Table of Contents

General Experimental
Synthesis of Salicylic Acid Ketals
Method A3
Method B3
Method C
Optimization Details4
Table S1. Evaluation of Lewis Acids 4
Table S2. Evaluation of Solvents4
Table S3. Evaluation of Bases 5
Table S4. Evaluation of Silver Salts 5
General Procedure for the Dehydrative Rearrangement (DHR) reaction
Experimental Procedures and Characterization Data7
Salicylic Acid Ketals7
Chromones, Thiochromones, and γ-Pyrones27
Total Synthesis of Chromanone A49
Synthesis of Flavoxate and Upidosin51
Synthesis of Polycyclic γ-Pyrones53
Synthesis of Polycyclic γ-Pyrones
Synthesis of Polycyclic γ-Pyrones
Synthesis of Polycyclic γ-Pyrones
Synthesis of Polycyclic γ-Pyrones 53 Substrates Where Competing Formylation Was Observed 57 Control Experiments and Kinetic Studies 58 Crossover Experiments 58 Hammett Plot Analysis 58
Synthesis of Polycyclic γ-Pyrones 53 Substrates Where Competing Formylation Was Observed 57 Control Experiments and Kinetic Studies 58 Crossover Experiments 58 Hammett Plot Analysis 58 DHR Reaction/Formylation Competition Experiments 60
Synthesis of Polycyclic γ-Pyrones 53 Substrates Where Competing Formylation Was Observed 57 Control Experiments and Kinetic Studies 58 Crossover Experiments 58 Hammett Plot Analysis 58 DHR Reaction/Formylation Competition Experiments 60 X-Ray Crystallographic Data 61
Synthesis of Polycyclic γ-Pyrones 53 Substrates Where Competing Formylation Was Observed 57 Control Experiments and Kinetic Studies 58 Crossover Experiments 58 Hammett Plot Analysis 58 DHR Reaction/Formylation Competition Experiments 60 X-Ray Crystallographic Data 61 Compound 53 61
Synthesis of Polycyclic γ-Pyrones 53 Substrates Where Competing Formylation Was Observed 57 Control Experiments and Kinetic Studies 58 Crossover Experiments 58 Hammett Plot Analysis 58 DHR Reaction/Formylation Competition Experiments 60 X-Ray Crystallographic Data 61 Compound 53 61 Compound 71 64
Synthesis of Polycyclic γ-Pyrones 53 Substrates Where Competing Formylation Was Observed 57 Control Experiments and Kinetic Studies 58 Crossover Experiments 58 Hammett Plot Analysis 58 DHR Reaction/Formylation Competition Experiments 60 X-Ray Crystallographic Data 61 Compound 53 61 Compound 71 64 Compound 72 67
Synthesis of Polycyclic γ-Pyrones 53 Substrates Where Competing Formylation Was Observed 57 Control Experiments and Kinetic Studies. 58 Crossover Experiments. 58 Hammett Plot Analysis 58 DHR Reaction/Formylation Competition Experiments. 60 X-Ray Crystallographic Data 61 Compound 53 61 Compound 71 64 Compound 72 67 References 71

General Experimental

All solvents were purchased as the highest available grade from Energy Chemical, Leyan, Bide and Sinopharm Chemical. All moisture and oxygen sensitive reactions were performed in flame-dried glassware under a slight argon overpressure. All reactions were stirred magnetically. Sensitive solutions, solvents or reagents were transferred via cannula or syringe. Reactions were monitored by thin-layer chromatography (TLC) or ¹H NMR of the crude mixture. Thin-layer chromatography was carried out on pre-coated Leyan HPTLC Silica Gel 60 GF254 plate. Evaporations were conducted under reduced pressure at temperatures lower than 35 °C, unless otherwise noted. Further dryings of the residues were accomplished using a high vacuum pump. Flash column chromatography was performed with silica gel from SiliaFlash (0.040-0.063 µm, 240-400 mesh). All NMR spectra were measured on Bruker Avance III 400 or Avance III 500. Chemical shifts are given in ppm and referenced to the solvent residual peaks (Chloroform- d^{1} H, δ = 7.26 ppm, ¹³C, δ = 77.16 ppm; DMSO- d_{6}^{1} H, δ = 2.50 ppm, ¹³C, δ = 39.52 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet,d = doublet, t = triplet, q = quartet, p = pentet, h = hextet, m = multiplet, br = broad), coupling constant J, integration. Highresolution mass spectra were measured on Agilent 1290/6545 UHPLC-QTOF/MS. Melting points were recorded on a SGWX-4A melting point apparatus (Shanghai instrument physical optics instrument Co., LTD.) and are uncorrected.

Synthesis of Salicylic Acid Ketals

Method A

Method A is according to procedures reported in literature.^{1,2} To an ice-cold suspension of salicylic acid (1.0 equiv) in TFA were added ketone (2.0 equiv) and trifluoroacetic anhydride. The mixture was warmed slowly to room temperature and kept stirring for 8-24 hours. For substrates that low conversions were observed at room temperature as indicated by TLC, the reaction temperature can be increased. After completion, the reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO₃. The organic layer was then dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography to afford the corresponding salicylic acid ketal.

Method B

Method B is according to procedures reported in literature.^{3,4} To a flask containing salicylic acid (1.0 equiv) and DMAP (0.1 equiv) were added DME and ketone (1.3 equiv). This solution was cooled to 0 °C under argon followed by addition of SOCl₂ (1.5 equiv) dropwise. The reaction was brought to room temperature and stirred for 18 hours before evacuated under vacuum. The residue was diluted in EtOAc and washed with saturated aqueous NaHCO₃ and brine. The organic layer was dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography to afford the corresponding salicylic acid ketal.

Method C

Method C is according to procedures reported in literature.^{5,6} To a suspension of salicylic acid (1.0 equiv) in CH_2Cl_2 was added $SOCl_2$ (2.0 equiv) dropwise at 40 °C and the resulting mixture was allowed to stir at the same temperature for 6 hours before evacuated under vacuum. Ketone (1.0 equiv) was added and the resulting mixture was heated (120 – 160 °C) for 5 hours before cooling to room temperature. The residue was purified by flash column chromatography to afford the corresponding salicylic acid ketal.

Optimization Details

Table S1. Evaluation of Lewis Acids

	DCME (1.5 equiv) Lewis acid CH ₂ Cl ₂ , temp.	Me
Entry ^a	Lewis acid	Yield ^b
1	BF ₃ •Et ₂ O (1.0 equiv)	N.D.
2	AlCl ₃ (1.0 equiv)	trace
3	LiCI (1.0 equiv)	trace
4	LiBr (1.0 equiv)	N.D.
5	MgCl ₂ (1.0 equiv)	trace
6	POCl ₃ (1.0 equiv)	N.D.
7	ZnBr ₂ (1.0 equiv)	65%
8	ZnCl ₂ (1.0 equiv)	64%
9	FeCl ₃ (1.0 equiv)	<10%
10	CeCl ₃ (1.0 equiv)	N.D.
11	SnCl ₄ (1.0 equiv)	91%
12	AgOTf (3.0 equiv)	92% (89%) ^c
13	SnCl ₄ (0.5 equiv)	92% (90%) ^c
14	AgNTf ₂ (3.0 equiv)	91% (90%) ^c
15 ^d	SnCl ₄	N.D. ^e
16 ^d	AgOTf	N.D. ^f
17 ^g	SnCl ₄ or AgOTf	N.D.

^aReaction conditions: 5a (0.25 mmol), DCME (1.5 equiv), Lewis acid, CH₂Cl₂ (1.5 mL), Ar, room temperature.
 ^bDetermined by ¹H NMR analysis of crude product using (CHCl₂)₂ as the internal standard. ^cIsolated yield. ^dWithout DCME. ^eConversion was 33%. ^fConversion was <5%. ^gDCME was replaced with trimethyl orthoformate. N.D. = not detected.

Table S2. Evaluation of Solvents

		ME (1.5 equiv) Lewis acid solvent, rt 6	9
Entry ^a	Lewis acid	Solvent	Yield ^b
1	SnCl₄ (0.2 equiv)	CH ₂ Cl ₂	68%
2	SnCl ₄ (0.5 equiv)	cyclohexane	<10%
3	SnCl₄ (0.5 equiv)	CH₃CN	37%
4	SnCl ₄ (0.5 equiv)	EtOAc	41%
5	SnCl ₄ (0.5 equiv)	acetone	N.D.
6	SnCl ₄ (0.2 equiv)	PhMe	20%
7	SnCl ₄ (0.2 equiv)	DCE	50%
8	SnCl ₄ (0.2 equiv)	CHCI₃	47%
9	SnCl₄ (0.2 equiv)	CCI ₄	20%
10	SnCl ₄ (0.2 equiv)	CH ₂ Cl ₂ (40 °C)	65%

^{*a*}**Reaction conditions: 5a** (0.25 mmol), DCME (1.5 equiv), Lewis acid, CH₂Cl₂ (1.5 mL), Ar, room temperature. ^{*b*}Determined by ¹H NMR analysis of crude product using (CHCl₂)₂ as the internal standard. N.D. = not detected.

Table S3. Evaluation of Bases

Ĺ	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \mathbf{M} \\ 5 \\ 0 \\ \mathbf{M} \\ 5 \\ 0 \\ 0 \\ \mathbf{M} \\ 0 \\ $	
Entry ^a	Base	Yield ^b
1	Et₃N (3.0 equiv)	N.D.
2	DBU (3.0 equiv)	N.D.
3	NaHCO ₃ (3.0 equiv)	59%
4	K ₂ CO ₃ (3.0 equiv)	58%
5	Na ₂ HPO ₄ (3.0 equiv)	36%

^a**Reaction conditions: 5a** (0.25 mmol), DCME (1.5 equiv), Lewis acid, CH₂Cl₂ (1.5 mL), Ar, room temperature. ^bDetermined by ¹H NMR analysis of crude product using (CHCl₂)₂ as the internal standard. N.D. = not detected.

Table S4. Evaluation of Silver Salts

Ĺ	$ \begin{array}{c} 0 & DCME (7) \\ - & Occ_2Et & Ag sall \\ - & CO_2Et & CH_2 \\ S3 $	1.5 equiv) t (3.0 eq) Cl ₂ , rt	9 O CO ₂ Et	N S Ag	A1 A2
Entry ^a	[Ag] (3.0 equiv)	Yield ^b	Entry	[Ag] (3.0 equiv)	Yield ^b
1	AgOTf	62% ^c	11	PhCOOAg	N.D.
2	Ag ₃ PO ₄	N.D.	12	AgBF ₄	trace
3	ĀgF	N.D.	13	CH ₃ SO ₃ Ag	N.D.
4	CH ₃ CO ₂ Ag	N.D.	14	Silver sulfadiazine	N.D.
5	Ag ₂ CO ₃	N.D.	15	<i>p</i> -TsOAg	N.D.
6	Ag_2SO_4	N.D.	16	Ag ₂ O	N.D.
7	CF₃COOAg	N.D.	17	A1	N.D.
8	AgClO ₄	N.D.	18	A2	N.D.
9	AgSbF ₆	N.D.	19	AgNTf ₂	45% ^c
10	Silver lactate	N.D.		-	

^aReaction conditions: S3 (1.0 equiv), DCME (1.5 equiv), Lewis acid, CH₂Cl₂, Ar, room temperature.

^bDetermined by ¹H NMR analysis of crude product using (CHCl₂)₂ as the internal standard. ^cIsolated yield. N.D. = not detected.

General Procedure for the Dehydrative Rearrangement (DHR) reaction

To an oven-dried flask equipped with a magnetic stir bar were added ketal (1.0 equiv), Lewis acid (0.5 equiv of SnCl₄, or 3.0 equiv of AgOTf or 3.0 equiv of AgNTf₂) and CH₂Cl₂ (0.6 mL per 0.1 mmol) under argon. DCME (1.5 equiv) was added dropwise at room temperature. The reaction mixture was allowed to stir at the same temperature unless otherwise specified. After completion as indicated by TLC (or stirred at room temperature for 12 hours), the reaction mixture was diluted with EtOAc and washed by saturated aqueous NaHCO₃ and brine. The organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography to afford the corresponding chromone, thiochromone or γ -pyrone.

Experimental Procedures and Characterization Data

Salicylic Acid Ketals Compound 5a

2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 30.0 mmol scale with salicylic acid and acetone at room temperature for 24 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 3.52 g (66%) of the title compound **5a**.

Physical State: white solid.

m.p.: 58 - 59 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.92 (dd, J = 7.8, 1.7 Hz, 1H), 7.52 (ddd, J = 8.1, 7.4, 1.7 Hz, 1H), 7.09 (td, J = 7.6, 1.0 Hz, 1H), 6.93 (dd, J = 8.3, 1.0 Hz, 1H), 1.70 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.2, 156.1, 136.5, 129.7, 122.7, 117.2, 113.6, 106.4, 25.8. Spectroscopic data are in agreement with published values.⁷

Compound S1

2,2-diethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 10.0 mmol scale with salicylic acid and 3-pentanone at room temperature for 24 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 0.94 g (45%) of the title compound **S1**.

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.95 – 7.88 (m, 1H), 7.51 (tt, *J* = 7.4, 1.9 Hz, 1H), 7.06 (td, *J* = 7.7, 3.1 Hz, 1H), 6.94 (dd, *J* = 8.4, 2.7 Hz, 1H), 1.97 (qd, *J* = 7.5, 2.8 Hz, 4H), 0.99 (td, *J* = 7.4, 2.5 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.3, 156.1, 136.4, 129.5, 122.4, 117.2, 113.9, 110.3, 28.8, 7.5.

HRMS (ESI) calculated for: C₁₂H₁₅O₃⁺ ([M+H]⁺) m/z 207.1016, found 207.1014.

Compound S2

2-ethyl-4H-benzo[d][1,3]dioxin-4-one

Compound **S2** *was prepared according to procedures reported in literature.*⁸⁻¹⁰ A mixture of ester **S2-1** (1.4 g, 9.2 mmol, 1.0 equiv), K₂CO₃ (2.54 g, 2.0 equiv), and allyl bromide (1.34 g, 1.2 equiv) in DMF (40 mL) was heated to 80 °C for 2 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc and washed with brine. The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by flash column chromatography to give **S2-2** (1.37 g, 78%).⁸

Compound **S2-2** (0.96 g, 5.0 mmol, 1.0 equiv) was dissolved in THF/MeOH (1/1, 8 mL) and NaOH (aq. 2 M, 7.5 mL, 3.0 equiv) was added. The solution was stirred at room temperature for 6 hours before acidified to pH 2 with 3 N HCI. The layers were separated and the aqueous lay was extracted with EtOAc for three time. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to provide the crude acid **S2-3** (0.88 g, 99%), which was used directly in the next step without further purification.⁸

A mixture of **S2-3** (88 mg, 0.5 mmol, 1.0 equiv) and AgOAc (0.25 g, 3.0 equiv) was stirred in DMSO (6 mL) at 120 °C for 10 hours. After cooling to room temperature, saturated aqueous NH₄Cl was added, and the mixture was extracted with DCE for three times. The combined organic layers were dried over anhydrous Na₂SO₄, concentrated and purified by flash column chromatography to give **S2-4** (53 mg, 61%).⁹

To a solution of **S2-4** (0.3 g, 1.72 mmol, 1.0 equiv) in THF (15 mL) was added Pd/C (60 mg). After exchanging the atmosphere with hydrogen for three times, the reaction mixture was allowed to stir at room temperature under hydrogen balloon for 0.5 hour. The mixture was filtered through celite and rinsed with THF. After evaporation, the residue was purified by flash column chromatography to give **S2** (0.27 g, 90%).

Physical State: yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.94 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.53 (ddd, *J* = 8.7, 7.3, 1.7 Hz, 1H), 7.13 (td, *J* = 7.6, 1.1 Hz, 1H), 7.01 (dd, *J* = 8.3, 1.1 Hz, 1H), 5.54 (t, *J* = 4.9 Hz, 1H), 2.03 (qd, *J* = 7.5, 4.8 Hz, 2H), 1.11 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 162.4, 158.5, 136.2, 130.2, 123.3, 116.7, 114.5, 102.3, 26.9, 7.2.

Spectroscopic data are in agreement with published values.¹⁰

Compound S3

ethyl 2-(4-oxo-4H-benzo[d][1,3]dioxin-2-yl)acetate

Compound **S3** was prepared according to procedures reported in literature.¹¹ To an oven-dried flask equipped with a magnetic stir bar were added salicylic acid (1.66 g, 12.0 mmol, 1.2 equiv), NaHCO₃ (1.08 g, 1.2 equiv), Cul (1.90 g, 1.0 equiv), ethyl propiolate (0.98 g, 1.0 equiv) and CH₃CN (50 mL) successively. The reaction mixture was stirred at 80 °C. After completion, the reaction mixture was diluted with EtOAc and filtered over celite. After evaporation, the crude product was purified by flash column chromatography to obtain **S3** (1.62 g, 57%).

Physical State: yellow oil.

¹H NMR (500 MHz, Chloroform-*d*): δ 7.98 (dd, J = 7.8, 1.7 Hz, 1H), 7.57 (ddd, J = 8.6, 7.4, 1.7 Hz, 1H), 7.19 (td, J = 7.6, 1.1 Hz, 1H), 7.04 (dd, J = 8.3, 1.0 Hz, 1H), 6.05 (t, J = 5.5 Hz, 1H), 4.23 (qd, J = 7.1, 1.1 Hz, 2H), 3.09 (dd, J = 5.5, 3.3 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 167.7, 161.5, 158.0, 136.5, 130.3, 123.8, 116.8, 114.4, 98.2, 61.4, 39.4, 14.2.

Spectroscopic data are in agreement with published values.¹¹

Compound S4

4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclobutan]-4-one

Following Method A on 5.0 mmol scale with salicylic acid and cyclobutanone at room temperature for 24 hours. Purification by flash column chromatography (silica, 40:1 PE:EtOAc) afforded 0.35 g (37%) of the title compound **S4**.

Physical State: yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.93 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.56 (ddd, *J* = 8.7, 7.4, 1.7 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 8.3 Hz, 1H), 2.61 – 2.42 (m, 4H), 2.00 – 1.82 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.6, 156.1, 136.5, 130.0, 123.3, 117.6, 114.6, 105.6, 34.5, 11.4.

HRMS (ESI) calculated for: C₁₁H₁₁O₃⁺ ([M+H]⁺) m/z 191.0703, found 191.0704.

Compound S5

4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclopentan]-4-one

Following Method A on 0.5 mmol scale with salicylic acid and cyclopentanone at 80 °C for 4 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 53 mg (48%) of the title compound **S5**.

Physical State: yellow solid.

m.p.: 75 - 77 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.89 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.48 (td, *J* = 7.8, 1.7 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 8.3 Hz, 1H), 2.17 – 2.01 (m, 4H), 1.85 – 1.69 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.7, 156.8, 136.2, 129.7, 122.7, 117.2, 116.2, 114.3, 37.0, 23.2.

HRMS (ESI) calculated for: C₁₂H₁₃O₃⁺ ([M+H]⁺) m/z 205.0859, found 205.0864.

Compound 75b

4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 10.0 mmol scale with salicylic acid and cyclohexanone at room temperature for 24 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 1.35 g (62%) of the title compound **75b**.

Physical State: yellow solid.

m.p.: 63 - 64 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.94 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.54 (ddd, *J* = 8.7, 7.5, 1.7 Hz, 1H), 7.10 (td, *J* = 7.6, 1.1 Hz, 1H), 6.97 (dd, *J* = 8.3, 0.9 Hz, 1H), 2.06 – 1.93 (m, 4H), 1.74 – 1.63 (m, 4H), 1.57 – 1.41 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.3, 155.8, 136.4, 129.7, 122.6, 117.3, 114.3, 107.0, 34.6, 24.7, 22.3.

HRMS (ESI) calculated for: C₁₃H₁₅O₃⁺ ([M+H]⁺) m/z 219.1016, found 219.1012.

Compound S6

4H-spiro[benzo[d][1,3]dioxine-2,1'-cycloheptan]-4-one

Following Method A on 10.0 mmol scale with salicylic acid and cycloheptanone at room temperature for 24 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 1.98 g (62%) of the title compound **S6**.

Physical State: white solid.

m.p.: 42 - 43 °C.

¹H NMR (500 MHz, Chloroform-*d*): δ 7.92 (dd, J = 7.7, 1.7 Hz, 1H), 7.52 (td, J = 7.8, 1.7 Hz, 1H), 7.08 (td, J = 7.6, 0.8 Hz, 1H), 6.95 (dd, J = 8.3, 0.2 Hz, 1H), 2.26 – 2.13 (m, 4H), 1.66 – 1.60 (m, 8H). ¹³C NMR (126 MHz, Chloroform-*d*): δ 161.3, 156.0, 136.4, 129.6, 122.5, 117.3, 114.2, 111.2, 38.3, 28.8, 21.5.

HRMS (ESI) calculated for: C₁₄H₁₇O₃⁺ ([M+H]⁺) m/z 233.1172, found 233.1169.

Compound S7

4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclooctan]-4-one

Following Method A on 0.5 mmol scale with salicylic acid and cyclooctanone at 80 °C for 4 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 51 mg (41%) of the title compound **S7**.

Physical State: white solid.

m.p.: 41 - 43 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.89 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.50 (td, *J* = 8.2, 1.5 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 2.20 – 2.14 (m, 4H), 1.67 – 1.54 (m, 10H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.1, 155.7, 136.4, 129.5, 122.4, 117.2, 114.0, 110.6, 33.4, 27.6, 24.4, 21.1.

HRMS (ESI) calculated for: C₁₅H₁₉O₃⁺ ([M+H]⁺) m/z 247.1329, found 247.1322.

Compound S8

4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclododecan]-4-one

Following Method A on 0.5 mmol scale with salicylic acid and cyclododecanone at 80 °C for 6 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 23 mg (30%) of the title compound **S8**.

Physical State: white solid.

m.p.: 94 - 96 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.94 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.53 (td, *J* = 7.8, 1.0 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 8.3 Hz, 1H), 2.02 (t, *J* = 8.0 Hz, 4H), 1.60 - 1.54 (m, 2H), 1.52 - 1.43 (m, 2H), 1.40 - 1.33 (m, 14H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.3, 156.0, 136.4, 129.7, 122.6, 117.2, 114.5, 110.9, 31.6, 26.0, 25.8, 22.5, 22.1, 19.5.

