroman-4-one (**2d**)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 31.3 mg, yield: 98%; 97% ee; $[\alpha]_D^{25}$ = + 7.1 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-

hexane = 10/90, flow rate = 1.0 mL/min, l = 254 nm) t_R = 9.0 min (major), 10.8 min (minor). MP: 46-49 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (dd, J = 7.9, 1.8 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.30 – 7.27 (m, 1H), 7.05 – 7.01 (m, 2H), 6.98 – 6.93 (m, 3H), 4.38 (dd, J = 11.5, 4.4 Hz, 1H), 4.17 (dd, J = 11.5, 8.7 Hz, 1H), 3.28 (dd, J = 14.1, 4.7 Hz, 1H), 2.96 – 2.92 (m, 1H), 2.72 (dd, J = 14.1, 10.2 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.5, 163.9, 162.3, 161.6, 140.9 (d, J = 7.3 Hz), 136.1, 130.3, 130.2, 127.6, 124.9, 124.8, 121.7, 120.6, 117.9, 116.2, 116.0, 113.8, 113.7, 69.5, 47.5, 32.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄FO₂ 257.0972; Found 257.0967.

3-(4-methylbenzyl)chroman-4-one (2e)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as yellow oil; 31.2 mg, yield: 99%; 97% ee; $[\alpha]_D^{25}$ = + 8.7 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-

hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 7.5 min (major), 9.7 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (dd, J = 7.9, 1.7 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.14 (s, 4H), 7.06 – 7.02 (m, 1H), 6.97 (dd, J = 8.3, 1.0 Hz, 1H), 4.37 (dd, J = 11.5, 4.3 Hz, 1H), 4.18 (dd, J = 11.5, 8.2 Hz, 1H), 3.24 (dd, J = 14.0, 4.5 Hz, 1H), 2.94 – 2.87 (m, 1H), 2.69 (dd, J = 14.0, 10.4 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.0, 161.7, 136.3, 136.0, 135.2, 129.5, 129.1, 127.6, 121.5, 120.7, 117.9, 69.5, 47.9, 32.1, 21.1. The analytical data are consistent with the literature.¹⁴

3-(4-Methoxybenzyl)chroman-4-one (2f)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 32.8 mg, yield: 98%; 94% ee; $[\alpha]_D^{25} = +$ 14.0 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-

propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 12.8 min (major), 18.5 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (dd, J = 7.9, 1.8 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.17 – 7.15 (m, 2H), 7.05 – 7.02 (m, 1H), 6.97 (d, J = 8.3 Hz, 1H), 6.88 – 6.85 (m, 2H), 4.37 (dd, J = 11.5, 4.3 Hz, 1H), 4.18 (dd, J = 11.5, 8.1 Hz, 1H), 3.80 (s, 3H), 3.21 (dd, J = 14.1, 4.6 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.69 (dd, J = 14.1, 10.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 194.0, 161.7, 158.5, 136.0, 130.2, 127.6, 121.6, 120.7, 117.9, 114.2, 69.5, 55.4, 48.0, 31.7. The analytical data are consistent with the literature.¹⁴

3-(4-Chlorobenzyl)chroman-4-one (2g)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 32.3 mg, yield: 95%; 96% ee; $[\alpha]_D^{25}$ = + 14.2 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-

hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 8.1 min (major), 9.4 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.92 (dd, J = 7.9, 1.8 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.30 – 7.28 (m, 2H), 7.19 – 7.16 (m, 2H), 7.05 – 7.03 (m, 1H), 6.97 (d, J = 7.3 Hz, 1H), 4.37 (dd, J = 11.6, 4.3 Hz, 1H), 4.16 (dd, J = 11.6, 8.5 Hz, 1H), 3.23 (dd, J = 14.1, 4.7 Hz, 1H), 2.92 – 2.88 (m, 1H), 2.72 (dd, J = 14.1, 10.0 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.5, 161.6, 136.8, 136.1, 132.6, 130.5, 128.9, 127.6, 121.7, 120.6, 117.9, 69.4, 47.6, 31.9. The analytical data are consistent with the literature.¹⁴

3-(2-Methylbenzyl)chroman-4-one (2h)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as yellow oil; 30.3 mg, yield: 96%; 90% ee; $[\alpha]_D^{25} = -$ 15.7 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane =

10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 6.8 min (major), 8.9 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.95 (dd, J = 7.9, 1.8 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.21 – 7.16 (m, 4H), 7.07 – 7.04 (m, 1H), 6.99 (dd, J = 8.4, 1.0 Hz, 1H), 4.37 (dd, J = 11.5, 4.3 Hz, 1H), 4.21 (dd, J = 11.5, 8.0 Hz, 1H), 3.34 (dd, J = 14.2, 4.2 Hz, 1H), 2.92 – 2.87 (m, 1H), 2.67 (dd, J = 14.2, 11.0 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.7, 136.6, 136.0, 130.8, 130.0, 127.6, 127.0, 126.2, 121.6, 120.6, 117.9, 69.5, 46.6, 29.9, 19.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇O₂ 253.1223; Found 253.1220.

3-(2-Methoxybenzyl)chroman-4-one (2i)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 31.8 mg, yield: 95%; 88% ee; $[\alpha]_D^{25} =$ - 26.6 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane =

10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 8.3 min (major), 10.7 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (dd, J = 7.9, 1.8 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.25 – 7.22 (m, 1H), 7.18 (dd, J = 7.4, 1.7 Hz, 1H), 7.04 – 7.01 (m, 1H), 6.95 (dd, J = 8.4, 1.0 Hz, 1H), 6.92 – 6.90 (m, 1H), 6.87 (d, J = 8.3 Hz, 1H), 4.37 (dd, J = 11.5, 4.6 Hz, 1H), 4.19 (dd, J = 11.5, 9.4 Hz, 1H), 3.82 (s, 3H), 3.39 (dd, J = 13.7, 4.9 Hz, 1H), 3.11 – 3.07 (m, 1H), 2.67 (dd, J = 13.8, 9.9 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 194.3, 161.7, 157.7, 135.8, 131.2, 128.1, 127.5, 126.8, 121.4, 120.8, 120.6, 117.8, 110.4, 70.2, 55.3, 46.1, 27.4. The analytical data are consistent with the literature.¹³

3-(2-Bromobenzyl)chroman-4-one (2j)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as yellow oil; 38.3 mg, yield: 97%; 92% ee; $[\alpha]_D^{25} = -$ 65.6 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane =

10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 8.5 min (major), 10.7 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (dd, J = 7.9, 1.8 Hz, 1H), 7.57 (d, J = 8.7 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.29 – 7.27 (m, 2H), 7.14 – 7.10 (m, 1H), 7.04 (dd, J = 7.9, 1.0 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 4.41 (dd, J = 11.5, 4.6 Hz, 1H), 4.25 – 4.21 (m, 1H), 3.49 (dd, J = 14.1, 5.1 Hz, 1H), 3.16 – 3.12 (m, 1H), 2.81 (dd, J = 14.1, 9.7 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.5, 161.7, 138.0, 136.0, 133.3, 131.6, 128.6, 127.7, 127.6, 124.8, 121.6, 120.6, 117.9, 69.8, 46.0, 32.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄⁷⁹BrO₂ 319.0152; Found 318.0159.

