Supporting Information

Palladium-Catalyzed Difluorocarbene Transfer Synthesis of Diaryl Ketones from Iodoarene and Arylboronic Acid

Zhiyong Tan,^{*,a} Tingting Chen,^a Jiayi Shen,^a Jinbin Zhu,^a Weihong Zhong,^{*,b} Wei Guo^{*,a}

^aKey Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China; E-mail: 453759122@qq.com; guoweigw@126.com. ^bJiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China; E-mail: zhongweihong@jxutcm.edu.cn.

Table of Contents

SI-§1	General Information
SI-§2	General Procedures
SI-§3	Optimization Tables
SI-§4	Further Synthetic Transformation
§4a	Drug synthesis 10
§4b	Experimental procedures for derivatization of ketones11-12
SI-§5	Mechanism Experiments
§5a	¹⁸ O-Labeling experiment
§5b	CO experiment
§5c	Complexation experiments of $[Pd(\pi-cinnamyl)Cl]_2$ and L1
§5d	Formation of palladium black17
SI-§6	Preparation of Ligands
SI-§7	Characterization Data and NMR Spectra of Products
SI-§8	Reference

SI-§1 General Information

Melting points were determined on an EZ-Melt (Automated melting point apparatus). ¹H and ¹³C {¹H} NMR spectra were recorded on a 400 MHz Varian Unity Plus or Varian Mercury plus spectrometer. The chemical shift (δ) values are reported in parts per million (ppm), and the coupling constants (*J*) aregiven in Hz. The spectra was recorded using CDCl₃ or D₂O as a solvent. ¹H NMR chemical shifts are referenced to tetramethylsilane (TMS) (0 ppm). Chemical shifts are reported in δ ppm referenced to an internal TMS standard for ¹H NMR and CDCl₃ (δ 77.1) for ¹³C {¹H} NMR. High-resolution mass spectrometry (HRMS) data were collected on a high-resolution massspectrometer (LCMS-IT-TOF) using electrospray ionization (EI) mass spectrometry. The product purification was done using silica gel column chromatography. Thin-layer chromatography (TLC) characterization was performed with precoated silica gel GF254 (0.2 mm), while column chromatography characterization was performed with silica gel (200-300 mesh). ¹⁸O labeled water was purchased from Aladdin (¹⁸O purity: 98 atom%). GC-Ms spectra were recorded on Shimadzu GCMS-QP2010SE. Oil bath was used as heating source. Unless otherwise stated, all experiments were conducted in a seal tube under Ar atmosphere.

SI-§2 General Procedures

To a 25 mL schlenk tube was added 1 (0.2 mmol, 1.0 equiv) (for liquid aryl iodide, added in a 1 mL syringe after solid), 3 (0.3 mmol, 1.5 equiv), $[Pd(\pi\text{-cinnamyl})Cl]_2$ (10 mol%), Na₂CO₃ (0.6 mmol, 3.0 equiv), the tube was evacuated and filled with argon for three cycles. And 2 (0.4 mmol, 2.0 equiv), L1 (20 mol%), DMF (2 mL) were injected in schlenk tube. The schlenk tube was then heated up to 90 °C and kept stirring for 12 hours. After completion of the reaction, the mixture was cooled to room temperature and extracted with EtOAc (3 × 5 mL). The organic layers wer combined and dried with Na₂SO₄. After filtration and evaporation, the crude product was purified and separated by 200-300 mesh silica gel column chromatography to obtain the final product 4.

SI-§3 Optimization Tables

Table S1. Optimization of reaction conditions by using different ligands^a.

MeO +	Br <mark>CF</mark> 2COOEt +	B(OH) ₂	PdCl ₂ (10 mol%) Ligand (20 mol%) H ₂ O (3.0 equiv), DMF (2 mL) Na ₂ CO ₂ (3 0 equiv)	
1a	2	3a	Ar, 90 °C, 12 h	4a
Entry		Ligand	Yield	(%) ^b
1		P-1	30	5
2		P-2	10)
3		P-3	10)
4		P-4	1′	7
5		P-5	10)
6		P-6	23	3
7		P-7	20)
8		P-8	3	1
9		P-9	N	D
10		P-10	N	D
11		P-11	20	5
12		N-1	10)
13		N-2	20)
14		N-3	20)
15		N-4	3:	5
16		N-5	20)
17		N-6	20)
18		N-7	30	5
19		N-8	5	
20		N-9	10)
21		N-10	tra	ce
22		N-11	tra	ce
23		N-12	34	1
24		N-13	30)
25		L1	6.	3

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), PdCl₂ (10 mol%), Ligand (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

Table S2. Optimization of reaction conditions by using different catalysts^a.

Entry	Catalyst	Y 1eld(%) ^b
1	Pd(PPh ₃) ₄	40
2	Pd(dba ₂)	59
3	[Pd(<i>π</i> -cinnamyl)Cl] ₂	84
4	DPPF·PdCl ₂	trace
5	Pd(TFA) ₂	40
6	Pd(OAc) ₂	23
7	(CH ₃ CN) ₂ PdCl ₂	50
8	Pd(dba) ₃	36
9	(PPh ₃) ₂ PdCl ₂	5
10	NiCl ₂ (pph ₃) ₂	ND
11	NiCl ₂ (dme)	ND
12^{c}	[Pd(<i>π</i> -cinnamyl)Cl] ₂	38
13^d	[Pd(<i>π</i> -cinnamyl)Cl] ₂	72

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), Catalyst (10 mol%), **L1** (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield. ^{*c*} [Pd(π -cinnamyl)Cl]₂ (5 mol%). ^{*d*} [Pd(π -cinnamyl)Cl]₂ (5 mol%), **L1**(10 mol%).

Table S3. Optimization of reaction conditions by using different ligands^a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), $[Pd(\pi\text{-cinnamyl})Cl]_2$ (10 mol%), Ligand (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

Table S4. Optimization of reaction conditions by using different bases^a

MeO + BrCF ₂ COOEt + 1a 2	B(OH) ₂ [Pd(π-cinnamyl)Cl] ₂ (10 mol%) L1 (20 mol%) H ₂ O (3.0 equiv), DMF (2 mL) Base (3.0 equiv) Ar, 90 °C, 12 h	$ \begin{array}{c} $
Entry	Base	Yield(%) ^b
1	Na ₂ CO ₃	84
2	K ₂ CO ₃	60
3	K ₃ PO ₄	16
4	HCOONa	trace
5	DBU	13
6	DIPEA	22
7	Et ₃ N	trace

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), [Pd(π-cinnamyl)Cl]₂ (10 mol%), **L1** (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Base (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

MeO + BrCF ₂ COOEt + 1a 2	B(OH) ₂ [Pd(<i>π</i> -cinnamyl)Cl] ₂ (10 mol%) L1 (20 mol%) H ₂ O (3.0 equiv), Solvent (2 mL) Na ₂ CO ₃ (3 .0 equiv) MeO 3a Ar, 90 °C, 12 h 4	
Entry	Solvent	$Yield(\%)^b$
1	DMF	84
2	DMSO	trace
3	Toluene	NR
4	1,4-Dioxane	5
5	NMP	45
6	DMAc	24
7	H ₂ O	ND

Table S5. Optimization of reaction conditions by using different solvents^{*a*}.

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), [Pd(π -cinnamyl)Cl]₂ (10 mol%), L**1** (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in various solvent (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

Table S6.	Optimization of	f reaction condit	tions by usi	ng different	difluorocarbene	precursors ^a
			~	~		

Entry	Difluorocarbene precursor	$Yield(\%)^b$
1	BrCF ₂ COOEt	84
2	ClCF ₂ COOEt	59
3	BrCF ₂ PO(OEt) ₂	16
4	BrCF ₂ COONa	74
5	ClCF ₂ COONa	52
6	TMSCF ₂ Br	10
7	Ph ₃ P+CF ₂ CO ₂ -	trace
8	/	ND

a Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), [Pd(π-cinnamyl)Cl]₂ (10 mol%), **L1** (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

MeO + BrCF ₂ COOEt +	$\begin{array}{c c} B(OH)_2 & [Pd(\pi\text{-cinnamyl})CI]_2 \ (10 \ mol\%) \\ & \underbrace{L1 \ (20 \ mol\%)}_{H_2O} \\ H_2O \ (3.0 \ equiv), \ DMF \ (2 \ mL) \\ & Na_2CO_3 \ (3.0 \ equiv) & MeO \end{array}$	
Entry	Temperature(°C)	$Yield(\%)^b$
1	60	43
2	70	64
3	80	70
4	90	84
5	110	66

Table S7. Optimization of reaction conditions by using different temperatures^a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), [Pd(π-cinnamyl)Cl]₂ (10 mol%), **L1** (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), T / °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

MeO + BrCF ₂ COOEt + 1a 2	$\begin{array}{c c} B(OH)_2 & [Pd(\pi\text{-cinnamyl})CI]_2 \ (10 \ mol\%) \\ & & \\ & \\ & \\ & \\ H_2O \ (3.0 \ equiv), \ DMF \ (2 \ mL) \\ & \\ & \\ & Na_2CO_3 \ (3.0 \ equiv) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	
Entry	Time (h)	$\operatorname{Yield}(\%)^b$
1	4	69
2	6	58
3	8	64
4	10	60
5	12	84
6	14	83

Table S8. Optimization of reaction conditions by using different times^a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), [Pd(π-cinnamyl)Cl]₂ (10 mol%), **L1** (20 mol%), H₂O (0.6 mmol, 3.0 equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, t / h, in Ar atmosphere. ^{*b*} isolated yield.