HRMS (ESI) calculated for: C₁₉H₂₇O₃⁺ ([M+H]⁺) m/z 303.1955, found 303.1954.

Compound S9

2-methyl-2-phenyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 10.0 mmol scale with salicylic acid and acetophenone at room temperature for 24 hours. After workup, the crude product was dissolved in MeOH (20 mL) and NaBH₄ (0.19 g, 5.0 mmol) was added at 0 °C to reduce the excess acetophenone. After 30 min, the solvent was removed under vacuum, and the residue was diluted with H₂O and extracted with EtOAc. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 1.30 g (54%) of the title compound **S9**. **Physical State:** yellow solid.

m.p.: 45 - 46 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.82 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.54 – 7.48 (m, 3H), 7.35 – 7.27 (m, 3H), 7.08 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.05 – 6.98 (m, 1H), 2.02 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.5, 156.6, 140.6, 136.5, 129.9, 129.0, 128.8, 126.0, 122.9, 117.3, 114.9, 106.9, 30.2.

HRMS (ESI) calculated for: C₁₅H₁₃O₃⁺ ([M+H]⁺) m/z 241.0859, found 241.0858.

Compound S10

2-(4-methoxyphenyl)-2-methyl-4H-benzo[d][1,3]dioxin-4-one

Following Method B on 10.0 mmol scale with salicylic acid and 4-methoxyacetophenone at room temperature for 18 hours. After workup, the crude product was dissolved in MeOH (20 mL) and NaBH₄ (0.19 g, 5.0 mmol) was added at 0 °C to reduce the excess 4-methoxy acetophenone. After 30 min, the solvent was removed under vacuum, and the residue was diluted with H₂O and extracted with EtOAc. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 1.0 g (37%) of the title compound **S10**.

Physical State: white solid.

m.p.: 96 - 98 °C.

¹**H NMR (500 MHz, Chloroform-***d***):** δ 7.80 (dd, J = 7.8, 1.7 Hz, 1H), 7.48 (ddd, J = 8.7, 7.3, 1.7 Hz, 1H), 7.41 – 7.38 (m, 2H), 7.03 (dd, J = 8.3, 1.1 Hz, 1H), 6.99 (td, J = 7.6, 1.1 Hz, 1H), 6.81 – 6.78 (m, 2H), 3.73 (s, 3H), 1.97 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 161.6, 160.0, 156.6, 136.4, 132.6, 129.8, 127.4, 122.8, 117.3, 114.8, 114.1, 107.0, 55.3, 30.2.

HRMS (ESI) calculated for: C₁₆H₁₅O₄⁺ ([M+H]⁺) m/z 271.0965, found 271.0969.

Compound 18-1

2-methyl-2-propyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 10.0 mmol scale with salicylic acid and 2-pentanone at room temperature for 24 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 1.10 g (53%) of the title compound **18-1**.

Physical State: yellow oil.

¹H NMR (500 MHz, Chloroform-*d*): δ 7.92 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.52 (td, *J* = 8.0, 1.7 Hz, 1H), 7.08 (td, *J* = 7.5, 1.1 Hz, 1H), 6.93 (dd, *J* = 8.3, 1.0 Hz, 1H), 1.96 – 1.91 (m, 2H), 1.64 (s, 3H), 1.58 – 1.49 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 161.2, 156.1, 136.4, 129.6, 122.6, 117.2, 113.8, 108.1, 41.0, 23.7, 16.8, 14.0.

HRMS (ESI) calculated for: C₁₂H₁₅O₃⁺ ([M+H]⁺) m/z 207.1016, found 207.1011.

Compound 18-2

2-(4-chlorobenzyl)-2-methyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with salicylic acid and 4-chlorophenylacetone at 80 °C for 8 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 25 mg (35%) of the title compound **18-2**.

Physical State: yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.95 (d, *J* = 7.8 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 8.3 Hz, 1H), 3.30 (AB, *J* = 14.2 Hz, 1H), 3.20 (BA, *J* = 14.2 Hz, 1H), 1.62 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 160.8, 155.8, 136.8, 133.4, 132.8, 132.1, 129.9, 128.6, 122.9, 117.3, 113.7, 107.1, 44.2, 23.8.

HRMS (ESI) calculated for: C₁₆H₁₄ClO₃⁺ ([M+H]⁺) m/z 289.0626, found 289.0629.

Compound 18-3

ethyl 2-(2-methyl-4-oxo-4H-benzo[d][1,3]dioxin-2-yl)acetate

To an oven-dried flask equipped with a magnetic stir bar were added salicylic acid (24.0 mmol, 1.2 equiv), Cul (20.0 mmol, 1.0 equiv), Et₃N (24.0 mmol, 1.2 equiv), ethyl 2-butynoate (20.0 mmol, 1.0 equiv) and CH₃CN (50 mL) under argon. The reaction was heated to 80 °C and kept for stirring until completion as indicated by TLC. The reaction mixture was diluted with EtOAc and filtered over celite. After concentration, the crude product was purified by flash column chromatography to obtain compound **18-3** (0.78 g, 16%).

Physical State: yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.93 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.60 – 7.50 (m, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.01 (AB, *J* = 14.4 Hz, 1H), 2.95 (BA, *J* = 14.4 Hz, 1H), 1.85 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 167.4, 160.1, 155.5, 136.7, 129.7, 123.1, 117.4, 113.5, 105.0, 61.2, 43.4, 24.5, 14.1.

HRMS (ESI) calculated for: C₁₃H₁₅O₅ ⁺ ([M+H]⁺) m/z 251.0914, found 251.0917.

Compound 18-4

2-(methoxymethyl)-2-methyl-4H-benzo[d][1,3]dioxin-4-one

Following Method C on 3.0 mmol scale with salicylic acid and 1-ethoxypropan-2-one at 120 °C for 6 hours. Purification by flash column chromatography (silica, 100:1 PE:EtOAc) afforded 0.19 g (30%) of the title compound **18-4**.

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.94 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.55 (ddd, *J* = 8.4, 7.6, 1.7 Hz, 1H), 7.11 (td, *J* = 7.8, 0.9 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 3.73 (AB, *J* = 10.8 Hz, 1H), 3.63 (BA, *J* = 10.8 Hz, 1H), 3.42 (s, 3H), 1.72 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 160.5, 155.9, 136.6, 129.7, 122.9, 117.2, 113.7, 106.2, 75.1, 60.0, 21.9.

HRMS (ESI) calculated for: C₁₁H₁₃O₄ ⁺ ([M+H]⁺) m/z 209.0808, found 209.0810.

Compound 18-5

2-((benzyloxy)methyl)-2-methyl-4H-benzo[d][1,3]dioxin-4-one

Physical State: colorless oil.

Following Method C on 6.0 mmol scale with salicylic acid and 1-(benzyloxy)propan-2-one at 120 °C for 4 hours. Purification by flash column chromatography (silica, 100:1 PE:EtOAc) afforded 0.77 g (46%) of the title compound **18-5**.

¹H NMR (500 MHz, Chloroform-d): δ 7.93 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.32 – 7.25 (m, 5H), 7.11 (td, *J* = 7.5, 0.7 Hz, 1H), 7.00 (d, *J* = 8.3 Hz, 1H), 4.62 – 4.55 (m, 2H), 3.79 (AB, *J* = 10.9 Hz, 1H), 3.69 (BA, *J* = 10.9 Hz, 1H), 1.75 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 160.6, 156.0, 137.4, 136.6, 129.7, 128.6, 128.0, 127.8, 122.8, 117.2, 113.8, 106.3, 73.9, 72.4, 22.3.

HRMS (ESI) calculated for: C₁₇H₁₇O₄ ⁺ ([M+H]⁺) m/z 285.1121, found 285.1124.

Compound 18-6

(2-methyl-4-oxo-4H-benzo[d][1,3]dioxin-2-yl)methyl acetate

The **52e** were prepared according to procedures reported in literature.¹² A suspension of Zn-dust (30 mg, 0.45 mmol) in petroleum ether (6 mL) was stirred with **18-5** (0.511 g, 1.8 mmol) and acetyl chloride (0.144 mL, 1.98 mmol) at room temperature under argon for 3 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 0.41 g (97%) of the title compound **18-6**. **Physical State:** colorless oil.

¹H NMR (500 MHz, Chloroform-*d*): δ 7.95 (dd, J = 7.8, 1.5 Hz, 1H), 7.56 (td, J = 8.3, 1.7 Hz, 1H), 7.14 (td, J = 7.8, 0.8 Hz, 1H), 6.98 (d, J = 8.3 Hz, 1H), 4.40 (AB, J = 12.0 Hz, 1H), 4.34 (BA, J = 12.0 Hz, 1H), 2.06 (s, 3H), 1.74 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 170.2, 160.1, 155.7, 136.8, 129.8, 123.2, 117.2, 113.4, 104.8, 65.5, 22.4, 20.7.

HRMS (ESI) calculated for: C₁₂H₁₃O₅ ⁺ ([M+H]⁺) m/z 237.0757, found 237.0757.

Compound S11

5-methoxy-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 4.0 mmol scale with 2-hydroxy-6-methoxybenzoic acid and cyclohexanone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 0.36 g (36%) of the title compound **S11**.

Physical State: white solid.

m.p.: 116 - 117 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.42 (t, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 8.5 Hz, 1H), 6.55 (d, *J* = 8.2 Hz, 1H), 3.92 (s, 3H), 2.02 – 1.87 (m, 4H), 1.73 – 1.54 (m, 4H), 1.52 – 1.37 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 161.5, 158.5, 157.6, 136.5, 109.4, 106.0, 105.5, 103.9, 56.5, 34.4, 24.8, 22.4.

HRMS (ESI) calculated for: C₁₄H₁₇O_{4⁺} ([M+H]⁺) m/z 249.1121, found 249.1121.

Compound S12

5-fluoro-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 4.0 mmol scale with 2-fluoro-6-hydroxybenzoic acid and cyclohexanone at room temperature for 24 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 0.27 g (28%) of the title compound **S12**.

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.48 (td, *J* = 8.4, 5.8 Hz, 1H), 6.84 – 6.76 (m, 2H), 2.04 – 1.92 (m, 4H), 1.75 – 1.58 (m, 4H), 1.55 – 1.41 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 162.6 (d, J = 265.6 Hz), 157.1 (d, J = 4.0 Hz), 156.9 (d, J = 1.9 Hz), 136.8 (d, J = 11.3 Hz), 113.1 (d, J = 3.9 Hz), 110.5 (d, J = 20.9 Hz), 107.2, 104.1 (d, J = 10.4 Hz), 34.5, 24.6, 22.2.

¹⁹F NMR (471 MHz, Chloroform-d): δ -107.8 (dd, J = 9.3, 6.1 Hz).

HRMS (ESI) calculated for: C₁₃H₁₄FO₃⁺ ([M+H]⁺) m/z 237.0921, found 237.0922.

Compound S13

2,2-diethyl-6-methyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 5-methylsalicylic acid and 3-pentanone at 40 °C for 10 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 24 mg (44%) of the title compound **S13**.

Physical State: white solid.

m.p.: 56 -58 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.73 (s, 1H), 7.33 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.85 (dd, *J* = 8.6, 1.5 Hz, 1H), 2.32 (s, 3H), 1.97 (qd, *J* = 7.4, 1.8 Hz, 4H), 1.02 – 0.97 (td, *J* = 7.4, 1.4 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.7, 154.0, 137.3, 132.1, 129.4, 117.0, 113.6, 110.3, 28.8, 20.6, 7.6.

HRMS (ESI) calculated for: C₁₃H₁₇O₃⁺ ([M+H]⁺) m/z 221.1172, found 221.1168.

Compound S14

6-(trifluoromethoxy)-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclopentan]-4-one

Following Method A on 2.0 mmol scale with 2-hydroxy-5-(trifluoromethoxy)benzoic acid and cyclopentanone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 0.27g (47%) of the title compound **S14**.

Physical State: yellow oil.

¹H NMR (400 MHz, Chloroform-*a*): δ 7.79 (dd, *J* = 2.9, 1.2 Hz, 1H), 7.38 (dd, *J* = 8.9, 2.9 Hz, 1H), 7.02 (d, *J* = 8.9 Hz, 1H), 2.19 – 2.09 (m, 4H), 1.88 – 1.76 (m, 4H).

¹³**C NMR (101 MHz, Chloroform-***d***):** δ 160.7, 155.4, 143.9, 129.6, 122.3, 120.5 (q, *J* = 259.6 Hz), 119.0, 116.9, 115.1, 37.2, 23.3.

¹⁹F NMR (471 MHz, CDCl₃): δ -58.5.

HRMS (ESI) calculated for: $C_{13}H_{12}F_{3}O_{4}^{+}$ ([M+H]⁺) m/z 289.0682, found 289.0683.

Compound S15

6-chloro-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclopentan]-4-one

Following Method A on 0.25 mmol scale with 5-chlorosalicylic acid and cyclopentanone at 80 °C for 12 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 28 mg (47%) of the title compound **S15**.

Physical State: brown solid.

m.p.: 53 - 57 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.91 – 7.83 (m, 1H), 7.49 – 7.42 (m, 1H), 6.92 (dd, *J* = 9.0, 3.5 Hz, 1H), 2.16 – 2.07(m, 4H), 1.86 – 1.75 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 160.6, 155.4, 136.2, 129.2, 128.1, 118.9, 116.7, 115.4, 37.1, 23.2.

HRMS (ESI) calculated for: C₁₂H₁₂ClO₃⁺ ([M+H]⁺) m/z 239.0469, found 239.0468.

Compound S16

MeO

6-methoxy-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.5 mmol scale with 5-methoxysalicylic acid and acetone at 80 °C for 8 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 47 mg (45%) of the title compound **S16**.

Physical State: white solid.

m.p.: 105 - 107 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.32 (d, *J* = 3.1 Hz, 1H), 7.06 (dd, *J* = 8.9, 3.1 Hz, 1H), 6.83 (d, *J* = 9.0 Hz, 1H), 3.74 (s, 3H), 1.65 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.3, 154.8, 150.1, 124.7, 118.3, 113.6, 110.9, 106.3, 55.8, 25.6.

HRMS (ESI) calculated for: $C_{11}H_{13}O_4^+$ ([M+H]⁺) m/z 209.0808, found 209.0812.

Compound S17

2,2-dimethyl-6-nitro-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 10.0 mmol scale with 5-nitrosalicylic acid and acetone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 1.26 g (57%) of the title compound **S17**.

Physical State: white solid.

m.p.: 92 - 94 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.76 (d, *J* = 2.8 Hz, 1H), 8.38 (dd, *J* = 9.1, 2.8 Hz, 1H), 7.12 (d, *J* = 9.0 Hz, 1H), 1.75 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 160.3, 158.9, 142.7, 131.2, 125.8, 118.6, 113.3, 107.8, 25.8. HRMS (ESI) calculated for: $C_{10}H_{10}NO_5^+$ ([M+H]⁺) m/z 224.0553, found 224.0552.

Compound S18

6-(2,4-difluorophenyl)-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 5.0 mmol scale with diflunisal and acetone at room temperature for 24 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 0.76 g (52%) of the title compound **S18**.

Physical State: white solid.

m.p.: 111 - 113 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.08 (s, 1H), 7.70 (d, *J* = 8.6 Hz, 1H), 7.39 (q, *J* = 8.5 Hz, 1H), 7.03 (d, *J* = 8.6 Hz, 1H), 6.99 – 6.87 (m, 2H), 1.77 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 162.6 (dd, J = 250.5, 11.1 Hz), 161.0, 159.8 (dd, J = 251.5, 12.1 Hz), 155.6, 137.0 (d, J = 4.0 Hz), 131.3 (dd, J = 10.1, 5.0 Hz), 129.9 (d, J = 3.0 Hz), 129.8, 123.6 (dd, J = 13.1, 3.0 Hz), 117.6, 113.8, 112.0 (dd, J = 12.1, 3.0 Hz), 106.8, 104.7 (t, J = 5.0 Hz), 26.0.

¹⁹F NMR (471 MHz, Chloroform-*d*): δ -110.4 (p, *J* = 7.9 Hz), -113.6 (q, *J* = 8.9 Hz).

HRMS (ESI) calculated for: C₁₆H₁₃F₂O₃⁺ ([M+H]⁺) m/z 291.0827, found 291.0827.

Compound S19

6-fluoro-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 0.25 mmol scale with 5-fluorosalicylic acid and cyclohexanone at 80 °C for 12 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 30 mg (51%) of the title compound **S19**.

Physical State: yellow solid.

m.p.: 79 - 81 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.63 (dd, *J* = 7.7, 3.1 Hz, 1H), 7.31 – 7.25 (m, 1H), 6.99 (dd, *J* = 9.0, 4.1 Hz, 1H), 2.08 – 1.94 (m, 4H), 1.77 – 1.62 (m, 4H), 1.59 – 1.44 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 160.4, 157.7 (d, J = 244.4 Hz), 152.0 (d, J = 3.0 Hz), 123.8 (d, J = 24.2 Hz), 118.9 (d, J = 8.1 Hz), 115.4 (d, J = 24.2 Hz), 115.1 (d, J = 8.1 Hz), 107.5, 34.5, 24.6, 22.3. ¹⁹F NMR (471 MHz, Chloroform-*d*): δ -119.2 (td, J = 7.8, 4.1 Hz).

HRMS (ESI) calculated for: C₁₃H₁₄FO₃⁺ ([M+H]⁺) m/z 237.0921, found 237.0920.

Compound S20

6-bromo-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 0.25 mmol scale with 5-bromosalicylic acid and cyclohexanone at 80 °C for 12 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 43 mg (58%) of the title compound **S20**.

Physical State: yellow solid.

m.p.: 75 - 77 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.95 (d, J = 2.5 Hz, 1H), 7.55 (dd, J = 8.7, 2.5 Hz, 1H), 6.83 (d, J = 8.7 Hz, 1H), 1.97 – 1.84 (m, 4H), 1.67 – 1.53 (m, 4H), 1.47 – 1.35 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 159.6, 154.6, 139.0, 131.8, 119.1, 115.5, 114.6, 107.3, 34.3, 24.3, 22.0.

HRMS (ESI) calculated for: C₁₃H₁₄BrO₃⁺ ([M+H]⁺) m/z 297.0121, found 297.0126.

Compound 75a

2,2,7-trimethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 4-methylsalicylic acid and acetone at 40 °C for 10 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 24 mg (50%) of the title compound **75a**.

Physical State: white solid.

m.p.: 51 - 52 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.76 (d, *J* = 8.0 Hz, 1H), 6.86 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.70 (s, 1H), 2.32 (s, 3H), 1.66 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.2, 156.0, 148.0, 129.4, 123.7, 117.3, 110.9, 106.2, 25.7, 22.0.

HRMS (ESI) calculated for: C₁₁H₁₃O₃⁺ ([M+H]⁺) m/z 193.0859, found 193.0861.

Compound S22

2,2-dimethyl-7-nitro-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 4-nitrosalicylic acid and acetone at 80 °C for 30 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 30 mg (54%) of the title compound **S22**.

Physical State: white solid.

m.p.: 128 - 130 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.15 (d, *J* = 8.5 Hz, 1H), 7.94 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.83 (d, *J* = 2.1 Hz, 1H), 1.77 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 159.3, 156.5, 152.8, 131.3, 118.4, 117.2, 113.2, 107.8, 25.9. HRMS (ESI) calculated for: $C_{10}H_{10}NO_5^+$ ([M+H]⁺) m/z 224.0553, found 224.0557.

Compound S23

7-fluoro-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 4-fluorosalicylic acid and acetone at 40 °C for 4 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 22 mg (45%) of the title compound **S23**.

Physical State: white solid.

m.p.: 75 - 77 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.95 (dd, *J* = 8.7, 6.3 Hz, 1H), 6.81 (td, *J* = 8.5, 2.4 Hz, 1H), 6.65 (dd, *J* = 9.3, 2.4 Hz, 1H), 1.72 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 167.6 (d, *J* = 230.3 Hz), 160.3, 157.9 (d, *J* = 14.1 Hz), 132.2 (d, *J* = 11.1 Hz), 110.9 (d, *J* = 23.2 Hz), 110.1 (d, *J* = 3.0 Hz), 107.0, 104.7 (d, *J* = 25.2 Hz), 25.9.

¹⁹F NMR (471 MHz, Chloroform-*d*): δ -99.1 (q, J = 8.1 Hz).

HRMS (ESI) calculated for: C₁₀H₁₀FO₃⁺ ([M+H]⁺) m/z 197.0608, found 197.0611.

Compound S24

7-(trifluoromethyl)-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 0.25 mmol scale with 4-(trifluoromethyl)salicylic acid and cyclohexanone at 80 °C for 10 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 31 mg (43%) of the title compound **S24**.

Physical State: yellow solid.

m.p.: 68 - 69 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.07 (d, *J* = 8.1 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.26 (s, 1H), 2.07 – 1.94 (m, 4H), 1.78 – 1.63 (m, 4H), 1.58 – 1.43 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*a*): δ 159.9, 155.8, 137.7 (q, *J* = 33.3 Hz), 130.6, 123.0 (q, *J* = 274.7 Hz), 119.0 (q, *J* = 4.0 Hz), 117.0, 114.8 (q, *J* = 4.0 Hz), 107.8, 34.5, 24.4, 22.2.

¹⁹F NMR (471 MHz, Chloroform-*d*): δ -63.7.

HRMS (ESI) calculated for: C₁₄H₁₄F₃O₃⁺ ([M+H]⁺) m/z 287.0890, found 287.0890.

Compound S25

2,2-diethyl-7-methoxy-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 4-methoxysalicylic acid and 3-pentanone at 40 °C for 10 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 27 mg (46%) of the title compound **S25**.

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.84 (d, *J* = 8.8 Hz, 1H), 6.62 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.42 (d, *J* = 2.4 Hz, 1H), 3.84 (s, 3H), 1.98 (q, *J* = 7.5 Hz, 4H), 1.00 (t, *J* = 7.5 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 166.4, 161.2, 158.0, 131.2, 110.3, 110.1, 106.5, 101.1, 55.8, 28.8, 7.6.

HRMS (ESI) calculated for: C₁₃H₁₇O₄⁺ ([M+H]⁺) m/z 237.1121, found 237.1121.

Compound S26

2,2-dimethyl-8-nitro-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 15.0 mmol scale with 3-nitrosalicylic acid and acetone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 1.21 g (36%) of the title compound **S26**.

