Supporting Information

Chemoselective Transition-Metal-Free Acylation of Thioamides by N–C(S) Bond Cleavage using Acyclic Twisted Thioamides

Jin Zhang,^{*,†} Yang He,[†] Xinhao Zhu,[†] Yan Guo,[†] Xiaogang Wang,[§] Ruihong Wang^{*,‡} and Michal Szostak^{*,Δ}

 [†]College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
 [§]College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
 [‡]School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
 [△]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States

Table of Contents

1. General Information	S2
2. Experimental Procedures	S 3
3. Selectivity in Acylation of Thioamides	S4
4. Characterization Data of Products	S 6
5. Crystallographic Studies	S12
6. NMR Spectra	S14
7. References	S33

1.General Information

Commercially available chemicals were purchased from commercial suppliers and used as received without further purification. All reactions were performed in oven-dried or flame-dried glassware. TLC analysis was carried out on glass plates coated with silica gel 60 F254. The plates were visualized using a 254 nm ultraviolet lamp. Purification was performed by chromatography using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker Ascend spectrometers at 400 or 600 MHz (¹H NMR), 100 MHz or 150 MHz (¹³C NMR) and 376 MHz (¹⁹F NMR). For ¹H NMR, tetramethylsilane (TMS) ($\delta = 0$) in CDCl₃ was used as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) was used as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) was used as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) was used as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) was used as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) was used as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) was used as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) was used as an internal standard. The following abbreviations were used: s = singlet, d=doublet, t = triplet, m = multiplet, and br = broad. All coupling constants (*J*) are reported in hertz (Hz). Single crystal diffraction data were recorded on a Bruker APEX-II CCD diffractometer with Mo *K*a radiation. ¹H NMR and ¹³C NMR data are given for all compounds in the Supporting Information for characterization purposes.

2. Experimental Procedures

All starting materials reported in the manuscript have been previously described in literature and prepared by the method reported previously unless indicated otherwise. Thioamides were prepared by amides and P_2S_5 that have been previously described in literature.¹

General procedure for the synthesis N-mono-Boc thioamides

oven-dried flask equipped with а stir An bar was charged with N-Phenylbenzothioamide (10.0 mmol, 1.0 equiv), dimethylaminopyridine (0.5 mmol, 5 mol%) and THF (1.0 M). Di-tert-butyl dicarbonate (1.5 equiv) was added dropwise to the reaction mixture with vigorous stirring at 0 °C, and the reaction mixture was stirred for 15 h at 25 °C. After the indicated time, the reaction mixture was diluted with ethyl acetate (50.0 mL), the organic layer was washed with water (1 \times 30 mL), brine (1 \times 30 mL), dried over Na₂SO₄, and concentrated. The crude reaction mixture was purified by chromatography on aluminium oxide (PE/EA = 40:1) to afford pure product.

General procedure for the coupling of N-Ph-Boc thioamides with ketones

An oven-dried vial equipped with a stir bar was charged with thioamide substrate **1** (0.2 mmol, 1.0 equiv), acetophenone **2** (typically, 0.3 mmol, 1.5 equiv) THF (typically, 1.0 M) and KHMDS (1.0 M in THF, typically, 0.5 mL, 2.5 equiv) were sequentially added with vigorous stirring at 25 °C, and the reaction mixture was stirred at 25 °C for 15 h. After the indicated time, the reaction mixture was quenched with NH₄Cl (aq., 1.0 M, 1 mL). The solution was diluted with EtOAc (10 mL), and the organic layer was washed with water (1 × 10 mL), HCl (1.0 M, 1 × 10 mL), dried and concentrated. The products were purified by chromatography on silica gel (EtOAc/hexane) and afforded the products

3. Selectivity in Acylation of Thioamides

<u>A: Effect of amide distortion on acylation of thioamides by chemoselective N-C(S)</u> <u>cleavage.</u>

An oven-dried vial equipped with a stir bar was charged with **1** (1.0 equiv), acetophenone (2.0 equiv), THF (1.0 M) and KHMDS (2.5 equiv) were sequentially added with vigorous stirring at 25 °C, and the reaction mixture was stirred at 25 °C for an indicated time. After the indicated time, the reaction mixture was quenched with NH₄Cl (aq., 1.0 M, 15 mL) and filtered with Celite then dried and concentrated. A sample was analyzed by ¹H NMR (CDCl₃, 400 MHz) and GC-MS to obtain conversion, yield and selectivity using internal standard and comparison with authentic samples.