Table S9. Optimizati	ion of reaction	conditions by	using different	amount of H ₂ O ^a
----------------------	-----------------	---------------	-----------------	---

MeO +	BrCF ₂ COOEt +	$\frac{B(OH)_{2}}{D_{2}} = \frac{[Pd(\pi-cinnamyl)CI]_{2} (10 \text{ mol})}{H_{2}O (X \text{ equiv}), DMF (2 \text{ mol})}$ $\frac{1}{H_{2}O (X \text{ equiv}), DMF (2 \text{ mol})}{Na_{2}CO_{3} (3.0 \text{ equiv})}$	
	L	Ja 74,00 0,1211	L1
Η	Entry	H ₂ O (equiv)	$\operatorname{Yield}(\%)^b$
	1	1	60
	2	2	73
	3	3	84

4	4	83
5	5	80

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (0.3 mmol, 1.5 equiv), [Pd(π -cinnamyl)Cl]₂ (10 mol%), **L1** (20 mol%), H₂O (X equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

Table S10. Optimization of reaction conditions by using different amount of BrCF₂COOEt^a

MeO +	BrCF ₂ COOEt +	B(OH) Ja	² [Pd(<i>π</i> -cinnamyl)Cl] ₂ (10 mol%) <u>L1 (20 mol%)</u> H ₂ O (X equiv), DMF (2 mL) Na ₂ CO ₃ (3 .0 equiv) MeO Ar, 90 °C, 12 h			
Entry			BrCF ₂ COOEt (equiv) Yield(%) ^b			
1		1.8		80		
2		1.9		82	82	
3		2		84	84	
4		2.1		84		
5			2.2	84		

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (X equiv), **3a** (0.3 mmol, 1.5 equiv), [Pd(π -cinnamyl)Cl]₂ (10 mol%), **L1** (20 mol%), H₂O (X equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

MeO 1a	- Br <mark>CF₂</mark> COOEt + 2	B(OH) ₂	P [Pd(<i>π</i> -cinnamyl)Cl] ₂ (10 mol%) L1 (20 mol%) H ₂ O (X equiv), DMF (2 mL) Na ₂ CO ₃ (3 .0 equiv) MeO [−] Ar, 90 °C, 12 h	O 4a			
Entry			3a (equiv)	Yield(Yield(%) ^b		
1			1.3	74	74		
2			1.4	78	78		
3			1.5	84	84		
4			1.6	1.6 84			
5			1.7	84	84		

Table S11. Optimization of reaction conditions by using different amount of phenylboronic acid^a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.4 mmol, 2.0 equiv), **3a** (X equiv), [Pd(π -cinnamyl)Cl]₂ (10 mol%), **L1** (20 mol%), H₂O (X equiv), Na₂CO₃ (0.6 mmol, 3.0 equiv) in DMF (2 mL), 90 °C, 12 h, in Ar atmosphere. ^{*b*} isolated yield.

SI- § 4 Further Synthetic Transformation

§ 4a Drug synthesis

To a 25 mL schlenk tube was added 5-iodo-1,2,3-trimethoxybenzene (0.2 mmol, 1.0 equiv), naphthalen-2-ylboronic acid (0.3 mmol, 1.5 equiv), $[Pd(\pi\text{-cinnamyl})Cl]_2$ (10 mol%), Na₂CO₃ (0.6 mmol, 3.0 equiv), the tube was evacuated and filled with argon for three cycles. And BrCF₂COOEt (0.4 mmol, 2.0 equiv), L1 (20 mol%), DMF (2 mL) were injected in schlenk tube. The schlenk tube was then heated up to 90 °C and kept stirring for 12 hours. After completion of the reaction, the mixture was cooled to room temperature and extracted with EtOAc (3 × 5 mL). The organic layers were combined and dried with Na₂SO₄. After filtration and evaporation, the crude product was purified and separated by 200-300 mesh silica gel column chromatography to obtain the final product Naphthylphenstatin.

§ 4b Experimental procedures for derivatization of ketones

2-benzoyl benzaldehyde (0.25 mmol, 1.0 equiv), CH_2Cl_2 (2 mL) and I_2 (0.05 mmol, 20 mol%) were added to a 25 mL reaction tube. After cooling the reaction tube to 0 °C in an ice bath, indole (0.525 mmol, 2.1 equiv) and CH_2Cl_2 (3 mL) were added drip. The reaction mixture was stirred at 0 °C. Upon completion of the reaction, the reaction mixture was transferred to a separating funnel using CH_2Cl_2 (15 mL), the organic layers was extracted, and dried with sodium sulfate. The solvent was removed using a rotary evaporator at low pressure, and the crude product was purified by silica gel column chromatography using an ethyl acetate/hexane mixture as eluent.

To a solution of the 2-benzoyl benzaldehyde (0.2 mmol, 1.0 equiv) in MeOH (1 mL) was added $NH_2NH_2 \cdot H_2O$ (0.4 mmol, 2.0 equiv). The reaction mixture was stirred at room temperature for 2 h. Upon completion of the reaction, the solvent was removed using a rotary evaporator at low pressure, and the final product was purified by silica gel column chromatography with 200-300 mesh.

2-benzoyl benzaldehyde (0.2 mmol, 1.0 equiv), benzylamine (0.24 mmol, 1.2 equiv), KOH (0.24 mmol, 1.2 equiv) and DMSO (1 mL) were added to a 15 mL reaction tube. The resulting reaction mixture was stirred at room temperature for 1 h. Upon completion of the reaction, ethyl acetate was added to the mixture, then washed three times with water, and the organic layers were

dried over anhydrous Na₂SO₄. The crude product was filtered, concentrated under vacuum, and purified and separated by 200-300 mesh silica gel column chromatography to obtain the final product.

A stirred solution of 2-benzoyl benzaldehyde (0.2 mmol, 1.0 equiv) and AcOH (0.46 mmol, 2.3 equiv) in 1,4-dioxane (1 mL) was treated at room temperature with benzylamine (0.4 mmol, 2.0 equiv). After 5min the reaction mixture was quenched with saturated NH₄Cl. Ethyl acetate extraction reaction mixture, the organic layers were combined with Na₂SO₄ and dried. The crude product was filtered and evaporated, and then purified and separated by 200-300 mesh silica gel column chromatography to obtain the final product.

To a 25 mL schlenk tube 2-benzoylbenzaldehyde (0.25 mmol, 1.0 equiv), phenylboronic acid (0.5 mmol, 2.0 equiv), PdCl₂ (0.025 mmol, 10 mol%), PPh₃ (0.0125 mmol, 5 mol%), and K₂CO₃ (0.75 mmol, 3.0 equiv) were sealed with rubber stopper and then purged three times with argon. THF (2.5 mL) was added to the reaction tube with a syringe. The mixture was heated at 60 °C for 24 h. After completion of the reaction, the resulting mixture was cooled to room temperature and HCl (4 M, 1 mL) was slowly added. The stirring was continued for 1 h under an argon atmosphere, followed by extraction with ethyl acetate three times. The combined organic extracts were washed with a saturated solution of NaHCO₃, with brine and dried over Na₂SO₄. The crude product was filtered and evaporated and then purified and separated by 200-300 mesh silica gel column chromatography to obtain the final product.

SI- § 5 Mechanism Experiments

§ 5a ¹⁸O-Labeling experiment

[Pd(π -cinnamyl)Cl]₂ (10 mol%), Na₂CO₃ (0.6 mmol, 3.0 equiv), 4-Iodoanisole (0.2 mmol, 1.0 equiv) and Phenylboronic acid (0.3 mmol, 1.5 equiv) were added into an oven-dried schlenk tube equipped with a magnetic stirred bar, then purged three times with argon. And BrCF₂COOEt (0.4 mmol, 2.0 equiv), L1 (20 mol%), H₂¹⁸O(2 mmol, 10 equiv), DMF (2 mL) were injected in schlenk tube. The schlenk tube was then heated up to 90 °C and kept stirring for 12 hours. After completion of the reaction, then the mixture was detected by GC-MS.