3-(2-Fluorobenzyl)chroman-4-one (2k)

MHz, Chloroform-*d*) δ 7.92 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.27 – 7.21 (m, 2H),

7.11 – 7.08 (m, 1H), 7.06 – 7.01 (m, 2H), 6.96 (dd, J = 8.4, 1.1 Hz, 1H), 4.41 (dd, J = 11.5, 4.6 Hz, 1H), 4.19 (dd, J = 11.5, 9.6 Hz, 1H), 3.37 – 3.33 (m, 1H), 3.05 – 3.00 (m, 1H), 2.78 (dd, J = 14.8, 9.2 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.4, 162.2, 161.7, 160.6, 136.0, 131.7, 131.6, 128.7, 128.6, 127.6, 125.5, 125.4, 124.4 (d, J = 3.5 Hz), 121.6, 120.6, 117.9, 115.6, 115.5, 69.9, 46.5, 25.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄FO₂ 257.0972; Found 257.0967.

3-(Furan-2-ylmethyl)chroman-4-one (21)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as yellow oil; 27.4 mg, yield: 96%; 98% ee; $[\alpha]_D^{25} = -$ 29.7 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Cellulose-2, *i*-propanol/*n*-hexane =

10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 7.0 min (minor), 7.4 min (major); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 (dd, J = 7.9, 1.8 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.33 (dd, J = 1.9, 0.8 Hz, 1H), 7.04 – 7.01 (m, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.30 (dd, J = 3.2, 1.9 Hz, 1H), 6.12 (d, J = 2.3 Hz, 1H), 4.52 (dd, J = 11.5, 4.7 Hz, 1H), 4.20 (dd, J = 11.5, 10.1 Hz, 1H), 3.30 (dd, J = 15.4, 4.4 Hz, 1H), 3.11 – 3.06 (m, 1H), 2.82 (dd, J = 15.4, 9.6 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.1, 161.8, 152.2, 141.8, 136.0, 127.6, 121.6, 120.6, 117.9, 110.5, 107.2, 70.2, 45.4, 24.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃O₃ 229.0859; Found 229.0856.

3-(Naphthalen-2-ylmethyl)chroman-4-one (2m)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 34.2 mg, yield: 95%; 89% ee; $[\alpha]_D^{25} = +$ 12.6 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-

propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 11.1 min (major), 12.7 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.97 – 7.95 (m, 1H), 7.84 – 7.80 (m, 3H), 7.70 (s, 1H), 7.51 – 7.45 (m, 3H), 7.39 (dd, J = 8.3, 1.8 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.39 (dd, J = 11.6, 4.3 Hz, 1H), 4.21 (dd, J = 11.5, 8.4 Hz, 1H), 3.46 (dd, J = 14.0, 4.4 Hz, 1H), 3.07 – 3.02 (m, 1H), 2.89 (dd, J = 14.1, 10.5 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 193.9, 161.7, 136.1, 135.8, 133.6, 132.4, 128.6, 127.8, 127.6, 127.3, 126.3, 125.8, 121.6, 120.7, 117.9, 69.5, 47.7, 32.7. The analytical data are consistent with the literature.¹⁵

3-(Naphthalen-1-ylmethyl)chroman-4-one (2n)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 34.6 mg, yield: 96%; 97% ee; $[\alpha]_D^{25}$ = - 46.5 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-

hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 8.7 min (major), 11.4 min (minor). MP: 97-100 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.13 (d, J = 7.2 Hz, 1H), 8.00 (dd, J = 7.9, 1.8 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.53 – 7.49 (m, 2H), 7.44 (dd, J = 8.2, 6.9 Hz, 1H), 7.39 (d, J = 6.3 Hz, 1H), 7.08 – 7.05 (m, 1H), 6.99 (dd, J = 8.3, 1.0 Hz, 1H), 4.33 (dd, J = 11.6, 4.4 Hz, 1H), 4.23 (dd, J = 11.6, 8.0 Hz, 1H), 3.93 (dd, J = 14.2, 3.7 Hz, 1H), 3.13 – 3.09 (m, 1H), 3.00 (dd, J = 14.2, 11.0 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 194.0, 161.8, 136.1, 134.4, 134.2, 131.8, 129.1, 127.8, 127.7, 127.7, 126.5, 125.9, 125.5, 123.7, 121.6, 120.6, 118.0, 69.7, 46.9, 29.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₇O₂ 289.1223; Found 289.1220.

3-Isobutylchroman-4-one (20)

afforded the product as colorless oil; 12.3 mg, yield: 48%; rac; HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm)

Purification by flash column chromatography (silica gel, PE:EA = 20:1)

 $t_R = 5.8 \text{ min}, 6.1 \text{ min}. {}^{1}\text{H} \text{ NMR}$ (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.49 (dd, J = 11.5, 4.1 Hz, 1H), 4.27 – 4.18 (m, 1H), 2.74 – 2.69 (m, 1H), 1.79 – 1.69 (m, 2H), 1.32 (d, J = 5.2 Hz, 1H), 0.96 (d, J = 6.1 Hz, 3H), 0.92 (d, J = 6.1 Hz, 3H). The analytical data are consistent with the literature.²⁰ 3-isobutyl-4*H*-chromen-4-one (**20**²)

Purification by flash column chromatography (silica gel, PE:EA = 20:1) afforded the product as colorless oil; 11.9 mg, yield: 47%; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.21 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.71 (s, 1H), 7.65 – 7.59 (m,

1H), 7.41 (d, J = 8.3 Hz, 1H), 7.39 – 7.33 (m, 1H), 2.30 (d, J = 7.0 Hz, 2H), 2.01 – 1.98 (m, 1H), 0.92 (d, J = 6.7 Hz, 6H). The analytical data are consistent with the literature.²⁰

3-Benzyl-6-methylchroman-4-one (2p)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 30.9 mg, yield: 98%; 96% ee; $[\alpha]_D^{25}$ = + 9.4 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-

hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 6.7 min (major), 7.1 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (dd, J = 2.2, 1.0 Hz, 1H), 7.35 – 7.22 (m, 7H), 6.87 (d, J = 8.4 Hz, 1H), 4.34 (dd, J = 11.5, 4.3 Hz, 1H), 4.15 (dd, J = 11.5, 8.2 Hz, 1H), 3.28 (dd, J = 13.9, 4.4 Hz, 1H), 2.93 – 2.87 (m, 1H), 2.71 (dd, J = 13.9, 10.4 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.2, 159.7, 138.4, 137.1, 131.0, 129.2, 128.8, 127.1, 126.7, 120.2, 117.7, 69.5, 47.8, 32.6, 20.5. The analytical data are consistent with the literature.¹⁶