B: Competition studies between electron-deficient and electron-rich thioamide

An oven-dried vial equipped with a stir bar was charged with tert-butyl(4-methoxyphenylcarbonothioyl)(phenyl)carbamate (2.0 equiv), tert-butyl(4-chlorophenylcarbonothioyl)(phenyl)carbamate (2.0 equiv), acetophenone

(1.0 equiv), THF (1.0 M) and KHMDS (2.5 equiv) were sequentially added with vigorous stirring at 25 °C, and the reaction mixture was stirred at 25 °C for an indicated time. After the indicated time, the reaction mixture was quenched with NH₄Cl (aq., 1.0 M, 15 mL) and filtered with Celite then dried and concentrated. A sample was analyzed by ¹H NMR (CDCl₃, 400 MHz) and GC-MS to obtain conversion, yield and selectivity using internal standard and comparison with authentic samples.

<u>C: Competition studies between electron-deficient and electron-rich acetophenone</u>

An oven-dried vial equipped with a stir bar was charged with tert-butyl phenyl(phenylcarbonothioyl)carbamate (1.0 equiv), 4-Methylacetophenone (2.0 equiv), 4-Fluoroacetophenone (2.0 equiv) THF (1.0 M) and KHMDS (2.5 equiv) were sequentially added with vigorous stirring at 25 °C, and the reaction mixture was stirred at 25 °C for an indicated time. After the indicated time, the reaction mixture was quenched with NH₄Cl (aq., 1.0 M, 15 mL) and filtered with Celite then dried and concentrated. A sample was analyzed by ¹H NMR (CDCl₃, 400 MHz) and GC-MS to obtain conversion, yield and selectivity using internal standard and comparison with authentic samples.

4. Characterization Data of Products

(Z)-3-Hydroxy-1,3-diphenylprop-2-ene-1-thione (3a). According to the general procedure, the reaction of tert-butyl phenyl(phenylcarbonothioyl)carbamate (0.20 mmol, 1.0 equiv), acetophenone (1.5 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 70 % yield (33.6 mg). Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 15.27 (s, 1H), 8.02 (d, *J* = 7.5 Hz, 2H), 7.83 (d, *J* = 7.3 Hz, 2H), 7.58 (t, *J* = 6.9 Hz, 1H), 7.48 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.3, 179.9, 145.5, 135.8, 132.6, 131.1, 128.9, 128.5, 127.3, 126.8, 110.7. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₃OS⁺: 241.0682; Found: 241.0678.

(Z)-3-hydroxy-1-phenyl-3-(*p*-tolyl)prop-2-ene-1-thione (3b). According to the general procedure, the reaction of tert-butyl phenyl(phenylcarbonothioyl)carbamate (0.20 mmol, 1.0 equiv), 1-(p-tolyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 74 % yield (37.6 mg). Yellow solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 15.34 (s, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.37 (s, 1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 203.4, 179.8, 145.7, 143.7, 132.8, 131.0, 129.7, 128.5, 127.3, 126.8, 110.4, 21.8. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₅OS⁺: 255.0838; Found: 255.0835.