¹⁸O-Labeling Experiment

§ 5b CO experiment

[Pd(π -cinnamyl)Cl]₂ (10 mol%), Na₂CO₃ (0.6 mmol, 3.0 equiv), 4-iodoanisole (0.2 mmol, 1.0 equiv) and Phenylboronic acid (0.3 mmol, 1.5 equiv) were added into an oven-dried schlenk tube equipped with a magnetic stirred bar, then purged three times with CO balloon. And L1 (20 mol%), DMF (2 mL) were injected in schlenk tube. The mixture was continuously reacted at 90 °C for 12 h under CO atmosphere.

§ 5c Complexation experiments of [Pd(π-cinnamyl)Cl]₂ and L1

[Pd(π -cinnamyl)Cl]₂ (0.1 mmol, 1.0 equiv), DMF (1 mL) were added to a 10 mL reaction tube and stirred at room temperature for 10 min. The supernatant was centrifuged and transferred to another reaction tube. bis(pyridin-2-ylmethyl)amine (0.2 mmol, 2.0 equiv) was added to this tube, and solid precipitation began about 10 minutes after stirring. The reaction mixture continued to react for 5 h before being filtered and concentrated under reduced pressure. Finally, the upper solid is complex S-1 and the lower mother liquid is complex S-2.

The resulting product S-1 is a light yellow solid (26.1 mg, 77% yield). mp 286.1 °C.. ¹H NMR (400 MHz, Deuterium Oxide) δ 8.21 (d, J = 5.4 Hz, 2H), 7.92 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.9 Hz, 2H), 7.12 (t, J = 6.5 Hz, 2H), 4.49 (s, 4H). ¹³C {¹H} NMR (100 MHz, Acetone) δ 163.0, 147.4, 139.0, 122.5, 120.2, 56.7.

HRMS m/z calculated for C₁₂H₁₂ClN₃Pd [M+H]⁺: 339.98273, found: 339.98302.

complex S-2

HRMS m/z calculated for C₂₂H₂₇N₃Pd [M+H]⁺: 440.1313, found: 440.1321.

§ 5d Formation of palladium black

 $[Pd(\pi\text{-cinnamyl})Cl]_2$ (10 mol%), Na₂CO₃ (0.6 mmol, 3.0 equiv) were added into an oven-dried schlenk tube equipped with a magnetic stirred bar, then purged three times with argon. And BrCF₂COOEt (0.4 mmol, 2.0 equiv), L1 (20 mol%), DMF (2 mL) were injected in schlenk tube. The schlenk tube was then heated up to 90 °C and kept stirring for 12 hours.

SI-§6 Preparation of Ligands

1 mL dry THF and 2.5 M n-butyl lithium (0.6 mmol, 1.2 equiv) in hexane under argon were added to a 15 mL reaction tube. After cooling in an ice bath, 2-methylpyridine (0.5 mmol, 1.0 equiv) was added by slow drops using a syringe. The resulting dark red mixture was then cooled to -60 °C and added 1,2-dibromoethane (0.25 mmol, 0.5 equiv) in 0.1 mL THF. The reaction tube was slowly heated to room temperature when the color of the mixture became lighter. A saturated aqueous solution of KOH (2.2 g KOH in 2 mL H₂O) was then added. A small amount of brown precipitate was generated, filtered, and then dried with Na₂SO₄. After filtration and concentration under reduced pressure, the target product was obtained.

1,2-di(pyridin-2-yl)ethane (L4). The residue was purified by column chromatography (Hexane/EtOAc = 1/1) on silica gel and collected as yellow solid (81.0 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 4.0 Hz, 2H), 7.54 – 7.39 (m, 2H), 7.10 – 6.93 (m, 4H), 3.16 (s, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 161.0, 149.2, 136.3, 123.0, 121.1, 38.1.

2, 2-dipyridone (1.0 mmol, 1.0 equiv), KOH (3.5 mmol, 3.5 equiv) were loaded into a 15 mL reaction tube under nitrogen, and $64\% N_2H_4 \cdot H_2O$ (37.7 mmol, 37.7 equiv) was added by syringe. While stirring, the reaction was heated to 120 °C to form a yellow solid, which subsequently dissolved during the reaction. The mixture was heated at 120 °C for 1 h and then at 150 °C for 2 h. The reaction mixture was then cooled to room temperature and diluted with CH_2Cl_2 : water =5 mL : 5 mL (v:v). The aquifer was extracted with CH_2Cl_2 (3 x 5 mL). The organic layers was combined, washed with water (3x5 mL), dried with anhydrous sodium sulfate, filtered through Celite, and solvent removed under vacuum to give green oil.

di(pyridin-2-yl)methane (L5). The residue was purified by column chromatography (Hexane/EtOAc = 1/1) on silica gel and collected as yellow oil (166.6 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 4.6 Hz, 1H), 7.25 (td, J = 7.7, 1.5 Hz, 1H), 6.96 (d, J = 7.8 Hz, 1H), 6.83 – 6.72 (m, 1H), 4.06 (s, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 159.1, 149.1, 136.3, 123.3, 121.2, 47.0.

^{13}C {1H} NMR (100 MHz, CDCl₃) of L4

¹H-NMR (400 MHz, CDCl₃) of L5

20

SI-§7 Characterization Data and NMR Spectra of Products

(4-methoxyphenyl)(phenyl)methanone¹ (4a). The residue was purified by column chromatography (Hexane/EtOAc = 40/1) on silica gel and collected as yellow oil (35.6 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.7 Hz, 2H), 7.75 (d, J = 7.1 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 3.87 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.6, 163.3, 138.3, 132.6, 131.9, 130.2, 129.7, 128.2, 113.6, 55.5. HRMS m/z calculated for C₁₄H₁₂O₂ [M+H]⁺: 213.0910, found: 213.0901.

(4-(methylthio)phenyl)(phenyl)methanone¹ (4b). The residue was purified by column chromatography (Hexane/EtOAc = 40/1) on silica gel and collected as yellow oil (34.7 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.72 (m, 4H), 7.62 – 7.53 (m, 1H), 7.51 – 7.42 (m, 2H), 7.28 (d, J = 8.5 Hz, 2H), 2.52 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.8, 145.3, 137.8, 133.6, 132.2, 130.7, 129.8, 128.3, 124.8, 14.8. HRMS m/z calculated for C₁₄H₁₂OS [M+H]⁺: 229.0682, found: 229.0671.

(4-(dimethylamino)phenyl)(phenyl)methanone² (4c). The residue was purified by column chromatography (Hexane/EtOAc =25/1) on silica gel and collected as yellow oil (30.2 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 9.0 Hz, 2H), 7.72 (d, J = 7.1 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.4 Hz, 2H), 6.67 (d, J = 9.0 Hz, 2H), 3.06 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.2, 153.3, 139.3, 132.8, 131.1, 129.5, 128.0, 124.7, 110.6, 40.1. HRMS m/z calculated for C₁₅H₁₅NO [M+H]⁺: 226.1226, found: 226.1222.

phenyl(p-tolyl)methanone² (4d). The residue was purified by column chromatography (Hexane) on silica gel and collected as pale yellow oil (28.6 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.75 (m, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.57 (tt, J = 6.8, 1.2 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 7.9 Hz, 1H), 2.44 (s, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.5, 143.3, 138.0, 134.9, 132.2, 130.3, 129.9, 129.0, 128.2, 21.7. HRMS m/z calculated for C₁₄H₁₂O [M+H]⁺: 197.0961, found: 197.0953.

ethyl 2-(4-benzoylphenyl)acetate³ (4e). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as colorless oil (42.8 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.72 (m, 4H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.69 (s, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.3, 170.9, 138.9, 137.6, 136.3, 132.4, 130.4, 130.0, 129.3, 128.3, 61.1, 41.3, 14.2. HRMS m/z calculated for C₁₇H₁₆O₃ [M+H]⁺: 269.1172, found: 269.1167.

methyl 4-benzoylbenzoate⁴ (4f). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as white solid (30.2 mg, 63% yield). mp 119.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.11 (m, 2H), 7.86 – 7.77 (m, 4H), 7.65 – 7.58 (m, 1H), 7.49 (t, J = 7.6 Hz, 2H), 3.96 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.0, 166.3, 141.3, 136.9, 133.2, 133.0, 130.1, 129.8, 129.5, 128.5, 52.5. HRMS m/z calculated for C₁₅H₁₂O₃ [M+H]⁺: 241.0859, found: 241.0856.

1-(4-benzoylphenyl)ethan-1-one⁵ **(4g).** The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as pale yellow solid (28.7 mg, 64% yield). mp 83.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 7.1 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 2.66 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 197.6, 196.0, 141.3, 139.5, 136.9, 133.0, 130.1, 130.0, 128.5, 128.2, 26.9. HRMS m/z calculated for C₁₅H₁₂O₂ [M+H]⁺: 225.0910, found: 225.0902.

