Stereoselective construction of chiral flavanones via enzymatic intramolecular C(sp3)-H activation

Hanzi Gao^a, Edgar Africano Camargo^b, Jude N Ubi^b, Xiuyuan Duan^a, Guojun Zheng^{*a}, Shuaihua Gao^{*b}, and Qipeng Yuan^{*a}

^aState Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.

^bDepartment of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, 70123, United States.

*To whom correspondence should be addressed, <u>zhenggj@buct.edu.cn</u>, <u>sgao11@tulane.edu</u>, and <u>yuanqp@mail.buct.edu.cn</u>

This PDF file includes:

Materials and Methods Figures S1 to S4 Tables S1 to S5 NMR spectra SI References

Other supplementary materials for this manuscript include the following:

Dataset. Original HDX data for Mn and Mn-triple mutant in the absence/presence of ligand.

Materials and Methods

Reagents. All chemicals and reagents were obtained from commercial suppliers with the highest level of purity. Restriction endonucleases, $2 \times Fast$ Pfu Master Mix, and T4 DNA ligase were purchased from New England Biolabs. QIAquick PCR purification kit and QIAprep Spin Miniprep Kit were from Qiagen (Hilden, Germany). The gene of Mn and its mutants were inserted into the plasmid pET-28a(+) (Novagen). The plasmid contains an isopropyl β -D-1-thiogalactopyranoside (IPTG) inducible T7 promoter and an kanamycin resistance gene. *E. coli* strains of DH5 α and BL21(DE3) competent cells were used for plasmid propagation and protein expression, respectively. M9-N buffer contains 47.7 mM Na₂HPO₄, 22mM KH₂PO₄, 8.6mM NaCl, 2mM MgSO₄, and 0.1mM CaCl₂ at pH=7.4.

Cloning, mutagenesis, and expression of proteins. Plasmid pET-28a(+) (Novagen) was used as a cloning and expression vector for all variants described in this paper. Site-saturation mutagenesis was performed using a modified QuikChangeTM mutagenesis protocol using the 22-codon trick. The PCR products were digested with DMT, purified with E.Z.N.A. Gel Extraction kit. Purified mixture was transformed into 50 μ L *Escherichia coli* BL21(DE3) (Transgen Biotech). The cells were grown overnight in 5 mL Luria-Bertani (LB) medium, supplemented with kanamycin, and 2 mL of this preculture were used to inoculate 200 mL of Terrific Broth (TB) medium. The expression culture was incubated at 37 °C and 200 rpm until OD₆₀₀ reached 1.0-1.2. Then, the expression culture was cooled on ice for 20 minutes and was treated with 0.3 mM 5-aminolevulinic acid (5-ALA) and 0.25 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) (final concentrations). Cells were allowed to express at 20 °C and 150 rpm for 18 to 22 hours. Once expression was finished, the cultures were centrifuged (4,000 g, 15 minutes) and the precipitated bacteria were collected and stored at -80°C.

Reaction setup and product characterization. To prepare for the reaction, whole cells (OD_{600}) of 40 in 4.75mL M9-N buffer) were degassed by sparging with argon in a sealed 10mL two-neck bottle for at least 30 minutes. Diazo substrate (0.25 mL of a DMSO stock) was injected into a 5mL whole cells reaction system with a final diazo substrate concentration of 5mM under argon atmosphere. The bottle was sealed by Vaseline and shaken at 25 °C and 200 rpm for 24 h. The reaction was then guenched by addition of acetonitrile (5mL). This mixture was transferred to a microcentrifuge tube and centrifuged at 12,000 rpm for 10 minutes. A total of 100 µl of supernatant was taken to mix with 100 µl of internal standard (0.5 mg/mL in methanol) and 800 µl methanol. This solution was subsequently analyzed by HPLC. Protein concentration in the cell was determined by performing hemochrome assay on the cell lysate. The cell debris was removed by centrifugation (5,000rpm, 30 minutes, 4 °C), and the supernatant was filtered through a 0.45 µm cellulose filter. All hemoprotein concentrations were determined in triplicate using the hemochrome assay. A solution of 1 M NaOH (0.4 mL) was mixed with pyridine (1 mL) in a 1.5 mL centrifuge tube. Centrifuged was performed (11000 rpm, 1 minute) to separate the excess aqueous layer and give basified pyridine solution on top. Separately, a solution of sodium dithionite (10 mg/mL) was prepared in M9-N buffer. A volume of 50 µL of dithionite solution and 150 µL pyridine-NaOH solution were added to a cuvette containing 800 µL protein solution in M9-N buffer and mixed. UV-vis spectrum of the reduced hemoprotein was recorded immediately. Hemoprotein concentrations were determined using $\varepsilon_{550-535} = 23.8 \text{ mM}^{-1} \text{ cm}^{-1}$ for heme b.

Biocatalyst screening using 96-well plates. Single colonies from LB agar plates were picked using sterile toothpicks and cultured in deep-well 96-well plates containing LB (300 μ L/well) and kanamycin at 37 °C, 220 rpm shaking overnight. Then 80 μ L of culture from each well were transferred to new deep 96 well plates with 1200 μ L TB medium in each well. The deep 96 well plates incubated at 37 °C, 220 rpm for 3h. The plates were then cooled on ice for 30 minutes and the cultures were induced with 0.5 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression was conducted at 20 °C, 150 rpm for 16 to 20 hours. The cells were pelleted (1,500 rpm, 10 min, 4 °C) and resuspended in M9-N buffer (300 μ L/well) by gentle vortexing after expression. Diazo substrate (30 μ L/well, 50 mM in DMSO) was added into the wells. Then, the 96-well plate was quickly transferred to a box with an air valve, and the sealed box was degassed by sparging with argon for at least 30 min. After closing the air valve, the box was placed in the shaker and shaken at 30 °C ,170 rpm. After 24h of incubation, the 96-well plate was taken out and acetonitrile (300 μ L/well) was added and mixed, the plate was centrifuged (15,00rpm, 10 min) to separate the supernatants that were further filtered and transferred to centrifuge tubes for HPLC analysis.

NMR and HPLC measurements. ¹H and ¹³C NMR spectra were recorded on Bruker Prodigy 400 MHz spectrometer (400 MHz ¹H and 100.6 MHz ¹³C) at ambient temperature. Chemical shifts are referenced to chloroform (7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR). Data for ¹H NMR are reported in the conventional form: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet, br = broad), coupling constant (Hz), and integration. Chemical reactions were monitored using thin layer chromatography and a UV lamp for visualization. Reverse-phase high-performance liquid chromatography (HPLC) for analysis was carried out using Shimadzu (LC-20AT) instruments, and C18 (SilGreen®, 4.6 × 250 mm, 5 µm) columns. Water and acetonitrile containing 0.1% trifluoroacetic acid were used as eluents. Analytical chiral HPLC was performed using Daicel® Chiralcel OD-H columns (4.6 × 250 mm, 5 µm) with hexanes and isopropanol as the mobile phase.