(*R*)-2-Benzyl-3,4-dihydronaphthalen-1(2*H*)-one (**2q**)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 29.2 mg, yield: 99%; 92% ee; $[\alpha]_D^{25}$ = + 8.8 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane

= 2/98, flow rate = 1.0 mL/min, l = 210 nm) t_R = 10.4 min (major), 11.0 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.08 (dd, J = 7.8, 1.4 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.34 – 7.30 (m, 3H), 7.25 – 7.22 (m, 4H), 3.51 (dd, J = 13.8, 4.1 Hz, 1H), 2.99 – 2.89 (m, 2H), 2.78 – 2.73 (m, 1H), 2.66 (dd, J = 13.8, 9.6 Hz, 1H), 2.14 – 2.09 (m, 1H), 1.83 – 1.76 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 199.5, 144.1, 140.2, 133.4, 132.6, 129.4, 128.8, 128.5, 127.7, 126.7, 126.2, 49.6, 35.8, 28.7, 27.8. The analytical data are consistent with the literature.²

(*R*)-2-Benzylcyclohexan-1-one (2r)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 22.6 mg, yield: 96%; 93% ee; $[\alpha]_D^{25} = +35.0$ (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Cellulose-3, *i*-propanol/*n*-hexane = 3/97, flow rate

= 1.0 mL/min, l = 210 nm) t_R = 7.1 min (major), 7.5 min (minor); ¹H NMR (400 MHz, Chloroformd) δ 7.29 – 7.24 (m, 2H), 7.20 – 7.13 (m, 3H), 3.26 – 3.20 (m, 1H), 2.59 – 2.51 (m, 1H), 2.46 – 2.28 (m, 3H), 2.09 – 1.98 (m, 2H), 1.85 – 1.78 (m, 1H), 1.73 – 1.51 (m, 2H), 1.40 – 1.26 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 212.6, 140.5, 129.2, 128.4, 126.1, 52.6, 42.3, 35.6, 33.5, 28.2, 25.2. The analytical data are consistent with the literature.² 2-Benzyl-2,3-dihydro-1*H*-inden-1-one (2s)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as yellow oil; 26.9 mg, yield: 97%; 69% ee; $[\alpha]_D^{25} = +$ 20.3 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, *l* = 210 nm) t_R = 8.5 min (major), 9.7 min

(minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.80 (d, J = 7.7 Hz, 1H), 7.59 – 7.56 (m, 1H), 7.41 – 7.36 (m, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.27 – 7.21 (m, 3H), 3.41 (dd, J = 14.0, 4.3 Hz, 1H), 3.17 (dd, J = 17.2, 7.8 Hz, 1H), 3.03 – 2.98 (m, 1H), 2.87 (dd, J = 17.1, 4.1 Hz, 1H), 2.68 (dd, J = 14.0, 10.4 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 207.9, 153.8, 139.8, 136.7, 134.9, 129.0, 128.7, 127.6, 126.7, 126.5, 124.1, 49.0, 37.1, 32.3. The analytical data are consistent with the literature.³ (*S*)-2-Benzylcyclopentan-1-one (**2t**)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 20.2 mg, yield: 93%; 69% ee; $[\alpha]_D^{25} = +$ 68.9 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, *l* = 210 nm) t_R = 6.3 min (major), 6.7 min (minor). ¹H NMR (400 MHz, Chloroform*d*) δ 7.29 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H), 3.14 (dd, *J* = 13.8, 4.1 Hz, 1H), 2.53 (dd, *J* = 13.9, 9.5 Hz, 1H), 2.38 – 2.28 (m, 2H), 2.14 – 2.02 (m, 2H), 1.98 – 1.90 (m, 1H), 1.77 – 1.65 (m, 1H), 1.59 – 1.49 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 220.3, 140.1, 129.0, 128.5, 126.3, 51.1, 38.3, 35.7, 29.2, 20.7. The analytical data are consistent with the literature.² (*R*)-2-methyl-1,3-diphenylpropan-1-one (**2u**)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 27.4 mg, yield: 98%; 89% ee; $[\alpha]_D^{25}$ = - 47.5 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, *l* = 210 nm) t_R = 5.1 min (minor), 5.5 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.93 (m, 2H), 7.56 – 7.52 (m, 1H), 7.51 – 7.40 (m, 2H), 7.29 – 7.17 (m, 5H), 3.76 (h, *J* = 7.0 Hz, 1H), 3.19 (dd, *J* = 13.7, 6.3 Hz, 1H), 2.71 (dd, *J* = 13.7, 7.8 Hz, 1H), 1.21 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.9, 140.1, 136.6, 133.1, 129.2, 128.8, 128.5, 128.4, 126.3, 42.9, 39.5, 17.5. The analytical data are consistent with the literature.²

3,5-dibenzyltetrahydro-4*H*-pyran-4-one (4a)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 34.3 mg, yield: 98%; *trans:cis* = 13:1; >99% ee; $[\alpha]_D^{25} = +40.6$ (c = 1.0, CH₂Cl₂); HPLC

(Lux 5u Cellulose-1, *i*-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, l = 210 nm) t_R = 9.6 min (minor), 10.4 min (major); *trans*-**4a**: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.29 (t, J = 7.5 Hz, 4H), 7.22 (t, J = 7.5 Hz, 2H), 7.16 (d, J = 7.4 Hz, 4H), 3.89 (dd, J = 11.4, 4.8 Hz, 2H), 3.66 (dd, J = 11.5, 6.3 Hz, 2H), 3.14 (dd, J = 14.0, 5.3 Hz, 2H), 2.92 – 2.85 (m, 2H), 2.71 (dd, J = 13.9, 9.4 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 210.0, 138.6, 129.0, 128.7, 126.6, 72.0, 51.9, 33.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁O₂ 281.1536; Found 281.1533.