1,4-phenylenebis(phenylmethanone)⁶ **(4h).** The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow solid (37.2 mg, 65% yield). mp 154.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 4H), 7.84 (d, J = 7.1 Hz, 4H), 7.63 (t, J = 7.4 Hz, 2H), 7.51 (t, J = 7.6 Hz, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.0, 140.7, 136.9, 133.0, 130.1, 129.8, 128.5. HRMS m/z calculated for C₂₀H₁₄O₂ [M+H]⁺: 287.1067, found: 287.1055.

[1,1'-biphenyl]-4-yl(phenyl)methanone⁷ (4i). The residue was purified by column chromatography (Hexane) on silica gel and collected as yellow solid (39.7 mg, 77% yield). mp 91.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 22.9, 7.7 Hz, 4H), 7.69 (dd, J = 21.5, 7.7 Hz, 4H), 7.64 – 7.57 (m, 1H), 7.50 (q, J = 7.6 Hz, 4H), 7.42 (t, J = 7.2 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.4, 145.3, 140.0, 137.8, 136.2, 132.4, 130.8, 130.0, 129.0, 128.3, 128.2, 127.3, 127.0. HRMS m/z calculated for C₁₉H₁₄O [M+H]⁺: 259.1117, found: 259.1114.

F

(4-fluorophenyl)(phenyl)methanone² (4j). The residue was purified by column chromatography (Hexane) on silica gel and collected as white solid (38.8 mg, 97% yield). mp 48.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.80 – 7.74 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.21 – 7.12 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.2, 166.7, 164.1, 137.5, 133.8, 132.7, 132.6, 132.5, 129.9, 128.4, 115.6, 115.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -105.92 (s) ppm. HRMS m/z calculated for C₁₃H₉FO [M+H]⁺: 201.0710, found: 201.0701.

(4-chlorophenyl)(phenyl)methanone⁷ (4k). The residue was purified by column chromatography (Hexane) on silica gel and collected as white solid (29.4 mg, 68% yield). mp 70.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (t, J = 7.3 Hz, 4H), 7.60 (t, J = 7.1 Hz, 1H), 7.53 – 7.42 (m, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.5, 138.9, 137.2, 135.9, 132.7, 131.5, 129.9, 128.6, 128.4. HRMS m/z calculated for C₁₃H₉ClO [M+H]⁺: 217.0415, found: 217.0423.

(3-methoxyphenyl)(phenyl)methanone² (4l). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as yellow oil (34.3 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.78 (m, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.16 – 7.10 (m, 1H), 3.85 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.5, 159.6, 138.9, 137.6, 132.5, 130.0, 129.2, 128.3, 122.9, 118.9, 114.3, 55.5. HRMS m/z calculated for C₁₄H₁₂O₂ [M+H]⁺: 213.0910, found: 213.0905.

(3-hydroxyphenyl)(phenyl)methanone⁸ (4m). The residue was purified by column chromatography (Hexane/EtOAc =8/1) on silica gel and collected as yellow oil (17.4 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 (s, 1H), 7.36 – 7.27 (m, 2H), 7.11 (d, J = 7.3 Hz, 1H), 6.60 (s, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 197.3, 156.2, 138.8, 137.4, 132.7, 130.2, 129.5, 128.3, 122.8, 120.1, 116.6. HRMS m/z calculated for C₁₃H₁₀O₂ [M+H]⁺: 199.0754, found: 199.0754.

phenyl(o-tolyl)methanone⁷ (4n). The residue was purified by column chromatography (Hexane) on silica gel and collected as yellow oil (20.4 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.3 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 8.5 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 2.33 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 198.7, 138.6, 137.7, 136.8, 133.2, 131.0, 130.3, 130.1, 128.5, 128.5, 125.2, 20.0. HRMS m/z calculated for C₁₄H₁₂O [M+H]⁺: 197.0961, found: 197.0959.

(3,4-difluorophenyl)(phenyl)methanone⁹ (40). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow oil (27.1 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.76 (m, 2H), 7.75 – 7.67 (m, 1H), 7.67 – 7.58 (m, 2H), 7.53 (t, J = 7.7 Hz, 2H), 7.34 – 7.25 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 194.1, 154.6, 154.4, 152.0, 151.9, 151.5, 151.3, 149.0, 148.8, 137.6, 136.9, 134.5, 134.4, 134.4, 132.8, 132.4, 130.1, 129.8, 128.5, 128.3, 127.2, 127.1, 127.1, 127.1, 119.4, 119.4, 119.3, 119.3, 119.2, 119.2, 119.1, 117.6, 117.5, 117.4, 117.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -130.54 (s), 136.14 (s) ppm. HRMS m/z calculated for C₁₃H₈F₂O [M+H]⁺: 219.0616, found: 219.0621.

P C

naphthalen-1-yl(phenyl)methanone¹⁰ (4p). The residue was purified by column chromatography (Hexane/EtOAc =100/1) on silica gel and collected as colorless oil (35.3 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.1 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.63 (q, J = 7.9 Hz, 2H), 7.60 – 7.46 (m, 5H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 198.1, 138.4, 136.5, 133.8, 133.3, 131.4, 131.1, 130.5, 128.5, 127.9, 127.4, 126.7, 126.6, 125.8, 124.4. HRMS m/z calculated for C₁₇H₁₂O [M+H]⁺: 233.0961, found: 233.0959.

naphthalen-2-yl(phenyl)methanone² (**4q**). The residue was purified by column chromatography (Hexane/EtOAc =100/1) on silica gel and collected as white solid (44.1 mg, 95% yield). mp 74.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.97 – 7.89 (m, 4H), 7.87 (d, *J* = 7.3 Hz, 2H), 7.66 – 7.59 (m, 2H), 7.58 – 7.48 (m, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.8, 137.9, 135.3, 134.8, 132.4, 132.3, 131.9, 130.1, 129.4, 128.4, 128.3, 127.8, 126.8, 125.8. HRMS m/z calculated for C₁₇H₁₂O [M+H]⁺: 233.0961, found: 233.0966.

phenanthren-9-yl(phenyl)methanone¹¹ (4r). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow oil (34.4 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (dd, J = 15.0, 8.3 Hz, 2H), 8.14 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 7.1 Hz, 2H), 7.92 – 7.84 (m, 2H), 7.81 – 7.68 (m, 2H), 7.67 – 7.56 (m, 3H), 7.48 (t, J = 7.7 Hz, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 198.0, 138.2, 135.4, 133.4, 131.3, 130.7, 130.5, 130.1, 129.6, 129.4, 129.2, 128.6, 128.4, 127.3, 127.2, 127.2, 126.7, 123.0, 122.8. HRMS m/z calculated for C₂₁H₁₄O [M+H]⁺: 283.1117, found: 283.1127.

(9H-fluoren-2-yl)(phenyl)methanone¹² (4s). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow solid (43.8 mg, 81% yield). mp 117.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.89 – 7.81 (m, 5H), 7.61 (t, J = 7.4 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.46 – 7.36 (m, 2H), 3.97 (s, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.8, 146.0, 144.4, 143.1, 140.6, 138.2, 135.9, 132.2, 130.0, 129.7, 128.3, 128.0, 127.1, 126.9, 125.3, 120.9, 119.4, 36.9. HRMS m/z calculated for C₂₀H₁₄O [M+H]⁺: 271.1117, found: 271.1123.

phenyl(quinolin-6-yl)methanone¹³ (4t). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as yellow solid (36.4 mg, 78% yield). mp 56.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.03 (dd, J = 4.1, 1.3 Hz, 1H), 8.29 – 8.12 (m, 4H), 7.90 – 7.81 (m, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.57 – 7.46 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.1, 152.5, 149.8, 137.4, 135.5, 132.8, 131.4, 130.1, 129.9, 129.5, 128.5, 127.3, 122.1. HRMS m/z calculated for C₁₆H₁₁NO [M+H]⁺: 234.0913, found: 234.0916.

phenyl(thiophen-3-yl)methanone¹² (4u). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as yellow oil (24.8 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 2.5 Hz, 1H), 7.84 (d, J = 7.8 Hz, 2H), 7.63 – 7.54 (m, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.38 (dd, J = 4.8, 3.0 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 190.0, 141.3, 138.6, 134.0, 132.3, 129.4, 128.6, 128.4, 126.2. HRMS m/z calculated for C₁₁H₈OS [M+H]⁺: 189.0369, found: 189.0365.

(1H-indole-1,5-diyl)bis(phenylmethanone) (4v). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as yellow solid (38.4 mg, 59% yield). mp 129.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.6 Hz, 1H), 8.10 (s, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.80 (dd, J = 27.3, 7.5 Hz, 4H), 7.70 – 7.46 (m, 6H), 7.41 (d, J = 3.7 Hz, 1H), 6.70 (d, J = 3.7 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.7, 168.7, 138.4, 138.2, 134.0, 133.4, 132.4, 132.2, 130.4, 130.1, 129.3, 129.0, 128.8, 128.3, 127.0, 123.9, 116.0, 108.9. HRMS m/z calculated for C₂₂H₁₅NO₂ [M+H]⁺: 326.1176, found: 326.1179.