Synthesis and characterization of substrate/derivatives. Three general procedures shown below were adopted for the synthesis of substrate and its derivatives.

General procedure 1: To a solution of phenol (3.0 mmol) in acetone (6 mL) was added the K_2CO_3 (4.5 mmol), tetrabutylammonium iodide (3.0 mmol) and the alkyl halide (3.3 mmol), successively. The reaction mixture was vigorously stirred at 65 °C for overnight. Afterwards, the reaction mixture was cooled to room temperature, and water (20 mL) was added with stirring until all solids dissolved. The mixture was extracted with ethyl acetate (20×3 mL). The combined organic layer was washed with saturated sodium chloride solution and was dried over anhydrous Na₂SO₄. After

filtration, the solvent was removed under reduced pressure and the crude product was directly used in the next step without purification. General procedure 2: To a solution of the acetophenone (1 mmol) in THF (3 mL) at 0 °C was added Sodium hydride (60% dispersed in mineral oil, 1.5 mmol) slowly over 10 min. The mixture was stirred at 0 °C for 10 minutes before 2,2,2-trifluoroethyl acetate (0.15 mL, 1.2 mmol) was added in one portion. Then the mixture was stirred at room temperature for 30 min before being guenched with 1 M HCI. The aqueous layer was extracted with ethyl acetate for three times and the combined organic layers were washed with saturated sodium chloride solution and was concentrated under reduce pressure to afford the crude ketone without purification. General procedure 3: The crude ketone (1 mmol) was redissolved in MeCN (5 mL) under nitrogen. To this solution was added Et₃N (1.5 mmol). Then, a MeCN solution of 4acetamidobenzolsulfonyl azide (p-ABSA) (1.2 mmol) was slowly added over 5 min. The reaction mixture was stirred at room temperature for overnight. Afterwards, the reaction was guenched with aqueous NaHCO₃ solution, and the mixture was extracted with ethyl acetate for three times. The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure, and the crude product was purified by silica column chromatography.

General procedure for the catalytic asymmetric intramolecular cyclization:

While reacting, the whole cells (OD600 of 40-50 in 76mL Kpi buffer) were degassed by sparging with argon in sealed 100mL two-neck bottle for at least 30 minutes. Diazo substrate (4mL of a DMSO stock) was injected into the whole cells under argon atmosphere. Final concentration of diazo substrate was 5mM, and final reaction volume was 80mL. The bottle was sealed by vaseline, and shaken at 25-30°C and 200 rpm for 24 h. The reaction solution was centrifuged, and the supernatant was extracted with 30 mL of ethyl acetate three times, the organic phases were combined, and the organic phases were washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. After filtration, the solvent was removed under reduced pressure and the crude product was purified by silica column chromatography.

Tables and Figures

Table S1. Intramolecular C-H activation of precursor 1a with hemin and various hemoproteins. Ö

0

	M2 M9-N rt, 24h	
1a	2a	1
Catalyst	Note	Yield [%]
Hemin	Concentration: 0.5mM	11.79%
Hemin + sodium dithionite	0.5mM hemin + 10mM sodium dithionite	5.11%
ParPgb-HYA-5213 ^(a)	Variant from <i>Pyrobaculum</i> arsenaticam protoglobin	trace
P411 _{CHA} ^(b)	Variant from P450 _{BM3}	5.61%
P411 _{CHF} ^(c)	Variant from P450 _{BM3}	8.45%
P411 _{HF} ^(d)	Variant from P450 _{BM3}	6.69%
Myoglobin H64V/V68A ^(e)	Variant from myoglobin	18.22%
Myoglobin H64V/V68A pure enzyme	Concentration: 20µM	trace
Myoglobin H64V/V68A pure enzyme + sodium dithionite	20µM pure enzyme + 10mM sodium dithionite	9.46%

Trace=less than 0.1% yield.

All reactions except heme and pure enzyme were carried out under whole-cell conditions at OD_{600} =40. Results are the average of duplicate reactions.

(a) Variants identified for nitrene C-H insertion.[1]

(b) Variants identified for nitrene C-H insertion.^[2]

(c) Variants identified for carbene C-H insertion.^[3]

(d) Variants identified for functionalization of indoles.^[4]

(e) Created for C-H functionalization of unprotected indoles.^[5]

Optimization of OD ₆₀₀						
Reaction buffer	Cosolvent	Substrate load [mM]	OD ₆₀₀	Temperatur e	yield[%]	TTN
M9-N (pH=7.4)	DMSO(5%)	5mM	10	30°C	31.70%	191
M9-N (pH=7.4)	DMSO(5%)	5mM	20	30 °C	83.95%	506
M9-N (pH=7.4)	DMSO(5%)	5mM	30	30 °C	92.21%	555
M9-N (pH=7.4)	DMSO(5%)	5mM	40	30 °C	93.04%	560
M9-N (pH=7.4)	DMSO(5%)	5mM	50	30 °C	90.07%	542
M9-N (pH=7.4)	DMSO(5%)	5mM	60	30 °C	84.83%	511
M9-N (pH=7.4)	DMSO(5%)	5mM	70	30 °C	86.72%	522
	Ор	timization of	reaction	buffer		
Reaction buffer	Cosolvent	Substrate load [mM]	OD ₆₀₀	Temperatur e	yield[%]	TTN
PBS (pH=7.4)	DMSO(5%)	5mM	40	30°C	76.50%	461
Hepes (pH=7.4)	DMSO(5%)	5mM	40	30°C	60.23%	363
	0	ptimization of	temper	ature		
Reaction buffer	Cosolvent	Substrate load [mM]	OD ₆₀₀	Temperatur e	yield[%]	TTN
M9-N (pH=7.4)	DMSO(5%)	5mM	40	20°C	96.17%	579
M9-N (pH=7.4)	DMSO(5%)	5mM	40	25°C	99.97%	602
M9-N (pH=7.4)	DMSO(5%)	5mM	40	30° C	91.80%	553
M9-N (pH=7.4)	DMSO(5%)	5mM	40	35°C	95.81%	577

Table S2. Summary of optimization data for conversion of substrate 1a to flavanones 2a using Mn-triple mutant.

Table S3. Structures of diazo substrates and NMR characterizations.