Physical State: yellow solid.

m.p.: 89 - 91 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.25 (dd, *J* = 7.7, 1.7 Hz, 1H), 8.21 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 1.81 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 159.0, 150.0, 138.6, 135.1, 132.0, 122.0, 116.1, 108.2, 26.0. HRMS (ESI) calculated for: C₁₀H₁₀NO₅⁺ ([M+H]⁺) m/z 224.0553, found 224.0553.

Compound S27

2,2-dimethyl-8-phenyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 2.5 mmol scale with 3-phenylsalicylic acid and acetone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 0.27 g (43%) of the title compound **S27**.

Physical State: yellow solid.

m.p.: 70 - 72 °C.

¹H NMR (400 MHz, Chloroform-*a*): δ 7.98 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.62 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.52 – 7.48 (m, 2H), 7.47 – 7.42 (m, 2H), 7.41 – 7.37 (m, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 1.74 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.4, 153.0, 137.2, 135.9, 130.8, 129.2, 129.0, 128.4, 127.9, 122.7, 114.3, 106.3, 25.9.

HRMS (ESI) calculated for: C₁₆H₁₅O₃⁺ ([M+H]⁺) m/z 255.1016, found 255.1015.

Compound S28

8-methoxy-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 5.0 mmol scale with 3-methoxysalicylic acid and cyclohexanone at room temperature for 24 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 0.74 g (60%) of the title compound **S28**.

Physical State: white solid.

m.p.: 141 - 143 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.49 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.09 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 3.87 (s, 3H), 2.01 (t, *J* = 6.2 Hz, 4H), 1.72 – 1.64 (m, 4H), 1.52 – 1.44 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.1, 148.6, 145.6, 122.1, 120.6, 117.8, 114.9, 107.3, 56.4, 34.5, 24.7, 22.3.

HRMS (ESI) calculated for: C₁₄H₁₇O₄⁺ ([M+H]⁺) m/z 249.1121, found 249.1128.

Compound S29

6,8-di-tert-butyl-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 10.0 mmol scale with 3,5-di-*tert*-butylsalicylic acid and acetone at room temperature for 24 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 1.00 g (34%) of the title compound **S29**.

Physical State: white solid.

m.p.: 89 - 91 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.82 (d, *J* = 2.4 Hz, 1H), 7.56 (d, *J* = 2.5 Hz, 1H), 1.73 (s, 6H), 1.36 (s, 9H), 1.30 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 162.3, 152.4, 144.9, 138.0, 130.9, 123.9, 113.7, 105.3, 34.8, 34.7, 31.4, 29.7, 25.9.

HRMS (ESI) calculated for: C₁₈H₂₇O₃⁺ ([M+H]⁺) m/z 291.1955, found 291.1953.

Compound S30

6,8-diiodo-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclohexan]-4-one

Following Method A on 10.0 mmol scale with 3,5-di-iodosalicylic acid and cyclohexanone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 1.20 g (25%) of the title compound **S30**.

Physical State: yellow solid.

m.p.: 82 - 83 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.23 (d, *J* = 2.0 Hz, 1H), 8.20 (d, *J* = 2.1 Hz, 1H), 2.17 – 2.09 (m, 2H), 1.90 – 1.82 (m, 2H), 1.76 – 1.59 (m, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 159.1, 155.1, 152.6, 138.3, 116.3, 108.5, 86.0, 85.3, 34.5, 24.5, 22.4.

HRMS (ESI) calculated for: $C_{13}H_{13}I_2O_3^+$ ([M+H]⁺) m/z 470.8949, found 470.8950.

Compound S31

6,8-dichloro-2,2-diethyl-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 3,5-dichlorosalicylic acid and 3-pentanone at 80 °C for 36 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 22 mg (32%) of the title compound **S31**.

Physical State: yellow solid.

m.p.: 50 - 52 °C.

¹H NMR (500 MHz, Chloroform-*d*): δ 7.83 (d, *J* = 2.6 Hz, 1H), 7.58 (d, *J* = 2.5 Hz, 1H), 2.02 (qd, *J* = 7.4, 2.9 Hz, 4H), 1.03 (t, *J* = 7.5 Hz, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 159.3, 150.8, 136.1, 127.7, 127.7, 123.6, 116.0, 111.9, 28.9, 7.6.

HRMS (ESI) calculated for: $C_{12}H_{13}Cl_2O_3^+$ ([M+H]⁺) m/z 275.0236, found 275.0239.

Compound S32

2,2-dimethyl-4H-naphtho[2,3-d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 3-hydroxy-2-naphthoic acid and acetone at 40 °C for 12 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 29 mg (51%) of the title compound **S32**.

Physical State: white solid.

m.p.: 127 - 128 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.59 (s, 1H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.75 (d, *J* = 8.3 Hz, 1H), 7.56 (t, *J* = 8.2 Hz, 1H), 7.43 (t, *J* = 8.2 Hz, 1H), 7.33 (s, 1H), 1.76 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.6, 151.2, 137.8, 132.3, 129.8, 129.7, 129.2, 127.0, 125.5, 114.3, 112.9, 106.5, 26.3.

HRMS (ESI) calculated for: C₁₄H₁₃O₃⁺ ([M+H]⁺) m/z 229.0859, found 229.0864.

Compound S33

2,2-dimethyl-4H-naphtho[1,2-d][1,3]dioxin-4-one

Following Method A on 0.25 mmol scale with 1-hydroxy-2-naphthoic acid and acetone at 80 °C for 16 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 35 mg (61%) of the title compound **S33**.

Physical State: white solid.

m.p.: 81 - 83 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.20 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.84 (dd, J = 8.4, 1.1 Hz, 1H), 7.66 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.57 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H), 1.85 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.5, 154.4, 137.7, 129.9 128.2, 126.8, 124.0, 123.6, 123.0, 122.1, 107.5, 106.8, 25.9.

HRMS (ESI) calculated for: C₁₄H₁₂NaO₃⁺ ([M+Na]⁺) m/z 251.0679, found 251.0679.

Compound S34

1'H-spiro[cyclopentane-1,3'-naphtho[2,1-d][1,3]dioxin]-1'-one

Following Method A on 10.0 mmol scale with 2-hydroxy-1-naphthoic acid and cyclopentanone at room temperature for 16 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 1.06 g (42%) of the title compound **S34**.

Physical State: white solid.

m.p.: 96 - 97 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 9.18 (d, *J* = 8.6 Hz, 1H), 7.97 (d, *J* = 8.9 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.65 (ddd, *J* = 8.6, 6.9, 1.4 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 8.9 Hz, 1H), 2.27 – 2.13 (m, 4H), 1.89 – 1.77 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.3, 158.6, 137.7, 131.8, 129.8, 129.5, 128.7, 125.6, 125.2, 117.3, 115.3, 106.2, 36.9, 23.3.

HRMS (ESI) calculated for: $C_{16}H_{15}O_{3^{+}}$ ([M+H]⁺) m/z 255.1016, found 255.1018.

Compound S35

2,2,2-trifluoro-N-(4-oxo-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclopentan]-7-yl)acetamide

Following Method A on 0.25 mmol scale with 4-aminosalicylic acid, cyclopentanone, TFA (0.25 mL) and TFAA (0.4 mL) at 80 °C for 12 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 45 mg (57%) of the title compound **S35**.

Physical State: white solid.

m.p.: 132 - 133 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.74 (s, 1H), 7.93 (d, *J* = 8.5 Hz, 1H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.21 (dd, *J* = 8.5, 2.0 Hz, 1H), 2.18 – 2.12 (m, 4H), 1.88 – 1.78 (m, 4H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 161.6, 158.1, 155.4 (q, *J* = 15.2 Hz), 142.5, 131.1, 115.5 (q, *J* = 192.9 Hz), 116.9, 114.6, 111.6, 108.7, 37.2, 23.3.

¹⁹F NMR (471 MHz, CDCl₃): δ -75.6.

HRMS (ESI) calculated for: C₁₄H₁₃F₃NO₄⁺ ([M+H]⁺) m/z 316.0791, found 316.0798.

Compound S36

но

6-hydroxy-4H-spiro[benzo[d][1,3]dioxine-2,1'-cyclopentan]-4-one

Following Method A on 0.5 mmol scale with 2,4-di-hydroxybenzoic acid and cyclopentanone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 41 mg (37%) of the title compound **S36**.

Physical State: white solid.

m.p.: 103 - 105 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.48 (d, J = 3.1 Hz, 1H), 7.11 (dd, J = 8.9, 3.1 Hz, 1H), 6.88 (d, J = 8.8 Hz, 1H), 6.55 (br s, 1H), 2.17 – 2.11 (m, 4H), 1.87 – 1.75 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 162.9, 151.7, 150.9, 124.8, 118.5, 116.8, 114.8, 114.5, 37.1, 23.3.

HRMS (ESI) calculated for: C₁₂H₁₂NaO₄⁺ ([M+H]⁺) m/z 243.0628, found 243.0627.

Compound S37

онс

2,2-diethyl-4-oxo-4H-benzo[d][1,3]dioxine-6-carbaldehyde

Following Method A on 10.0 mmol scale with 5-formylsalicylic acid and 3-pentanone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 0.20 g (10%) of the title compound **S37**.

Physical State: yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 9.94 (d, J = 0.6 Hz, 1H), 8.44 (d, J = 2.1 Hz, 1H), 8.10 (dd, J = 8.6, 2.1 Hz, 1H), 7.11 (d, J = 8.6 Hz, 1H), 2.02 (q, J = 7.6 Hz, 4H), 1.02 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 189.7, 160.7, 160.1, 135.8, 133.4, 131.4, 118.5, 113.9, 111.5, 29.1, 7.5.

HRMS (ESI) calculated for: C₁₃H₁₄NaO₄⁺ ([M+Na]⁺) m/z 257.0784, found 257.0778.

Compound S38

2,2-dimethyl-6-((4-nitrophenyl)diazenyl)-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 5.0 mmol scale with 2-hydroxy-5-((4-nitrophenyl)diazenyl)-benzoic acid and acetone at 80 °C for 24 hours. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 0.93 g (57%) of the title compound **S38**.

Physical State: orange solid.

m.p.: 156 - 158 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.62 (d, *J* = 2.4 Hz, 1H), 8.41 – 8.37 (m, 2H), 8.21 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.05 – 8.02 (m, 2H), 7.15 (d, *J* = 8.8 Hz, 1H), 1.80 (s, 6H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 160.4, 158.9, 155.5, 149.0, 147.7, 130.7, 126.1, 125.0, 123.7, 118.5, 114.0, 107.3, 26.1.

HRMS (ESI) calculated for: C₁₆H₁₄N₃O₅⁺ ([M+H]⁺) m/z 328.0928, found 328.0932.

Compound S39

2,2-dimethyl-6-(2-(2,2,2-trifluoroacetyl)-1H-pyrrol-1-yl)-4H-benzo[d][1,3]dioxin-4-one

Following Method A on 2.0 mmol scale with 2-hydroxy-5-(1H-pyrrol-1-yl)benzoic acid, cyclopentanone, TFA (4 mL) and TFAA (4 mL) at 80 °C for 12 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 0.42 g (62%) of the title compound **S39**.

Physical State: white solid.

m.p.: 111 - 113 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.87 (d, J = 2.6 Hz, 1H), 7.47 (dd, J = 8.7, 2.7 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.19 – 7.16 (m, 1H), 7.05 (d, J = 8.7 Hz, 1H), 6.47 (dd, J = 4.3, 2.6 Hz, 1H), 1.79 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*): δ 169.6 (q, J = 28.3 Hz), 160.3, 156.0, 134.9, 134.7, 134.4, 126.8, 125.3, 125.1 (q, J = 3.0 Hz), 118.1, 116.9 (q, J = 233.3 Hz), 113.7, 111.7, 107.2, 26.0.

¹⁹F NMR (471 MHz, CDCl₃): δ -71.6.

HRMS (ESI) calculated for: C₁₆H₁₃F₃NO₄⁺ ([M+H]⁺) m/z 340.0791, found 340.0795.

Compound S40

2,2-dimethyl-4H-benzo[d][1,3]oxathiin-4-one

Following Method A on 16.0 mmol scale with thiosalicylic acid and acetone at room temperature for 24 hours. Purification by flash column chromatography (silica, 100:1 PE:EtOAc) afforded 1.89 g (61%) of the title compound **S40**.

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.14 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.45 (td, *J* = 7.6, 1.6 Hz, 1H), 7.25 (td, *J* = 7.9, 1.2 Hz, 2H), 1.79 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 163.5, 136.9, 133.9, 132.1, 127.9, 126.3, 123.5, 86.2, 29.1. Spectroscopic data are in agreement with published values.¹³

Compound S41

6-methoxy-4H-spiro[benzo[d][1,3]oxathiine-2,1'-cyclohexan]-4-one

Following Method A on 2.0 mmol scale with 2-mercapto-5-methoxybenzoic acid and cyclohexanone at room temperature for 16 hours. Purification by flash column chromatography (silica, 80:1 PE:EtOAc) afforded 174 mg (33%) of the title compound **S41**.

Physical State: colorless oil.

¹H NMR (600 MHz, Chloroform-*d*): δ 7.67 (d, *J* = 2.9 Hz, 1H), 7.17 (d, *J* = 8.6 Hz, 1H), 7.06 (dd, *J* = 8.6, 2.9 Hz, 1H), 3.84 (s, 3H), 2.16 - 2.10 (m, 2H), 2.09 - 2.02 (m, 2H), 1.78 - 1.72 (m, 2H), 1.63 - 1.57 (m, 2H), 1.55 - 1.50 (m, 1H), 1.49 - 1.42 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 163.7, 158.3, 129.4, 127.3, 125.1, 122.2, 115.2, 90.1, 55.8, 37.2, 25.1, 22.6.

HRMS (ESI) calculated for: C₁₄H₁₇O₃S⁺ ([M+H]⁺) m/z 265.0893, found 265.0893.

Compound S42

7-bromo-2-(4-methoxyphenyl)-2-methyl-4H-benzo[d][1,3]oxathiin-4-one

Compound **S42** was prepared according to procedures reported in the literature.¹⁴ A solution of Fe(acac)₂ (30 mg, 0.12 mmol) and 1,10-phenanthroline (43 mg, 0.24 mmol) in HFIP (0.6 mL) and anhydrous toluene (0.9 mL) was stirred at room temperature under argon for 10 min. A sealed tube charged with 4-bromo-2-mercaptobenzoic acid (153 mg, 0.66 mmol), 1-ethynyl-4-methoxybenzene (79 mg, 0.6 mmol) and a magnetic stir bar was evacuated and backfilled with argon for three times. The catalyst solution was then transferred to the sealed tube via cannula under argon protection. The sealed tube was heated to 120 °C and stirred for 16 hours. After cooling the room temperature, the reaction mixture was filtered over celite, evaporated, and purified by flash column chromatography (silica gel, 100:1 PE:EtOAc) to give **S42** (89 mg, 41%).

Physical State: yellow oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.18 (d, *J* = 2.2 Hz, 1H), 7.52 – 7.48 (m, 3H), 7.12 (d, *J* = 8.3 Hz, 1H), 6.82 – 6.78 (m, 2H), 3.76 (s, 3H), 2.04 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 163.0, 159.9, 136.8, 136.0, 134.7, 133.9, 129.0, 127.2, 126.0, 120.0, 114.0, 90.8, 55.4, 31.5.

HRMS (ESI) calculated for: C₁₆H₁₄BrO₃S⁺ ([M+H]⁺) m/z 364.9842, found 364.9842.

Compound S43

2,2-dimethyl-6-phenyl-4H-1,3-dioxin-4-one

The **S43** was prepared according to procedures reported in literature.¹⁴⁻¹⁵ To a flask equipped with a Dean-Stark apparatus and a magnetic stir bar were added **S43-1** (1.93 g, 10.0 mmol, 1.0 equiv), *t*-BuOH (4.8 mL, 5.0 equiv), DMAP (0.37 g, 0.3 equiv) and toluene (40 mL). The mixture was heated to reflux and the reaction progress was monitored by TLC. After completion, the reaction mixture was concentrated and purified by flash chromatography to obtain **S43-2** (1.35 g, 61%).¹⁵

To a stirred solution of **S43-2** (0.40 g, 2.18 mmol, 1.0 equiv) in acetone (1.6 mL, 10.0 equiv) were added acetic anhydride (3.1 mL, 15.0 equiv) and sulfuric acid (0.12 mL, 1.0 equiv) at 0 °C. The resulting mixture was warmed to room temperature and stirred for 1 hour before quenched by addition of Na₂CO₃ (aq., 7.0 g, 30.0 equiv, 20 mL). EtOAc (50 mL) was added to the reaction and the mixture was stirred for another 40 min. The layers were separated and the aqueous layer was extracted with EtOAc for three times. The combined organic layers were dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography to afford **S43** (0.20 g, 44%).¹⁶

Physical State: white solid.

m.p.: 62 - 63 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.53 – 7.40 (m, 3H), 5.88 (s, 1H), 1.79 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 165.1, 161.9, 132.2, 131.1, 128.9, 126.4, 106.7, 91.3, 25.1. HRMS (ESI) calculated for: C₁₂H₁₃O₃⁺ ([M+H]⁺) m/z 205.0859, found 205.0860.

Chromones, Thiochromones, and γ-Pyrones Compound 6

2-methyl-4H-chromen-4-one

Following General Procedure on 0.25 mmol scale with **5** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 36 mg (90%) of the title compound **6**.

Physical State: white solid.

m.p.: 66 - 67 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.18 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.65 (ddd, *J* = 8.6, 7.1, 1.7 Hz, 1H), 7.42 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.38 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 6.18 (s, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.4, 166.3, 156.6, 133.6, 125.8, 125.1, 123.7, 117.9, 110.7, 20.8.

Spectroscopic data are in agreement with published values.¹⁷

Compound 7

2-ethyl-3-methyl-4H-chromen-4-one

Following General Procedure on 0.6 mmol scale with **S1** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 103 mg (91%) of the title compound **7**.

Physical State: yellow oil.

¹H NMR (500 MHz, Chloroform-*d*): δ 8.20 (dd, J = 8.0, 1.7 Hz, 1H), 7.61 (ddd, J = 8.6, 7.1, 1.8 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.34 (ddd, J = 8.0, 7.1, 0.9 Hz, 1H), 2.74 (q, J = 7.6 Hz, 2H), 2.08 (s, 3H), 1.32 (t, J = 7.6 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.4, 166.3, 156.1, 133.0, 126.0, 124.6, 122.8, 117.7, 116.2, 25.8, 11.5, 9.7.

HRMS (ESI) calculated for: C₁₂H₁₃O₂⁺ ([M+H]⁺) m/z 189.0910, found 189.0915.

Compound 8

3-methyl-4H-chromen-4-one

Following General Procedure on 0.5 mmol scale with **S2** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 62 mg (78%) of the title compound **8**.

Physical State: yellow solid.

m.p.: 64 - 66 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.22 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.79 (s, 1H), 7.63 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.43 – 7.34 (m, 2H), 2.03 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.5, 156.8, 151.9, 133.4, 125.9, 124.9, 123.7, 120.9, 118.1, 11.4.

HRMS (ESI) calculated for: $C_{10}H_9O_2^+$ ([M+H]⁺) m/z 161.0597, found 161.0593.

Compound 9

ethyl 4-oxo-4H-chromene-3-carboxylate

Following General Procedure on 0.75 mmol scale with **S3** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 101 mg (62%) of the title compound **9**.

Physical State: yellow solid.

m.p.: 67 - 68 °C.

¹H NMR (500 MHz, Chloroform-*d*): δ 8.66 (s, 1H), 8.29 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.70 (ddd, *J* = 8.6, 7.1, 1.7 Hz, 1H), 7.49 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.46 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 173.6, 163.5, 161.9, 155.8, 134.3, 126.8, 126.4, 125.3, 118.3, 116.5, 61.6, 14.4.

Spectroscopic data are in agreement with published values.¹⁸

Compound 10

1,2-dihydro-8H-cyclobuta[b]chromen-8-one

Following General Procedure on 0.7 mmol scale with **S4** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 110 mg (90%) of the title compound **10**.

Physical State: white solid.

m.p.: 137 - 138 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.25 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.60 (ddd, *J* = 8.6, 7.1, 1.7 Hz, 1H), 7.46 - 7.36 (m, 2H), 3.28 (t, *J* = 3.3 Hz, 2H), 2.92 (t, *J* = 3.3 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 172.4, 165.3, 157.8, 132.6, 127.3, 126.5, 125.0, 122.1, 118.4, 33.5, 23.9.

HRMS (ESI) calculated for: C₁₁H₉O₂⁺ ([M+H]⁺) m/z 173.0597, found 173.0599.

Compound 11

2,3-dihydrocyclopenta[b]chromen-9(1H)-one

Following General Procedure on 1.0 mmol scale with **S5** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 154 mg (83%) of the title compound **11**.

Physical State: yellow solid.

m.p.: 119 - 121 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.22 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.59 (ddd, *J* = 8.7, 7.0, 1.7 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 3.00 – 2.92 (m, 2H), 2.90 – 2.81 (m, 2H), 2.11 (p, *J* = 7.6 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 176.3, 169.7, 157.0, 132.8, 125.9, 124.9, 124.2, 121.1, 118.0, 32.3, 26.1, 19.6.

HRMS (ESI) calculated for: C₁₂H₁₁O₂⁺ ([M+H]⁺) m/z 187.0754, found 187.0754.

Spectroscopic data are in agreement with published values.¹⁹

Compound 12

1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 0.5 mmol scale with **75b** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 90 mg (90%) of the title compound **12**.

Scale up was performed following the General Procedure on 7.3 mmol scale with **75b** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 5:1 PE:EtOAc) afforded 1.22 g (83%) of the title compound **12**.

Physical State: white solid.

m.p.: 102 - 104 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.16 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.60 – 7.53 (m, 1H), 7.36 – 7.27 (m, 2H), 2.63 (t, *J* = 6.3 Hz, 2H), 2.55 (t, *J* = 6.1 Hz, 2H), 1.88 – 1.81 (m, 2H), 1.77 – 1.69 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 177.7, 163.9, 155.9, 133.0 125.7, 124.4, 123.2, 118.4, 117.6, 28.2, 21.9, 21.7, 21.0.

Spectroscopic data are in agreement with published values.²⁰

Compound 13

7,8,9,10-tetrahydrocyclohepta[b]chromen-11(6H)-one

Following General Procedure on 0.5 mmol scale with **S6** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 77 mg (71%) of the title compound **13**.