(2-methyl-2H-indazol-5-yl)(phenyl)methanone (4w). The residue was purified by column chromatography (Hexane/EtOAc =3/1) on silica gel and collected as yellow solid (30.2 mg, 64% yield). mp 98.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.03 (s, 1H), 7.87 – 7.71 (m, 4H), 7.61 – 7.53 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 4.24 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.6, 150.1, 138.4, 132.0, 131.4, 129.8, 128.2, 126.5, 126.4, 126.1, 121.1, 117.4, 40.7. HRMS m/z calculated for C₁₅H₁₂N₂O [M+H]⁺: 237.1022, found: 237.1034.

(2,3-dihydrobenzofuran-5-yl)(phenyl)methanone¹³ (4x). The residue was purified by column chromatography (Hexane/EtOAc =8/1) on silica gel and collected as colorless oil (34.1 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.70 (m, 3H), 7.68 – 7.60 (m, 1H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 1H), 4.66 (t, *J* = 8.8 Hz, 2H), 3.25 (t, *J* = 8.7 Hz, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.6, 164.2, 138.6, 132.5, 131.8, 130.4, 129.7, 128.2, 127.6, 127.5, 108.8, 72.2, 29.1. HRMS m/z calculated for C₁₅H₁₂O₂ [M+H]⁺: 225.0910, found: 225.0912.

benzo[d][1,3]dioxol-5-yl(phenyl)methanone² **(4y).** The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow oil (42.9 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.9 Hz, 2H), 7.55 (t, J = 7.0 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.36 (d, J = 7.5 Hz, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.04 (s, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.1, 151.5, 147.9, 138.1, 132.0, 131.9, 129.7, 128.2, 126.9, 109.9, 107.7, 101.9. HRMS m/z calculated for C₁₄H₁₀O₃ [M+H]⁺: 227.0703, found: 227.0702.

phenyl(9-phenyl-9H-carbazol-3-yl)methanone (4z). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as white solid (62.5 mg, 90% yield). mp 161.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.17 (d, J = 7.7 Hz, 1H), 7.97 (dd, J = 8.6, 1.6 Hz, 1H), 7.87 (d, J = 7.1 Hz, 2H), 7.69 – 7.56 (m, 5H), 7.53 (t, J = 7.5 Hz, 3H), 7.49 – 7.39 (m, 3H), 7.38 – 7.30 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.6, 143.4, 141.8, 138.9, 137.0, 131.8, 130.1, 130.0, 129.6, 128.7, 128.2, 128.1, 127.2, 126.8, 123.9, 123.4, 123.0, 120.9, 120.7, 110.3, 109.4. HRMS m/z calculated for C₂₅H₁₇NO [M+H]⁺: 348.1383, found: 348.1397.

(9-phenyl-9H-carbazole-3,6-diyl)bis(phenylmethanone) (4aa). The residue was purified by column chromatography (Hexane/EtOAc =25/1) on silica gel and collected as yellow solid (48.8

mg, 54% yield). mp 191.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.01 (dd, J = 8.6, 1.6 Hz, 2H), 7.85 (d, J = 7.1 Hz, 4H), 7.72 – 7.65 (m, 2H), 7.65 – 7.57 (m, 5H), 7.52 (t, J = 7.5 Hz, 4H), 7.46 (d, J = 8.6 Hz, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.4, 144.2, 138.5, 136.3, 132.1, 130.5, 130.3, 130.0, 129.3, 128.7, 128.3, 127.1, 124.0, 123.0, 110.0. HRMS m/z calculated for C₃₂H₂₁O₂N [M+H]⁺: 452.1645, found: 452.1657.

dibenzo[b,d]thiophene-2,8-diylbis(phenylmethanone) (4ab). The residue was purified by column chromatography (Hexane/EtOAc =25/1) on silica gel and collected as pale yellow solid (40 mg, 51% yield). mp 187.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 2H), 7.97 (q, J = 8.4 Hz, 4H), 7.85 (d, J = 7.4 Hz, 4H), 7.63 (t, J = 7.4 Hz, 2H), 7.52 (t, J = 7.6 Hz, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.3, 144.2, 137.7, 135.1, 134.6, 132.6, 130.1, 128.8, 128.5, 123.9, 122.8. HRMS m/z calculated for C₂₆H₁₆OS [M+H]⁺: 393.0944, found: 393.0953.

1,3,5-Tris(4-benzoylphenyl)benzene²³ **(4ac).** The residue was purified by column chromatography (Hexane/EtOAc =6/1) on silica gel and collected as yellow solid (51.9 mg, 42% yield). mp 186.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 9H), 7.85 (t, *J* = 8.8 Hz, 12H), 7.63 (t, *J* = 7.4 Hz, 3H), 7.52 (t, *J* = 7.6 Hz, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.2, 144.5, 141.7, 137.6, 136.9, 132.6, 130.9, 130.1, 128.4, 127.2, 126.2. HRMS m/z calculated for

C₄₅H₃₀O₃ [M+H]⁺: 619.2268, found: 619.2247.

(4-nitrophenyl)(phenyl)methanone⁵ (4ad). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as yellow solid (15.0 mg, 33% yield). mp 136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 7.5 Hz, 2H), 7.92 (d, J = 7.5 Hz, 2H), 7.79 (d, J = 6.5 Hz, 2H), 7.69 – 7.60 (m, 1H), 7.58 – 7.46 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 194.8, 149.8, 142.9, 136.3, 133.5, 130.7, 130.1, 128.7, 123.6.

1-(4-(4-methoxybenzoyl)phenyl)ethan-1-one¹⁴ **(4ae).** The residue was purified by column chromatography (Hexane/EtOAc =25/1) on silica gel and collected as pale yellow solid (41.2 mg, 81% yield). mp 105.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 2H), 7.79 (dd, J = 8.3, 3.2 Hz, 4H), 6.95 (d, J = 8.7 Hz, 2H), 3.87 (s, 3H), 2.64 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 197.6, 194.7, 163.6, 142.1, 139.1, 132.6, 129.7, 129.5, 128.1, 113.8, 55.6, 26.9. HRMS m/z calculated for C₁₆H₁₄O₃ [M+H]⁺: 255.1016, found: 255.1012.

(4-fluorophenyl)(4-methoxyphenyl)methanone² (4af). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow solid (39.6 mg, 86% yield). mp 91.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dt, J = 8.7, 2.4 Hz, 4H), 7.13 (t, J = 8.6 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 3.87 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 194.1, 166.3, 163.8, 163.3, 134.4, 134.4, 132.4, 132.3, 132.2, 130.0, 115.4, 115.2, 113.6, 55.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -106.90 (s) ppm. HRMS m/z calculated for C₁₄H₁₁FO₂ [M+H]⁺: 231.0816, found: 231.0810.

4-(4-methoxybenzoyl)benzonitrile¹ **(4ag).** The residue was purified by column chromatography (Hexane/EtOAc =25/1) on silica gel and collected as pale yellow solid (28 mg, 59% yield). mp 123.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (q, J = 8.2 Hz, 6H), 6.97 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 193.7, 163.9, 142.1, 132.6, 132.1, 129.9, 128.9, 118.1, 115.1, 113.9, 55.6. HRMS m/z calculated for C₁₅H₁₁NO₂ [M+H]⁺: 238.0863, found: 238.0865.

(4-methoxyphenyl)(p-tolyl)methanone¹ (4ah). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow solid (36.2 mg, 80% yield). mp 88.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.75 (m, 2H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 7.00 – 6.90 (m, 2H), 3.87 (s, 3H), 2.42 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.4, 163.0, 142.6, 135.5, 132.4, 130.5, 130.0, 128.9, 113.5, 55.5, 21.6. HRMS m/z calculated for C₁₅H₁₄O₂ [M+H]⁺: 227.1067, found: 227.1070.

(4-(tert-butyl)phenyl)(4-methoxyphenyl)methanone² (4ai). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as yellow oil (32.2 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 6.99 – 6.92 (m, 2H), 3.88 (s, 3H), 1.36 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.3, 163.1, 155.6, 135.5, 132.5, 130.4, 129.8, 125.2, 113.5, 55.5, 35.1, 31.2. HRMS m/z calculated for C₁₈H₂₀O₂ [M+H]⁺: 269.1536, found: 269.1543.

(4-methoxyphenyl)(o-tolyl)methanone¹ (4aj). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow oil (33.0 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.8 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.29 – 7.18 (m, 3H), 6.91 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.28 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 197.4, 163.7, 139.2, 136.2, 132.5, 130.8, 130.5, 129.8, 127.9, 125.2, 113.7, 55.5, 19.8. HRMS m/z calculated for C₁₅H₁₄O₂ [M+H]⁺: 227.1067, found: 227.1066.