Compound name	Structure	NMR characterizations
(Benzyloxy)phenyl)- 2-diazoethan-1-one (1a)		¹ H NMR (400 MHz, DMSO- <i>d₆</i>): δ 7.72 (s, 1H), 7.53-7.32 (m, 6H), 7.21-7.23 (m, 1H), 7.07-7.03 (m, 1H), 6.63 (brs, 1H), 5.26 (s, 2H) ppm. ¹³ C NMR (101 MHz, DMSO- <i>d₆</i>): δ 185.4, 157.3, 137.0, 133.9, 129.9, 129.0, 128.5, 128.1, 126.8, 121.2, 114.2, 70.4, 58.2 ppm.
1-(2-(Benzyloxy)-5- methylphenyl)-2- diazoethan-1-one (1b)	H ₃ C O N ₂	 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.54-7.50 (m, 2H), 7.43-7.26 (m, 5H), 7.12-7.09 (m, 1H), 6.64 (brs, 1H), 5.41 (s, 2H), 5.41 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.4, 155.4, 137.1, 134.2, 130.1, 130.0, 129.0, 128.4, 128.1, 126.5, 114.2, 70.5, 58.1, 20.3 ppm.
1-(2-(Benzyloxy)-5- fluorophenyl)-2- diazoethan-1-one (1c)		 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.51-7.33 (m, 7H), 7.26-7.23 (m, 1H), 6.68 (brs, 1H), 5.24 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 183.9, 157.8, 155.4, 153.7, 136.8, 129.1, 128.5, 128.2, 120.3, 120.1, 116.3, 116.2, 115.9, 115.7, 71.2, 58.8 ppm. ¹⁹F NMR (282 MHz, DMSO-<i>d₆</i>): δ −122.9 ppm.
1-(2-(Benzyloxy)-5- chlorophenyl)-2- diazoethan-1-one (1d)		 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.66 (s, 1H), 7.53-7.48 (m, 3H), 7.42-7.32 (m, 3H), 7.27-7.24 (m, 1H), 6.66 (brs, 1H), 5.26 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 183.8, 156.0, 136.6, 133.2, 129.1, 129.0, 128.6, 128.1, 125.3, 116.4, 70.9, 58.8 ppm.
1-(1- (Benzyloxy)naphthale n-2-yl)-2-diazoethan- 1-one (1e)		 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 8.12-8.10 (m, 1H), 7.95-7.92 (m, 1H), 7.75-7.70 (m, 2H), 7.61-7.53 (m, 2H),7.50-7.49 (m, 2H), 7.40-7.33 (m, 3H),6.60 (brs, 1H), 5.02 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 186.0, 154.8, 136.9, 136.5, 129.0, 128.8, 128.6, 128.1, 127.5, 127.0, 125.4, 124.7, 123.4, 78.4, 58.4 ppm.
1-(2-(Benzyloxy)-5- bromophenyl)-2- diazoethan-1-one (1f)	Br ON2	¹ H NMR (400 MHz, DMSO- d_6): δ 7.78 (s, 1H), 7.67-7.64 (m, 1H), 7.50-7.48 (m, 2H), 7.43-7.39 (m, 2H), 7.36-7.32 (m, 1H), 7.22-7.20 (m, 1H), 6.66 (brs, 1H), 5.26 (s, 2H) ppm. ¹³ C NMR (101 MHz, DMSO- d_6): δ 183.8, 156.4, 136.6, 136.1, 132.0, 129.1, 128.6, 128.1, 116.8, 112.9, 70.8, 58.8 ppm.
1-(2-(Benzyloxy)-5- methoxyphenyl)-2- diazoethan-1-one (1g)	H ₃ CO O O	 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.51-7.49 (m, 2H), 7.43-7.39 (m, 2H), 7.36-7.32 (m, 1H), 7.25 (s, 1H), 7.18-7.16 (m, 1H), 7.09-7.06 (m, 1H), 6.68 (brs, 1H), 5.20 (s, 2H), 3.73 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 184.9, 153.6, 151.4, 137.2, 129.0, 128.4, 128.1, 127.3, 119.6, 116.1, 114.0, 71.1, 58.4, 56.0 ppm.
1-(2-(Benzyloxy)-4- methoxyphenyl)-2- diazoethan-1-one (1h)	H ₃ CO N ₂	¹ H NMR (400 MHz, DMSO- d_6): δ 7.76 (d, J = 8Hz, 1H), 7.54-7.52 (m, 2H), 7.44-7.41 (m, 2H), 7.37-7.35 (m, 1H), 6.74-6.73 (d, J = 4Hz, 1H), 6.66-6.63 (m, 1H),6.60 (brs, 1H), 5.28 (s, 2H), 3.81 (s, 3H) ppm. ¹³ C NMR (101 MHz, DMSO- d_6): δ 164.1, 159.1, 151.4, 136.8, 131.8, 129.1, 128.5, 128.2, 127.7, 119.5, 106.6, 100.34, 70.5, 57.6, 56.0 ppm.