Physical State: white solid.

m.p.: 84 - 85 °C.

¹H NMR (500 MHz, Chloroform-*d*): δ 8.19 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.58 (ddd, *J* = 8.6, 7.1, 1.7 Hz, 1H), 7.37 – 7.31 (m, 2H), 2.86 – 2.82 (m, 2H), 2.81 – 2.77 (m, 2H), 1.88 – 1.81 (m, 2H), 1.77 – 1.71 (m, 2H), 1.59 (p, *J* = 5.8 Hz, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.1, 169.1, 155.8, 132.9, 126.2, 124.6, 123.1, 122.9, 117.8, 34.9, 32.0, 26.5, 25.0, 22.4.

HRMS (ESI) calculated for: $C_{14}H_{15}O_2^+$ ([M+H]⁺) m/z 215.1067, found 215.1061. Spectroscopic data are in agreement with published values.²⁰

Compound 14

6,7,8,9,10,11-hexahydro-12H-cycloocta[b]chromen-12-one

Following General Procedure on 0.5 mmol scale with **S7** and AgOTf at room temperature for 3 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 123 mg (94%) of the title compound **14**.

Physical State: yellow solid.

m.p.: 90 - 92 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.17 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.57 (ddd, *J* = 8.6, 7.1, 1.4 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 2.80 – 2.75 (m, 2H), 2.72 – 2.67 (m, 2H), 1.85 – 1.78 (m, 2H), 1.72 – 1.65 (m, 2H), 1.52 – 1.40 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 177.1, 166.4, 156.1, 132.9, 125.9, 124.5, 123.1, 120.7, 117.8, 31.5, 29.3, 29.1, 26.4, 26.3, 22.9.

HRMS (ESI) calculated for: C₁₅H₁₇O₂⁺ ([M+H]⁺) m/z 229.1223, found 229.1223.

Spectroscopic data are in agreement with published values.²⁰

Compound 15

6, 7, 8, 9, 10, 11, 12, 13, 14, 15 - decahydro-16 H-cyclododeca [b] chromen-16 - one

Following General Procedure on 0.5 mmol scale with **S8** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 120 mg (85%) of the title compound **15**.

Physical State: white solid.

m.p.: 113 - 115 °C.

¹H NMR (500 MHz, Chloroform-*d*): δ 8.18 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 2.74 (t, J = 7.7 Hz, 2H), 2.59 (t, J = 7.0 Hz, 2H), 1.96 – 1.88 (m, 2H), 1.77 – 1.70 (m, 2H), 1.53 – 1.46 (m, 6H), 1.43 – 1.36 (m, 4H), 1.33 – 1.28 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.4, 166.1, 156.1, 133.1, 126.0, 124.4, 123.1, 121.5, 117.6, 28.9, 26.5, 25.7, 25.5, 25.2, 24.9, 23.9, 23.2, 23.0, 22.1.

HRMS (ESI) calculated for: C₁₉H₂₅O₂⁺ ([M+H]⁺) m/z 285.1849, found 285.1853.

Compound 16

2-phenyl-4H-chromen-4-one

Following General Procedure on 0.5 mmol scale with **S9** and $AgNTf_2$ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 102 mg (92%) of the title compound **16**.

Physical State: yellow solid.

m.p.: 93 - 95 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.22 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.93 – 7.89 (m, 2H), 7.69 (ddd, *J* = 8.5, 7.1, 1.7 Hz, 1H), 7.59 – 7.48 (m, 4H), 7.41 (ddd, *J* = 8.0, 7.1, 0.9 Hz, 1H), 6.82 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*α*): δ 178.6, 163.5, 156.3, 133.9, 131.8, 131.7, 129.1, 126.4, 125.8, 125.3, 124.0, 118.2, 107.6.

Spectroscopic data are in agreement with published values.²¹

Compound 17

2-(4-methoxyphenyl)-4H-chromen-4-one

Following General Procedure on 0.5 mmol scale with **S10** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 90 mg (71%) of the title compound **17**.

Physical State: white solid.

m.p.: 157 - 158 °C.

¹H NMR (500 MHz, Chloroform-*d*): δ 8.23 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.90 (d, *J* = 8.9 Hz, 2H), 7.69 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 8.9 Hz, 2H), 6.75 (s, 1H), 3.90 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.6, 163.6, 162.6, 156.4, 133.7, 128.2, 125.8, 125.2, 124.2, 124.1, 118.1, 114.6, 106.4, 55.7.

Spectroscopic data are in agreement with published values.²¹

Following General Procedure on 0.2 mmol scale with **18-1** and SnCl₄ at room temperature for 3 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 29 mg (77%) of **20a** and 6 mg (16%) of **20b**.

Following General Procedure on 0.65 mmol scale with **18-1** and AgOTf at room temperature for 2 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 66 mg (54%) of **20a** and 38 mg (31%) of **20b**.

Compound 20a

2-ethyl-2-methyl-4H-chromen-4-one Physical State: white solid.

m.p.: 46 - 47 °C.

¹**H NMR (500 MHz, CDCl₃):** δ 8.18 (dd, J = 8.0, 1.7 Hz, 1H), 7.58 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H), 7.35 (dd, J = 8.5, 1.1 Hz, 1H), 7.32 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 2.56 (q, J = 7.5 Hz, 2H), 2.41 (s, 3H), 1.11 (t, J = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 177.5, 162.1, 156.0, 133.0, 126.0, 124.5, 123.1, 123.0, 117.7, 18.3, 18.1, 13.3.

HRMS (ESI) calculated for: C₁₂H₁₃O₂⁺ ([M+H]⁺) m/z 189.0910, found 189.0913.

Compound 20b

2-propyl-4H-chromen-4-one

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.16 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.62 (ddd, *J* = 8.6, 7.2, 1.7 Hz, 1H), 7.40 (dd, *J* = 8.4, 0.6 Hz, 1H), 7.36 (ddd, *J* = 7.6, 0.5 Hz, 1H), 6.16 (s, 1H), 2.58 (t, *J* = 7.5 Hz, 2H), 1.81 - 1.71 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.5, 169.7, 156.6, 133.5, 125.7, 125.0, 123.8, 117.9, 110.0, 36.3, 20.3, 13.6.

HRMS (ESI) calculated for: C₁₂H₁₃O₂⁺ ([M+H]⁺) m/z 189.0910, found 189.0915.

Following General Procedure on 0.3 mmol scale with **18-2** and SnCl₄ at room temperature for 3 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 19 mg (23%) of **21a** and 6 mg (7%) of **21b**.

Following General Procedure on 0.57 mmol scale with **18-2** and AgOTf at room temperature for 1 hour. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 91 mg (59%) of **21a** and 53 mg (34%) of **21b**.

Compound 21a

3-(4-chlorophenyl)-2-methyl-4H-chromen-4-one

Physical State: white solid.

m.p.: 88 - 90 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.22 (dd, J = 8.0, 1.7 Hz, 1H), 7.66 (ddd, J = 8.6, 7.0, 1.7 Hz, 1H), 7.46 – 7.36 (m, 4H), 7.25 – 7.22 (m, 2H), 2.32 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 176.7, 163.5, 156.0, 133.9, 133.6, 132.0, 131.7, 128.8, 126.3, 125.1, 123.4, 122.7, 117.8, 19.7.

HRMS (ESI) calculated for: C₁₆H₁₂ClO₂⁺ ([M+H]⁺) m/z 271.0520, found 271.0525.

Compound 21b

2-(4-chlorobenzyl)-4H-chromen-4-one Physical State: white solid. m.p.: 115 - 117 °C. ¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.15 (dd, J = 7.9, 1.7 Hz, 1H), 7.63 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H), 7.41 – 7.30 (m, 4H), 7.25 – 7.21 (m, 2H), 6.12 (s, 1H), 3.89 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.4, 167.5, 156.6, 133.8, 133.6, 133.4, 130.7, 129.2, 125.8, 125.2, 123.7, 118.0, 110.9, 40.1.

HRMS (ESI) calculated for: C₁₆H₁₂ClO₂⁺ ([M+H]⁺) m/z 271.0520, found 271.0518.

Following General Procedure on 0.17 mmol scale with **18-3** and SnCl₄ at room temperature for 3 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 28 mg (70%) of **22a** and 8 mg (21%) of **22b**.

Following General Procedure on 0.2 mmol scale with **18-3** and AgOTf at room temperature for 1 hour. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 26 mg (56%) of **22a** and 6 mg (13%) of **22b**.

Compound 22a

CO₂E1

ethyl 2-methyl-4-oxo-4H-chromene-3-carboxylate

Physical State: white solid.

m.p.: 68 - 70 °C.

¹H NMR (500 MHz, Chloroform-*d*): δ 8.18 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.65 (ddd, *J* = 7.8, 1.8 Hz, 1H), 7.43 – 7.35 (m, 2H), 4.40 (q, *J* = 7.1 Hz, 2H), 2.50 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 174.5, 166.8, 165.2, 155.7, 134.0, 126.2, 125.6, 123.5, 118.3, 117.8, 61.9, 19.6, 14.3.

HRMS (ESI) calculated for: C₁₃H₁₃O₄⁺ ([M+H]⁺) m/z 233.0808, found 233.0807.

Compound 22b

CO₂Et

ethyl 2-(4-oxo-4H-chromen-2-yl)acetate

Physical State: yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.19 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 6.30 (s, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.64 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.2, 167.5, 161.5, 156.6, 133.9, 125.9, 125.4, 123.8, 118.1, 112.5, 62.0, 40.5, 14.2.

HRMS (ESI) calculated for: C₁₃H₁₃O_{4⁺} ([M+H]⁺) m/z 233.0808, found 233.0804.

Following General Procedure on 0.13 mmol scale with **18-4** and SnCl₄ at room temperature for 2 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 14 mg (58%) of **23b**. Following General Procedure on 0.13 mmol scale with **18-4** and AgOTf at room temperature for 2 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 19 mg (78%) of **23b**. **Compound 23b**

2-(methoxymethyl)-4H-chromen-4-one

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.19 (dd, J = 7.9, 1.4 Hz, 1H), 7.66 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 6.41 (s, 1H), 4.37 (s, 2H), 3.50 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*): δ 178.2, 165.0, 156.4, 133.9, 125.9, 125.3 124.2, 118.1, 109.8,

70.9, 59.4.

HRMS (ESI) calculated for: C₁₁H₁₁O₃⁺ ([M+H]⁺) m/z 191.0703, found 191.0704.

Following General Procedure on 0.3 mmol scale with **18-5** and SnCl₄ at room temperature for 1 hour. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 53 mg (76%) of **24b**. Following General Procedure on 0.3 mmol scale with **18-5** and AgOTf at room temperature for 1 hour. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 27 mg (38%) of **24b**. **Compound 24b**

(4-oxo-4H-chromen-2-yl)methyl acetate Physical State: white solid. m.p.: 63 - 64 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.19 (dd, J = 8.0, 1.5 Hz, 1H), 7.68 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 6.38 (s, 1H), 5.02 (s, 2H), 2.19 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*α*): δ 178.0, 170.1, 162.7, 156.3, 134.1, 126.0, 125.6, 124.1, 118.1, 110.1, 61.8, 20.8.

HRMS (ESI) calculated for: C₁₂H₁₁O₄⁺ ([M+H]⁺) m/z 219.0652, found 219.0651.

Compound 25

8-methoxy-1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 0.3 mmol scale with **S11** and SnCl₄ at room temperature for 12 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 59 mg (86%) of the title compound **25**.

Physical State: white solid.

m.p.: 97 - 98 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.47 (t, *J* = 8.4 Hz, 1H), 6.94 (dd, *J* = 8.5, 1.0 Hz, 1H), 6.74 (dd, *J* = 8.3, 1.0 Hz, 1H), 3.96 (s, 3H), 2.60 (tt, *J* = 6.4, 1.7 Hz, 2H), 2.52 (tt, *J* = 6.2, 1.7 Hz, 2H), 1.87 – 1.80 (m, 2H), 1.76 – 1.69 (m, 2H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 177.6, 161.6, 159.9, 158.1, 133.0, 119.6, 114.0, 110.0, 105.7, 56.4, 27.8, 22.0, 21.9, 21.0.

HRMS (ESI) calculated for: C₁₄H₁₅O₃⁺ ([M+H]⁺) m/z 231.1016, found 231.1013.

Compound 26

8-fluoro-1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 0.3 mmol scale with **S12** and SnCl₄ at room temperature for 2 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 61 mg (93%) of the title compound **26**.

Physical State: white solid.

m.p.: 137 - 138 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.50 (td, J = 8.3, 5.5 Hz, 1H), 7.16 (dt, J = 8.5, 1.1 Hz, 1H), 6.97 (ddd, J = 10.7, 8.1, 1.0 Hz, 1H), 2.63 (tt, J = 6.4, 1.6 Hz, 2H), 2.53 (tt, J = 6.1, 1.7 Hz, 2H), 1.88 – 1.82 (m, 2H), 1.77 – 1.70 (m, 2H).

¹³**C NMR (151 MHz, Chloroform-***d***):** δ 176.1, 163.0, 160.8 (d, *J* = 264.1 Hz), 157.0 (d, *J* = 3.9 Hz), 132.9 (d, *J* = 10.7 Hz), 119.5, 113.7 (d, *J* = 9.7 Hz), 113.6 (d, *J* = 4.4 Hz), 111.2 (d, *J* = 20.9 Hz), 27.9, 21.9, 21.6, 20.9.

¹⁹**F NMR (471 MHz, Chloroform-***d***):** δ -112.3 (dd, *J* = 10.7, 5.5 Hz).

HRMS (ESI) calculated for: C₁₃H₁₂FO₂⁺ ([M+H]⁺) m/z 219.0816, found 219.0814.

Compound 27

2-ethyl-3,6-dimethyl-4H-chromen-4-one

Following General Procedure on 0.8 mmol scale with **S13** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 148 mg (92%) of the title compound **27**.
Physical State: white solid.

m.p.: 44 - 46 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.99 – 7.98 (m, 1H), 7.42 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.30 (d, *J* = 8.6 Hz, 1H), 2.74 (q, *J* = 7.6 Hz, 2H), 2.45 (s, 3H), 2.08 (s, 3H), 1.32 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.4, 166.1, 154.3, 134.3, 134.2, 125.2, 122.3, 117.4, 115.9, 25.8, 21.0, 11.5, 9.7.

HRMS (ESI) calculated for: $C_{13}H_{15}O_2^+$ ([M+H]⁺) m/z 203.1067, found 203.1067.

Compound 28

F₂CO

6-(trifluoromethoxy)-2,3-dihydrocyclopenta[b]chromen-9(1H)-one

Following General Procedure on 0.4 mmol scale with **S14** and AgOTf at room temperature for 4 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 96 mg (89%) of the title compound **28**.

Physical State: yellow solid.

m.p.: 85 - 87 °C.

¹H NMR (400 MHz, Chloroform-*a*): δ 8.07 – 8.04 (m, 1H), 7.49 – 7.41 (m, 2H), 2.97 (tt, *J* = 7.1, 1.5 Hz, 2H), 2.84 (tt, *J* = 7.6, 1.5 Hz, 2H), 2.17 – 2.08 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 175.1, 170.3, 155.0, 145.9, 126.1, 125.3, 121.1, 120.7 (q, *J* = 258.5 Hz), 120.0, 117.8, 32.3, 26.1, 19.6.

¹⁹F NMR (471 MHz, CDCl₃): δ -58.2.

HRMS (ESI) calculated for: C₁₃H₁₀F₃O₃⁺ ([M+H]⁺) m/z 271.0577, found 271.0577.

Compound 29

7-chloro-2,3-dihydrocyclopenta[b]chromen-9(1H)-one

Following General Procedure on 0.4 mmol scale with **S15** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 74 mg (84%) of the title compound **29**.

Physical State: white solid.

m.p.: 129 - 130°C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.20 (d, J = 2.6 Hz, 1H), 7.55 (dd, J = 8.9, 2.6 Hz, 1H), 7.39 (d, J = 8.9 Hz, 1H), 2.98 (tt, J = 7.6, 1.5 Hz, 2H), 2.86 (tt, J = 7.5, 1.5 Hz, 2H), 2.18 – 2.10 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 175.1, 170.1, 155.4, 133.0, 130.9, 125.5, 125.4, 121.3, 119.7, 32.4, 26.2, 19.6.

HRMS (ESI) calculated for: C₁₂H₁₀ClO₂⁺ ([M+H]⁺) m/z 221.0364, found 221.0365.

Compound 30

6-methoxy-2-methyl-4H-chromen-4-one

Following General Procedure on 0.8 mmol scale with **S16** and AgOTf at room temperature for 8 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 121 mg (79%) of the title compound **30**.

Physical State: white solid.

m.p.: 107 - 109 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.52 (d, *J* = 3.1 Hz, 1H), 7.33 (d, *J* = 9.1 Hz, 1H), 7.21 (dd, *J* = 9.1, 3.1 Hz, 1H), 6.14 (s, 1H), 3.87 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.2, 166.0, 156.8, 151.4, 124.2, 123.5, 119.3, 109.9, 104.9, 56.0, 20.7.

Spectroscopic data are in agreement with published values.²²

Compound 31

2-methyl-6-nitro-4H-chromen-4-one

Following General Procedure on 0.8 mmol scale with **S17** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 129 mg (79%) of the title compound **31**.

Physical State: white solid.

m.p.: 176 - 178 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 9.03 (d, *J* = 2.8 Hz, 1H), 8.47 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.57 (d, *J* = 9.1 Hz, 1H), 6.24 (s, 1H), 2.44 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 176.6, 167.1, 159.4, 144.7, 128.0, 123.8, 122.6, 119.7, 111.2, 20.7.

Spectroscopic data are in agreement with published values.²²

Compound 32

7-fluoro-1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 0.5 mmol scale with **S19** and SnCl₄ at room temperature for 2 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 98 mg (90%) of the title compound **32**.

Physical State: yellow solid.

m.p.: 104 - 106 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.80 (dd, *J* = 8.4, 3.0 Hz, 1H), 7.40 – 7.28 (m, 2H), 2.66 (tt, *J* = 6.4, 1.6 Hz, 2H), 2.56 (tt, *J* = 6.6, 1.6 Hz, 2H), 1.90 – 1.83 (m, 2H), 1.79 – 1.72 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 177.1, 164.4, 159.2 (d, J = 245.4 Hz), 152.2, 124.2 (d, J = 7.1 Hz), 121.3 (d, J = 26.3 Hz), 119.8 (d, J = 8.1 Hz), 118.0, 110.5 (d, J = 24.2 Hz), 28.2, 21.9, 21.7, 21.1. ¹⁹F NMR (471 MHz, Chloroform-*d*): δ -116.5 (td, J = 7.9, 4.0 Hz). Spectroscopic data are in agreement with published values.²³

Compound 33

7-bromo-1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 0.8 mmol scale with **S20** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 194 mg (87%) of the title compound **33**.

Physical State: white solid.

m.p.: 150 - 151 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.30 (d, *J* = 2.5 Hz, 1H), 7.67 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.27 (d, *J* = 8.8 Hz, 1H), 2.66 (tt, *J* = 6.4, 3.1 Hz, 2H), 2.56 (tt, *J* = 6.2, 1.7 Hz, 2H), 1.91 – 1.84 (m, 2H), 1.79 – 1.73 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 176.5, 164.3, 154.8, 136.0, 128.5, 124.6, 119.8, 118.8, 117.8, 28.3, 21.9, 21.7, 21.1.

Spectroscopic data are in agreement with published values.¹⁹

Compound 34

2,7-dimethyl-4H-chromen-4-one

Following General Procedure on 0.6 mmol scale with **75a** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 90 mg (86%) of the title compound **34**.

Physical State: white solid.

m.p.: 97 - 98 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.05 (d, *J* = 7.9 Hz, 1H), 7.25 – 7.15 (m, 2H), 6.13 (s, 1H), 2.47 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.4, 166.0, 156.8, 144.8, 126.5, 125.5, 121.4, 117.7, 110.6, 21.9, 20.7.

Spectroscopic data are in agreement with published values.²²

Compound 35

2-methyl-7-nitro-4H-chromen-4-one

Following General Procedure on 0.8 mmol scale with **S22** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 136 mg (83%) of the title compound **35**.

Physical State: yellow solid.

m.p.: 176 - 178 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.34 (d, *J* = 8.7 Hz, 1H), 8.31 (d, *J* = 2.0 Hz, 1H), 8.18 (dd, *J* = 8.7, 2.1 Hz, 1H), 6.26 (s, 1H), 2.45 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 176.6, 167.9, 155.9, 150.6, 127.8, 127.5, 119.3, 114.3, 111.6, 20.8.

HRMS (ESI) calculated for: C₁₀H₈NO₄⁺ ([M+H]⁺) m/z 206.0448, found 206.0445.

Compound 36

7-fluoro-2-methyl-4H-chromen-4-one

Following General Procedure on 0.7 mmol scale with **S23** and SnCl₄ at room temperature for 3 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 113 mg (91%) of the title compound **36**.

Physical State: white solid.

m.p.: 101 - 102 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.20 – 8.13 (m, 1H), 7.11 – 7.06 (m, 2H), 6.13 (s, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 177.4, 166.5, 165.6 (d, *J* = 254.5 Hz), 157.5 (d, *J* = 14.1 Hz), 128.3 (d, *J* = 10.1 Hz), 120.6, 113.8 (d, *J* = 22.2 Hz), 110.7, 104.6 (d, *J* = 25.2 Hz), 20.6.

¹⁹F NMR (471 MHz, Chloroform-*d*): δ -103.4 (q, *J* = 8.0 Hz).

HRMS (ESI) calculated for: $C_{10}H_8FO_2^+$ ([M+H]⁺) m/z 179.0503, found 179.0501.

Compound 37

7-(trifluoromethyl)-1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 0.6 mmol scale with **S24** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 141 mg (88%) of the title compound **37**.

Physical State: white solid.

m.p.: 157 - 158 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.27 (d, J = 8.3 Hz, 1H), 7.64 (s, 1H), 7.54 (dd, J = 8.2, 1.6 Hz, 1H), 2,67 (t, J = 6.2 Hz, 2H), 2.56 (t, J = 6.2 Hz, 2H), 1.91 – 1.84 (m, 2H), 1.79 – 1.72 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 176.7, 164.8, 155.3, 134.6 (q, J = 33.3 Hz), 127.1, 123.4 (q, J = 33.4 Hz), 127.1, 123.4 ((q,

273.7 Hz), 125.3, 120.8 (q, J = 3.0 Hz), 119.3, 115.7 (q, J = 4.0 Hz), 28.2, 21.8, 21.5, 21.1. ¹⁹F NMR (471 MHz, Chloroform-*d*): δ -63.0.