3,5-bis(4-methylbenzyl)tetrahydro-4*H*-pyran-4-one (**4b**)

Purification by flash column chromatography (silica gel, PE:EA
= 10:1) afforded the product as white solid; 38.1 mg, yield: 99%;
$$trans:cis > 20:1; >99\%$$
 ee; $[\alpha]_D^{25} = -38.0$ (c = 1.0, CH₂Cl₂);

HPLC (Lux 5u Cellulose-2, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 7.1 min (major), 7.8 min (minor); MP: 59-61°C. *trans*-4b: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.10 (d, J = 7.7 Hz, 4H), 7.05 (d, J = 8.0 Hz, 4H), 3.88 (dd, J = 11.4, 4.8 Hz, 2H), 3.65 (dd, J = 11.4, 6.3 Hz, 2H), 3.09 (dd, J = 14.0, 5.4 Hz, 2H), 2.88 – 2.82 (m, 2H), 2.67 (dd, J = 14.0, 9.4 Hz, 2H), 2.33 (s, 7H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 210.2, 136.1, 135.5, 129.4, 128.9, 72.0, 52.0, 33.3, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₅O₂ 309.1849; Found 308.1850. (+)-(2*R*,6*R*)-2,6-Dibenzylcyclohexan-1-one (**4c**)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 34.4 mg, yield: 99%; *trans:cis* >20:1; >99% ee; $[\alpha]_D^{25} = +$ 60.3 (c = 1.0, CH₂Cl₂); HPLC

(Lux 5u Cellulose-1, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 5.4 min (major), 6.1 min (minor); *trans*-4c: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.24 (m, 4H), 7.22 – 7.17 (m, 2H), 7.13 (dd, J = 6.8, 1.6 Hz, 4H), 3.10 (dd, J = 13.7, 5.7 Hz, 2H), 2.81 – 2.74 (m, 2H), 2.61 (dd, J = 13.7, 8.9 Hz, 2H), 1.92 – 1.85 (m, 2H), 1.77 – 1.71 (m, 2H), 1.64 – 1.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 214.8, 139.7, 129.1, 128.5, 126.3, 50.9, 36.3, 32.0, 20.4. The analytical data are consistent with the literature.⁴

(+)-(2R,6R)-2,6-Bis(3-methylbenzyl)cyclohexan-1-one (4d)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 37.1 mg, yield: 97%; *trans:cis* = 18:1; >99% ee; $[\alpha]_D^{25}$ = + 50.4 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Cellulose-1, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, *l* = 210 nm) t_R = 4.6 min (major), 6.5 min (minor); *trans*-4d: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (t, *J* = 7.5 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 6.97 - 6.93 (m, 4H), 3.08 (dd, *J* = 13.7, 5.4 Hz, 2H), 2.81 - 2.74 (m, 2H), 2.57 (dd, *J* = 13.7, 9.2 Hz, 2H), 2.33 (s, 6H), 1.93 - 1.85 (m, 2H), 1.75 (p, *J* = 5.9 Hz, 2H), 1.64 - 1.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 215.1, 139.7, 138.1, 129.9, 128.4, 127.1, 126.1, 50.8, 36.2, 31.9, 21.5, 20.4. The analytical data are consistent with the literature.⁴

2,6-Bis(3-fluorobenzyl)cyclohexan-1-one (4e)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 38.4 mg, yield: 98%; *trans:cis* >20:1; 99% ee; $[\alpha]_D^{25} = +30.5$ (c = 1.0,

CH₂Cl₂); HPLC (Lux 5u Amylose-1, *i*-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, l = 210 nm) t_R = 6.4 min (minor), 6.9 min (major); *trans*-**4e**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.19 (m, 2H), 6.91 – 6.81 (m, 6H), 3.09 (dd, J = 13.7, 6.1 Hz, 2H), 2.80 – 2.73 (m, 2H), 2.61 (dd, J = 13.7, 8.6 Hz, 2H), 1.94 – 1.86 (m, 2H), 1.76 (p, J = 5.9 Hz, 2H), 1.65 – 1.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 214.0, 164.2, 161.7, 142.2, 142.1, 130.0, 129.9, 124.7 (d, J = 2.7 Hz), 116.0, 115.8, 113.4, 113.2, 50.6, 36.0, 32.0, 20.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₁F₂O 315.1555; Found 315.1553.

(+)-(2R,6R)-2,6-Bis(4-methylbenzyl)cyclohexan-1-one (4f)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 37.1 mg, yield: 97%; *trans:cis* = 11:1; >99% ee; $[\alpha]_D^{25} = +43.8$ (c = 1.0, CH₂Cl₂);

HPLC (Lux 5u Cellulose-1, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 4.5 min (major), 5.3 min (minor); *trans*-**4f**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.11 – 7.03 (m, 9H), 3.08 (dd, J = 13.7, 5.6 Hz, 2H), 2.80 – 2.73 (m, 2H), 2.59 (dd, J = 13.8, 9.0 Hz, 2H), 2.34 (s, 6H), 1.94 – 1.86 (m, 2H), 1.75 (p, J = 5.9 Hz, 2H), 1.65 – 1.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 215.1, 136.6, 135.8, 129.2, 129.0, 50.9, 35.9, 32.0, 21.1, 20.5. The analytical data

are consistent with the literature.⁴

2,6-Bis(2-fluorobenzyl)cyclohexan-1-one (4g)

cation by flash column chromatography (silica gel, PE:EA = afforded the product as colorless oil; 37.3 mg, yield: 95%; cis = 11:1; >99% ee; $[\alpha]_D^{25} = +38.3$ (c = 1.0, CH₂Cl₂); HPLC

(Lux 5u Amylose-1, *i*-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, l = 210 nm) t_R = 6.2 min(major), 6.8 min (minor); trans-4g: ¹H NMR (600 MHz, Chloroform-d) δ 7.19 - 7.15 (m, 2H), 7.14 -7.11 (m, 2H), 7.04 - 6.99 (m, 4H), 3.09 (dd, J = 15.0, 6.8 Hz, 2H), 2.87 - 2.82 (m, 2H), 2.70 (dd, J = 13.3, 8.1 Hz, 2H), 1.93 - 1.88 (m, 2H), 1.78 (p, J = 6.0 Hz, 2H), 1.65 - 1.61 (m, 2H). ¹³C NMR (151 MHz, Chloroform-d) δ 214.2, 162.1, 160.5, 131.5, 131.4, 128.1, 128.1, 126.6, 126.5, 124.1, 124.1, 115.4, 115.3, 49.7, 32.4, 29.7, 20.5. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{21}F_2O$ 315.1555; Found 315.1554.

2,6-Bis(3,4-dichlorobenzyl)cyclohexan-1-one (4h)

Purification by flash column chromatography (silica gel,
PE:EA = 10:1) afforded the product as colorless oil; 50.7
mg, yield: 98%; *trans:cis* >20:1; >99% ee;
$$[\alpha]_D^{25} = +$$

45.4 (c = 1.0, CH_2Cl_2); HPLC (Lux 5u Amylose-2, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 8.0 min (major), 9.4 min (minor); trans-4h: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 2.1 Hz, 2H), 6.92 (dd, J = 8.2, 2.1 Hz, 2H), 3.01 (dd, J = 13.8, 6.6 Hz, 2H), 2.74 – 2.67 (m, 2H), 2.56 (dd, J = 13.8, 8.0 Hz, 2H), 1.94 – 1.87 (m, 2H), 1.77 (p, J = 5.9 Hz, 2H), 1.65 – 1.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 213.4, 139.7, 132.4, 130.9, 130.4, 128.5, 50.5, 35.4, 32.0, 20.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₉Cl₄O 415.0185; Found 415.0183.