2-Diazo-1-(2-((4- methylbenzyl)oxy)ph enyl)ethan-1-one (1i)	CH ₃ CH ₃ CH ₃	¹ H NMR (400 MHz, DMSO- d_{δ}): δ 7.72 (s, 1H), 7.51-7.46 (m, 1H), 7.41-7.39 (m, 2H), 7.23-7.21 (m, 3H), 7.06-7.02 (m, 1H), 6.62 (brs, 1H), 5.21 (s, 2H), 2.31 (s, 3H) ppm. ¹³ C NMR (101 MHz, DMSO- d_{δ}): δ 185.3, 157.3, 137.8, 133.9, 129.9, 129.6, 128.3, 126.7, 121.2, 114.2, 70.4, 58.2, 21.2 ppm.
2-Diazo-1-(2-((3- methylbenzyl)oxy)ph enyl)ethan-1-one (1j)	CH ₃ O N ₂	 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.71 (s, 1H), 7.51-7.47 (m, 1H), 7.32-7.30 (m, 3H), 7.22-7.20 (m, 1H), 7.17-7.15 (m, 1H), 7.07-7.03 (m, 1H), 6.63 (brs, 1H), 5.22 (s, 2H), 2.33 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.4, 157.3, 138.2, 136.9, 133.9, 129.9, 129.1, 129.0, 128.6, 126.8, 125.2, 121.2, 114.2, 70.5, 58.3, 21.5 ppm.
2-Diazo-1-(2-((2- methylbenzyl)oxy)ph enyl)ethan-1-one (1k)	H ₃ C O N ₂	 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.71 (s, 1H), 7.54-7.46 (m, 2H), 7.29-7.20 (m, 4H), 7.09-7.05 (m, 1H), 6.50 (brs, 1H), 5.23 (s, 2H), 2.36 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.5, 157.3, 136.9, 134.9, 133.9, 130.7, 129.8, 128.8, 128.6, 126.9, 126.4, 121.2, 114.2, 69.2, 58.0, 19.0 ppm.
2-Diazo-1-(2-((4- fluorobenzyl)oxy)phe nyl)ethan-1-one (1I)	F N2 O	 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.72 (d, <i>J</i>=4.0 Hz, 1H), 7.59-7.48 (m, 3H), 7.27-7.21 (m, 3H), 7.08-7.04 (m, 1H), 6.61 (brs, 1H), 5.24 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.4, 163.5, 161.1, 157.1, 133.9, 133.2, 133.1, 130.5, 130.4, 129.9, 126.8, 121.3, 116.0, 115.8, 114.2, 69.7, 58.2 ppm. ¹⁹F NMR (282 MHz, DMSO-<i>d₆</i>): δ -114.2 ppm.
2-Diazo-1-(2-((3- fluorobenzyl)oxy)phe nyl)ethan-1-one (1m)	F O N ₂	 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.51-7.33 (m, 7H), 7.27-7.23 (m, 1H), 6.68 (brs, 1H), 5.24 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 183.9, 157.8, 155.4, 153.7, 136.8, 129.1, 128.5, 128.2, 120.3, 120.1, 116.3, 116.2, 116.0, 115.7, 71.1, 58.8 ppm. ¹⁹F NMR (282 MHz, DMSO-<i>d₆</i>): δ -122.9 ppm.
1-(2-((4- Bromobenzyl)oxy)ph enyl)-2-diazoethan-1- one (1n)	O N ₂ O	 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.71 (s, 1H), 7.62-7.59 (m, 2H), 7.51-7.47 (m, 3H), 7.21-7.19 (m, 1H), 7.08-7.04 (m, 1H), 6.62 (brs, 1H), 5.24 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.3, 157.0, 136.4, 133.9, 132.0, 130.3, 129.9, 126.8, 121.6, 121.3, 114.1, 69.6, 58.3 ppm.
1-(2-((2- Chlorobenzyl)oxy)ph enyl)-2-diazoethan-1- one (1o)		 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.70-7.64 (m, 2H), 7.55-7.50 (m, 2H), 7.43-7.39 (m, 2H), 7.25-7.23 (m, 1H), 7.11-7.07 (m, 1H), 6.56 (brs, 1H), 5.24 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.4, 157.0, 134.2, 133.9, 132.9, 130.6, 130.5, 130.0, 128.0, 126.9, 121.6, 114.1, 68.1, 58.1 ppm.
1-(2-((3- Chlorobenzyl)oxy)ph enyl)-2-diazoethan-1- one (1p)		 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.70 (s, 1H), 7.59 (s, 1H), 7.52-7.39 (m, 4H), 7.21-7.19 (m, 1H), 7.08-7.05 (m, 1H), 6.65 (brs, 1H), 5.24 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.5, 156.9, 139.6, 133.8, 133.7, 131.0, 129.9, 128.4, 127.8, 127.0, 126.6, 121.4, 114.2, 69.5, 58.2 ppm.

	- 1	
1-(2-((4- Chlorobenzyl)oxy)ph enyl)-2-diazoethan-1- one (1q)		 ¹H NMR (400 MHz, DMSO-<i>d₆</i>): δ 7.70 (s, 1H), 7.56-7.47 (m, 5H), 7.22-7.20 (m, 1H), 7.08-7.04 (m, 1H), 6.62 (brs, 1H), 5.25 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-<i>d₆</i>): δ 185.4, 157.1, 136.0, 133.9, 133.1, 130.0, 129.9, 129.0, 126.8, 121.4, 114.2, 69.6, 58.3 ppm.
4-((2-(2- Diazoacetyl)phenoxy) methyl)benzonitrile (1r)	CN CN N ₂	 ¹H NMR (400 MHz, DMSO-d₆): δ 7.90-7.88 (m, 2H), 7.72-7.70 (m, 3H), 7.52-7.48 (m, 1H), 7.20-7.18 (m, 1H), 7.09-7.05 (m, 1H), 6.56 (brs, 1H), 5.37 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-d₆): δ 185.2, 158.3, 142.8, 133.8, 133.0, 129.9, 128.6, 127.0, 121.5, 119.2, 114.1, 111.1, 69.5, 58.3 ppm.
2-Diazo-1-(2-((4- (trifluoromethyl)benzy I)oxy)phenyl)ethan-1- one (1s)	CF ₃ O N ₂	¹ H NMR (400 MHz, DMSO-d ₆): δ 7.79-7.73 (m, 5H), 7.52- 7.48 (m, 1H), 7.22-7.20 (m, 1H), 7.09-7.05 (m, 1H), 6.66 (brs, 1H), 5.38 (s, 2H) ppm. ¹³ C NMR (101 MHz, DMSO-d ₆): δ 185.4, 156.9, 141.9, 133.8, 129.9, 128.9 (d, JCF = 32.3 Hz), 128.5, 127.0, 125.9 (d, JCF = 3.4 Hz), 123.3, 121.4, 114.1, 69.5, 58.3 ppm.
2-Diazo-1-(2-((4- methoxybenzyl)oxy)p henyl)ethan-1-one (1t)	O O N ₂ O	¹ H NMR (400 MHz, DMSO-d ₆): δ 7.72 (s, 1H), 7.55 – 7.35 (m, 3H), 7.24 (d, J = 8.0 Hz, 1H), 7.04 (td, J = 7.7, 0.8 Hz, 1H), 7.00 – 6.94 (m, 2H), 6.61 (s, 1H), 5.17 (s, 2H), 3.76 (s, 3H) ppm. ¹³ C NMR (101 MHz, DMSO-d ₆): δ 185.3, 159.6, 157.4, 133.9, 130.0, 129.9, 128.7, 126.7, 121.1, 114.4, 114.3, 70.3, 58.2, 55.5 ppm.
2-Diazo-1-(2- (naphthalen-1- ylmethoxy)phenyl)eth an-1-one (1u)		¹ H NMR (400 MHz, DMSO-d ₆): δ 8.18 (d, J = 8.0 Hz, 1H), 8.01-7.94 (m, 2H), 7.74-7.52 (m, 6H), 7.45-7.42 (m, 1H), 7.10-7.06 (m, 1H), 6.48 (brs, 1H), 5.72 (s, 2H) ppm. ¹³ C NMR (101 MHz, DMSO-d ₆): δ 185.4, 157.3, 133.9, 133.8, 132.4, 131.4, 129.9, 129.3, 129.0, 127.1, 127.0, 126.5, 125.9, 124.3, 121.4, 114.5, 69.1, 58.0 ppm.
2-Diazo-1-(2- (naphthalen-2- ylmethoxy)phenyl)eth an-1-one (1v)		 ¹H NMR (400 MHz, DMSO-d₆): δ 8.02 (s, 1H), 7.97-7.91 (m, 3H), 7.66-7.53 (m, 2H), 7.52-7.48 (m, 3H), 7.28-7.26 (m, 1H), 7.06-7.04 (m, 1H), 6.67 (brs, 1H), 5.41 (s, 2H) ppm. ¹³C NMR (101 MHz, DMSO-d₆): δ 185.4, 157.3, 134.6, 133.3, 133.1, 129.9, 128.8, 128.3, 128.1, 126.9, 126.8, 126.7, 126.1, 121.3, 114.3, 70.6, 58.4 ppm.
1-(2-((1,1'-Biphenyl)- 4-ylmethoxy)phenyl)- 2-diazoethan-1-one (1w)	O O N ₂	¹ H NMR (400 MHz, DMSO-d ₆): δ 7.77 – 7.65 (m, 5H), 7.61 (d, J = 8.1 Hz, 2H), 7.54 – 7.44 (m, 3H), 7.37 (t, J = 7.3 Hz, 1H), 7.26 (d, J = 8.3 Hz, 1H), 7.07 (dd, J = 11.1, 3.9 Hz, 1H), 6.68 (brs, 1H), 5.32 (s, 2H) ppm. ¹³ C NMR (101 MHz, DMSO-d ₆): δ 185.4, 157.2, 140.3, 140.2, 136.2, 133.9, 129.9, 129.4, 128.7, 128.0, 127.3, 127.1, 126.8, 121.3, 114.2, 70.1, 58.3 ppm.