HRMS (ESI) calculated for: C₁₄H₁₂F₃O₂⁺ ([M+H]⁺) m/z 269.0784, found 269.0786.

Compound 38

2-ethyl-7-methoxy-3-methyl-4H-chromen-4-one

Following General Procedure on 0.5 mmol scale with **S25** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 57 mg (52%) of the title compound **38**.

Physical State: white solid.

m.p.: 86 - 87 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.07 (d, *J* = 8.9 Hz, 1H), 6.90 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.77 (d, *J* = 2.4 Hz, 1H), 3.87 (s, 3H), 2.68 (q, *J* = 7.6 Hz, 2H), 2.03 (s, 3H), 1.28 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 177.8, 165.7, 163.6, 157.7, 127.3, 116.7, 115.8, 114.0, 99.7, 55.8, 25.6, 11.5, 9.6.

HRMS (ESI) calculated for: C₁₃H₁₅O₃⁺ ([M+H]⁺) m/z 219.1016, found 219.1012.

Compound 39

2-methyl-8-nitro-4H-chromen-4-one

Following General Procedure on 0.5 mmol scale with **S26** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 47 mg (46%) of the title compound **39**.

Physical State: white solid.

m.p.: 167 - 169 °C.

¹**H NMR (400 MHz, Chloroform-***a***):** δ 8.44 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.26 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H), 6.26 (s, 1H), 2.46 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 176.0, 166.9, 148.7, 138.9, 131.6, 129.6, 125.5, 124.3, 111.4, 20.7.

HRMS (ESI) calculated for: $C_{10}H_8NO_4^+$ ([M+H]⁺) m/z 206.0448, found 206.0453.

Compound 40

2-methyl-8-phenyl-4H-chromen-4-one

Following General Procedure on 0.4 mmol scale with **S27** and AgOTf at room temperature for 3 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 85 mg (90%) of the title compound **40**.

Physical State: yellow solid.

m.p.: 112 - 114 °C.

¹H NMR (400 MHz, Chloroform-*a*): δ 8.20 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.66 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.52 – 7.46 (m, 2H), 7.46 – 7.40 (m, 2H), 6.20 (s, 1H), 2.31 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.4, 166.2, 153.4, 136.2, 134.6, 131.4, 129.6, 128.5, 127.0, 125.1, 125.0, 124.1, 110.4, 20.6.

HRMS (ESI) calculated for: C₁₆H₁₃O₂⁺ ([M+H]⁺) m/z 237.0910, found 237.0908.

Compound 41

5-methoxy-1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 1.0 mmol scale with **S28** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 143 mg (62%) of the title compound **41**.

Physical State: white solid.

m.p.: 114 - 116 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.74 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.09 (dd, *J* = 7.9, 1.4 Hz, 1H), 3.96 (s, 3H), 2.72 (t, *J* = 6.5 Hz, 2H), 2.57 (t, *J* = 6.2 Hz, 2H), 1.90 – 1.83 (m, 2H), 1.79 – 1.71 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 177.7, 163.7, 148.4, 146.4, 124.2, 124.1, 118.6, 116.8, 113.6, 56.4, 28.3, 22.0, 21.7, 21.1.

HRMS (ESI) calculated for: C₁₄H₁₅O₃⁺ ([M+H]⁺) m/z 231.1016, found 231.1015.

Compound 42

6,8-di-tert-butyl-2-methyl-4H-chromen-4-one

Following General Procedure on 0.6 mmol scale with **S29** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 139 mg (85%) of the title compound **42**.

Physical State: white solid.

m.p.: 114 - 116 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.05 (d, *J* = 2.5 Hz, 1H), 7.65 (d, *J* = 2.5 Hz, 1H), 6.16 (s, 1H), 2.40 (s, 3H), 1.47 (s, 9H), 1.34 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 179.1, 164.9, 153.4, 147.2, 138.1, 128.5, 123.7, 119.6, 110.0, 35.2, 35.0, 31.4, 30.2, 20.7.

Spectroscopic data are in agreement with published values.²²

Compound 43

5,7-diiodo-1,2,3,4-tetrahydro-9H-xanthen-9-one

Following General Procedure on 0.3 mmol scale with **S30** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 83 mg (62%) of the title compound **43**.

Physical State: white solid.

m.p.: decompose before melting.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.46 (d, *J* = 2.2 Hz, 1H), 8.32 (d, *J* = 2.1 Hz, 1H), 2.75 (tt, *J* = 6.4, 1.6 Hz, 2H), 2.55 (tt, *J* = 6.1, 1.6 Hz, 2H), 1.91 – 1.86 (m, 2H), 1.80 – 1.74 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 175.9, 164.9, 154.6, 150.0, 135.3, 125.1, 119.0, 88.7, 86.3, 28.2, 21.9, 21.6, 21.2.

HRMS (ESI) calculated for: $C_{13}H_{11}I_2O_2^+$ ([M+H]⁺) m/z 452.8843, found 452.8841.

Compound 44

6,8-dichloro-2-ethyl-3-methyl-4H-chromen-4-one

Following General Procedure on 0.6 mmol scale with **S31** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 87 mg (57%) of the title compound **44**.

Physical State: white solid.

m.p.: 85 - 86 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.03 (d, *J* = 2.5 Hz, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 2.78 (q, *J* = 7.6 Hz, 2H), 2.05 (s, 3H), 1.35 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 176.5, 166.6, 150.3, 133.1, 130.0, 124.3, 124.0, 124.0, 116.7, 25.7, 11.3, 9.7.

HRMS (ESI) calculated for: C₁₂H₁₁Cl₂O₂⁺ ([M+H]⁺) m/z 257.0131, found 257.0133.

Compound 45

2-methyl-4H-benzo[g]chromen-4-one

Following General Procedure on 0.8 mmol scale with **S32** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 142 mg (85%) of the title compound **45**.

Physical State: yellow solid. m.p.: 130 - 132 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 8.76 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.85 (s, 1H), 7.59 (ddd, *J* = 8.3, 6.7, 1.3 Hz, 1H), 7.50 (ddd, *J* = 8.3, 6.7, 1.2 Hz, 1H), 6.16 (s, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 179.1, 167.4, 152.9, 135.9, 130.4, 129.8, 128.8, 127.3, 126.9, 126.0, 122.5, 114.1, 109.2, 21.1.

HRMS (ESI) calculated for: C₁₄H₁₁O₂⁺ ([M+H]⁺) m/z 211.0754, found 211.0752.

Compound 46

2-methyl-4H-benzo[h]chromen-4-one

Following General Procedure on 0.5 mmol scale with **S33** and AgOTf at -78 °C for 12 hours. Purification by flash column chromatography (silica, 20:1 PE:EtOAc) afforded 83 mg (79%) of the title compound **46**.

Physical State: white solid.

m.p.: 176 - 177 °C.

¹**H NMR (500 MHz, Chloroform-***d***):** δ 8.49 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.7 Hz, 1H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 8.7 Hz, 1H), 7.71 – 7.64 (m, 2H), 6.34 (s, 1H), 2.53 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 178.3, 165.4, 154.0, 136.0, 129.3, 128.3, 127.1, 125.2, 124.0, 122.4, 120.9, 120.0, 112.0, 20.6.

HRMS (ESI) calculated for: C₁₄H₁₁O_{2⁺} ([M+H]⁺) m/z 211.0754, found 211.0755.

Compound 47

9,10-dihydrobenzo[f]cyclopenta[b]chromen-11(8H)-one

Following General Procedure on 0.8 mmol scale with **S34** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 143 mg (76%) of the title compound **47**.

Physical State: white solid.

m.p.: 161 - 164 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 10.16 (d, J = 8.7 Hz, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.74 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 7.60 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.50 (d, J = 9.0 Hz, 1H), 3.04 (tt, J = 7.5, 1.5 Hz, 2H), 2.94 (tt, J = 7.4, 1.6 Hz, 2H), 2.17 (p, J = 7.7 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 178.7, 166.7, 158.3, 134.5, 131.2, 130.8, 128.9, 128.1, 127.3, 126.4, 124.1, 117.9, 117.3, 32.0, 26.4, 19.8.

HRMS (ESI) calculated for: C₁₆H₁₃O₂⁺ ([M+H]⁺) m/z 237.0910, found 237.0909.

Compound 48

2,2,2-trifluoro-N-(9-oxo-1,2,3,9-tetrahydrocyclopenta[b] chromen-6-yl) acetamide

Following General Procedure on 0.5 mmol scale with **S35** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 125 mg (84%) of the title compound **48**.

Physical State: brown solid.

m.p.: decompose before melting.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 11.72 (s, 1H), 8.08 (d, *J* = 8.7 Hz, 1H), 8.01 (d, *J* = 2.0 Hz, 1H), 7.72 (dd, *J* = 8.7, 2.0 Hz, 1H), 3.00 (t, *J* = 7.9 Hz, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.05 (p, *J* = 7.8 Hz, 2H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 174.3, 170.0, 156.7, 155.1 (q, *J* = 34.0 Hz), 140.7, 126.1, 120.7, 120.4, 118.0, 115.6 (q, *J* = 288.5 Hz), 109.1, 31.7, 25.8, 19.0.

¹⁹F NMR (471 MHz, CDCl₃): δ -69.2.

HRMS (ESI) calculated for: C₁₄H₁₁F₃NO₃⁺ ([M+H]⁺) m/z 298.0686, found 298.0684.

Compound 49

но

6-hydroxy-2,3-dihydrocyclopenta[b]chromen-9(1H)-one

Following General Procedure on 0.4 mmol scale with **S36** and $AgNTf_2$ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 60 mg (74%) of the title compound **49**.

Physical State: brown solid.

m.p.: decompose before melting.

¹H NMR (400 MHz, DMSO-*d*₆): δ 9.93 (s, 1H), 7.48 (d, J = 9.0 Hz, 1H), 7.33 (d, J = 3.0 Hz, 1H), 7.16 (dd, J = 9.0, 3.0 Hz, 1H), 2.95 (tt, J = 8.2, 1.4 Hz, 2H), 2.66 (tt, J = 7.4, 1.2 Hz, 2H), 2.06 – 1.98 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 174.8, 169.6, 154.6, 150.1, 124.4, 122.0, 119.5, 119.2, 107.9, 31.6, 25.8, 19.1.

HRMS (ESI) calculated for: C₁₂H₁₁O₃⁺ ([M+H]⁺) m/z 203.0703, found 203.0700.

Compound 50

OHC

2-ethyl-3-methyl-4-oxo-4H-chromene-6-carbaldehyde

Following General Procedure on 0.5 mmol scale with **S37** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 39 mg (36%) of the title compound **50**.

Physical State: white solid. **m.p.:** 112 - 114 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 10.09 (d, J = 0.7 Hz, 1H), 8.68 (dd, J = 2.1, 0.5 Hz, 1H), 8.16 (dd, J = 8.7, 2.1 Hz, 1H), 7.52 (dt, J = 8.7, 0.6 Hz, 1H), 2.77 (q, J = 7.6 Hz, 2H), 2.10 (s, 3H), 1.34 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 190.8, 177.6, 166.8, 159.5, 133.0, 131.4, 131.2, 122.7, 119.3, 117.2, 25.7, 11.5, 9.7.

HRMS (ESI) calculated for: C₁₃H₁₂NaO₃⁺ ([M+Na]⁺) m/z 239.0679, found 239.0677.

Compound 51

2-methyl-6-((4-nitrophenyl)diazenyl)-4H-chromen-4-one

Following General Procedure on 0.2 mmol scale with **S38** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 40 mg (33%) of the title compound **51**.

Physical State: orange solid.

m.p.: decompose before melting.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.80 (d, *J* = 2.5 Hz, 1H), 8.42 – 8.38 (m, 2H), 8.26 (dd, *J* = 8.9, 2.4 Hz, 1H), 8.09 – 8.05 (m, 2H), 7.58 (d, *J* = 9.0 Hz, 1H), 6.25 (s, 1H), 2.44 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 177.9, 166.7, 158.6, 155.5, 149.1, 149.1, 126.6, 125.0, 124.3, 123.8, 123.3, 119.4, 111.1, 20.8.

HRMS (ESI) calculated for: C₁₆H₁₂N₃O₄⁺ ([M+H]⁺) m/z 310.0822, found 310.0827.

Compound 52

6-(2,4-difluorophenyl)-2-methyl-4H-chromen-4-one

Following General Procedure on 0.6 mmol scale with **S18** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 143 mg (88%) of the title compound **52**.

Physical State: white solid.

m.p.: 160 - 162 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.26 (d, *J* = 1.9 Hz, 1H), 7.79 (dt, *J* = 8.7, 2.2 Hz, 1H), 7.50 – 7.42 (m, 2H), 6.99 – 6.88 (m, 2H), 6.19 (s, 1H), 2.40 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 178.1, 166.5, 162.8 (dd, J = 250.6, 12.1 Hz), 159.9 (d, J = 250.6, 12.1 Hz), 156.1, 134.3 (d, J = 4.5 Hz), 132.1, 131.7 (q, J = 4.5 Hz), 125.7, 123.9 (dd, J = 12.1, 4.5 Hz), 123.8, 118.2, 112.0 (dd, J = 21.1, 4.5 Hz), 110.8, 104.7 (t, J = 25.7 Hz), 20.7.

¹⁹F NMR (471 MHz, Chloroform-*d*): δ -110.3 (p, *J* = 8.0 Hz), -113.5 (q, *J* = 9.0 Hz).

HRMS (ESI) calculated for: $C_{16}H_{11}F_2O_2^+$ ([M+H]⁺) m/z 273.0722, found 273.0723.

Compound 53

2-methyl-6-(2-(2,2,2-trifluoroacetyl)-1H-pyrrol-1-yl)-4H-chromen-4-one

Following General Procedure on 0.22 mmol scale with **S39** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 51 mg (76%) of the title compound **53**.

Physical State: white solid.

m.p.: 156 - 157 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.07 (d, *J* = 2.6 Hz, 1H), 7.60 – 7.48 (m, 2H), 7.43 – 7.39 (m, 1H), 7.24 – 7.19 (m, 1H), 6.48 (dd, *J* = 4.3, 2.6 Hz, 1H), 6.21 (s, 1H), 2.43 (s, 3H).

¹³**C NMR (126 MHz, Chloroform-***d***):** δ 177.5, 169.6 (q, *J* = 35.8 Hz), 166.8, 156.0, 136.6, 135.1, 132.0, 125.3, 125.2 (q, *J* = 3.9 Hz), 124.0, 122.6, 118.9, 117.0 (q, *J* = 291.2 Hz), 111.7, 110.8, 20.7.

¹⁹F NMR (471 MHz, CDCI₃): δ -71.6.

HRMS (ESI) calculated for: C₁₆H₁₁F₃NO₃⁺ ([M+H]⁺) m/z 322.0686, found 322.0690.

Compound 54

2-methyl-4H-thiochromen-4-one

Following General Procedure on 0.5 mmol scale with **S40** and SnCl₄ at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 64 mg (73%) of the title compound **54**.

Physical State: brown solid.

m.p.: 102 - 103 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.47 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.58 – 7.46 (m, 3H), 6.82 (s, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 180.7, 151.4, 137.7, 131.4, 130.8, 128.6, 127.6, 126.1, 125.0, 23.5.

HRMS (ESI) calculated for: C₁₀H₉OS⁺ ([M+H]⁺) m/z 177.0369, found 177.0371.

Compound 55

7-methoxy-1,2,3,4-tetrahydro-9H-thioxanthen-9-one

Following General Procedure on 0.2 mmol scale with **S41** and SnCl₄ at room temperature for 0.5 hour. Purification by flash column chromatography (silica, 50:1 PE:EtOAc) afforded 42 mg (85%) of the title compound **55**.

Physical State: white solid. m.p.: 105 - 106 °C. ¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.95 (d, *J* = 2.9 Hz, 1H), 7.40 (d, *J* = 8.8 Hz, 1H), 7.17 (dd, *J* = 8.8, 2.9 Hz, 1H), 3.91 (s, 3H), 2.72 – 2.67 (m, 4H), 1.88 – 1.80 (m, 4H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 179.7, 159.0, 147.4, 131.7, 130.6, 129.2, 127.0, 121.6, 109.3, 55.8, 31.3, 24.9, 22.4, 22.2.

HRMS (ESI) calculated for: C₁₄H₁₅O₂S⁺ ([M+H]⁺) m/z 247.0787, found 247.0787.

Compound 56

7-bromo-2-(4-methoxyphenyl)-4H-thiochromen-4-one

Following General Procedure on 0.11 mmol scale with **S42** and SnCl₄ at room temperature for 3 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 25 mg (71%) of the title compound **56**.

Physical State: white solid.

m.p.: 157 - 159 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.68 (d, *J* = 2.2 Hz, 1H), 7.72 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.65 (d, *J* = 8.9 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.21 (s, 1H), 7.02 (d, *J* = 8.9 Hz, 2H), 3.88 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 179.7, 162.2, 153.1, 136.4, 134.7, 132.4, 131.5, 128.7, 128.5, 128.1, 122.2, 122.1, 114.9, 55.7.

HRMS (ESI) calculated for: C₁₆H₁₂BrO₂S⁺ ([M+H]⁺) m/z 346.9736, found 346.9734.

Compound 57

2,6-dimethyl-4H-pyran-4-one

Following General Procedure on 1.0 mmol scale with 2,2,6-trimethyl-4H-1,3-dioxin-4-one and AgOTf at room temperature for 7 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 90 mg (73%) of the title compound **57**.

Physical State: white solid.

m.p.: 131 - 133 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 6.06 (s, 2H), 2.24 (s, 6H).
 ¹³C NMR (101 MHz, Chloroform-*d*): δ 180.4, 165.7, 113.9, 19.9.

Compound 58

2-methyl-6-phenyl-4H-pyran-4-one

Following General Procedure on 0.5 mmol scale with **S43** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 70 mg (72%) of the title compound **58**.

Physical State: white solid.

m.p.: 84 - 86 °C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.90 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.56 – 7.49 (m, 3H), 6.83 (d, *J* = 2.2 Hz, 1H), 6.19 (s, 1H), 2.35 (s, 3H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ 178.8, 165.8, 162.5, 131.3, 131.0, 129.1, 125.8, 113.7, 110.2, 19.2. HRMS (ESI) calculated for: C₁₂H₁₁O₂⁺ ([M+H]⁺) m/z 187.0754, found 187.0753.

Total Synthesis of Chromanone A

Compound 61

2-((benzyloxy)methyl)-2-ethyl-8-methoxy-4H-benzo[d][1,3]dioxin-4-one

Following Method C with 2-hydroxy-3-methoxybenzoic acid (**59**, 5.0 equiv) and 1-(benzyloxy)-butan-2one (**60**, 0.3 mmol) at 120 °C for 8 hours. Purification by flash column chromatography (silica, 100:1 PE:EtOAc) afforded 52 mg (53%) of the title compound **61**.

Physical State: yellow oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.52 (dd, J = 7.8, 1.5 Hz, 1H), 7.32 – 7.26 (m, 3H), 7.24 – 7.20 (m, 2H), 7.13 (dd, J = 8.1, 1.4 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H), 4.59 – 4.52 (m, 2H), 3.91 (s, 3H), 3.81 (AB, J = 11.0 Hz, 1H), 3.72 (BA, J = 11.0 Hz, 1H), 2.26 – 2.06 (m, 2H), 1.07 (t, J = 7.5 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-d): δ 160.7, 148.3, 146.0, 137.5, 128.5, 127.9, 127.7, 122.2, 120.7, 118.0, 114.5, 108.3, 73.6, 70.3, 56.5, 28.3, 7.2.

HRMS (ESI) calculated for: $C_{19}H_{21}O_5^+$ ([M+H]⁺) m/z 329.1384, found 329.1385.

Compound 62

(2-ethyl-8-methoxy-4-oxo-4H-benzo[d][1,3]dioxin-2-yl)methyl acetate

A suspension of Zn-dust (4 mg, 0.06 mmol) in petroleum ether (2 mL) was stirred with **61** (75 mg, 0.23 mmol) and AcCI (18 μ L, 0.25 mmol) at room temperature under argon. After 5 hours, the reaction mixture was directly purified by flash column chromatography (silica, 30:1 PE:EtOAc) to afford 58 mg (96%) of the title compound **62**.

Physical State: colorless oil.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.53 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.13 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 4.43 (AB, *J* = 12.1 Hz, 1H), 4.35 (BA, *J* = 12.1 Hz, 1H), 3.89 (s, 3H), 2.15 – 2.08 (m, 2H), 2.03 (s, 3H), 1.09 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 170.1, 160.2, 148.4, 145.6, 122.7, 120.7, 118.2, 114.2, 106.8, 63.6, 56.5, 28.6, 20.7, 7.1.

HRMS (ESI) calculated for: C₁₄H₁₆NaO₆⁺ ([M+H]⁺) m/z 303.0839, found 303.0840.

Compound S44

(8-methoxy-3-methyl-4-oxo-4H-chromen-2-yl)methyl acetate

Following General Procedure on 0.15 mmol scale with **62** and SnCl₄ at room temperature for 5 hours. Purification by flash column chromatography (silica, 30:1 PE:EtOAc) afforded 32 mg (81%) of the title compound **S44**.

¹H NMR (600 MHz, Chloroform-*d*): δ 7.74 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 1H), 5.16 (s, 2H), 3.97 (s, 3H), 2.16 (s, 3H), 2.12 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 178.3, 170.5, 157.0, 148.8, 146.5, 124.7, 123.7, 119.7, 116.9, 114.2, 61.4, 56.4, 20.8, 9.6.

HRMS (ESI) calculated for: C₁₄H₁₅O₅⁺ ([M+H]⁺) m/z 263.0914, found 263.0913.

Compound 63 (chromanone A)

2-(hydroxymethyl)-8-methoxy-3-methyl-4H-chromen-4-one

A solution of NaOH (14 mg, 2.0 equiv) in MeOH/H₂O (1/1, 2 mL) was stirred with **S44** (47 mg, 0.17 mmol) at room temperature. After 1 hour, the reaction mixture was diluted with saturated aqueous NH₄Cl and extracted with EtOAc for three times. Organic layers were combined, dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica, 30:1 PE:EtOAc) to afford 30 mg (86%) of chromanone A (**63**).