2,6-Bis(furan-2-ylmethyl)cyclohexan-1-one (4i)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as colorless oil; 31.0 mg, yield: 96%; trans:cis = 5:1; 98% ee; $[\alpha]_D^{25} = +$ 32.2 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u

Cellulose-2, *i*-propanol/*n*-hexane = 20/80, flow rate = 1.0 mL/min, l = 210 nm) t_R = 4.8 min (minor), 5.3 min (major); trans-4i: ¹H NMR (400 MHz, Chloroform-d) δ 7.29 (dd, J = 1.9, 0.8 Hz, 2H), 6.26 (dd, *J* = 3.2, 1.9 Hz, 2H), 6.00 (dd, *J* = 3.2, 0.9 Hz, 2H), 3.09 (dd, *J* = 14.6, 5.9 Hz, 2H), 2.91 – 2.84 S24

(m, 2H), 2.70 (dd, J = 15.1, 8.3 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.80 – 1.74 (m, 2H), 1.66 – 1.58 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 213.8, 153.4, 141.4, 110.3, 106.6, 48.0, 32.4, 288, 20.3. The analytical data are consistent with the literature.¹⁸

(3S,4S)-3-Benzylchroman-4-ol (5)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 115 mg, yield: 96%; dr = 7:1; 94% ee; $[\alpha]_D^{25} = -94.8$ (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Cellulose-1, *i*-propanol/*n*-

hexane = 10/90, flow rate = 1.0 mL/min, l = 210 nm) t_R = 7.0 min (major), 8.0 min (minor); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.19 (m, 7H), 6.91 – 6.83 (m, 2H), 4.51 (t, J = 3.7 Hz, 1H), 4.09 (d, J = 8.9 Hz, 2H), 2.89 (dd, J = 13.6, 8.4 Hz, 1H), 2.68 (dd, J = 13.7, 7.3 Hz, 1H), 2.37 – 2.28 (m, 1H), 1.65 (dd, J = 51.5, 10.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.4, 139.3, 130.3, 130.1, 129.2, 128.7, 126.4, 124.3, 120.6, 117.0, 65.1, 65.0, 40.1, 32.9. The analytical data are consistent with the literature.^{1a}

(R,E)-3-benzylchroman-4-one oxime (6)

Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as white solid; 105 mg, yield: 94%; 92% ee; $[\alpha]_D^{25} =$ + 60.8 (c = 1.0, CH₂Cl₂); HPLC (Lux 5u Cellulose-1, *i*-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, *l* = 210 nm) t_R = 5.2 min (minor), 6.3 min (major); MP: 80-83 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 107.9 Hz, 1H), 7.87 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.35 – 7.30 (m, 5H), 7.28 – 7.24 (m, 1H), 7.01 – 6.95 (m, 2H), 4.15 – 4.12 (m, 1H), 3.95 – 3.92 (m, 1H), 3.65 – 3.62 (m, 1H), 3.05 – 3.02 (m, 1H), 2.79 – 2.74 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 156.3, 153.3, 139.1, 131.4, 129.6, 128.6, 126.6, 124.5, 121.6, 117.9, 117.2, 66.3, 34.8, 33.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₆NO₂ 254.1176; Found 254.1174.

6. References

 (a) R. Molina Betancourt, P. Phansavath and V. Ratovelomanana-Vidal, Rhodium-Catalyzed Asymmetric Transfer Hydrogenation/Dynamic Kinetic Resolution of 3-Benzylidene-Chromanones, *Org. Lett.*, 2021, 23, 1621–1625; (b) W. Li, T. Yang, N. Song, R. Li, J. Long, L. He, X. Zhang and H. Lv, Ir/f-Ampha Complex Catalyzed Asymmetric Sequential Hydrogenation of Enones: A General Access to Chiral Alcohols with Two Contiguous Chiral Centers, *Chem. Sci.*, 2022, 13, 1808–1814.

- (2) S.-M. Lu and C. Bolm, Highly Enantioselective Synthesis of Optically Active Ketones by Iridium-Catalyzed Asymmetric Hydrogenation, *Angew. Chem. Int. Ed.*, 2008, 47, 8920–8923.
- (3) T. Ishimaru, N. Shibata, T. Horikawa, N. Yasuda, S. Nakamura, T. Toru and M. Shiro, Cinchona Alkaloid Catalyzed Enantioselective Fluorination of Allyl Silanes, Silyl Enol Ethers, and Oxindoles, *Angew. Chem. Int. Ed.*, 2008, 47, 4157–4161.
- (4) (a) H. Moorthy, Yadav, M. Yadav, N. Tamang, S. K. Mavileti, L. Singla, A. R. Choudhury, D. Sahal and N. R. Golakoti, Antiplasmodial and Antimalarial Activity of 3,5-Diarylidenetetrahydro-2H-pyran-4(3H)-ones via Inhibition of Plasmodium falciparum Pyridoxal Synthase, *ChemMedChem*, 2023, 18, e202200411; (b) Z. Zheng, Y. Cao, Q. Chong, Z. Han, J. Ding, C. Luo, Z. Wang, D. Zhu, Q.-L. Zhou and K. Ding, Chiral Cyclohexyl-Fused Spirobiindanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis, *J. Am. Chem. Soc.*, 2018, 140, 10374–10381.
- (5) W.-F. Wang, J.-B. Peng, X. Qi, J. Ying and X.-F. Wu, A Convenient Palladium-Catalyzed Carbonylative Synthesis of (*E*)-3-Benzylidenechroman-4-ones, *Chem. Eur. J.*, 2019, 25, 3521– 3524.
- (6) X.-M. Cheng, Z.-T. Huang and Q.-Y. Zheng, Topochemical Photodimerization of (E)-3-Benzylidene-4-chromanone Derivatives from β-Type Structures Directed by Halogen Groups, *Tetrahedron*, 2011, **67**, 9093–9098.
- (7) A. T. Biju, N. E. Wurz and F. Glorius, N-Heterocyclic Carbene-Catalyzed Cascade Reaction Involving the Hydroacylation of Unactivated Alkynes, *J. Am. Chem. Soc.*, 2010, **132**, 5970– 5971.
- G. Lotfy, Y. M. Abdel Aziz, M. M. Said, E. S. H. El Ashry, E. S. H. El Tamany, A. Barakat, H.
 A. Ghabbour, S. Yousuf, Z. Ul-Haq and M. I. Choudhary, Synthesis of Oxindole Analogues, Biological Activity, and In Silico Studies, *ChemistrySelect*, 2019, 4, 10510–10516.
- (9) G. Liang, L. Shao, Y. Wang, C. Zhao, Y. Chu, J. Xiao, Y. Zhao, X. Li and S. Yang, Exploration and Synthesis of Curcumin Analogues with Improved Structural Stability Both in Vitro and in Vivo as Cytotoxic Agents, *Bioorg. Med. Chem.*, 2009, **17**, 2623–2631.
- (10) P. Gupta, P. Garg and N. Roy, Comparative Docking and CoMFA Analysis of Curcumine Derivatives as HIV-1 Integrase Inhibitors, *Mol Divers*, 2011, 15, 733–750.
- (11) J. Chen, W. Meng, X. Feng and H. Du, Asymmetric Hydrogenation by Relay Catalysis with \$26

FLPs and CPAs: Stereodivergent Synthesis of 3-Substituted Flavanones, J. Org. Chem., 2022,87, 10544–10549.