Product	Substrate load[mM]	OD ₆₀₀	Temperature	ee% (S)	yield%	TTN
2b	5mM	40	25°C	93.8%	71.39%	430
2c	5mM	40	25°C	91.64%	80.76%	487
2d	5mM	50	30°C	87.25%	68.22%	411
2e	5mM	50	30°C	34.68% (R)	62.57%	377
2f	5mM	40	25°C	89.79%	75.02%	452
2g	5mM	40	25°C	86.74%	88.72%	534
2h	5mM	40	25°C	95.98%	81.25%	489
2i	5mM	40	25°C	80.43%	64.18%	387
2j	5mM	40	25°C	80.83%	80.66%	486
2k	5mM	40	25°C	51.15%	64.71%	390
21	5mM	40	25°C	84.68%	86.82%	523
2m	5mM	40	25°C	90.06%	90.5%	545
2n	5mM	50	25°C	92.25%	43.58%	263
20	5mM	50	30°C	83.9%	59.51%	358
2p	5mM	50	30°C	88.31%	40.62%	245
2q	5mM	50	30°C	25.43%	13.17%	79
2r	5mM	40	30°C	99.40%	89.18%	537
2s	5mM	40	30°C	90.26%	88.17%	531
2t	5mM	40	30°C	96.92%	35.91%	216
2u	5mM	40	30°C	>99%	23.10%	139
2v	5mM	40	30°C	>99%	27.43%	165
2w	5mM	40	30°C	>99%	12.72%	77

Table S4. Substrate scope data.

Analytical reactions were performed with 0.25 mL of substrates 1b–1q, in a 5 mL reaction system. Mn-triple mutant was used in whole *E. coli* cells resuspended typically to OD_{600} = 40 or 50 in M9-N (pH=7.4). The temperature and OD_{600} used for the analytical reactions were determined after some optimization. Reactions proceeded at specified temperatures for 24 hours. Reported numbers were the average of triplicate reactions.

Table S5. Structure and NMR characterizations of products.

Compound name	Structure	NMR characterizations
(S)-2- phenylchroman-4- one (2a)		$\label{eq:horizondef} \begin{array}{c} ^{1}H\ NMR\ (400\ MHz,\ ^{CDCl_{3}}):\ \delta=7.97\ (dd,\ 1H)\ , \\ \delta=7.47\text{-}7.53\ (m,\ 6H)\ ,\ \delta=7.07\text{-}7.11\ (m,\ 2H)\ , \\ \delta=5.52\ (dd,\ 1H)\ ,\ \delta=3.13\ (dd,\ 1H)\ ,\ \delta=2.93\ (dd,\ 1H)\ ppm. \\ \end{array}$
(S)-6-Methyl-2- phenylchroman-4- one (2b)		¹ H NMR (400 MHz, $^{\text{CDCl}_3}$): δ =7.76 (d, 1H) , δ =7.51 (dd, 2H) , δ =7.40-7.48 (m, 3H) , δ =7.34 (dd, H) , δ =6.99 (d, 1H) , δ =5.47 (dd, 1H) , δ =3.09 (dd, 1H) , δ =2.90 (dd, 1H) , δ =2.35 (s, 3H) ppm. ¹³ C NMR (101 MHz, $^{\text{CDCl}_3}$): δ 192.21, 159.66, 138.92, 137.29, 131.08, 128.84, 128.73, 126.63, 126.17, 120.57, 117.02, 70.58, 44.73, 20.45 ppm
(S)-6-Fluoro-2- phenylchroman-4- one (2c)	F C C C C C C C C C C C C C C C C C C C	¹ H NMR (400 MHz, ^{CDCl} ₃): δ =7.61 (dd, 1H) , δ =7.42-7.51 (m, 5H) , δ =7.24-7.28 (m, 1H) , δ =7.07 (dd, 1H) , δ =5.49 (dd, 1H) , δ =3.11 (s, 3H) , δ =2.94 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl} ₃): δ 191.23, 158.59, 157.80, 156.18, 138.44, 128.91, 126.15, 123.86, 123.62, 119.88, 119.81, 112.16, 111.93, 79.86, 44.37 ppm.
(S)-6-Chloro-2- phenylchroman-4- one (2d)	CI	¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.92 (d, 1H) , δ =7.40- 7.51 (m, 6H) , δ =7.07 (d, 1H) , δ =5.50 (dd, 1H) , δ =3.11 (s, 3H) , δ =2.94 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 190.82, 159.98, 157.80, 138.27, 136.04, 128.98, 128.93, 127.22, 126.41, 126.16, 121.73, 119.90, 79.84, 44.29 ppm.
(<i>R</i>)-2-Phenyl-2,3- dihydro-4H- benzo[<i>h</i>]chromen-4- one (2e)		¹ H NMR (400 MHz, ^{CDCl₃}): δ =8.38 (d, 1H) , δ =7.94 (d, 1H) , δ =7.82 (d, 1H) , δ =7.60- 7.65 (m, 3H) , δ =7.46-7.54 (m, 5H) , δ =5.61 (dd, 1H) , δ =3.21 (dd, 1H) , δ =3.03 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 191.64, 159.85, 138.84, 137.62, 129.73, 128.91, 128.81, 127.89, 126.31, 126.15, 124.89, 123.70, 121.75, 121.28, 115.53, 80.35, 44.08 ppm.
(S)-6-Bromo-2- phenylchroman-4- one (2f)	Br	¹ H NMR (400 MHz, ^{CDCl₃}): δ =8.06 (d, 1H) , δ =7.61 (dd, 1H) , δ =7.41-7.49 (m, 5H) , δ =6.99 (d, 1H) , δ =5.50 (dd, 1H) , δ =3.11 (s, 3H) , δ =2.94 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 190.67, 160.42, 138.82, 138.24, 129.53, 128.99, 128.94, 126.17, 122.21, 120.25, 114.37, 79.80, 44.23 ppm.
(S)-6-Methoxy-2- phenylchroman-4- one (2g)		¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.38-7.52 (m, 6H) , δ =7.15 (dd, 1H) , δ =7.02 (d, 1H) , δ =5.47 (dd, 1H) , δ =3.85 (s, 3H) , δ =3.10 (dd, 1H) , δ =2.91 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 192.11, 156.31, 154.27, 138.87, 128.85, 128.76, 126.16, 125.43, 120.78, 119.47,