(Z)-3-hydroxy-1-phenyl-3-(*m*-tolyl)prop-2-ene-1-thione (3c). According to the general procedure, the reaction of tert-butyl phenyl(phenylcarbonothioyl)carbamate (0.20 mmol, 1.0 equiv), 1-(m-tolyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 50 % yield (25.4 mg). Yellow solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 15.34 (s, 1H), 7.80 (t, *J* = 7.0 Hz, 4H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.45 – 7.41 (m, 3H), 7.37 (d, *J* = 4.9 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 203.8, 180.0, 145.6, 138.7, 135.7, 133.5, 131.1, 128.8, 128.5, 127.8, 126.9, 124.5, 110.7, 21.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₅OS⁺: 255.0838; Found: 255.0842.

(Z)-3-hydroxy-3-(3-methoxyphenyl)-1-phenylprop-2-ene-1-thione (3d). According general procedure, the reaction of tert-butyl to the phenyl(phenylcarbonothioyl)carbamate (0.20)mmol. 1.0 equiv), 1-(3-methoxyphenyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 61 % yield (33.0 mg). Yellow solid. ¹H NMR (600 MHz, Chloroform-d) δ 14.94 (s, 1H), 7.72 (d, J = 7.2, 1.9 Hz, 2H), 7.48 (d, J = 7.7 Hz, 1H), 7.45 (s, 1H), 7.40 (t, J = 6.9 Hz, 1H), 7.34 (m, 3H), 7.30 (t, J = 8.0 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 202.3, 179.9, 160.0, 145.4, 137.3, 131.1, 129.9, 128.6, 126.7, 119.6, 118.7, 112.3, 110.9, 55.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₅O₂S⁺: 271.0787; Found: 271.0783.

(Z)-3-hydroxy-1-phenyl-3-(*o*-tolyl)prop-2-ene-1-thione (3e). According to the general procedure, the reaction of tert-butyl phenyl(phenylcarbonothioyl)carbamate (0.20 mmol, 1.0 equiv), 1-(o-tolyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 55 % yield (28.0 mg). Yellow solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 14.65 (s, 1H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 6.4 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 7.03 (s, 1H), 2.48 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 199.8, 184.8, 144.8, 137.2, 137.1, 131.6, 131.2, 130.9, 128.6, 128.3, 126.9, 126.0, 114.8, 20.8. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₅OS⁺: 255.0838; Found: 255.0835.

(Z)-3-hydroxy-3-mesityl-1-phenylprop-2-ene-1-thione (3f). According to the general procedure, the reaction of tert-butyl phenyl(phenylcarbonothioyl)carbamate (0.20 mmol, 1.0 equiv), 1-mesitylethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 50 % yield (28.2 mg). Yellow solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 14.85 (s, 1H), 7.70 (d, *J* = 9.3 Hz, 2H), 7.39 (t, *J* = 6.8 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 6.84 (s, 2H), 6.81 (s, 1H), 2.24 (s, 6H), 2.24 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 201.4, 185.76, 144.40, 139.28, 135.10, 131.34, 128.59, 128.52, 126.92, 19.74. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for

(Z)-3-(4-fluorophenyl)-3-hydroxy-1-phenylprop-2-ene-1-thione (3g). According to procedure, the reaction of tert-butyl the general phenyl(phenylcarbonothioyl)carbamate 1.0 (0.20)mmol, equiv), 1-(4-fluorophenyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 57 % yield (29.4 mg). Yellow solid. ¹H NMR (600 MHz, Chloroform-d) δ 14.72 (s, 1H), 7.97 – 7.93 (m, 2H), 7.72 (d, J = 7.4 Hz, 2H), 7.42 (t, J = 7.9 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 7.32 (s, 1H), 7.10 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-d) δ 200.9, 179.1, 165.5 (d, J=300.2 Hz), 145.2, 132.1(d, J=3.0 Hz), 131.2, 129.7 (d, J=9.2 Hz), 128.6, 126.8, 116.1 (d, J=22.0 Hz), 110.5. ¹⁹F NMR (565 MHz, Chloroform-d) δ -105.59 (s, 1F). HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂FOS⁺: 259.0587; Found: 259.0583.