- (12) Y. Hoshino, H. Tanaka and N. Takeno, Regioselective Reduction of the Homoisoflavone System with Dialkylboranes in the Presence of Palladium Catalysts, *Bull. Chem. Soc. Jpn.*, 1998, **71**, 2923–2928.
- (13) B. S. Kirkiacharian, M. Gomis, H. G. Tongo, J. Mahuteau and J. D. Brion, The ¹³C NMR Spectra of Homoisoflavonoids, *Organic Magnetic Resonance*, 1984, **22**, 106–108.
- (14) L. Simon, A. A. Abdul Salam, S. Madan Kumar, T. Shilpa, K. K. Srinivasan and K. Byrappa, Synthesis, Anticancer, Structural, and Computational Docking Studies of 3-Benzylchroman-4-one Derivatives, *Bioorganic & Medicinal Chemistry Letters*, 2017, 27, 5284–5290.
- (15) M. Gomis and B. S. Kirkiacharian, Hydride Reduction and Hydroboration Study of the Stereoselectivity of a New Approach to 3-(Arylmethyl)-4-chromanols (homoisoflavanols), *Tetrahedron*, 1990, 46, 1849.
- (16) D. Xiong, S. Yi, X. Yang, X. Long, T. Xu, Z. Xiao, L. Chen and B. Li, Method for Preparing Chiral Dihydroisoflavone Compound by Hydrogenation Reduction, and Product Thereof, CN111574487A, 2020.
- (17) X. Li, X. Shao, X. Zhang, Q. Zhao, H. Lai, B. Cui, Z. Shao and M. Zhao, Synthesizing Carbonyl Furan Derivatives by A Dehydrogenative Coupling Reaction, *Org. Biomol. Chem.*, 2022, **20**, 6542–6546.
- (18) K. Bano, A. Jain, R. Sarkar and T. K. Panda, Economically Viable and Efficient Catalysts for Esterification and Cross Aldol Condensation Reactions under Mild Conditions, *ChemistrySelect*, 2020, 5, 4470–4477.
- (19) T. Morack, C. Onneken, H. Nakakohara, C. Mück-Lichtenfeld and R. Gilmour, Enantiodivergent Prenylation via Deconjugative Isomerization, ACS Catal., 2021, 11, 11929– 11937.
- (20) J. Chen, B. Gao, X. Feng, W. Meng and H. Du, Relay Catalysis by Achiral Borane and Chiral Phosphoric Acid in the Metal-Free Asymmetric Hydrogenation of Chromones, *Org. Lett.*, 2021, 23, 8565–8569.

7. NMR, SFC and HPLC spectra

(E)-3-Benzylidenechroman-4-one (1a)

¹H NMR (600 MHz, Chloroform-d)

(*E*)-3-(3-Methylbenzylidene)chroman-4-one (1b)

(*E*)-3-(3-Methoxybenzylidene)chroman-4-one (1c)

¹H NMR (600 MHz, Chloroform-d)

(*E*)-3-(4-Methylbenzylidene)chroman-4-one (1e)

¹H NMR (600 MHz, Chloroform-d)

(*E*)-3-(4-Chlorobenzylidene)chroman-4-one (**1g**)

¹H NMR (400 MHz, Chloroform-d)

(E)-3-(2-Methoxybenzylidene)chroman-4-one (1i)

¹H NMR (600 MHz, Chloroform-d)

(E)-3-(2-Fluorobenzylidene)chroman-4-one (1k)

¹H NMR (600 MHz, Chloroform-d)

(*E*)-3-(Naphthalen-2-ylmethylene)chroman-4-one (1m)

¹H NMR (600 MHz, Chloroform-d)

(*E*)-3-(2-methylpropylidene)chroman-4-one (10)

¹H NMR (400 MHz, Chloroform-d)

¹H NMR (600 MHz, Chloroform-*d*)

(E)-2-Benzylidenecyclohexan-1-one (1r)

(*E*)-2-Benzylidene-2,3-dihydro-1*H*-inden-1-one (1s)

¹H NMR (600 MHz, Chloroform-*d*)

(*E*)-2-Methyl-1,3-diphenylprop-2-en-1-one (**1u**)

3-Benzyl-4*H*-chromen-4-one (2a')

3,5-di((*E*)-benzylidene)tetrahydro-4*H*-pyran-4-one (**3a**)

3,5-bis((*E*)-4-methylbenzylidene)tetrahydro-4*H*-pyran-4-one (**3b**)

2,6-Di((*E*)-benzylidene)cyclohexan-1-one (**3c**)

2,6-Bis((*E*)-2-fluorobenzylidene)cyclohexan-1-one (**3g**)

(S)-3-Benzylchroman-4-one (2a)

¹³C NMR (151 MHz, Chloroform-d)

3-(3-Methylbenzyl)chroman-4-one (2b)

¹³C NMR (151 MHz, Chloroform-d)

3-(3-Methoxybenzyl)chroman-4-one (2c)

¹³C NMR (151 MHz, Chloroform-d)

3-(3-Fluorobenzyl)chroman-4-one (2d)

¹³C NMR (151 MHz, Chloroform-d)

3-(4-Methylbenzyl)chroman-4-one (2e)

¹³C NMR (101 MHz, Chloroform-d)

f1 (ppm)

10 (

3-(4-Methoxybenzyl)chroman-4-one (2f)

¹³C NMR (151 MHz, Chloroform-d)

3-(4-Chlorobenzyl)chroman-4-one (2g)

¹³C NMR (151 MHz, Chloroform-d)

3-(2-Methylbenzyl)chroman-4-one (2h)

¹³C NMR (151 MHz, Chloroform-d)

3-(2-Methoxybenzyl)chroman-4-one (2i)

¹³C NMR (151 MHz, Chloroform-d)

3-(2-Bromobenzyl)chroman-4-one (2j)

¹³C NMR (151 MHz, Chloroform-d)

3-(2-Fluorobenzyl)chroman-4-one (2k)

¹³C NMR (151 MHz, Chloroform-d)

3-(Furan-2-ylmethyl)chroman-4-one (21)

¹³C NMR (151 MHz, Chloroform-d)