		107.38, 79.73, 55.84, 44.60 ppm.
(S)-7-Methoxy-2- phenylchroman-4- one (2h)		¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.90 (d, 1H) , δ =7.47- 7.52 (m, 5H) , δ =6.65 (dd, 1H) , δ =6.54 (d, 1H) , δ =5.50 (dd, 1H) , δ =3.86 (s, 3H) , δ =3.07 (dd, 1H) , δ =2.87 (dd, 1H) ppm.
	· · · · · · · · · · · · · · · · · · ·	¹³ C NMR (101 MHz, ^{CDCl₃}): δ 190.61, 166.23, 163.56, 138.82, 128.87, 128.79, 126.18, 114.86, 110.30, 100.94, 80.04, 55.68, 44.36 ppm.
(S)-2-(p- Tolyl)chroman-4- one (2i)		¹ H NMR (400 MHz, $^{\text{CDCl}_3}$): δ =7.96 (dd, 1H) , δ =7.51-7.53 (m, 1H) , δ =7.40 (d, 2H) , δ =7.27 (d, 2H) , δ =7.06-7.09 (m, 2H) , δ =5.48 (dd, 1H) , δ =3.13 (dd, 1H) , δ =2.91 (dd, 1H) , δ =2.41 (t, 3H) ppm. ¹³ C NMR (101 MHz, $^{\text{CDCl}_3}$): δ 192.22, 161.66, 138.74, 136 19 135 76 129 52 127 06 126 22 121 55 120 94
		118.17, 79.56, 44.58, 21.23 ppm.
(S)-2-(m- Tolyl)chroman-4- one (2j)		$eq:linear_line$
		 1H), δ=2.43 (s, 3H) ppm. ¹³C NMR (101 MHz, ^{CDCl}₃): δ 192.12, 161.63, 138.66, 136.20, 129.58, 128.78, 127.07, 126.88, 123.27, 121.60, 120.95, 118.16, 79.75, 44.71, 21.50 ppm.
(S)-2-(o- Tolyl)chroman-4- one (2k)		¹ H NMR (400 MHz, ^{CDCl₃}): δ=7.99 (dd, 1H) , δ=7.62-7.64 (m, 1H) , δ=7.54 (td, 3H) , δ=7.27- 7.34 (m, 3H) , δ=7.07-7.10 (m, 2H) , δ=5.72 (dd, 1H) , δ=3.11 (dd, 1H) , δ=2.87 (dd, 1H) , δ=2.42 (s, 3H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 192.30, 161.90, 136.76,
		136.20, 135.13, 130.86, 128.65, 127.14, 126.58, 125.77, 121.65, 120.94, 118.13, 76.83, 43.62, 19.05 ppm.
(S)-2-(4- Fluorophenyl)chrom an-4-one (2l)		¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.96 (dd, 1H) , δ =7.48-7.52 (m, 3H) , δ =7.06-7.17 (m, 4H) , δ =5.49 (dd, 1H) , δ =3.09 (dd, 1H) , δ =2.91 (dd, 1H) ppm.
		¹³ C NMR (101 MHz, ^{CDCl} ₃): δ 191.72, 161.41, 138.50, 136.29, 134.64, 134.61, 128.10, 128.01, 127.11, 121.78, 120.91, 118.11, 115.94, 115.72, 78.95, 44.69 ppm.
(S)-2-(3- Fluorophenyl)chrom an-4-one (2m)	C C F	$eq:linear_line$
		¹³ C NMR (101 MHz, ^{CDCl} ₃): δ 191.44, 164.24, 161.26, 141.34, 141.27, 136.34, 130.54, 130.46, 127.11, 121.87, 121.62, 120.93, 118.12, 115.75, 115.54, 113.33, 113.11, 78.76, 44.67 ppm.
(S)-2-(4- Bromophenyl)chrom an-4-one (2n)	O O Br	¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.96 (dd, 1H) , δ =7.53-7.61 (m, 3H) , δ =7.39 (d, 2H) , δ =7.07- 7.12 (m, 2H) , δ =5.48 (dd, 1H) , δ =3.07 (dd, 1H) , δ =2.92 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 191.49, 161.30, 137.81,