(Z)-3-(4-chlorophenyl)-3-hydroxy-1-phenylprop-2-ene-1-thione (3g). According to the general procedure, the reaction of tert-butyl phenyl(phenylcarbonothioyl)carbamate (0.20)1.0 mmol, equiv), 1-(4-chlorophenyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 71 % yield (39.0 mg). ¹H NMR (400 MHz, Chloroform-d) δ 14.70 (s, 1H), 7.93 (d, J = 7.1 Hz, 2H), 7.78 (d, J = 7.8 Hz, 2H), 7.46 (m, 5H), 7.39 (s, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 202.5, 178.6, 145.3, 138.9, 134.3, 131.3, 129.2, 128.6, 128.6, 126.8, 110.4. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂ClOS⁺: 275.0292; Found: 275.0288.

(Z)-3-(4-bromophenyl)-3-hydroxy-1-phenylprop-2-ene-1-thione (3h). According procedure, tert-butyl the general the reaction of to phenyl(phenylcarbonothioyl)carbamate 1.0 (0.20)mmol, equiv), 1-(4-bromophenyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 85 % yield (54.3 mg).¹H NMR (600 MHz, Chloroform-*d*) δ 14.82 (s, 1H), 7.79 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 7.7 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.42 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.32 (s, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 202.6, 178.7, 145.3, 134.7, 132.2, 131.3, 128.7, 128.6, 127.5, 126.8, 110.4. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂BrOS⁺: 318.9787; Found: 318.9783.

(Z)-3-(3-bromophenyl)-3-hydroxy-1-phenylprop-2-ene-1-thione (3j). According to of tert-butyl the general procedure, the reaction phenyl(phenylcarbonothioyl)carbamate (0.20)mmol. 1.0 equiv), 1-(3-bromophenyl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 54 % yield (34.5 mg).¹H NMR (600 MHz, Chloroform-*d*) δ 14.61 (s, 1H), 8.02 (s, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.70 (d, J = 7.2Hz, 2H), 7.58 (d, J = 7.9 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.29 - 7.25 (m, 2H).¹³C NMR (151 MHz, Chloroform-d) δ 202.1, 178.4, 145.1, 138.0, 135.3, 131.3, 130.4, 130.2, 128.6, 126.9, 125.7, 123.1, 110.6. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂BrOS⁺: 318.9787; Found: 318.9783.

(Z)-3-hydroxy-1-phenyl-3-(pyridin-3-yl)prop-2-ene-1-thione (3k).According to the general procedure, the reaction of tert-butyl phenyl(phenylcarbonothioyl)carbonate (0.20 mmol, 1.0 equiv), 1-(pyridin-3-yl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 30 % yield (14.5 mg).¹H NMR (600 MHz, Chloroform-*d*) δ 14.54 (s, 1H), 9.21 (d, J = 2.2 Hz, 1H), 8.77 (d, J = 3.2 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 7.1 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.47 – 7.43 (m, 3H), 7.42 (s, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 201.8, 177.9, 152.8, 148.4, 144.9, 134.6, 131.9, 131.5, 128.7, 126.8, 123.7, 110.6. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₄H₁₂NOS⁺: 242.0635; Found: 242.0629.

(Z)-3-hydroxy-1-phenyl-3-(thiophen-3-yl)prop-2-ene-1-thione (3l). According to general the reaction tert-butyl the procedure. of phenyl(phenylcarbonothioyl)carbamate (0.20)mmol, 1.0 equiv), 1-(thiophen-3-yl)ethan-1-one (2.0 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 20 % yield (9.9 mg).¹H NMR (600 MHz, Chloroform-*d*) δ 13.17 (s, 1H), 7.78 (d, J = 3.3 Hz, 1H), 7.68 (d, J = 7.3 Hz, 2H), 7.59 (d, J = 4.6 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 7.4 Hz, 2H), 7.22 (s, 1H), 7.11 – 7.08 (m, 1H).¹³C NMR (151 MHz, Chloroform-d) δ 189.1, 176.6, 144.0, 142.6,

132.9, 130.9, 130.6, 128.6, 128.6, 126.8, 111.4. HRMS (ESI/Q-TOF) m/z: $[M+H]^+$ Calcd for $C_{13}H_{11}OS_2^+$: 247.0246; Found: 247.0241.