(2,6-dimethoxyphenyl)(4-methoxyphenyl)methanone¹⁵ (4ak). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as yellow oil (42.5 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.7, 1.7 Hz, 2H), 7.32 (td, J = 8.4, 1.7 Hz, 1H), 6.95 – 6.85 (m, 2H), 6.60 (dd, J = 8.4, 1.6 Hz, 2H), 3.83 (s, 3H), 3.69 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 193.9, 163.7, 157.5, 131.8, 130.9, 130.6, 118.1, 113.7, 104.0, 55.9, 55.5. HRMS m/z calculated for C₁₆H₁₆O₄ [M+H]⁺: 273.1121, found: 273.1128.

(3,4-dichlorophenyl)(4-methoxyphenyl)methanone¹⁶ (4al). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as white solid (52.6 mg, 92% yield). mp 88.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.73 (m, 3H), 7.57 (q, *J* = 8.6 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 3.89 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 192.9, 163.7, 137.9, 136.4, 132.8, 132.5, 131.6, 130.4, 129.2, 128.8, 113.8, 55.6. HRMS m/z calculated for C₁₄H₁₀Cl₂O₂ [M+H]⁺: 281.0131, found: 281.0137.

(4-methoxyphenyl)(3,4,5-trifluorophenyl)methanone (4am). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as white solid (52.6 mg, 92% yield). mp 99.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.73 (m, 2H), 7.46 – 7.36 (m, 2H), 7.03 – 6.92 (m, 2H), 3.90 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 191.6, 163.8, 152.2, 152.2, 152.1, 152.1, 149.7, 149.7, 149.6, 149.5, 143.8, 143.6, 143.5, 141.2, 141.1, 140.9, 133.8, 133.7, 132.4, 128.7, 114.4, 114.3, 114.2, 114.1, 113.9, 55.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -132.55 (s), -154.18 (s) ppm. HRMS m/z calculated for C₁₄H₉F₃O₂ [M+H]⁺: 267.0627, found: 267.0629.

(4-methoxyphenyl)(naphthalen-1-yl)methanone¹ (4an). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as pale yellow oil (28.8 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (t, J = 9.2 Hz, 2H), 7.91 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 8.8 Hz, 2H), 7.60 – 7.43 (m, 4H), 6.93 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.8, 163.9, 137.1, 133.7, 132.8, 131.1, 130.9, 130.7, 128.4, 127.1, 126.9, 126.4, 125.8, 124.5, 113.8, 55.6. HRMS m/z calculated for C₁₈H₁₄O₂ [M+H]⁺: 263.1067, found: 263.1070.

anthracen-9-yl(4-methoxyphenyl)methanone¹⁷ (4ao). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as yellow solid (29.4 mg, 47% yield). mp 186.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.06 (d, *J* = 8.5 Hz, 2H), 7.87 –

7.70 (m, 4H), 7.50 – 7.35 (m, 4H), 6.87 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 198.6, 164.3, 134.5, 132.6, 131.5, 131.1, 128.6, 128.6, 128.1, 126.4, 125.5, 125.4, 114.1, 55.5. HRMS m/z calculated for C₂₂H₁₆O₂ [M+H]⁺: 313.1223, found: 313.1218.

benzofuran-5-yl(4-methoxyphenyl)methanone (4ap). The residue was purified by column chromatography (Hexane/EtOAc =6/1) on silica gel and collected as pale yellow solid (36.8 mg, 73% yield). mp 126.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 1.5 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.78 (dd, J = 8.6, 1.7 Hz, 1H), 7.71 (d, J = 2.2 Hz, 1H), 7.57 (d, J = 8.6 Hz, 1H), 7.02 – 6.94 (m, 2H), 6.85 (d, J = 1.5 Hz, 1H), 3.89 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.4, 163.0, 156.9, 146.3, 133.4, 132.5, 130.7, 127.2, 126.6, 124.0, 113.5, 111.2, 107.2, 55.5. HRMS m/z calculated for C₁₆H₁₂O₃ [M+H]⁺: 253.0859, found: 253.0863.

benzo[d][1,3]dioxol-5-yl(4-methoxyphenyl)methanone¹⁸ (4aq). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as white solid (42.5 mg, 83% yield). mp 96.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.8 Hz, 2H), 7.36 – 7.27 (m, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.04 (s, 2H), 3.87 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 194.0, 162.9, 151.1, 147.8, 132.4, 132.2, 130.5, 126.2, 113.5, 109.9, 107.6, 101.8, 55.5. HRMS m/z calculated for C₁₅H₁₂O₄ [M+H]⁺: 257.0808, found: 257.0814.

(4-(9H-carbazol-9-yl)phenyl)(4-methoxyphenyl)methanone (4ar). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as yellow solid (59.6 mg, 79% yield). mp 167.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.7 Hz, 2H), 8.03 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.50 –

7.41 (m, 2H), 7.37 – 7.30 (m, 2H), 7.04 (d, J = 8.8 Hz, 2H), 3.92 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 194.5, 163.4, 141.2, 140.3, 136.8, 132.6, 131.6, 130.0, 126.3, 126.2, 123.8, 120.5, 120.5, 113.8, 109.8, 55.6. HRMS m/z calculated for C₂₆H₁₉NO₂ [M+H]⁺: 378.1489, found: 378.1507.

(4-methoxyphenyl)(1-methyl-1H-indol-5-yl)methanone (4as). The residue was purified by column chromatography (Hexane/EtOAc =6/1) on silica gel and collected as pale yellow solid (39.2 mg, 74% yield). mp 96.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 1.2 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.77 (dd, J = 8.6, 1.6 Hz, 1H), 7.38 (d, J = 8.6 Hz, 1H), 7.13 (d, J = 3.1 Hz, 1H), 7.01 – 6.94 (m, 2H), 6.58 (d, J = 3.1 Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.2, 162.6, 138.8, 132.4, 131.5, 130.3, 129.7, 127.6, 124.9, 123.7, 113.3, 109.0, 102.8, 55.5, 33.1. HRMS m/z calculated for C₁₇H₁₅NO₂ [M+H]⁺: 266.1176, found: 266.1176.

(4-methoxyphenyl)(thiophen-3-yl)methanone¹⁹ (4at). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as yellow solid (25.7 mg, 59% yield). mp 66.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.8 Hz, 3H), 7.55 (d, J = 5.0 Hz, 1H), 7.37 (dd, J = 5.0, 2.9 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 188.9, 163.2, 141.5, 132.8, 131.9, 131.2, 128.7, 126.0, 113.7, 55.5. HRMS m/z calculated for C₁₂H₁₀O₂S [M+H]⁺: 219.0474, found: 219.0465.

furan-3-yl(4-methoxyphenyl)methanone²⁰ (4au). The residue was purified by column chromatography (Hexane/EtOAc =40/1) on silica gel and collected as white solid (26.7 mg, 66% yield). mp 73.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.83 (m, 3H), 7.49 (s, 1H), 6.96 (d, J = 8.6 Hz, 2H), 6.87 (s, 1H), 3.87 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 188.0, 163.3, 147.7,
143.7, 131.4, 131.2, 126.5, 113.8, 110.4, 55.5. HRMS m/z calculated for $C_{12}H_{10}O_3$ [M+H]⁺: 203.0703, found: 203.0699.

Naphthylphenstatin²¹ (7). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as yellow solid (54.1 mg, 84% yield). mp 106.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.94 (q, *J* = 8.2 Hz, 4H), 7.66 – 7.52 (m, 2H), 7.13 (s, 2H), 3.96 (s, 3H), 3.87 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.8, 152.9, 142.0, 135.2, 135.0, 132.9, 132.3, 131.5, 129.3, 128.3, 127.8, 126.9, 125.8, 107.8, 61.0, 56.3. HRMS m/z calculated for C₂₀H₁₈O₄ [M+H]⁺: 323.1278, found: 323.1275.

Fenofibrate²² (10). The residue was purified by column chromatography (Hexane/EtOAc =25/1) on silica gel and collected as yellow solid (30.3 mg, 42% yield). mp 79.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.63 (m, 4H), 7.50 – 7.38 (m, 2H), 6.90 – 6.80 (m, 2H), 5.16 – 4.99 (m, 1H), 1.66 (s, 6H), 1.20 (d, *J* = 6.3 Hz, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 194.3, 173.1, 159.7, 138.4, 136.4, 132.0, 131.2, 130.2, 128.5, 117.2, 79.4, 69.4, 25.4, 21.5. HRMS m/z calculated for C₂₀H₂₁ClO₄ [M+H]⁺: 361.1201, found: 361.124.

2-benzoylbenzaldehyde²⁹ (4av). The residue was purified by column chromatography (Hexane/EtOAc = 15/1) on silica gel and collected as yellow solid (28.1 mg, 67% yield). mp 66 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 8.02 – 7.93 (m, 1H), 7.76 (d, J = 7.3 Hz, 2H), 7.69 – 7.61 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.49 – 7.37 (m, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.5, 190.7, 141.3, 137.1, 135.4, 133.7, 133.4, 130.7, 130.2, 130.0, 128.9, 128.7.