3-(Naphthalen-2-ylmethyl)chroman-4-one (2m)

¹³C NMR (151 MHz, Chloroform-d)

3-(Naphthalen-1-ylmethyl)chroman-4-one (2n)

¹³C NMR (151 MHz, Chloroform-d)

3-Isobutylchroman-4-one (20)

3-isobutyl-4*H*-chromen-4-one (20')

 $3\text{-}Benzyl\text{-}6\text{-}methylchroman\text{-}4\text{-}one~(\mathbf{2p})$

¹³C NMR (101 MHz, Chloroform-d)

(*R*)-2-Benzyl-3,4-dihydronaphthalen-1(2*H*)-one (**2q**)

¹³C NMR (151 MHz, Chloroform-d)

(*R*)-2-Benzylcyclohexan-1-one (**2r**)

¹³C NMR (101 MHz, Chloroform-d)

2-Benzyl-2,3-dihydro-1*H*-inden-1-one (2s)

¹³C NMR (151 MHz, Chloroform-d)

(S)-2-Benzylcyclopentan-1-one (2t)

¹³C NMR (101 MHz, Chloroform-d)

(*R*)-2-Methyl-1,3-diphenylpropan-1-one (**2u**)

¹³C NMR (101 MHz, Chloroform-d)

3,5-dibenzyltetrahydro-4*H*-pyran-4-one (4a)

¹³C NMR (151 MHz, Chloroform-d)

¹³C NMR (151 MHz, Chloroform-d)

(+)-(2*R*,6*R*)-2,6-Dibenzylcyclohexan-1-one (**4c**)

¹³C NMR (101 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)

2,6-Bis(3-fluorobenzyl)cyclohexan-1-one (4e)

¹³C NMR (101 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)

2,6-Bis(2-fluorobenzyl)cyclohexan-1-one (4g)

¹³C NMR (151 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)
2,6-Bis(furan-2-ylmethyl)cyclohexan-1-one (4i)

¹³C NMR (101 MHz, Chloroform-d)

(3S,4S)-3-Benzylchroman-4-ol (5)

¹³C NMR (101 MHz, Chloroform-d)

(R,E)-3-benzylchroman-4-one oxime (6)

¹³C NMR (151 MHz, Chloroform-d)

Deuteration experiment (2a-D)

(S)-3-Benzylchroman-4-one (2a)

Signal 1: VWD1 A, Wavelength=210 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1	6.921	BV	0.2070	335.56378	24.16871	2.1052
2	7.593	VB	0.2162	1.56044e4	1069.33105	97.8948
Total	s:			1.59400e4	1093.49976	

3-(3-Methylbenzyl)chroman-4-one (2b)

Signal 1: VWD1 A, Wavelength=254 nm								
Peak Re	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
 1 2	6.863 9.460	BB BBA	0.1498 0.2323	1.09555e4 189.40291	1122.67407 12.67885	98.3005 1.6995		
Totals	:			1.11449e4	1135.35292			

3-(3-Methoxybenzyl)chroman-4-one (2c)

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	9.907 10.937	 BB BB	0.2110 0.2287	8706.12500 150.88564	638.71991 10.19224	98.2964 1.7036
Total	ls :			8857.01064	648.91215	

3-(3-Fluorobenzyl)chroman-4-one (2d)

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.019	BB	0.2867	5692.09766	289.12540	98.2457
2	10.758	BB	0.2505	101.63803	6.35916	1.7543
Total	s:			5793.73569	295.48456	

3-(4-Methylbenzyl)chroman-4-one (2e)

Signal 1: VWD1 A, Wavelength=210 nm							
Peak RetTime Type	Width	Area	Height	Area			
# [min]	[min]	[mAU*s]	[mAU]	%			
1 7.466 BB	0.1684	2.17704e4	1992.99316	98.3588			
2 9.659 BB	0.2179	363.25912	25.85127	1.6412			
Totals :		2.21337e4	2018.84443				

3-(4-Methoxybenzyl)chroman-4-one (2f)

Signal 1: VWD1 A, Wavelength=210 nm								
Peak RetTime Type	Width	Area	Height	Area				
# [min]	[min]	[mAU*s]	[mAU]	%				
1 12.753 BB	0.3146	1.37154e4	656.84009	97.1242				
2 18.478 BB	0.4696	406.11346	13.47568	2.8758				
Totals :		1.41215e4	670.31577					

3-(4-Chlorobenzyl)chroman-4-one (2g)

Signal 1: VWD1 A, Wavelength=210 nm							
Peak Re #	etTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
 1 2	8.117 BV 9.409 VB	0.2050 0.2395	3.63914e4 657.97827	2739.77051 42.06408	98.2240 1.7760		
Totals	:		3.70493e4	2781.83458			

3-(2-Methylbenzyl)chroman-4-one (2h)

Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] 웅 ---- | ----- | ----- | ------ | ----------| 1 6.822 BV 0.1467 2.41312e4 2565.40796 95.1457 0.2009 1231.17529 95.20234 2 8.896 VB 4.8543 2.53624e4 2660.61030 Totals :

3-(2-Methoxybenzyl)chroman-4-one (2i)

Signal 1: VWD1 A, Wavelength=210 nm								
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %				
 1 8.319 BB 2 10.670 BB	0.1797 0.2808	2.79509e4 1780.75342	2420.52344 96.27020	94.0106 5.9894				
Totals :		2.97317e4	2516.79363					

3-(2-Bromobenzyl)chroman-4-one (2j)

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	8.547	BB	0.1839	3940.78125	331.03705	95.8732
2	10.662	BB	0.2439	169.62752	10.81828	4.1268
Total	ls :			4110.40877	341.85533	

3-(2-Fluorobenzyl)chroman-4-one (2k)

Signal 1: VWD1 A, Wavelength=210 nm							
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %			
1 8.098 BB	0.1960	2.66591e4	2059.64771	96.6929			
Totals :	0.2401	2.75709e4	2118.05439	5.5071			

Signal 1: VWD1 A,	Waveleng	gth=210 nm		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 7.026 BV	0.1336	164.18068	19.23017	0.7939
2 7.378 VV		2.05162e4	2153.14746	99.2061
Totals :		2.06804e4	2172.37763	

3-(Naphthalen-2-ylmethyl)chroman-4-one (2m)

Signal 1: VWD1 A, Wavelength=210 nm							
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %			
 1 11.065 BV 2 12.740 VB	0.3525	1.64334e4 998.31915	 706.07458 29.68058	94.2730 5.7270			
Totals :		1.74318e4	735.75517				

Signal 1: VWD1 A,	Waveleng	gth=210 nm		
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 8.690 BB	0.2238	1.96081e4	1331.23035	98.4233
2 11.424 BB		314.11801	15.93201	1.5767
Totals :		1.99222e4	1347.16235	