(Z)-3-hydroxy-1-(4-methoxyphenyl)-3-phenylprop-2-ene-1-thione (**3m**). general According procedure, tert-butyl to the the reaction of (4-methoxyphenylcarbonothioyl)(phenyl)carbamate (0.20)mmol. 1.0 equiv), acetophenone (1.5 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 72 % yield (38.9 mg). ¹H NMR (600 MHz, Chloroform-d) δ 16.00 (s, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.9 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.45 (s, 1H), 6.94 (d, J = 8.9 Hz, 2H), 3.88 (s, 3H).¹³C NMR (151) MHz, Chloroform-d) δ 206.4, 178.0, 162.7, 138.4, 135.7, 132.4, 128.9, 128.9, 127.1, 113.8, 108.7, 55.5. Spectroscopic properties matched those described previously.²

(Z)-3-hydroxy-3-phenyl-1-(p-tolyl)prop-2-ene-1-thione (3n). According to the procedure, of tert-butyl general the reaction (4-methylphenylcarbonothioyl)(phenyl)carbamate (0.20)mmol. 1.0 equiv), acetophenone (1.5 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 50 % yield (25.4 mg). ¹H NMR (600 MHz, Chloroform-d) δ 15.48 (s, 1H), 7.99 (d, J = 7.3 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.55 (t, J = 6.7 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.45 (s, 1H), 7.23 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 204.8, 179.1, 142.9, 142.0, 135.7, 132.5, 129.2, 128.9, 127.2, 126.9, 109.9, 21.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₅OS⁺: 255.0838; Found: 255.0841.

(Z)-1-(4-(tert-butyl)phenyl)-3-hydroxy-3-phenylprop-2-ene-1-thione (30). the procedure. the reaction According to general of tert-butyl (4-(tert-butyl)phenylcarbonothioyl)(phenyl)carbamate (0.20 mmol, 1.0 equiv), acetophenone (1.5 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 70 % yield (41.5 mg). ¹H NMR (400 MHz, Chloroform-d) δ 15.46 (s, 1H), 8.00 (d, J = 7.5 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 7.3 Hz, 1H), 7.53 -7.41 (m, 5H), 1.35 (s, 9H).¹³C NMR (101 MHz, Chloroform-d) δ 204.7, 179.2, 155.0, 142.9, 135.8, 132.6, 128.9, 127.2, 126.8, 125.6, 110.1, 35.0, 31.2.HRMS

(Z)-1-(4-chlorophenyl)-3-hydroxy-3-phenylprop-2-ene-1-thione (3p). According to general procedure, the reaction of tert-butyl the (4-chlorophenylcarbonothioyl)(phenyl)carbamate (0.20)mmol, 1.0 equiv), acetophenone (1.5 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 61 % yield (33.5 mg). ¹H NMR (600 MHz, Chloroform-d) δ 15.59 (s, 1H), 7.99 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.6 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.43 - 7.37 (m, 3H).¹³C NMR (151 MHz, Chloroform-*d*) δ 203.7, 179.6, 143.8, 137.5, 135.3, 132.8, 129.0, 128.7, 128.2, 127.3, 110.2. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂ClOS⁺: 275.0292; Found: 275.0285.