11-(1H-indol-3-yl)-6-phenyl-5H-benzo[b]carbazole²⁴ (4av-1). The residue was purified by column chromatography (Hexane/EtOAc =8/1) on silica gel and collected as yellow solid (75 mg,92% yield). mp 136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.13 (d, *J* = 8.6 Hz, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.95 (s, 1H), 7.86 – 7.71 (m, 4H), 7.68 – 7.62 (m, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.43 – 7.32 (m, 5H), 7.27 (d, *J* = 6.8 Hz, 1H), 7.21 – 7.12 (m, 2H), 6.89 (t, *J* = 7.5 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 142.3, 137.7, 137.3, 136.4, 131.2, 131.0, 129.6, 129.5, 128.2, 128.1, 127.3, 127.1, 126.3, 125.3, 124.9, 124.7, 124.2, 123.9, 123.6, 122.7, 120.7, 120.4, 119.3, 117.9, 113.9, 111.6, 110.0. HRMS m/z calculated for C₃₀H₂₀N [M+H]⁺: 409.1699, found: 409.1675.

1-phenylphthalazine²⁵ (4av-2). The residue was purified by column chromatography (Hexane/EtOAc =1/1) on silica gel and collected as white solid (41.2 mg, 100% yield). mp 123 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.51 (d, J = 4.7 Hz, 1H), 8.03 (dt, J = 20.7, 6.0 Hz, 2H), 7.95 – 7.79 (m, 2H), 7.74 (s, 2H), 7.55 (t, J = 5.3 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 159.9, 150.5, 136.1, 132.6, 132.3, 130.0, 129.4, 128.6, 127.1, 126.7, 126.2, 125.4. HRMS m/z calculated for C₁₄H₁₀N₂ [M+H]⁺: 207.0917, found: 207.0918.

3,4-diphenylisoquinoline²⁶ (4av-3). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as white solid (45.0 mg, 100% yield). mp 156.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.00 – 7.90 (m, 1H), 7.62 – 7.45 (m, 3H), 7.36 – 7.19 (m, 5H), 7.20 – 7.03 (m, 5H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.8, 150.6, 140.7, 137.2, 136.0, 131.2, 130.7, 130.6, 130.3, 128.3, 127.7, 127.6, 127.4, 127.4, 127.1, 126.9, 125.6. HRMS m/z calculated for C₂₁H₁₅N [M+H]⁺: 282.1277, found: 282.1287.

2-benzyl-3-phenylisoindolin-1-one²⁷ (4av-4). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as white solid (55.0 mg, 92% yield). mp 135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.2 Hz, 1H), 7.40 – 7.32 (m, 2H), 7.30 – 7.23 (m, 3H), 7.18 (q, J = 9.0, 7.5 Hz, 3H), 7.09 (d, J = 7.2 Hz, 2H), 7.05 – 6.93 (m, 3H), 5.31 (d, J = 14.8 Hz, 1H), 5.14 (s, 1H), 3.63 (d, J = 14.9 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 168.5, 146.4, 137.1, 136.8, 131.9, 131.4, 129.2, 128.7, 128.5, 128.3, 127.8, 127.6, 123.8, 123.2, 63.6, 43.9. HRMS m/z calculated for C₂₁H₁₇NO [M+H]⁺: 300.1383, found: 300.1389.

1,3-diphenylisobenzofuran (4av-5). The residue was purified by column chromatography (Hexane/EtOAc =15/1) on silica gel and collected as yellow solid (48.6 mg, 90% yield). mp 140 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 4H), 7.66 (s, 4H), 7.56 (t, J = 7.3 Hz, 2H), 7.42 (t, J = 7.7 Hz, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 196.7, 140.1, 137.3, 133.1, 130.5, 129.9, 129.8, 128.5. HRMS m/z calculated for C₂₀H₁₄O₂ [M+H]⁺: 287.1067, found: 287.1069.

¹H NMR and ¹³C {¹H} NMR Spectra of Products

(4-methoxyphenyl)(phenyl)methanone (4a)

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4a

(4-(methylthio)phenyl)(phenyl)methanone (4b)

- 2.52

 ^{13}C { $^1H\} NMR$ (100 MHz, CDCl₃) of 4b

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4c

 ^{13}C {1H} NMR (100 MHz, CDCl₃) of 4d

ethyl 2-(4-benzoylphenyl)acetate (4e)

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4e

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4f

1-(4-benzoylphenyl)ethan-1-one (4g)

 ^{13}C { $^1H\} NMR$ (100 MHz, CDCl₃) of 4g

1,4-phenylenebis(phenylmethanone) (4h)

7.89 7.85 7.85 7.65 7.65 7.61 7.61 7.53 7.53 7.53

 ^{13}C $\{^{1}H\}$ NMR (100 MHz, CDCl₃) of 4h

(4-fluorophenyl)(phenyl)methanone (4j)

7.155 7.155 7.155 7.155 7.175

PXJ-250217-6.10.fid

,0¹0,

¹⁹F NMR (377 MHz, CDCl₃) of 4j

(4-chlorophenyl)(phenyl)methanone (4k)

7.77 7.77 7.75 7.75 7.60 7.58 7.49 7.49 7.45

¹H-NMR (400 MHz, CDCl₃) of 4k

¹H-NMR (400 MHz, CDCl₃) of 4l

¹H-NMR (400 MHz, CDCl₃) of 4m

¹H-NMR (400 MHz, CDCl₃) of **4n**

 $^{19}\mathrm{F}$ NMR (377 MHz, CDCl₃) of 4o

naphthalen-1-yl(phenyl)methanone (4p)

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4p

 ^{13}C { $^1H\} NMR$ (100 MHz, CDCl₃) of 4q

phenanthren-9-yl(phenyl)methanone (4r).

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4r

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4s

phenyl(quinolin-6-yl)methanone (4t)

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4t

phenyl(thiophen-3-yl)methanone (4u)

(1H-indole-1,5-diyl)bis(phenylmethanone) (4v)

 ^{13}C {1H} NMR (100 MHz, CDCl₃) of 4v

(2,3-dihydrobenzofuran-5-yl)(phenyl)methanone (4x)

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4x

 ^{13}C { $^1H\} NMR$ (100 MHz, CDCl₃) of 4y

 ^{13}C { $^1H\} NMR (100 MHz, CDCl_3) of <math display="inline">4z$

(9-phenyl-9H-carbazole-3,6-diyl)bis(phenylmethanone) (4aa)

dibenzo[b,d]thiophene-2,8-diylbis(phenylmethanone) (4ab).

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of **4ab**

1,3,5-Tris(4-benzoylphenyl)benzene (4ac)

(4-nitrophenyl)(phenyl)methanone (4ad)