3-isobutylchroman-4-one (20)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.780	BV	0.1079	2523.54199	363.77313	50.5865
2	6.068	VB	0.1147	2465.02344	331.88086	49.4135
Total	ls :			4988.56543	695.65399	

3-Benzyl-6-methylchroman-4-one (2p)

Signal 1: VWD1 A,	Wavelength	=210 nm		
Peak RetTime Type # [min]	Width [min] [1	Area mAU*s]	Height [mAU]	Area %
1 6.746 BV 2 7.088 VB	0.1347 1. 0.1378 2	16765e4 55.85263	 1339.11902 27.93857	97.8558 2.1442
Totals :	1.	19323e4	1367.05759	

Signal 1: VWD1 A, Wavelength=210 nm					
Peak RetTime Type	Width	Area	Height	Area	
# [min]	[min]	[mAU*s]	[mAU]	%	
1 10.411 BV	0.2502	2.05015e4	1277.49866	95.7771	
2 11.035 VB		903.92493	52.57127	4.2229	
Totals :		2.14054e4	1330.06992		

(*R*)-2-Benzylcyclohexan-1-one (**2r**)

Signal 1: VWD1 A, Wavelength=210 nm						
Peak RetTime Type	Width	Area	Height	Area		
# [min]	[min]	[mAU*s]	[mAU]	%		
1 7.075 BB	0.1874	6645.47266	525.92828	96.3688		
2 7.501 BB	0.1678	250.40022	24.19187	3.6312		
Totals :		6895.87288	550.12015			

S94

2-Benzyl-2,3-dihydro-1*H*-inden-1-one (2s)

Signal 1: VWD1 A, Wavelength=210 nm						
Peak Re #	etTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	8.525 BV	0.2032	1.56166e4	1204.97974	84.5529	
2	9.678 VB	0.2188	2853.02466	201.99254	15.4471	
Totals	:		1.84697e4	1406.97227		

(S)-2-Benzylcyclopentan-1-one (2t)

Signal 1: VWD1 A, Wavelength=210 nm						
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
 1 6.289 VV	0.1259	4007.26855	497,99661	 84,6791		
2 6.683 VB	0.1444	725.03284	78.00783	15.3209		
Totals :		4732.30139	576.00444			

Signal 1: VWD1 A, Wavelength=210 nm						
Peak R	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.144	BB	0.1383	575.14771	66.89952	5.6778
2	5.474	BV	0.1430	9554.57520	1061.21436	94.3222
Totals	:			1.01297e4	1128.11388	

3,5-dibenzyltetrahydro-4*H*-pyran-4-one (4a)

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 10.420 VB	0.2526	6309.24121	354.61420	 100.0000
Totals :		6309.24121	354.61420	

(+)-(2*R*,6*R*)-2,6-Dibenzylcyclohexan-1-one (**4c**)

Signal 1: VWD1 A, Wavelength=210 nm						
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.398	BV	0.1894	6735.31982	522.56036	100.0000
Total	ls :			6735.31982	522.56036	

Signal 1: VWD1 A,	Waveleng	gth=210 nm		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 4.636 BV	0.2599	 6487.35986	382.41516	100.0000
Totals :		6487.35986	382.41516	

2,6-Bis(3-fluorobenzyl)cyclohexan-1-one (4e)

Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] # [min] [mAU] 용 0.1817 104.22371 1 6.405 VV 8.34756 0.6574 2 6.867 VB 0.1614 1.57496e4 1500.91772 99.3426 1.58539e4 1509.26528 Totals :

(+)-(2*R*,6*R*)-2,6-Bis(4-methylbenzyl)cyclohexan-1-one (**4f**)

Signal 1: VWD1 A, Wavelength=210 nm						
Peak Re	etTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
 1	- 4 514 VV	0 1775	9503 42480	806 51422		
	1.011 **	0.1770		000.01122	100.0000	
Totals	:		9503.42480	806.51422		

2,6-Bis(2-fluorobenzyl)cyclohexan-1-one (4g)

Signal 1: VWD1 A, Wavelength=210 nm							
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %			
1 6.262 VB	0.1636	3174.77222	297.36655	100.0000			
Totals :		3174.77222	297.36655				

Signal 1: VWD1 A, Wavelength=210 nm						
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
1 8.095 BB	0.2846	2.09887e4	1130.39001	100.0000		
Totals :		2.09887e4	1130.39001			

Signal 1: VWD1 A, Wavelength=210 nm						
Peak Re	tTime Type	Width	Area	Height	Area	
# [1	min]	[min]	[mAU*s]	[mAU]	%	
1	4.757 VB	0.1042	53.67749	7.90409	1.0594	
2	5.291 VV	0.1049	5013.00439	741.34015	98.9406	
Totals	:		5066.68189	749.24424		

Gram scale experiment

Peak 1	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	۶
1	6.951	BV	0.2051	1301.94519	93.71024	5.1502
2	7.611	VB	0.2172	2.39775e4	1624.64355	94.8498
Total	s:			2.52795e4	1718.35380	

Signal 1: VWD1 A, Wavelength=210 nm

Peak R #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	6.952	BV	0.2068	1.28229e4	913.04211	97.0524
2	7.976	VB	0.2526	389.45102	21.99629	2.9476
Totals	:			1.32124e4	935.03840	
(R,E)-3-benzylchroman-4-one oxime (6)

Signal 1: VWD1 A, Wavelength=210 nm						
Peak Re	etTime T	ype Widt	h Area	Height	Area %	
	-					
1 2	5.214 B 6.313 V	V 0.19 V 0.20	86 453.10150 36 1.06348e4	34.20211 767.71741	4.0865 95.9135	
Totals	:		1.10879e4	801.91952		

8. X-ray crystallographic analysis of compound 2a.

The structure of 2a was determined by the X-ray diffraction analysis of single crystal, which recrystallized from a mixed solution of dichloromethane and *n*-hexane.

Table S1. Crystal Data and Experimental Parameters for Compound 2a.

Compound	2a		
Empirical formula	$C_{16}H_{14}O_2$		
Formula weight	238.27		
Crystal system	Monoclinic		
Space group	P 1 21 1		
<i>a</i> (Å)	12.1858(3)		
<i>b</i> (Å)	5.49205(11)		
<i>c</i> (Å)	18.8339(4)		
α (deg)	90		
β (deg)	106.712(2)		
γ (deg)	90		
$V(\text{\AA}^3)$	1207.22(5)		
Z	4		
<i>F</i> (000)	504		
size (mm)	0.4 x 0.2 x 0.2		
2θ range (deg)	3.787 to 75.898		
Reflections collected	13010		
Reflections unique	4789		

abscorr (T_{max} , T_{min})	1.00, 0.91
Data / restraints / parameters	4789 / 1 / 325
R	0.0373
$R_{ m w}$	0.0987
$R_{ m all}$	0.0390
Absolute structure parameter	0.11(9)
CCDC	2417594