Physical State: white solid.

m.p.: 172 - 173 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.74 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.28 (t, *J* = 8.0 Hz, 2H), 7.12 (dd, *J* = 8.0, 1.3 Hz, 1H), 4.74 (s, 2H), 3.96 (s, 3H), 2.69 (s, 1H), 2.11 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 178.5, 160.7, 148.6, 146.3, 124.6, 123.7, 117.6, 116.9, 114.0, 60.6, 56.3, 9.4.

HRMS (ESI) calculated for: $C_{12}H_{13}O_4^+$ ([M+H]⁺) m/z 221.0808, found 221.0800. Spectroscopic data are in agreement with published values.²⁴

Synthesis of Flavoxate and Upidosin

Compound S45

2-ethyl-4-oxo-2-phenyl-4H-benzo[d][1,3]dioxine-8-carboxylic acid

Following Method A on 0.5 mmol scale with **64** and propiophenone **65** at 80 °C for 6 hours. After completion, the reaction mixture was diluted with EtOAc and washed with saturated aqueous NH₄Cl. The organic layer was then dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography (silica, 7:1 PE:EtOAc) to afford 65 mg (44%) of the title compound **S45**.

Physical State: white solid.

m.p.: 161 - 163 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 8.25 (dd, *J* = 7.6,1.6 Hz, 1H), 8.07 (dd, *J* = 7.6,1.6 Hz, 1H), 7.57 – 7.55 (m, 2H), 7.33 – 7.28 (m, 3H), 7.10 (t, *J* = 7.6 Hz, 1H), 2.32 (q, *J* = 7.2 Hz, 2H), 1.10 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 169.1, 160.9, 157.1, 139.4, 138.9, 135.6, 129.4, 128.8 (2C), 126.6 (2C), 122.3, 118.7, 116.4, 109.8, 35.8, 7.5.

HRMS (ESI) calculated for: C₁₇H₁₅O₅⁺ ([M+H]⁺) m/z 299.0914, found 299.0912.

Compound 66

3-methyl-4-oxo-2-phenyl-4H-chromene-8-carboxylic acid

Following General Procedure on 0.2 mmol scale with compound **S45** and AgOTf at room temperature for 1 hour. After completion, the reaction mixture was diluted with EtOAc and washed with saturated aqueous NH₄Cl. The organic layer was then dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography (silica, 50:1 DCM:MeOH) to afford 26 mg (46%) of the title compound **66**.

Physical State: yellow solid.

m.p.: 235 - 236 °C.

¹H NMR (600 MHz, Chloroform-*d*/CD₃OD = 10:1): δ 8.37 (d, *J* = 7.8 Hz, 1H), 8.29 (d, *J* = 7.8 Hz, 1H), 7.86 – 7.85 (m, 2H), 7.57 – 7.55 (m, 3H), 7.53 (t, *J* = 7.2 Hz, 1H), 2.21 (s, 3H).

¹³C NMR (150 MHz, Chloroform-*d*/CD₃OD = 10:1): δ 178.8, 166.2, 161.4, 154.5, 136.4, 132.7, 130.4 (2C), 129.3 (2C), 128.2 (2C), 124.0, 122.9, 120.9, 117.3, 11.6.

Spectroscopic data are in agreement with published values.²⁵

Compound 67

2-(piperidin-1-yl)ethyl 3-methyl-4-oxo-2-phenyl-4H-chromene-8-carboxylate

To a solution of compound **66** (42 mg, 0.15 mmol) and a drop of DMF in DCM (1 mL) was added oxalyl chloride (26 μ L, 2 equiv) dropwise at 0°C. The mixture was allowed to warm to room temperature and stirred for 1 hour. The mixture was evaporated and redissolved in DCM (1 mL). A solution of 2-(piperidin-1-yl)ethan-1-ol (**S46**, 40 μ L, 2 equiv) in DCM (0.5 mL) was added and the resulting mixture was stirred at room temperature for 2 hours. Saturated NaHCO₃ (5 mL) was added and the mixture was stirred for 5 min. The organic phase was separated and the aqueous phase was extracted twice with DCM. The organic phases were combined, washed with brine, dried over anhydrous Na₂SO₄, evaporated, and purified by flash column chromatography (silica, 1:2 PE:EtOAc) to afford 50 mg (85%) of the title compound **67**.

Physical State: yellow solid.

m.p.: 88 - 90 °C.

¹H NMR (600 MHz, Chloroform-*d*): δ 8.43 (d, J = 7.9 Hz, 1H), 8.23 (d, J = 7.5 Hz, 1H), 7.76 (dt, J = 7.2, 2.0 Hz, 2H), 7.55 – 7.47 (m, 3H), 7.42 (t, J = 7.7 Hz, 1H), 4.46 (t, J = 6.3 Hz, 2H), 2.68 (t, J = 6.2 Hz, 2H), 2.43 – 2.38 (m, 4H), 2.21 (s, 3H), 1.53 (p, J = 5.7 Hz, 4H), 1.38 (p, J = 5.8 Hz, 2H).

¹³C NMR (151 MHz, Chloroform-*d*): δ178.3, 164.4, 161.1, 154.5, 136.2, 133.2, 130.8, 130.6, 129.4, 128.5, 124.1, 123.3, 120.8, 117.7, 63.2, 57.2, 54.8, 25.9, 24.1, 11.8.

Spectroscopic data are in agreement with published values.²⁶

Compound 68

N-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-3-methyl-4-oxo-2-phenyl-4H-chromene-8-carboxamide

To a solution of compound **66** (28 mg, 0.1 mmol) and amine **S47** (38 mg, 1.5 equiv) in DMF (0.5 mL) was added diethyl cyanophosphonate (90%, 23 μ L, 1.4 equiv) and Et₃N (28 μ L, 2 equiv) at 0°C. The resulting mixture was allowed to warm to room temperature and stirred for 3 hours. The crude reaction mixture was diluted with EtOAc (10 mL) and brine (10 mL). The organic phase was separated and the aqueous phase was extracted twice with EtOAc. The organic phases were combined, washed with brine, dried over anhydrous Na₂SO₄, evaporated, and purified by flash column chromatography (silica, 2:1 CH₂Cl₂:acetone) to afford 42 mg (82%) of the title compound **68**.

Physical State: white solid.

m.p.: 95 - 97 °C.

¹H NMR (600 MHz, Chloroform-*d*): δ 8.29 (d, J = 7.9 Hz, 1H), 8.24 (d, J = 7.5 Hz, 1H), 7.81 (t, J = 5.5 Hz, 1H), 7.68 (dt, J = 7.5, 1.7 Hz, 2H), 7.56 – 7.50 (m, 3H), 7.40 (t, J = 7.7 Hz, 1H), 6.96 (t, J = 7.8 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 3.81 (s, 3H), 3.53 (q, J = 6.3 Hz, 2H), 2.89 (s, 4H), 2.48 (s, 4H), 2.40 (t, J = 6.8 Hz, 2H), 2.15 (s, 3H), 1.72 (p, J = 6.8 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-*d*): δ 178.1, 163.9, 160.1, 153.1, 152.2, 141.1, 135.3, 132.9, 130.8, 129.0, 129.0, 128.8, 124.7, 124.3, 123.1, 122.7, 121.0, 118.1, 117.9, 111.2, 56.6, 55.4, 53.3, 50.6, 39.3, 25.9, 11.7.

HRMS (ESI) calculated for: $C_{31}H_{34}N_3O_4^+$ ([M+H]⁺) m/z 512.2544, found 512.2547.

Synthesis of Polycyclic γ-Pyrones

Compound S48

(6aR,9R,10aR)-3,3,6,6,9-pentamethyl-6a,7,8,9,10,10a-hexahydro-1H,6H-[1,3]dioxino[4,5c]isochromen-1-one

S48 was prepared according to procedures reported in literature.²⁷ To a flask equipped with a magnetic stir bar were added 2,2-dimethyl-1,3-dioxane-4,6-dione (0.40 g, 2.8 mmol), ethylenediammonium diacetate (EDDA, 20 mg, 0.11 mmol) and dry methanol (6 mL) successively. Racemic citronellal (0.39 g, 2.55 mmol) was added under argon while the temperature was kept at 15-20 °C by cooling the flask with a water bath. The solution was stirred for additional 45 min at room temperature before concentrated under vacuum. The resulting yellow residue was dissolved in Et₂O (100 mL) and washed with water, saturated sodium bicarbonate and brine. The organic layer was then dried over anhydrous Na₂SO₄. Purification by flash column chromatography (silica, 15:1 PE:EtOAc) afforded 0.36 g (51%) of **S48**.

Physical State: white solid. m.p.: 92 - 93 °C. ¹H NMR (400 MHz, Chloroform-*d*): δ 2.71 (m, 1H), 2.19 – 2.11 (m, 1H), 1.86 – 1.79 (m, 1H), 1.78 – 1.73 (m, 1H), 1.72 (s, 3H), 1.67 (s, 3H), 1.58 – 1.51 (m, 1H), 1.39 (s, 3H), 1.36 – 1.30 (m, 1H), 1.19 (s, 3H), 1.11 – 0.99 (m, 2H), 0.91 (d, J = 6.6 Hz, 3H), 0.63 (q, J = 11.5 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 163.5, 162.5, 105.0, 85.4, 81.6, 49.1, 39.0, 35.3, 33.2, 32.1, 27.6, 27.3, 27.0, 22.3, 22.1, 19.7.

HRMS (ESI) calculated for: C₁₆H₂₅O₄⁺ ([M+H]⁺) m/z 281.1747, found 281.1745.

Compound 71

(6aR,9R,10aR)-3,6,6,9-tetramethyl-6a,7,8,9,10,10a-hexahydro-1H,6H-pyrano[2,3-c]isochromen-1-one

Following General Procedure on 0.3 mmol scale with **S48** and AgOTf at room temperature for 6 hours. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded 61 mg (78%) of the title compound **71**.

Physical State: white solid.

m.p.: 116 - 117 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 5.90 (s, 1H), 3.21 – 3.14 (m, 1H), 2.34 (td, *J* = 11.1, 2.9 Hz, 1H), 2.17 (d, *J* = 0.8 Hz, 3H), 1.85 – 1.75 (m, 2H), 1.63 – 1.54 (m, 1H), 1.43 (s, 3H), 1.37 (td, *J* = 11.2, 10.8, 2.7 Hz, 1H), 1.18 (s, 3H), 1.12 – 1.00 (m, 2H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.56 (q, *J* = 11.6 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 180.8, 163.1, 159.9, 113.2, 101.2, 84.6, 48.8, 37.2, 35.4, 33.9, 32.4, 27.5, 27.2, 22.4, 19.7, 19.1.

HRMS (ESI) calculated for: C₁₆H₂₃O₃⁺ ([M+H]⁺) m/z 263.1642, found 263.1644.

Compound S50

(6aS,12bR)-9,11-dibromo-3,3,6,6-tetramethyl-6a,12b-dihydro-1H,6H,7H-[1,3]dioxino[5',4':5,6]pyrano[3,4-c]chromen-1-one

S50 was prepared according to procedures reported in literature.²⁸ To a solution of benzaldehyde **S49** (348 mg, 1.0 mmol, 1 equiv) in CH₂Cl₂ (5 mL) was added 2,2-dimethyl-1,3-dioxane-4,6-dione (159 mg, 1.1 mmol, 1.1 equiv), AcOH (6 μ L, 0.1 mmol, 0.1 equiv) and piperidine (9 μ L, 0.1 mmol, 0.1 equiv). The mixture was stirred at room temperature for 2 hours, at which point it was diluted with EtOAc (100 mL). The solution was washed with NaHCO₃ (30 mL) and brine (30 mL), dried with Na₂SO₄, concentrated,

and purified by flash column chromatography (silica, 10:1 PE:EtOAc) to afford 433 mg (91%) of the title compound **S50**.

Physical State: white solid.

m.p.: 150 - 152 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.83 (dd, *J* = 2.4, 0.9 Hz, 1H), 7.51 (d, *J* = 2.3 Hz, 1H), 4.54 (dd, *J* = 11.8, 3.9 Hz, 1H), 4.21 (dd, *J* = 11.8, 6.9 Hz, 1H), 4.09 (dd, *J* = 5.9, 0.9 Hz, 1H), 2.21 (ddd, *J* = 6.9, 5.8, 3.9 Hz, 1H), 1.71 (s, 3H), 1.70 (s, 3H), 1.54 (s, 3H), 1.37 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 163.3, 163.1, 149.5, 134.25, 133.7, 125.4, 112.9, 110.9, 105.7, 83.2, 78.0, 64.8, 38.7, 29.5, 27.4, 26.6, 24.6, 22.8.

HRMS (ESI) calculated for: C₁₈H₁₉Br₂O₅⁺ ([M+H]⁺) m/z 472.9594, found 472.9592.

Compound 72

(6aS,12bR)-9,11-dibromo-3,6,6-trimethyl-6a,12b-dihydro-1H,6H,7H-pyrano[3',2':5,6]pyrano[3,4c]chromen-1-one

Following General Procedure on 0.25 mmol scale with **S50** and AgNTf₂ at room temperature for 6 hours. Purification by flash column chromatography (silica, 2:1 PE:EtOAc) afforded 79 mg (69%) of the title compound **72**.

Physical State: yellow solid.

m.p.: 213 - 215 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.52 (d, *J* = 2.3 Hz, 1H), 7.48 (d, *J* = 2.3 Hz, 1H), 6.13 (s, 1H), 4.56 – 4.48 (m, 2H), 4.42 (d, *J* = 5.8 Hz, 1H), 2.25 (s, 3H), 2.18 (dt, *J* = 6.2, 3.2 Hz, 1H), 1.62 (s, 3H), 1.21 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 180.7, 163.3, 161.1, 149.5, 134.0, 132.0, 125.9, 113.3, 112.8, 110.7, 99.6, 84.1, 65.7, 38.6, 29.0, 28.1, 23.6, 19.3.

HRMS (ESI) calculated for: $C_{18}H_{17}Br_2O_4^+$ ([M+H]⁺) m/z 454.9488, found 454.949.

Compound S52

(6aS, 12bR)-3,3,6,6-tetramethyl-11-nitro-6a, 12b-dihydro-1H,6H,7H-[1,3]dioxino[5',4':5,6]pyrano[3,4-c]chromen-1-one

S52 was prepared according to procedures reported in literature.²⁸ To a solution of benzaldehyde **S51** (588 mg, 2.5 mmol, 1 equiv) in CH₂Cl₂ (5 mL) was added 2,2-dimethyl-1,3-dioxane-4,6-dione (397 mg, 2.75 mmol, 1.1 equiv), AcOH (15 μ L, 0.25 mmol, 0.1 equiv) and piperidine (23 μ L, 0.25 mmol, 0.1 equiv). The mixture was stirred at 40 °C for 2 hours, at which point it was diluted with EtOAc (100 mL). The solution was washed with NaHCO₃ (30 mL) and brine (30 mL), dried with Na₂SO₄, concentrated, and purified by flash column chromatography (silica, 10:1 PE:EtOAc) to afford 548 mg (61%) of the title compound **S52**.

Physical State: white solid.

m.p.: 151 - 153 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 8.72 (d, *J* = 2.7 Hz, 1H), 8.02 (dd, *J* = 9.0, 2.8 Hz, 1H), 6.84 (d, *J* = 9.0 Hz, 1H), 4.55 (dd, *J* = 11.0, 4.1 Hz, 1H), 4.19 – 4.12 (m, 2H), 2.26 (ddd, *J* = 7.8, 5.7, 4.0 Hz, 1H), 1.72 (s, 3H), 1.69 (s, 3H), 1.56 (s, 3H), 1.41 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 163.1, 162.9, 158.9, 141.6, 128.9, 124.4, 122.3, 116.8, 105.8, 82.8, 79.8, 64.4, 38.3, 29.3, 27.4, 26.4, 24.9, 22.8.

HRMS (ESI) calculated for: C₁₈H₂₀NO₇⁺ ([M+H]⁺) m/z 362.1234, found 362.1237.

Compound 73

(6aS,12bR)-3,6,6-trimethyl-11-nitro-6a,12b-dihydro-1H,6H,7H-pyrano[3',2':5,6]pyrano[3,4c]chromen-1-one

Following General Procedure on 0.25 mmol scale with **S52** and AgNTf₂ at room temperature for 6 hours. Purification by flash column chromatography (silica, 16:1 CH₂Cl₂:acetone) afforded 36 mg (42%) of the title compound **73**.

Physical State: yellow solid.

m.p.: 220 - 222 °C.

¹H NMR (600 MHz, Chloroform-*d*): δ 8.44 (d, J = 2.8 Hz, 1H), 7.99 (dd, J = 9.0, 2.8 Hz, 1H), 6.79 (d, J = 9.0 Hz, 1H), 6.14 (s, 1H), 4.54 (dd, J = 12.3, 3.8 Hz, 1H), 4.47 (dd, J = 12.3, 3.3 Hz, 1H), 4.44 (d, J = 5.8 Hz, 1H), 2.25 (s, 3H), 2.25 – 2.22 (m, 1H), 1.62 (s, 3H), 1.24 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 180.7, 163.1, 161.2, 158.9, 141.9, 127.3, 124.2, 122.8, 116.6, 112.9, 99.4, 83.7, 65.4, 38.2, 28.8, 27.9, 23.8, 19.3.

HRMS (ESI) calculated for: C₁₈H₁₈NO₆⁺ ([M+H]⁺) m/z 344.1129, found 344.1124.

Compound 74

(6aS,12bR)-8-acetyl-3,6,6-trimethyl-6a,7,8,12b-tetrahydro-1H,6H-pyrano[3',2':5,6]pyrano[3,4c]quinolin-1-one

S54 was prepared according to procedures reported in literature.²⁸ To a solution of benzaldehyde **S53** (462 mg, 2 mmol, 1 equiv) in CH₂Cl₂ (5 mL) was added 2,2-dimethyl-1,3-dioxane-4,6-dione (316 mg, 2.2 mmol, 1.1 equiv), AcOH (12 μ L, 0.2 mmol, 0.1 equiv) and piperidine (18 μ L, 0.2 mmol, 0.1 equiv). The mixture was stirred at room temperature for 4 hours, at which point it was diluted with EtOAc (100 mL). The solution was washed with NaHCO₃ (30 mL) and brine (30 mL), dried with Na₂SO₄, concentrated, and purified by flash column chromatography (neutral aluminium oxide, 2:1 PE:EtOAc) to afford 250 mg (35%) of compound **S54**.

Following General Procedure on 0.15 mmol scale with **S54** and AgNTf₂ at room temperature for 6 hours. Purification by flash column chromatography (silica, 1:2 PE:EtOAc) afforded 37 mg (73%) of the title compound **74**.

Physical State: yellow solid.

m.p.: 254 - 256 °C.

¹H NMR (600 MHz, Chloroform-*d*): δ 7.22 (t, J = 7.8 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 7.07 (d, J = 7.7 Hz, 1H), 6.04 (s, 1H), 4.89 (t, J = 11.7 Hz, 1H), 3.86 (d, J = 7.0 Hz, 1H), 2.81 (dd, J = 12.8, 6.8 Hz, 1H), 2.78 – 2.73 (m, 1H), 2.25 (s, 3H), 2.12 (s, 3H), 1.37 (s, 3H), 0.90 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 179.8, 169.9, 163.6, 161.2, 139.8, 134.0, 128.1, 127.1, 126.9, 124.2, 112.5, 97.4, 83.8, 43.7, 41.8, 31.0, 27.7, 22.3, 21.2, 19.3.

HRMS (ESI) calculated for: C₂₀H₂₂NO₄⁺ ([M+H]⁺) m/z 340.1543, found 340.1544.

Substrates Where Competing Formylation Was Observed

Figure S1. Substrates where competing formylation was observed.

Control Experiments and Kinetic Studies

Crossover Experiments

Following General Procedure with **75a** (0.3 mmol), **75b** (0.3 mmol) and SnCl₄ (0.3 mmol) at room temperature. Purification by flash column chromatography (silica, 10:1 PE:EtOAc) afforded compound **34** (49 mg, 47%) and **12** (58 mg, 46%).

Hammett Plot Analysis

Five oven-dried 5 mL tubes was charged with **5a** (0.1 mmol, 1 equiv), 4-substituted salicylic acid ketal **76** (X = OMe, Me, F, Cl, or Br, 0.1 mmol, 1 equiv) and AgOTf (0.3 mmol, 3 equiv) under argon. Anhydrous DCM (0.6 mL) was added to the mixture via a syringe followed by DCME (0.15 mmol, 1.5 equiv). The tube was then stirred for 20 min at room temperature before quenched with saturated aqueous NaHCO₃, Brine (20 mL) was added and the crude mixture was extracted with DCM (10 mL × 3). The combined organic phases was dried over Na₂SO₄, concentrated, and analyzed by crude ¹H NMR to determine the ratio of **77/6**. These experiments were repeated, and the average **77/6** ratio was calculated as k_X/k_H (Table S5). The resulting five sets of log(k_X/k_H) were plotted against σ values of each substituent (σ_P) to obtain the Hammett plot (Figure S2). The obtained ρ value had a negative slope of -2.00.

The same experiments were performed by using SnCl₄ (0.05 mmol, 0.5 equiv) instead of AgOTf. The resulting ρ value had a negative slope of -1.96, closely resembling that obtained with AgOTf (Figure S3).

Table S5. Hammett plot data

Entry	Lewis acid	Х	σ _p	к х/ к н	log(<i>k</i> x/ <i>k</i> н)
1	AgOTf	OMe	-0.268	1.26	0.100
2	AgOTf	Me	-0.17	1.17	0.068
3	AgOTf	Н	0	1	0
4	AgOTf	F	0.062	0.29	-0.538
5	AgOTf	CI	0.227	0.17	-0.770
6	AgOTf	Br	0.232	0.14	-0.854
7	SnCl ₄	OMe	-0.268	1.5	0.176
8	SnCl ₄	Me	-0.17	1.28	0.107
9	SnCl ₄	Н	0	1	0
10	SnCl ₄	F	0.062	0.33	-0.481
11	SnCl ₄	CI	0.227	0.16	-0.796
12	SnCl ₄	Br	0.232	0.21	-0.678

Figure S2. Plots of log(k_X/k_H) against σ_p values of each substituent with AgOTf as Lewis acid.

Figure S3. Plots of log(k_X/k_H) against σ_p values of each substituent with SnCl₄ as Lewis acid.