(Z)-1-(3-chlorophenyl)-3-hydroxy-3-phenylprop-2-ene-1-thione (3q). According to reaction of the general procedure. the tert-butyl (3-chlorophenylcarbonothioyl)(phenyl)carbamate (0.20 mmol, 1.0 equiv), acetophenone (1.5 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 51 % yield (28.0 mg). ¹H NMR (600 MHz, Chloroform-d) δ 15.37 (s, 1H), 8.01 (d, J = 8.1 Hz, 2H), 7.77 (s, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 7.4Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.45 (d, J = 7.0 Hz, 1H), 7.42 (s, 1H), 7.36 (t, J = 7.0 Hz, 1H), 7.42 (s, 1H), 7.36 (t, J = 7.0 Hz, 1H), 7.42 (s, 1H), 7.45 (t, J = 7.0 Hz, 1H), 7.45 (7.9 Hz, 1H).¹³C NMR (151 MHz, Chloroform-d) δ 202.4, 180.0, 147.0, 135.3, 134.6, 132.9, 130.8, 129.8, 129.0, 127.3, 126.9, 125.0, 110.7. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂ClOS⁺: 275.0292; Found: 275.0296.

(Z)-1-(4-bromophenyl)-3-hydroxy-3-phenylprop-2-ene-1-thione (3r). According to general procedure, the reaction of tert-butyl the (4-bromophenylcarbonothioyl)(phenyl)carbamate (0.20)mmol, 1.0 equiv). acetophenone (1.5 equiv) and KHMDS (2.5 equiv) in THF (1.0 M) at 25 °C for 15 h, afforded after the standard work-up as described above and chromatography the title compound in 61 % yield (38.9 mg). ¹H NMR (600 MHz, Chloroform-d) δ 15.48 (s, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.1 Hz, 3H), 7.43 (t, J = 7.7 Hz, 2H), 7.35 (s, 1H).¹³C NMR (151 MHz, Chloroform-d) δ 203.5, 179.7, 144.3, 135.4, 132.8, 131.7, 129.0, 128.3, 127.3, 126.0, 110.2. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂BrOS⁺: 318.9787; Found: 318.9779.

5. Crystallographic Studies

Single crystal suitable for X-ray study was grown from Petroleum ether/ether (20:1, V/V) solvent by slow evaporation in 2 days.

X-ray crystallographic data were collected using a Bruker APEX-II CCD diffractometer, equipped with a sealed tube Mo-K α radiation ($\lambda = 0.71076$ Å) at low temperature or at ambient temperature under liquid N₂ flow. The crystal structure was solved with the Superflip, structure solution program using Charge Flipping and refined by direct methods using SHELXL-2018/3 and with full-matrix least squares on F^2 using SHELXL-2018/3. All the non-hydrogen atoms were refined anisotropically.

Crystal structure of 3a.

Scheme S1. Crystal structure of **3a** (*50% ellipsoids*). (Crystallographic data has been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC 2346234.)

 Table S1. Crystal Data and Structure Refinement Summary for 3a.

Crystal data

C ₁₅ H ₁₂ OS	F(000) = 504
$M_r = 240.31$	$D_{\rm x} = 1.310 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo Ka radiation, $l = 0.71076$ Å
<i>a</i> = 12.5206 (13) Å	Cell parameters from 7019 reflections
b = 7.4108 (8) Å	$q = 3.2-24.9^{\circ}$
<i>c</i> = 13.2690 (14) Å	$m = 0.24 \text{ mm}^{-1}$
b = 98.254 (3)°	T = 100 K
V = 1218.4 (2) Å ³	Block, colourless
Z = 4	
Bruker diffractometer	$R_{\rm int} = 0.032$
Absorption correction: multi-scan	
SADABS-2016/2 (Bruker,2016/2)	
was used for absorption correction.	$q_{max} = 25.1^{\circ}, q_{min} = 3.2^{\circ}$
wR2(int) was 0.0521 before and	
0.0442 after correction. The Ratio of	

minimum to maximum transmission	
is 0.8914. The 1/2 correction factor is	
Not present.	
$T_{\min} = 0.664, T_{\max} = 0.745$	$h = -14 \rightarrow 14$
14813 measured reflections	$k = -7 \rightarrow 8$
2126 independent reflections	$l = -15 \rightarrow 13$
1725 reflections with $I > 2s(I)$	
Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Hydrogen site location: inferred from
	neighbouring sites
$R[F^2 > 2s(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.086$	$w = 1/[s^2(F_0^2) + (0.0288P)^2 + 0.4633P]$
	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(D/s)_{max} = 0.001$
2126 reflections	$D\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
155 parameters	$D\rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$
0 restraints	

6. NMR Spectra

Figure S1 ¹H NMR Spectrum of compound **3a** (400 MHz, Chloroform-*d*).