		136.32, 132.03, 127.81, 127.11, 122.74, 122.25, 121.85, 118.11, 78.87, 44.59 ppm.
(S)-2-(2- Chlorophenyl)chrom an-4-one (2o)	Cl	¹ H NMR (400 MHz, ^{CDCl} ₃): δ =7.99 (dd, 1H), δ =7.79 (dd, 1H), δ =7.56 (td, 1H), δ =7.42- 7.45 (m, 2H), δ =7.35-7.37 (m, 1H), δ =7.09- 7.13 (m, 2H), δ =5.91 (dd, 1H), δ =3.07 (dd, 1H), δ =2.92 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl} ₃): δ 191.58, 161.58, 136.78, 136.23, 131.68, 129.76, 129.63, 127.47, 127.25, 127.20, 121.87, 120.99, 118.11, 76.54, 43.54 ppm.
(S)-2-(3- Chlorophenyl)chrom an-4-one (2p)	CI CI	¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.96 (d, 1H) , δ =7.54- 7.58 (m, 2H) , δ =7.35-7.42 (m, 3H) , δ =7.08- 7.12 (m, 2H) , δ =5.49 (dd, 1H) , δ =3.07 (dd, 1H) , δ =2.93 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 191.40, 161.25, 140.79, 136.35, 134.85, 130.17, 128.89, 127.13, 126.36, 124.16, 121.90, 120.91, 118.12, 78.78, 44.67 ppm.
(S)-2-(4- Chlorophenyl)chrom an-4-one (2q)	CI	¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.96 (dd, 1H) , δ =7.55 (ddd, 1H) , δ =7.44-7.45 (m, 4H) , δ =7.07- 7.11 (m, 2H) , δ =5.50 (dd, 1H) , δ =3.07 (dd, 1H) , δ =2.91 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 191.55, 161.33, 137.29, 136.33, 134.62, 129.08, 127.53, 127.12, 121.84, 120.92, 118.11, 78.85, 44.62 ppm.
(S)-4-(4- Oxochroman-2- yl)benzonitrile (2r)	O CN CN	¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.96 (dd, 1H) , δ =7.75-7.78 (m, 2H) , δ =7.63-7.65 (m, 2H) , δ =7.55-7.59 (m, 1H) , δ =7.09-7.14 (m, 2H) , δ =5.58 (dd, 1H) , δ =3.04 (dd, 1H) , δ =2.95 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 190.79, 160.96, 143.91, 136.49, 132.71, 127.18, 126.64, 122.15, 120.88, 118.38, 118.06, 112.58, 78.51, 44.55 ppm.
(S)-2-(4- (Trifluoromethyl)phe nyl)chroman-4- one (2s)	O CF3	¹ H NMR (400 MHz, $^{\text{CDCl}_3}$): δ =7.97 (dd, 1H) , δ =7.72-7.74 (m, 2H) , δ =7.64-7.66 (m, 2H) , δ =7.51-7.56 (m, 1H) , δ =7.09-7.13 (m, 2H) , δ =5.58 (dd, 1H) , δ =3.09 (dd, 1H) , δ =2.96 (dd, 1H) ppm. ¹³ C NMR (101 MHz, $^{\text{CDCl}_3}$): δ 191.18, 161.17, 142.71, 136.40, 127.15, 126.36, 125.89, 125.86, 121.99, 120.92, 118.10, 78.77, 44.67 ppm.
(S)-2-(4- Methoxyphenyl)chro man-4-one (2t)		¹ H NMR (400 MHz, ^{CDCl₃}): δ =7.94-7.97 (m, 1H) , δ =7.50-7.55 (m, 1H) , δ =7.43-7.45 (m, 2H) , δ =7.05-7.09 (m, 2H) , δ =6.97-7.00 (m, 2H) , δ =5.45 (dd, 1H) , δ =3.86 (s, 3H) , δ =3.13 (dd, 1H) , δ =2.89 (dd, 1H) ppm. ¹³ C NMR (101 MHz, ^{CDCl₃}): δ 192.27, 161.65, 159.98, 136.18, 130.77, 127.75, 127.04, 121.54, 120.92, 118.15, 114.22, 79.36, 55.38, 44.62 ppm.
(S)-2-(Naphthalen- 1-yl)chroman-4- one (2u)		¹ H NMR (400 MHz, ^{CDCl} ₃): δ =8.03-8.09 (m, 2H) , δ =7.91-7.96 (m, 2H) , δ =7.81 (d, 1H) , δ =7.54- 7.61 (m, 4H) , δ =7.11-7.15 (m, 2H) , δ =6.26 (dd, 1H) , δ =3.30 (dd, 1H) , δ =3.13 (dd, 1H) ppm.

		¹³ C NMR (101 MHz, ^{CDCl} ₃): δ 192.27, 161.79, 136.25, 134.16, 133.89, 130.20, 129.41, 129.12, 127.20, 126.73, 126.00, 125.40, 123.89, 122.82, 121.79, 121.12, 118.24, 76.87, 43.99 ppm.
(S)-2-(Naphthalen-	0	¹ H NMR (400 MHz, $^{\text{CDCl}_3}$): δ =7.90-7.98 (m, 5H),
2-yl)chroman-4-		$\delta {=}7.61{-}7.64~(m,~1{\rm H})$, $\delta {=}7.54{-}7.58~(m,~3{\rm H})$,
one(2y)		$\delta{=}7.09{\text{-}}7.14~(\text{m, 2H})$, $\delta{=}5.68~(\text{dd, 1H})$,
		$\delta{=}3.22~(dd,~1{\rm H})$, $\delta{=}3.02~(dd,~1{\rm H})$ ppm.
		¹³ C NMR (101 MHz, ^{CDCl} ₃): δ 191.95, 161.57, 136.28,
		136.07, 133.39, 133.18, 128.81, 127.79, 127.12, 126.58,
		125.43, 123.68, 121.70, 121.01, 118.20, 78.85, 44.62 ppm.
(S)-2-([1,1'-	0	¹ H NMR (400 MHz, $^{\text{CDCl}_3}$): δ=7.99 (dd, 1H),
biphenyl]-4-		$\delta{=}7.69$ (d, 2H) , $\delta{=}7.60{\text{-}}7.65$ (m, 5H) , $\delta{=}7.55{\text{-}}$
vI)chroman-4-		7.58 (m, 2H) , $\delta {=}7.40{\text{-}}7.51$ (m, 1H) , $\delta {=}7.10{\text{-}}$
(0)		7.12 (m, 2H) , $\delta{=}5.57$ (dd, 1H) , $\delta{=}3.18$ (dd,
one (2w)		1H), δ =2.98 (dd, 1H) ppm.
		¹³ C NMR (101 MHz, ^{CDCl} ₃): δ 192.00, 161.59, 141.84,
		140.51, 137.65, 136.28, 128.89, 127.63, 127.19, 127.12,
		126.69, 121.70, 120.99, 118.19, 78.85, 44.62 ppm.

Figure S1. Determination of the enantioselectivity of Mn on substrate 1a. Black trace represents the chemically synthesized standards, while the pink trace represents the product from the enzymatic reaction. Myoglobin demonstrates *S*-type selectivity for the substrate, with an enantiomeric excess (ee) value of 72%.

Figure S2. Effects of OD_{600} and temperature on the yield of the cyclization reaction catalyzed by Mn-triple mutant using 1a as substrate.

Figure S3. Calibration curves for flavanone products. Calibration curves with an internal standard were created for the determination of yield and TTN. The concentration of UV-active analytes was plotted as a function of the UV absorbance ratio of the analyte over an appropriate internal standard. Product standards analyzed based on absorbance at 247 nm were calibrated with 1-(4-ethylphenyl)ethanone (0.5mg/mL, final concentration) as the internal standard. Product formation in enzymatic reactions was quantified by HPLC based on standard curves. All data points represent the average of three replicate runs. For all analysis, water and acetonitrile containing 0.1% acetic acid were used as mobile phase for a C18 column. The method used 55% acetonitrile, using 10 μ L sample injections. The flow rate was 1mL/minute, and the column was maintained at 30 °C.