DHR Reaction/Formylation Competition Experiments

^aDetermined by ¹H NMR analysis of crude product using (CHCl₂)₂ as the internal standard.

Five oven-dried 5 mL tubes was charged with AgOTf (0.2 mmol, 2 equiv), **5** (1.0 mmol, 10 equiv), and another reactant (**78a-78d**, or **80**, 1.0 mmol, 10 equiv) under argon. Anhydrous DCM (0.6 mL) was added to the mixture via a syringe followed by DCME (0.1 mmol, 1 equiv). The tube was then stirred for 30 min at room temperature before quenched with saturated aqueous NaHCO₃, Brine (20 mL) was added and the crude mixture was extracted with DCM (10 mL × 3). The combined organic phases was dried over Na₂SO₄, concentrated, and analyzed by crude ¹H NMR using (CHCl₂)₂ as the internal standard to determine the yields of the corresponding products.

X-Ray Crystallographic Data

Compound 53

Figure S4. X-Ray Crystallographic Structure for Compound 53

X-ray information for compound **53** can be obtained free of charge from The Cambridge Crystallographic Data center with number CCDC 2253406.

Table 1 Crystal data and structure refinement for 53.

Identification code	53
Empirical formula	C ₁₆ H ₁₀ F ₃ NO ₃
Formula weight	321.25
Temperature/K	170.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.132(3)
b/Å	13.549(3)
c/Å	8.342(2)
α/°	90
β/°	98.244(9)
γ/°	90
Volume/Å ³	1356.9(6)
Z	4
ρ _{calc} g/cm ³	1.573
µ/mm ⁻¹	0.136
F(000)	656.0
Crystal size/mm ³	0.09 × 0.05 × 0.04
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.532 to 52.7
Index ranges	$? \le h \le ?, ? \le k \le ?, ? \le l \le ?$
Reflections collected	2745
Independent reflections	2745 [R _{int} = ?, R _{sigma} = 0.1143]
Data/restraints/parameters	2745/0/209
Goodness-of-fit on F ²	1.089
Final R indexes [I>=2σ (I)]	R ₁ = 0.0877, wR ₂ = 0.1842
Final R indexes [all data]	R ₁ = 0.1509, wR ₂ = 0.2128
Largest diff. peak/hole / e Å-3	0.39/-0.35

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ZZ. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Ζ	U(eq)
F1	36(2)	4482(2)	2464(3)	43.4(7)
F3	1189(2)	5219(2)	1159(3)	48.7(8)
F2	1510(2)	3735(2)	1986(3)	53.1(9)
01	6227(2)	6226(2)	9414(3)	30.0(7)

O2	3574(2)	6281(2)	11949(3)	34.7(8)
O3	2551(2)	4469(2)	4631(3)	34.3(8)
N1	1998(3)	6423(3)	5862(4)	23.8(8)
C5	4226(3)	6243(3)	9396(5)	22.7(9)
C15	1784(3)	4979(3)	3986(5)	26.0(9)
C7	3077(3)	6247(3)	6789(4)	21.2(9)
C10	5161(3)	6194(3)	8600(5)	24.7(9)
C14	1423(3)	5905(3)	4556(5)	24.6(9)
C6	3173(3)	6265(3)	8454(5)	24.1(9)
C13	459(3)	6439(3)	4051(5)	30.3(10)
C8	4019(3)	6160(3)	6011(5)	25.5(9)
C11	1408(3)	7246(3)	6117(5)	28.7(10)
C1	6371(3)	6320(3)	11070(5)	29.0(10)
C4	4375(3)	6283(3)	11181(5)	27.7(10)
C3	5519(3)	6339(3)	11927(5)	28.2(10)
C12	442(3)	7270(4)	5010(5)	33.7(11)
C9	5060(3)	6129(3)	6909(5)	25.8(9)
C16	1126(3)	4598(3)	2392(5)	31.4(10)
C2	7588(4)	6411(4)	11709(5)	41.3(12)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for ZZ. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U 11	U ₂₂	U ₃₃	U ₂₃	U 13	U 12
F1	30.5(14)	62(2)	35.7(14)	-4.6(13)	-0.9(11)	-17.3(12)
F3	57.1(18)	67(2)	20.3(13)	3.6(13)	-0.6(12)	-24.0(15)
F2	54.6(18)	53(2)	48.0(18)	-24.8(15)	-5.1(14)	-1.0(14)
01	23.1(15)	46(2)	19.1(14)	-0.3(13)	-4.1(12)	-1.2(13)
02	29.9(17)	54(2)	19.5(15)	0.4(13)	2.8(13)	5.5(14)
O3	31.6(16)	40(2)	29.6(16)	-1.0(14)	-1.5(13)	4.8(14)
N1	20.9(17)	32(2)	18.1(16)	-1.0(14)	0.7(13)	4.2(14)
C5	21(2)	29(2)	17.6(19)	-1.6(16)	1.8(16)	1.6(16)
C15	22(2)	37(3)	18.7(19)	1.4(18)	1.4(16)	-3.6(19)
C7	19(2)	27(2)	16.4(19)	0.2(15)	-4.3(15)	0.0(16)
C10	18(2)	30(2)	25(2)	-1.5(17)	-1.6(16)	0.3(16)
C14	20(2)	32(2)	20(2)	1.0(17)	-2.7(16)	-2.8(17)
C6	22(2)	30(2)	20(2)	-0.2(16)	1.0(16)	2.2(17)
C13	23(2)	43(3)	23(2)	4.7(19)	-3.7(17)	1.5(18)
C8	24(2)	36(3)	15.9(19)	-0.1(17)	2.8(17)	-1.5(18)
C11	25(2)	34(2)	28(2)	-1.6(18)	5.8(17)	2.8(18)
C1	25(2)	30(2)	29(2)	-1.3(18)	-4.1(18)	-0.3(17)
C4	28(2)	33(3)	22(2)	-0.8(17)	3.8(18)	0.8(18)
C3	30(2)	37(3)	15.3(19)	-1.1(17)	-4.7(17)	2.4(18)
C12	26(2)	41(3)	34(2)	9(2)	3.3(18)	9.8(19)
C9	20(2)	36(3)	23(2)	0.1(17)	7.7(17)	0.6(17)
C16	29(2)	40(3)	24(2)	-0.3(19)	-2.1(18)	-6.5(19)
C2	30(2)	61(3)	29(2)	-2(2)	-9(2)	-4(2)

Table 4 Bond Lengths for ZZ.

Atom	Length/Å	Atom Atom		Length/Å
C16	1.342(5)	C15	C14	1.432(6)
C16	1.340(5)	C15	C16	1.539(6)
C16	1.320(5)	C7	C6	1.377(5)
C10	1.372(5)	C7	C8	1.399(5)
	Atom C16 C16 C16 C16 C10	AtomLength/ÅC161.342(5)C161.340(5)C161.320(5)C101.372(5)	Atom Length/Å Atom C16 1.342(5) C15 C16 1.340(5) C15 C16 1.320(5) C7 C10 1.372(5) C7	AtomLength/ÅAtom AtomC161.342(5)C15C14C161.340(5)C15C16C161.320(5)C7C6C101.372(5)C7C8

01	C1	1.374(5)	C10	C9	1.401(6)
02	C4	1.238(5)	C14	C13	1.389(6)
O3	C15	1.221(5)	C13	C12	1.383(6)
N1	C7	1.441(5)	C8	C9	1.373(5)
N1	C14	1.396(5)	C11	C12	1.385(6)
N1	C11	1.359(5)	C1	C3	1.339(6)
C5	C10	1.396(6)	C1	C2	1.500(6)
C5	C6	1.401(5)	C4	C3	1.440(6)
C5	C4	1.475(5)			

Table 5 Bond Angles for ZZ.

Atom	Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C10	01	C1	118.4(3)	C7	C6	C5	120.3(4)
C14	N1	C7	130.5(3)	C12	C13	C14	109.3(4)
C11	N1	C7	120.7(3)	C9	C8	C7	119.9(4)
C11	N1	C14	108.6(3)	N1	C11	C12	109.2(4)
C10	C5	C6	118.2(3)	01	C1	C2	110.0(4)
C10	C5	C4	119.5(3)	C3	C1	01	122.8(4)
C6	C5	C4	122.3(3)	C3	C1	C2	127.2(4)
O3	C15	C14	126.9(4)	02	C4	C5	122.1(4)
O3	C15	C16	117.3(4)	02	C4	C3	123.8(4)
C14	C15	C16	115.8(3)	C3	C4	C5	114.1(4)
C6	C7	N1	118.5(3)	C1	C3	C4	122.6(4)
C6	C7	C8	120.9(3)	C13	C12	C11	106.6(4)
C8	C7	N1	120.3(3)	C8	C9	C10	119.3(4)
01	C10	C5	122.4(3)	F1	C16	C15	113.1(3)
01	C10	C9	116.2(3)	F3	C16	F1	105.8(3)
C5	C10	C9	121.5(4)	F3	C16	C15	111.9(3)
N1	C14	C15	123.8(3)	F2	C16	F1	107.1(3)
C13	C14	N1	106.3(4)	F2	C16	F3	107.4(4)
C13	C14	C15	129.8(4)	F2	C16	C15	111.1(3)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for ZZ.

Atom	x	У	Ζ	U(eq)
H6	2522.6	6291.49	8965.67	29
H13	-101	6261.47	3183.13	36
H8	3939.48	6121.16	4862.91	31
H11	1623.53	7729.28	6927.23	34
H3	5675.61	6390.86	13072.63	34
H12	-123.02	7760.56	4926.19	40
H9	5703.43	6065.53	6389.37	31
H2A	7985.72	5834.27	11376.53	62
H2B	7685.37	6448.59	12894.42	62
H2C	7885.99	7011.07	11274.17	62

Compound 71

Figure S5. X-Ray Crystallographic Structure for Compound 71

X-ray information for compound 71 can be obtained free of charge from The Cambridge Crystallographic Data center with number CCDC 2371778.

Table 1 Crystal data and structure refinement for 71.

Identification code	71
Empirical formula	C ₁₆ H ₂₂ O ₃
Formula weight	262.33
Temperature/K	170
Crystal system	triclinic
Space group	P-1
a/Å	9.5339(4)
b/Å	9.6176(4)
c/Å	9.7437(4)
α/°	62.587(2)
β/°	72.018(2)
γ/°	65.461(2)
Volume/Å ³	713.80(5)
Z	2
ρ _{calc} g/cm ³	1.221
µ/mm ⁻¹	0.663
F(000)	284.0
Crystal size/mm ³	0.16 × 0.08 × 0.05
Radiation	CuKα (λ = 1.54178)
2O range for data collection/°	10.31 to 136.452
Index ranges	-11 ≤ h ≤ 11, -11 ≤ k ≤ 11, -11 ≤ l ≤ 11
Reflections collected	6806
Independent reflections	2561 [R _{int} = 0.0814, R _{sigma} = 0.0832]
Data/restraints/parameters	2561/0/176
Goodness-of-fit on F ²	1.107
Final R indexes [I>=2σ (I)]	R ₁ = 0.0645, wR ₂ = 0.1799
Final R indexes [all data]	R ₁ = 0.0892, wR ₂ = 0.1996
Largest diff. peak/hole / e Å ⁻³	0.30/-0.46

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for cu_2023724_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z U(eq)
02	2152.8(15)	3699.1(16)	5458.0(17) 32.1(4)
O3	2769.0(14)	4885.2(15)	6502.1(16) 30.7(4)
O1	4896.2(17)	-922.8(16)	7788.8(17) 37.1(4)
	564		

4127(2)	1964(2)	7140(2) 27.8(4)
3080(2)	3431(2)	6429(2) 27.5(4)
4140(2)	505(2)	7026(2) 29.4(4)
5214(2)	1909(2)	8029(2) 28.8(4)
5165(2)	3677(2)	7588(2) 28.7(4)
3203(2)	859(2)	5894(2) 32.1(5)
3480(2)	4841(2)	7682(2) 30.3(5)
2284(2)	2373(2)	5165(2) 32.0(5)
7984(2)	844(3)	8581(2) 36.2(5)
6904(2)	865(2)	7682(2) 33.3(5)
3389(2)	6631(2)	7120(3) 36.6(5)
7868(3)	2611(3)	8218(3) 40.5(5)
2488(3)	4285(3)	9266(3) 41.1(5)
6181(2)	3678(3)	8533(2) 36.3(5)
1290(3)	2915(3)	3979(3) 41.3(5)
9649(3)	-192(3)	8185(3) 48.2(6)
	4127(2) 3080(2) 4140(2) 5214(2) 5165(2) 3203(2) 3480(2) 2284(2) 7984(2) 6904(2) 3389(2) 7868(3) 2488(3) 6181(2) 1290(3) 9649(3)	$\begin{array}{cccc} 4127(2) & 1964(2) \\ 3080(2) & 3431(2) \\ 4140(2) & 505(2) \\ 5214(2) & 1909(2) \\ 5165(2) & 3677(2) \\ 3203(2) & 859(2) \\ 3480(2) & 4841(2) \\ 2284(2) & 2373(2) \\ 7984(2) & 844(3) \\ 6904(2) & 865(2) \\ 3389(2) & 6631(2) \\ 7868(3) & 2611(3) \\ 2488(3) & 4285(3) \\ 6181(2) & 3678(3) \\ 1290(3) & 2915(3) \\ 9649(3) & -192(3) \\ \end{array}$

Table 3 An	isotropic Displa	acement Paramete	ers (Ų×10	³) for cu_2023724	_0m. The Ar	nisotropic
displacem	ent factor expo	nent takes the for	m: -2π²[h²	² a* ² U ₁₁ +2hka*b*U ₁₂	2 +…] .	-
-						

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃ U ₁₂
O2 O3	33.2(7) 35.5(7)	28.7(7) 23.0(7)	37.5(8) 35.8(8)	-17.5(6) -15.2(6)	-7.1(6) -6.1(5) -8.2(6) -5.0(5)
O1	46.0(8)	26.0(7)	38.6(8)	-13.1(7)	-6.0(6) 10.4(6)
C7 C8	31.2(9) 27.5(9)	26.2(9) 28.3(9)	27.4(9) 30.0(9)	-14.4(8) -16.8(8)	1.2(7) -9.6(7) 0.3(7) -9.1(7)
C9	30.8(9)	27.7(10)	29.6(9)	-14.7(8)	- 3.1(7) 10.6(7)
C6	31.8(10)	28.8(9)	28.1(9)	-14.5(8)	-1.5(7) -9.7(7)
C5	34.3(10)	26.9(10)	26.0(9)	-11.4(8)	-3.1(7) 10.3(7)
C10	34.4(10)	31.0(10)	38.0(10)	-21.1(9)	⁻ 1.1(8) 12.7(7)
C13	37.1(10)	29.0(9)	30.3(10)	-17.3(8)	-3.3(8) 10.1(7)
C11	30.9(9)	37.4(10)	35.7(10)	-22.9(9)	- 1.7(7) 12.8(7)
C2 C1 C15	35.5(10) 35.3(10) 44.3(11)	36.4(11) 29.6(10) 27.9(10)	32.8(10) 33.3(10) 42.0(11)	-11.2(9) -15.0(9) -20.0(9)	-6.5(8) -9.2(8) -3.6(8) -6.8(7) -4.5(8) -9.5(8)
C3	40.5(11)	40.8(11)	42.7(12)	-13.9(10)	-11.2(9) 14.3(8)
C14	43.1(11)	42.5(12)	37.7(11)	-21.3(10)	5.6(9) 15.3(9)
C4	45.0(11)	34.9(10)	36.4(11)	-16.3(9)	-8.8(9) 14.5(8)
C12	41.0(11)	47.1(12)	45.5(12)	-26.1(11)	-8.3(9) 12.1(9)
C16	35.6(11)	52.3(14)	50.1(13)	-18.4(12)	-5.8(9) 10.1(9)

Tab	Table 4 Bond Lengths for cu_2023724_0m.										
Ato	n Atom	Length/Å	Atom	Atom	Length/Å						
O2	C8	1.359(2)	C5	C13	1.534(3)						
O2	C11	1.380(2)	C5	C4	1.529(2)						

C8	1.335(2) (C10	C11	1.329(3)
C13	1.482(2) (C13	C15	1.519(3)
C9	1.235(2) (C13	C14	1.524(3)
C8	1.351(3) (C11	C12	1.489(3)
C9	1.453(3) (C2	C1	1.533(3)
C6	1.515(2) (C2	C3	1.530(3)
C10	1.463(3) (C2	C16	1.524(3)
C5	1.533(3)	C3	C4	1.532(3)
C1	1.533(3)			
	C8 C13 C9 C8 C9 C6 C10 C5 C1	C8 1.335(2) C13 1.482(2) C9 1.235(2) C8 1.351(3) C9 1.453(3) C6 1.515(2) C10 1.463(3) C5 1.533(3) C1 1.533(3)	$\begin{array}{cccc} {\sf C8} & 1.335(2) \ {\sf C10} \\ {\sf C13} & 1.482(2) \ {\sf C13} \\ {\sf C9} & 1.235(2) \ {\sf C13} \\ {\sf C8} & 1.351(3) \ {\sf C11} \\ {\sf C9} & 1.453(3) \ {\sf C2} \\ {\sf C6} & 1.515(2) \ {\sf C2} \\ {\sf C10} & 1.463(3) \ {\sf C2} \\ {\sf C5} & 1.533(3) \ {\sf C3} \\ {\sf C1} & 1.533(3) \end{array}$	$\begin{array}{ccccccc} C8 & 1.335(2) \ C10 & C11 \\ C13 & 1.482(2) \ C13 & C15 \\ C9 & 1.235(2) \ C13 & C14 \\ C8 & 1.351(3) \ C11 & C12 \\ C9 & 1.453(3) \ C2 & C1 \\ C6 & 1.515(2) \ C2 & C3 \\ C10 & 1.463(3) \ C2 & C16 \\ C5 & 1.533(3) \ C3 & C4 \\ C1 & 1.533(3) \end{array}$

Table 5 Bond Angles for cu_2023724_0m.

Aton	1 Atom	า	Atom	Angle/°	Atom	Atom	1	Atom	Angle/°
C8	02	C11		117.85(14)	C11	C10	C9		122.35(16)
C8	O3	C13		116.05(13)	O3	C13	C5		106.57(13)
C8	C7	C9		117.94(16)	O3	C13	C15		102.87(15)
C8	C7	C6		118.91(16)	O3	C13	C14		107.95(16)
C9	C7	C6		123.15(16)	C15	C13	C5		112.38(17)
O3	C8	02		106.78(14)	C15	C13	C14		111.92(16)
O3	C8	C7		127.91(16)	C14	C13	C5		114.25(17)
C7	C8	02		125.29(16)	02	C11	C12		110.68(17)
01	C9	C7		123.63(17)	C10	C11	02		121.20(16)
01	C9	C10		121.94(16)	C10	C11	C12		128.12(18)
C7	C9	C10		114.41(16)	C3	C2	C1		110.39(16)
C7	C6	C5		109.11(15)	C16	C2	C1		109.61(16)
C7	C6	C1		112.57(14)	C16	C2	C3		111.79(19)
C5	C6	C1		108.76(16)	C2	C1	C6		111.58(15)
C6	C5	C13		111.07(16)	C2	C3	C4		111.73(18)
C4	C5	C6		110.53(15)	C5	C4	C3		109.80(15)
C4	C5	C13		114.60(15)					

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for cu_2023724_0m.

Atom	- x	у	Z	U(eq)
H6	4846.27	1428.07	9174.45	35
H5	5645.28	4076.28	6467.75	34
H10	3253.85	-26.23	5671.52	38
H2	7638.84	313.42	9724.82	43
H1A	6948.6	-282.88	7974.81	40
H1B	7271.53	1321.27	6546.63	40
H15A	4116.69	6909.09	6152.05	55
H15B	3665.58	6779.28	7921.3	55
H15C	2326.08	7358.46	6924.61	55
H3A	8292.34	3120.65	7107.96	49
H3B	8508.38	2578.16	8869.14	49
H14A	1460.89	5133.01	9264.35	62
H14B	3000.09	4121.18	10084.64	62
H14C	2364.12	3241.72	9468.82	62
H4A	5781.75	3233.83	9660.83	44
H4B	6140.21	4825.28	8235.68	44
H12A	204.26	3444.25	4347.38	62
H12B	1364.25	1950.39	3819.63	62
H12C	1646.6	3705.21	2990.12	62
H16A	9700.6	-1344.17	8546.06	72
H16B	10347.92	-139.42	8702.34	72
		S66		

H16C

9967.77

Compound 72

X-ray information for compound **72** can be obtained free of charge from The Cambridge Crystallographic Data center with number CCDC 2371783.

Table 1 Crystal data and structure refinement for 72.