Figure S2 ¹³C NMR Spectrum of compound **3a** (101 MHz, Chloroform-*d*).

Figure S3 ¹H NMR Spectrum of compound **3b** (600 MHz, Chloroform-*d*).

Figure S4 ¹³C NMR Spectrum of compound **3b** (151 MHz, Chloroform-*d*).

Figure S5 ¹H NMR Spectrum of compound **3c** (600 MHz, Chloroform-*d*).

Figure S6¹³C NMR Spectrum of compound **3c** (151 MHz, Chloroform-*d*).

Figure S7 ¹H NMR Spectrum of compound **3d** (600 MHz, Chloroform-*d*).

Figure S8 ¹³C NMR Spectrum of compound **3d** (151 MHz, Chloroform-*d*).

Figure S9 ¹H NMR Spectrum of compound **3e** (600 MHz, Chloroform-*d*).

Figure S10¹³C NMR Spectrum of compound **3e** (151 MHz, Chloroform-*d*).

Figure S11 ¹H NMR Spectrum of compound **3f** (600 MHz, Chloroform-d).

Figure S12 ¹³C NMR Spectrum of compound **3f** (151 MHz, Chloroform-*d*).

Figure S13 ¹H NMR Spectrum of compound 3g (600 MHz, Chloroform-*d*).

Figure S14 ¹³C NMR Spectrum of compound **3g** (151 MHz, Chloroform-*d*).

Figure S15¹⁹F NMR Spectrum of compound **3g** (565 MHz MHz, Chloroform-*d*)..

Figure S16 ¹H NMR Spectrum of compound **3h** (400 MHz, Chloroform-*d*).

Figure S17¹³C NMR Spectrum of compound **3h** (101 MHz, Chloroform-*d*).

Figure S18 ¹H NMR Spectrum of compound **3i** (600 MHz, Chloroform-*d*).

Figure S20 ¹H NMR Spectrum of compound **3j** (600 MHz, Chloroform-*d*).

Figure S22 ¹H NMR Spectrum of compound **3k** (600 MHz, Chloroform-*d*).

Figure S24 ¹H NMR Spectrum of compound **3**I (600 MHz, Chloroform-*d*).

Figure S26 ¹H NMR Spectrum of compound **3m** (600 MHz, Chloroform-*d*).

Figure S28 ¹H NMR Spectrum of compound **3n** (600 MHz, Chloroform-*d*).

Figure S30 ¹H NMR Spectrum of compound **30** (400 MHz, Chloroform-*d*).

Figure S32 ¹H NMR Spectrum of compound **3p** (600 MHz, Chloroform-*d*).

Figure S34 ¹H NMR Spectrum of compound **3q** (600 MHz, Chloroform-*d*).

Figure S36 ¹H NMR Spectrum of compound 3r (600 MHz, Chloroform-*d*).

Figure S37 13 C NMR Spectrum of compound **3r** (151 MHz, Chloroform-*d*).

7. References

1. Zhang, J.; Liu, Z.; Yin, Z.; Yang, X.; Ma, Y.; Szostak, R.; Szostak, M., Preference of cis-Thioamide Structure in N-Thioacyl-N-methylanilines. *Organic Letters*, **2020**, 22(24), 9500-9505.

2. Hansen, P.; Duus, F, Schmitt, P. Deuterium Isotope Effects on ¹³C Nuclear Shielding as a Measure of Tautomeric Equilibria. *Organic Magnetic Resonance*, **1982**, 18(1), 58-61.