Hexanes : Isopropanol=0.97:0.03, 1.0 mL/min, 247nm				
PeakRet Time (min)Area (mAU*S)Area %				
1	10.543	62943626	98%	
2	13.060	1280488	2%	

Rac 2b

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm				
Peak	Ret Time (min)	Area (mAU*S)	Area %	
1	9.235	39532062	91.9%	
2	11.860	3484320	8.1%	

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	11.965	17192281	95.8%			
2	17.494	749573	4.2%			

Rac 2d

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	12.894	20353799	93.6%			
2	19.439	1385920	6.4%			

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	12.671	22752447	32.6%			
2	16.663	46912830	67.4%			

Rac 2f

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	13.422	35396113	94.9%			
2	20.433	1903394	5.1%			

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	11.677	21093121	93.4%			
2	14.647	1497692	6.6%			

Rac 2h

																_
						1										
	1					/	~									
-	1					/	~									
	4															
	1 1															
0-	¥		¥													
· · .			A									P				
	1 1 1 1 1															
C	10 10	10 11	10 11	20 15	20 1/1	160	16	0 17	n 10	0 10	0 20	0 21	0 22	0 22	0	min
_					· · · · · · · · · · · · · · · · · · ·											

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	14.409	11906483	98%			
2	20.514	244086	2%			

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	8.509	18949428	90.2%			
2	10.347	2055282	9.8%			

Flavanone 2j

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	8.109	7853826	90.4%			
2	11.541	832388	9.6%			

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	9.288	11896624	75.6%			
2	14.500	3845195	24.4%			

Rac 21

Hexanes : Isopropanol=0.93:0.07, 1.0 mL/min, 247nm							
PeakRet Time (min)Area (mAU*S)Area %							
1	8.443	20424660	92.3%				
2	9.674	1694682	7.7%				

Hexanes : Isopropanol=0.93:0.07, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	8.506	14763837	95%			
2	11.552	772373	5%			

Rac 2n

Hexanes : Isopropanol=0.93:0.07, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	10.671	8893376	96.1%			
2	14.703	358395	3.9%			

Hexanes : Isopropanol=0.93:0.07, 1.0 mL/min, 247nm							
Peak	PeakRet Time (min)Area (mAU*S)Area %						
1	7.860	13252513	62.7%				
2	9.371	7878097	37.3%				

Rac 2p

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	10.032	13631754	94.1%			
2	16.009	845955	5.9%			

Hexanes : Isopropanol=0.94:0.06, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	10.166	23504389	91.8%			
2	12.997	2099880	8.2%			

Rac 2r

-													
1										k			
-1			1							Ϋ́			
	27	7.0	28.0	29.0	30.0	31.0	32.0	33.0	34.0	35.0	36.0	37.0	min

Hexanes : Isopropanol=0.85:0.15, 1.0 mL/min, 247nm						
PeakRet Time (min)Area (mAU*S)Area %						
1	29.261	7266263	99.7%			
2 35.269 21783 0.3%						

Flavanone 2s

Hexanes : Isopropanol=0.97:0.03, 1.0 mL/min, 247nm						
Peak Ret Time (min) Area (mAU [*] S) Area %						
1	9.568	806322	95.1%			
2 14.441 41274 4.9%						

Rac 2t

			¥		¥
1	14.0 15.0	16.0 17.0	18.0 19.0	0 20.0 21.0) 22.0 min

Hexanes : Isopropanol=0.9:0.1, 1.0 mL/min, 247nm						
Peak Ret Time (min) Area (mAU*S) Area %						
1	14.158	8039223	98.5%			
2	19.620	125596	1.5%			

Flavanone 2u

Hexanes : Isopropanol=0.85:0.15, 1.0 mL/min, 247nm						
Peak Ret Time (min) Area (mAU [*] S) Area %						
1	13.157	12967350	100%			
2	20.198					

Hexanes : Isopropanol=0.85:0.15, 1.0 mL/min, 247nm							
Peak	PeakRet Time (min)Area (mAU*S)Area %						
1	15.284	11886051	100%				
2	22.206						

Hexanes : Isopropanol=0.85:0.15, 1.0 mL/min, 247nm						
Peak	Ret Time (min)	Area (mAU [*] S)	Area %			
1	15.069	22703868	>99%			
2	17.733					

Figure S4. Enantioselectivities determined by Chiral HPLC. The target products purified after whole-cell reaction was used for selectivity determination by Chiralcel OD-H column, and the results obtained were compared with those previously reported in the literature to determine the *S*-enantiomer and *R*-enantiomer of the products. For all analysis, hexane and isopropanol were used as eluents for the Chiralcel OD-H column. The volume for sample injection was 10μ L and the flow rate was 1mL/minute, and the column was maintained at 30 °C for the entire method.

NMR Spectra

The ¹H NMR and ¹³C NMR spectra of compound 1m.

The ¹H NMR and ¹³C NMR spectra of compound 10.

The ¹H NMR and ¹³C NMR spectra of compound 1p.

The ¹H NMR and ¹³C NMR spectra of compound 1r.

The ¹H NMR and ¹³C NMR spectra of compound 1s.

The ¹H NMR and ¹³C NMR spectra of compound 1t.

The ¹H NMR and ¹³C NMR spectra of compound 1u.

The ¹H NMR and ¹³C NMR spectra of compound 1v.

The ¹H NMR and ¹³C NMR spectra of compound 1w.

The ¹H NMR and ¹³C NMR spectra of compound 2d.

The ¹H NMR and ¹³C NMR spectra of compound 2i.

The ¹H NMR and ¹³C NMR spectra of compound 2t.

References

- [1] S. Gao, A. Das, E. Alfonzo, K. M. Sicinski, D. Rieger, F. H. Arnold, J. Am. Chem. Soc. **2023**, 145, 20196-20201.
- [2] C. K. Prier, R. K. Zhang, A. R. Buller, S. Brinkmann-Chen, F. H. Arnold, *Nat. Chem.* **2017**, *9*, 629-634.
- [3] R. K. Zhang, K. Chen, X. Huang, L. Wohlschlager, H. Renata, F. H. Arnold, *Nature* **2019**, 565, 67-72.
- [4] O. F. Brandenberg, K. Chen, F. H. Arnold, J. Am. Chem. Soc. 2019, 141, 8989-8995.
- [5] M. Pott, M. Tinzl, T. Hayashi, Y. Ota, D. Dunkelmann, P. R. Mittl, D. Hilvert, *Angew. Chem.* **2021**, *133*, 15190-15195.