Identification code	72
Empirical formula	$C_{18}H_{16}Br_2O_4$
Formula weight	456.13
Temperature/K	100
Crystal system	monoclinic
Space group	P21/c
a/Å	9.4779(6)
b/Å	17.4082(10)
c/Å	10.9215(7)
α/°	90
β/°	111.049(3)
γ/°	90
Volume/Å ³	1681.73(18)
Z	4
ρ _{calc} g/cm ³	1.802
µ/mm ⁻¹	6.290
F(000)	904.0
Crystal size/mm ³	0.19 × 0.08 × 0.05
Radiation	CuKα (λ = 1.54178)
2O range for data collection/°	10.056 to 128.238
Index ranges	-11 ≤ h ≤ 9, -20 ≤ k ≤ 20, -12 ≤ l ≤ 11
Reflections collected	11656
Independent reflections	2750 [R _{int} = 0.0828, R _{sigma} = 0.0613]
Data/restraints/parameters	2750/0/220
Goodness-of-fit on F ²	1.096
Final R indexes [I>=2σ (I)]	R ₁ = 0.0903, wR ₂ = 0.2426
Final R indexes [all data]	R ₁ = 0.0922, wR ₂ = 0.2467
Largest diff. peak/hole / e Å ⁻³	2.11/-1.29

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for cu_20231315_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

_	Atom	X		У	z	U(eq)
Br1			-934.6(8)	6516.9(4)	14	22.0(7) 47.0(4)
			S67			

Br2	411.0(9)	3334.3(4)	1898.0(7) 47.0(4)
O1	2300(6)	6619(3)	1631(5) 45.2(12)
O3	5046(5)	3896(3)	867(4) 45.1(11)
O4	7934(5)	4678(3)	4374(4) 46.7(11)
O2	6865(5)	5790(3)	4204(5) 48.4(12)
C2	448(8)	5700(4)	1586(6) 43.6(15)
C4	990(8)	4360(4)	1781(6) 41.2(14)
C3	-16(8)	4954(4)	1673(6) 42.2(14)
C18	1892(8)	5867(4)	1626(6) 40.8(14)
C5	2415(8)	4501(4)	1783(6) 42.4(15)
C7	4489(8)	5419(4)	1717(6) 43.5(15)
C14	5904(8)	4135(4)	1962(6) 41.5(14)
C16	8100(8)	3955(4)	3943(7) 44.6(15)
C12	5695(8)	4864(4)	2501(6) 42.5(15)
C6	2906(7)	5254(4)	1714(6) 38.9(14)
C15	7183(8)	3686(4)	2801(7) 42.7(14)
C13	6746(8)	5106(4)	3627(6) 41.2(14)
C9	5609(8)	6344(4)	3654(7) 46.7(16)
C11	6374(9)	7113(4)	4068(8) 54.3(18)
C8	4968(8)	6243(4)	2145(7) 44.2(15)
C1	3665(8)	6770(4)	1407(7) 45.6(16)
C10	4540(8)	6174(5)	4379(7) 50.0(17)
C17	9454(9)	3549(5)	4895(7) 49.9(18)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for cu_20231315_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

alopiuoementi	actor experies	it tunes t			012.1.1	
Atom	U 11	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
Br1	47.8(6)	39.8(5)	51.6(6)	0.8(3)	15.9(4)	8.1(3)
Br2	49.3(6)	34.2(5)	59.8(6)	-1.0(3)	22.2(4)	-2.8(3)
01	48(3)	32(2)	54(3)	1.0(18)	17(2)	-0.4(18)
O3	47(3)	37(2)	50(3)	-4.3(19)	16(2)	-2(2)
O4	45(3)	37(2)	53(3)	-2.8(19)	12(2)	-0.6(19)
02	44(3)	40(3)	57(3)	-5(2)	13(2)	0(2)
C2	48(4)	37(3)	42(3)	1(3)	12(3)	3(3)
C4	48(4)	33(3)	43(3)	-4(3)	16(3)	-4(3)
C3	37(3)	35(3)	51(4)	0(3)	12(3)	1(3)
C18	47(4)	32(3)	41(3)	-2(2)	13(3)	4(3)
C5	46(4)	33(3)	44(3)	-4(2)	12(3)	6(3)
C7	57(4)	26(3)	46(3)	1(3)	17(3)	0(3)
C14	46(4)	34(3)	46(3)	2(3)	19(3)	1(3)
C16	51(4)	32(3)	53(4)	3(3)	20(3)	5(3)
C12	41(4)	39(3)	47(3)	2(3)	16(3)	1(3)
C6	38(3)	33(3)	42(3)	2(2)	9(2)	1(2)
C15	41(4)	31(3)	60(4)	0(3)	22(3)	3(3)
C13	46(4)	31(3)	48(3)	-1(3)	19(3)	0(3)
C9	44(4)	34(3)	61(4)	0(3)	18(3)	7(3)
C11	45(4)	37(4)	78(5)	-12(3)	19(3)	-4(3)
C8	49(4)	30(3)	56(4)	-4(3)	21(3)	-4(3)
C1	49(4)	35(4)	53(4)	1(3)	19(3)	5(3)
C10	43(4)	50(4)	54(4)	-2(3)	14(3)	4(3)
C17	48(4)	46(4)	52(4)	5(3)	14(3)	6(3)

Table 4 Bond Lengths for cu_20231315_0m.

Atom Atom Length/Å Atom Atom

Length/Å

Br1	C2	1.898(7)	C5	C6	1.402(9)
Br2	C4	1.885(6)	C7	C12	1.506(9)
01	C18	1.364(8)	C7	C6	1.527(10)
01	C1	1.425(9)	C7	C8	1.526(9)
O3	C14	1.252(8)	C14	C12	1.441(10)
O4	C16	1.371(8)	C14	C15	1.457(9)
O4	C13	1.353(8)	C16	C15	1.324(10)
02	C13	1.334(8)	C16	C17	1.506(9)
O2	C9	1.481(8)	C12	C13	1.342(9)
C2	C3	1.385(10)	C9	C11	1.513(10)
C2	C18	1.385(10)	C9	C8	1.548(10)
C4	C3	1.383(10)	C9	C10	1.522(11)
C4	C5	1.373(10)	C8	C1	1.517(10)
C18	C6	1.415(9)			

Table 5 Bond Angles for cu_20231315_0m.

Atom	Atom	1	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C18	01	C1		116.8(5)	C15	C16	C17	126.3(7)
C13	04	C16		118.1(5)	C14	C12	C7	121.3(6)
C13	02	C9		118.1(5)	C13	C12	C7	118.7(6)
C3	C2	Br1		118.9(5)	C13	C12	C14	119.0(6)
C3	C2	C18		121.9(6)	C18	C6	C7	120.1(6)
C18	C2	Br1		119.2(5)	C5	C6	C18	118.6(6)
C3	C4	Br2		120.4(5)	C5	C6	C7	121.4(6)
C5	C4	Br2		118.7(5)	C16	C15	C14	121.2(6)
C5	C4	C3		120.9(6)	O2	C13	O4	107.2(5)
C4	C3	C2		118.8(7)	02	C13	C12	128.5(6)
01	C18	C2		118.4(6)	C12	C13	O4	124.3(6)
01	C18	C6		122.6(6)	02	C9	C11	103.0(6)
C2	C18	C6		118.9(6)	O2	C9	C8	108.0(6)
C4	C5	C6		120.8(6)	O2	C9	C10	104.6(6)
C12	C7	C6		115.1(5)	C11	C9	C8	112.4(6)
C12	C7	C8		110.3(6)	C11	C9	C10	110.7(6)
C8	C7	C6		111.2(6)	C10	C9	C8	116.9(6)
O3	C14	C12		123.1(6)	C7	C8	C9	113.1(6)
O3	C14	C15		122.0(6)	C1	C8	C7	108.1(6)
C12	C14	C15		114.9(6)	C1	C8	C9	115.4(6)
O4	C16	C17		111.6(6)	01	C1	C8	114.4(6)
C15	C16	O4		122.1(6)				

Table 6 Torsion Angles for cu_20231315_0m.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Br1	C2	C3	C4	179.4(5)	C12	C7	C6	C18	148.4(6)
Br1	C2	C18	01	4.2(8)	C12	C7	C6	C5	-32.3(9)
Br1	C2	C18	C6	-178.4(5)	C12	C7	C8	C9	-46.4(8)
Br2	C4	C3	C2	-179.9(5)	C12	C7	C8	C1	-175.4(6)
Br2	C4	C5	C6	-179.2(5)	C12	C14	C15	C16	-2.5(10)
01	C18	C6	C5	176.1(6)	C6	C7	C12	2C14	81.9(8)
01	C18	C6	C7	-4.6(9)	C6	C7	C12	C13	-109.3(7)
O3	C14	C12	C7	-5.2(11)	C6	C7	C8	C9	82.7(7)
O3	C14	C12	C13	-174.0(7)	C6	C7	C8	C1	-46.4(7)

Table 6 Torsion Angles for cu_20231315_0m.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
O3	C14	C15	C16	178.4(7)	C15	C14	C12	C7	175.7(6)
O4	C16	C15	C14	-2.6(11)	C15	C14	C12	C13	7.0(10)
O2	C9	C8	C7	55.1(8)	C13	O4	C16	C15	3.4(10)
O2	C9	C8	C1	-179.7(6)	C13	04	C16	C17	-178.8(6)
C2	C18	C6	C5	-1.2(9)	C13	02	C9	C11	-154.6(6)
C2	C18	C6	C7	178.1(6)	C13	02	C9	C8	-35.5(8)
C4	C5	C6	C18	-0.7(9)	C13	02	C9	C10	89.7(7)
C4	C5	C6	C7	180.0(6)	C9	02	C13	O4	-173.7(6)
C3	C2	C18	01	-175.3(6)	C9	02	C13	C12	8.0(11)
C3	C2	C18	C6	2.1(10)	C9	C8	C1	01	-68.1(8)
C3	C4	C5	C6	1.8(10)	C11	C9	C8	C7	168.1(6)
C18	301	C1	C8	-43.6(8)	C11	C9	C8	C1	-66.8(8)
C18	3 C 2	C3	C4	-1.0(10)	C8	C7	C12	C14	-151.2(7)
C5	C4	C3	C2	-1.0(10)	C8	C7	C12	C13	17.6(9)
C7	C12	C13	04	-175.8(6)	C8	C7	C6	C18	21.9(8)
C7	C12	C13	02	2.2(11)	C8	C7	C6	C5	-158.8(6)
C7	C8	C1	01	59.6(8)	C1	01	C18	C2	-167.8(6)
C14	C12	C13	04	-6.8(11)	C1	01	C18	C6	14.9(9)
C14	C12	C13	02	171.3(7)	C10	C9	C8	C7	-62.4(8)
C16	604	C13	02	-176.9(6)	C10	C9	C8	C1	62.8(8)
C16	604	C13	C12	1.5(10)	C17	C16	C15	C14	179.9(7)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for cu_20231315_0m.

Atom	X	У	Z	U(eq)
H3	-1007.05	4852.78	1657.7	51
H5	3078.37	4082.74	1832.23	51
H7	4427.06	5375.45	786.33	52
H15	7362.26	3190.55	2522.3	51
H11A	6887.39	7121.52	5023.03	81
H11B	5613.98	7522.36	3804.4	81
H11C	7115.25	7193.32	3644.92	81
H8	5811.13	6367.33	1830.22	53
H1A	3973.38	7307.51	1664.65	55
H1B	3463.73	6722.91	456.24	55
H10A	4155.88	5648.5	4185.09	75
H10B	3692.31	6536.46	4094.55	75
H10C	5084.83	6229.23	5325.66	75
H17A	10379.53	3809.45	4917.98	75
H17B	9468.28	3015.38	4612.92	75
H17C	9393.78	3557.27	5771.83	75

References

- 1. Yoshino T., Sato I., Hirama M. Total Synthesis of Aspercyclides A and B via Intramolecular Oxidative Diaryl Ether Formation. *Org. Lett.* **14**, 4290-4292 (2012).
- Bajwa N., Jennings M.P. Efficient and Selective Reduction Protocols of the 2,2-Dimethyl-1,3benzodioxan-4-one Functional Group to Readily Provide Both Substituted Salicylaldehydes and 2-Hydroxybenzyl Alcohols. *J. Org. Chem.* **71**, 3646-3649 (2006).
- Gaddam J., Reddy A.V.V., Sarma A.V.S., Yadav J.S., Mohapatra D.K. Total Synthesis and Structural Revision of Greensporone F and Dechlorogreensporone F. *J. Org. Chem.* 85, 12418-12429 (2020).
- 4. Soltani O., De Brabander J.K. Synthesis of Functionalized Salicylate Esters and Amides by Photochemical Acylation. *Angew. Chem. Int. Ed.* **44**, 1696-1699 (2005).
- 5. Wang S., *et al.* Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents. *J. Med. Chem.* **58**, 6678-6696 (2015).
- Farat O.K., Kovtun A.V., Varenichenko S.A., Mazepa A.V., Markov V.I. Novel Rearrangement of 1,3-Benzo(naphtho)dioxin-4(1)-ones under Vilsmeier-Haack Reagent. *Monatsh. Chem.* 152, 95-101 (2021).
- Machotta A.B., Straub B.F., Oestreich M. Oxygen Donor-Mediated Equilibration of Diastereomeric Alkene-Palladium(II) Intermediates in Enantioselective Desymmetrizing Heck Cyclizations. *J. Am. Chem. Soc.* **129**, 13455-13463 (2007).
- 8. Li D., *et al.* Development of Macrocyclic Peptides Containing Epoxyketone with Oral Availability as Proteasome Inhibitors. *J. Med. Chem.* **61**, 9177-9204 (2018).
- 9. Carrillo-Arcos U.A., Rojas-Ocampo J., Porcel S. Oxidative cyclization of alkenoic acids promoted by AgOAc. *Dalton Transac.* **45**, 479-483 (2016).
- 10. Katritzky A.R., Singh S.K., Akhmedova R., Cai C., Bobrov S. Efficient synthesis of 1,3benzodioxin-4-one and benzoxazine-2,4-diones. *ARKIVOC* **2007**, 6-13 (2006).
- 11. Bhaskaran R.P., Nayak K.H., Babu B.P. Synthesis of functionalized benzo[1,3]dioxin-4-ones from salicylic acid and acetylenic esters and their direct amidation. *RSC Adv.* **11**, 24570-24574 (2021).
- 12. Bhar S., Ranu B.C. Zinc-Promoted Selective Cleavage of Ethers in Presence of Acyl Chloride. *J. Org. Chem.* **60**, 745-747 (1995).
- 13. Ito S., Kubota Y., Asami M. Pummerer Reaction of Sulfoxides in Acetic Anhydride Catalyzed by Al-MCM-41. *Chem. Lett.* **45**, 16-18 (2016).
- 14. Sonehara T., Murakami S., Yamazaki S., Kawatsura M. Iron-Catalyzed Intermolecular Hydrothiolation of Internal Alkynes with Thiosalicylic Acids, and Sequential Intramolecular Cyclization Reaction. *Org. Lett.* **19**, 4299-4302 (2017).
- Meninno S., Fuoco T., Tedesco C., Lattanzi A. Straightforward Enantioselective Access to γ-Butyrolactones Bearing an All-Carbon β-Quaternary Stereocenter. *Org. Lett.* **16**, 4746-4749 (2014).
- 16. Peixoto P.A., *et al.* Design and Synthesis of Epicocconone Analogues with Improved Fluorescence Properties. *J. Am. Chem. Soc.* **136**, 15248-15256 (2014).
- 17. Fan X., *et al.* Tandem Reactions Leading to Bicyclic Pyrimidine Nucleosides and Benzopyran-4-ones. *J. Org. Chem.* **76**, 982-985 (2011).

- Cai S., Shen Y., Lu P., Wang Y. Condition-controlled selective synthesis of coumarins and flavones from 3-(2-hydroxyphenyl)propiolates and iodine. *Tetrahedron Lett.* **52**, 4164-4167 (2011).
- Turner P.A., Griffin E.M., Whatmore J.L., Shipman M. Tetrahydroxanthones by Sequential Pd-Catalyzed C–O and C–C Bond Construction and Use in the Identification of the "Antiausterity" Pharmacophore of the Kigamicins. *Org. Lett.* **13**, 1056-1059 (2011).
- 20. Patonay T., Lévai A., Rimán É., Varma R.S. Microwave-induced, solvent-free transformations of benzoheteracyclanones by HTIB (Koser's reagent). *ARKIVOC* **2004**, 183-195 (2004).
- 21. Liu J., Liu M., Yue Y., Zhang N., Zhang Y., Zhuo K. Construction of the flavones and aurones through regioselective carbonylative annulation of 2-bromophenols and terminal alkynes. *Tetrahedron Lett.* **54**, 1802-1807 (2013).
- Borthakur S., Kaishap P.P., Gogoi S. Rull-Catalyzed Regioselective Debrominative Annulation Reaction of Salicylaldehydes and Propargyl Bromide: Synthesis of 2-Methylchromones. *Asian J. Org. Chem.* 7, 918-921 (2018).
- 23. Xiao Z., Cai S., Shi Y., Yang B., Gao S. A photo-induced C–O bond formation methodology to construct tetrahydroxanthones. *Chem. Commun.* **50**, 5254-5257 (2014).
- 24. Cortés I., Cordisco E., Kaufman T.S., Sortino M.A., Svetaz L.A., Bracca A.B.J. First total synthesis of chromanone A, preparation of related compounds and evaluation of their antifungal activity against Candida albicans, a biofilm forming agent. *RSC Adv.* **11**, 19587-19597 (2021).
- 25. Xiong W., Wang Y., Yang X., Liu W.H. Selective Hydrolysis of Primary and Secondary Amides Enabled by Visible Light. *Org. Lett.* **25**, 2948-2952 (2023).
- 26. Ok Jang D., Hyan Cho D., Kim J.-G. One-Pot Preparation of Esters from Carboxylic Acids Using the PPh₃-CCl₃CN System. *Synth. Commun.* **33**, 2885-2890 (2003).
- Tietze L.F., Kiedrowski G.v., Fahlbusch K., Voss E. Diasteroselective Formation of α-Methoxycarbonyl Lactones Through an Intramolecular Diels–Alder Reaction: (4RS,4aRS,6RS,8aRS)-, (4S,4aS,6S,8aS)- and (4R,4aR,6R,8aR)-4-Methoxycarbonyl-1,1,6-trimethyl-1,4,4A,5,6,7,8,8a-octahydro-2,3-benzopyrone [rac-5, (+)-5, and (-)-5]. Org. Syn. 31-31 (2003).
- 28. Dornan P.K., Lee D., Grubbs R.H. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins. *J. Am. Chem. Soc.* **138**, 6372-6375 (2016).
NMR Spectra

Compound 5a ¹H NMR

Compound 5a ¹³C NMR

Compound S1 ¹³C NMR

Compound S2¹H NMR

Compound S2 ¹³C NMR

S78

Compound S3 ¹H NMR

Compound S3 ¹³C NMR

Compound S4¹H NMR

Compound S4¹³C NMR

Compound S5¹H NMR

Compound 75b ¹H NMR

Compound S6¹³C NMR

Compound S7¹H NMR

Compound S7 ¹³C NMR

Compound S8¹H NMR

Compound S8 ¹³C NMR

Compound S9¹H NMR

Compound S9¹³C NMR

Compound S10¹³C NMR

Compound 18-1 ¹H NMR

Compound 18-2 ¹³C NMR

Compound 18-3 ¹H NMR

Compound 18-3 ¹³C NMR

Compound 18-4 ¹H NMR

Compound 18-4 ¹³C NMR

Compound 18-5 ¹H NMR

Compound 18-5 ¹³C NMR

S110

Compound S12 ¹³C NMR

Compound S12 ¹⁹F NMR

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

Compound S13 ¹H NMR

Compound S13 ¹³C NMR

Compound S14 ¹H NMR

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

Compound S16¹H NMR

Compound S17¹³C NMR

Compound S18¹H NMR

Compound S18¹³C NMR

Compound S18 ¹⁹F NMR

190	170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
									f1 ((ppm)									

Compound S19¹³C NMR

Compound S19¹⁹F NMR

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

Compound S20 ¹³C NMR

Compound 75a ¹H NMR

Compound S22 ¹H NMR

Compound S22 ¹³C NMR

Compound S23 ¹³C NMR

10	280.94	134	222000	õ
169 166	157	132	1110.1110.1110.1110.1110.1110.1110.1110.1110.1110.11110.11110.111110.111111	25.8
11	\mathbf{Y}	\checkmark		

Compound S23 ¹⁹F NMR

190	170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
									f1 ((ppm)									

Compound S24 ¹H NMR

Compound S24 ¹³C NMR

Compound S24 ¹⁹F NMR

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

S143

Compound S25¹³C NMR

Compound S26¹H NMR

Compound S27 ¹H NMR

Compound S27 ¹³C NMR

Compound S28¹³C NMR

Compound S30¹H NMR

Compound S31¹³C NMR

Compound S32 ¹H NMR

Compound S32 ¹³C NMR

Compound S33 ¹H NMR

Compound S34 ¹H NMR

Compound S34 ¹³C NMR

Compound S35¹H NMR

Compound S35¹³C NMR

Compound S35 ¹⁹F NMR

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

Compound S36 ¹³C NMR

S168

S169

Compound S38 ¹H NMR

Compound S38¹³C NMR

S171

Compound S39 ¹H NMR

Compound S39¹³C NMR

Compound S39 ¹⁹F NMR

--71.59

Compound S40 ¹H NMR

Compound S40 ¹³C NMR

Compound S41 ¹H NMR

Compound S41 ¹³C NMR

Compound S42 ¹H NMR

Compound S42 ¹³C NMR

S181

Compound 8¹³C NMR

Compound 9¹³C NMR

والمحاجز والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمحاج والمراجع والمراجع

110 100 f1 (ppm) he share the second second second second second

Compound 14¹³C NMR

Compound 15 ¹H NMR

Compound 16¹³C NMR

Compound 17 ¹H NMR

Compound 20a ¹H NMR

Compound 21a ¹H NMR

Compound 21a ¹³C NMR

Compound 22a ¹H NMR

Compound 22b ¹H NMR

Compound 22b ¹³C NMR

S219

Compound 23b ¹³C NMR

Compound 24b ¹³C NMR

Compound 25 ¹H NMR

Compound 25 ¹³C NMR

Compound 26 ¹H NMR

Compound 26 ¹³C NMR

Compound 26 ¹⁹F NMR

									1										
190	170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
									f1	(ppm)									

Compound 27 ¹H NMR

S231

Compound 28 ¹⁹F NMR

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

Compound 29¹³C NMR

S235

Compound 31 ¹H NMR

Compound 31¹³C NMR

Compound 32 ¹H NMR

Compound 32 ¹⁹F NMR

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

S244

Compound 35¹³C NMR

Compound 36¹³C NMR

Compound 36 ¹⁹F NMR

190	170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
f1 (ppm)																			

Compound 37 ¹⁹F NMR

-63.02

Compound 41¹³C NMR

Compound 43 ¹³C NMR

Compound 44 ¹H NMR

Compound 45 ¹H NMR

Compound 46 ¹H NMR

Compound 48¹³C NMR

Compound 48 ¹⁹F NMR

Compound 52 ¹⁹F NMR

Compound 53 ¹H NMR

Compound 53 ¹³C NMR

Compound 53 ¹⁹F NMR

 $\begin{array}{c} & & \\ & &$

--71.55

Compound 54 ¹H NMR

Compound 55 ¹H NMR

Compound 57 ¹³C NMR

Compound 58 ¹³C NMR

Compound 61 ¹H NMR

Compound 61 ¹³C NMR

Compound S44 ¹H NMR

Compound 63 ¹H NMR

Compound S45 ¹H NMR

Compound S45¹³C NMR

Compound 66 ¹³C NMR

Compound 67 ¹H NMR

Compound 67 ¹³C NMR

Compound 68 ¹³C NMR

Compound S48¹³C NMR

Compound 71 ¹H NMR

Compound 72 ¹³C NMR

Compound 73 ¹H NMR

Compound 73 ¹³C NMR

n Califar Manada a an Anna an Analain an Anna a

terrenter terreter ber

W UNKDR