8.33 8.31 7.91 7.79 7.79 7.79 7.66 7.66 7.64 7.53 7.53

 ^{13}C { $^{1}H\}$ NMR (100 MHz, CDCl₃) of 4ad

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4ae

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4af

Meo C

¹H-NMR (400 MHz, CDCl₃) of **4ah**

¹H-NMR (400 MHz, CDCl₃) of 4ai

¹H-NMR (400 MHz, CDCl₃) of 4aj

¹H-NMR (400 MHz, CDCl₃) of 4ak

¹H-NMR (400 MHz, CDCl₃) of 4am

 $^{19}\mathrm{F}$ NMR (377 MHz, CDCl₃) of 4am

 ^{13}C $\{^{1}H\}$ NMR (100 MHz, CDCl₃) of 4an

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4ao

 ^{13}C {¹H} NMR (100 MHz, CDCl₃) of 4ap

Meo

	0 U 4 4 V V O O W O 4 4	~
	~~~~~~~~~~~~~~~~	00
	<u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	с.
>		



 $^{13}C$   $\{^{1}H\}$  NMR (100 MHz, CDCl₃) of 4aq



 $^{13}C$  {¹H} NMR (100 MHz, CDCl₃) of 4ar



 $^{13}C$  {1H} NMR (100 MHz, CDCl₃) of 4as



 $^{13}C$  {1H} NMR (100 MHz, CDCl₃) of 4at



 $^{13}C$  {¹H} NMR (100 MHz, CDCl₃) of 4au



 $^{13}C$  {1H} NMR (100 MHz, CDCl₃) of 7





 $^{13}C$   $\{^{1}H\}$  NMR (100 MHz, CDCl₃) of 10

2-benzoylbenzaldehyde (4av)





 $^{13}C$  {¹H} NMR (100 MHz, CDCl₃) of 4av



1-phenylphthalazine (**4av-2**)





 $^{13}C$  {1H} NMR (100 MHz, CDCl₃) of 4av-2

3,4-diphenylisoquinoline (4av-3)



¹³C {¹H} NMR (100 MHz, CDCl₃) of **4av-3** 

2-benzyl-3-phenylisoindolin-1-one (4av-4)





 $^{13}C$  {¹H} NMR (100 MHz, CDCl₃) of 4av-4

1,3-diphenylisobenzofuran (4av-5)



7.75 7.75 7.56 7.56 7.56 7.54 7.54 7.44 7.42



 $^{13}C$   $\{^{1}H\}$  NMR (100 MHz, CDCl₃) of 4av-5

## SI-§8 Reference

- Xuan, G.-R.; Chen, X.-K.; Liu, M.-C.; Zhou, Y.-B.; Wu, H.-Y., Deselenylative Acylation and Nitration of Monoselenides. *Org. Lett.* 2024, *26*, 4756-4760.
- Liu, X.; He, C.-Y.; Yin, H.-N.; Miao, C.; Chu, X.-Q.; Rao, W.; Xu, H.; Zhou, X.; Shen, Z.-L., Nickel-Catalyzed Cross-Electrophile Coupling of Triazine Esters with Aryl Bromides. *Chin. J. Chem.*, **2023**, *41*, 3539-3546.
- Song, B.; Rudolphi, F.; Himmler, T.; Gooßen, L. J., Practical Synthesis of 2-Arylacetic Acid Esters via Palladium- Catalyzed Dealkoxycarbonylative Coupling of Malonates with Aryl Halides. *Adv. Synth. Catal.*, 2011, 353, 1565-1574.
- Tang, S.; Wang, S.; Zhang, D.; Zhang, X.; Yang, G.; Wang, Y.; Qiu, Y., Selective nickel-electrocatalyzed benzylic C-H oxygenation of functionalized alkyl arenes. *Chin. Chem. Lett.* 2024, 35, 108660.
- Supranovich, V. I.; Levin, V. V.; Dilman, A. D., One-Step Transformation of Aryl Diazonium Salts into Aryl Indium(III) Reagents. Org. Lett. 2024, 26, 4537-4541.
- Zhang, K.; Yao, Y.; Sun, H.; Zhang, W.; Gao, Z., Triazine-wingtips accelerated NHC-Pd catalysed carbonylative Suzuki cross-coupling reaction. J. Organomet. Chem. 2024, 1015, 123181.
- Huang, J.; Yan, X.; Xia, Y., Directing Group-Free Formal Suzuki-Miyaura Coupling of Simple Ketones Enabled by Activation of Unstrained C-C Bonds. *Angew. Chem. Int. Ed.* 2022, 61, e202211080.
- Zhang, J.; Du, J.; Zhang, C.; Liu, K.; Yu, F.; Yuan, Y.; Duan, B.; Liu, R., Selective Oxidation of Alkylarenes to the Aromatic Ketones or Benzaldehydes with Water. *Org. Lett.* 2022, *24*, 1152-1157.
- Yu, C.; Huang, R.; Patureau, F. W., Direct Dehydrogenative Access to Unsymmetrical Phenones. A Angew. Chem. Int. Ed. 2022, 61, e202201142.
- Zhou, J.; Ye, J.; Zhang, Y.; Li, Z.; Li, J.; Liu, D.; Zhang, W., Synthesis of Chiral Diaryl Methanols via RuPHOX-Ru Catalyzed Asymmetric Hydrogenation. *Adv. Synth. Catal.* 2023, 365, 1275-1286.
- 11. Martins, B. S.; Kaiser, D.; Bauer, A.; Tiefenbrunner, I.; Maulide, N., Formal Enone

α-Arylation via I(III)-Mediated Aryl Migration/Elimination. Org. Lett. 2021, 23, 2094-2098.

- Adebomi, V.; Wang, Y.; Sriram, M.; Raj, M., Selective Conversion of Unactivated C–N Amide Bond to C–C bond via Steric and Electronic Resonance Destabilization. *Org. Lett.* 2022, 24, 6525-6530.
- Li, X.; Xu, J.; Li, Y.; Kramer, S.; Skrydstrup, T.; Lian, Z., Silylcarboxylic Acids as Bifunctional Reagents: Application in Palladium-Catalyzed External-CO-Free Carbonylative Cross-Coupling Reactions. *Adv. Synth. Catal.* 2020, *362*, 4078-4083.
- Lee, D.; Ryu, T.; Park, Y.; Lee, P. H., Unmasked Acyl Anion Equivalent from Acid Chloride with Indium: Reversed-Polarity Synthesis of Unsymmetric Aryl Aryl and Alkenyl Aryl Ketone through Palladium-Catalyzed Cross-Coupling Reaction. Org. Lett. 2014, 16, 1144-1147.
- Lin, S.-C. A.; Su, B.-K.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Tetra- and Dinuclear Palladium Complexes Based on a Ligand of 2,8-Di-2-pyridinylanthyridine: Preparation, Characterization, and Catalytic Activity. *Organometallics* 2021, 40, 2081-2089.
- Kubo, K.; Ohyama, S.-i.; Shimizu, T.; Takami, A.; Murooka, H.; Nishitoba, T.; Kato, S.; Yagi, M.; Kobayashi, Y.; Iinuma, N.; Isoe, T.; Nakamura, K.; Iijima, H.; Osawa, T.; Izawa, T., Synthesis and structure–activity relationship for new series of 4-Phenoxyquinoline derivatives as specific inhibitors of platelet-derived growth factor receptor tyrosine kinase. *Bioorg. Med. Chem.* 2003, *11*, 5117-5133.
- Rappoport, Z.; Greenblatt, J.; Apeloig, Y., 1,10-, 1,4-, and 1,2-Eliminations and 1,5- and 1,7-rearrangements in the reactions of substituted 9-anisylidene-9,10-dihydroanthracenes and anthrones in acetic acid. *J. Org. Chem.* **1979**, *44*, 3687-3694.
- Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B. M., KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki–Miyaura cross-coupling. *Green Chem.* 2016, 18, 5890-5899.
- Kim, H.; Park, S.; Baek, Y.; Um, K.; Han, G. U.; Jeon, D.-H.; Han, S. H.; Lee, P. H., Synthesis of Diaryl Ketones through Oxidative Cleavage of the C–C Double Bonds in N-Sulfonyl Enamides. *J. Org. Chem.* 2018, *83*, 3486-3496.
- 20. Huang, P.-Q.; Chen, H., Ni-Catalyzed cross-coupling reactions of N-acylpyrrole-type amides with organoboron reagents. *Chem. Commun.* **2017**, *53*, 12584-12587.

- Zhang, J.; Zhang, P.; Ma, Y.; Szostak, M., Mechanochemical Synthesis of Ketones via Chemoselective Suzuki–Miyaura Cross-Coupling of Acyl Chlorides. Org. Lett. 2022, 24, 2338-2343.
- Lutter, F. H.; Grokenberger, L.; Hofmayer, M. S.; Knochel, P., Cobalt-catalyzed acylation-reactions of (hetero)arylzinc pivalates with thiopyridyl ester derivatives. *Chem. Sci.* 2019, *10*, 8241-8245.
- Preis, E.; Dong, W.; Brunklaus, G.; Scherf, U., Microporous, tetraarylethylene-based polymer networks generated in a reductive polyolefination process. J. Mater. Chem. C 2015, 3, 1582-1587.
- Suresh, S.; Kavala, V.; Yao, C.-F., Iodine-Catalyzed Annulation Reaction of Ortho-Formylarylketones with Indoles: A General Strategy for the Synthesis of Indolylbenzo[b]carbazoles. J. Org. Chem. 2023, 88, 3666-3677.
- Hadsarung, R.; Thongnest, S.; Oekchuae, S.; Chaiyaveij, D.; Boonsombat, J.; Ruchirawat, S., Facile synthesis of 1-substituted 4-H phthalazine, a versatile scaffold for chemically diverse phthalazines. *Tetrahedron* 2022, *121*, 132920.
- Mishra, P. K.; Verma, S.; Kumar, M.; Kumar, A.; Verma, A. K., Harnessing the reactivity of ortho-formyl-arylketones: base-promoted regiospecific synthesis of functionalized isoquinolines. *Chem. Commun.* 2019, 55, 8278-8281.
- Tang, W.-X.; Chen, K.-Q.; Sun, D.-Q.; Chen, X.-Y., Photoinduced halogen-bonding enabled synthesis of oxindoles and isoindolinones from aryl iodides. *Org. Biomol. Chem.* 2023, 21, 715-718.
- Lian, P.; Wang, K.; Liu, H.; Li, R.; Li, M.; Bao, X.; Wan, X., Reacting Molecular Oxygen with Butanone under Visible Light Irradiation: A General Aerobic Oxidation of Alkenes, Sulfides, Phosphines, and Silanes. Org. Lett. 2023, 25, 7984-7989.
- 29. Deng, R.; Pan, M.; Liu, J.; Zheng, P.; Chi, Y. R., Carbene-Catalyzed Enantioselective Addition of Sulfinate to Ketones. *Org. Lett.* **2024**, *26*, 4394-4399.