Assessment of metabolome diversity in black and white pepper seeds in response to autoclaving using MS- and NMR-based metabolomics and in relation to its remote and direct antimicrobial effects against food borne pathogens

Mostafa H. Baky^{1a}, Islam M. Kamal^{2a}, Ludger A. Wessjohann³, Mohamed A. Farag 4*

¹Department of Pharmacognosy, Faculty of pharmacy, Egyptian Russian University, Badr city, 11829, Cairo, Egypt.

²Microbiology and Immunology department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.

³Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany

⁴ Pharmacognosy Department, College of Pharmacy, Cairo University, 11562 Cairo, Egypt.

^aEqual contribution

*Corresponding author at: Cairo University, College of Pharmacy, Department of Pharmacognosy, Egypt.

E-mail addresses: mohamed.farag@pharma.cu.edu.eg, (M.A. Farag).

	Vapor-phase minimum inhibitory concentration (VP-MIC) mg/mL										
	MRSA USA300	Acinetobacter baumannii AB5075	Salmonella typhi ATCC35664	Enterococcus faecalis ATCC19433	Enterobacter cloacae	Escherichia coli ATCC87	Pseudomonas aeruginosa PAO1	Klebsiella pneumoniae ATCC13883	Candida albicans		
White	33.3 ±	40 ± 0	33.3 ± 11.5	26.6 ± 11.5	20 ± 0	-	16.4 ± 6.1	-	-		
pepper	11.5										
White pepper (autoclaved)	LA	LA	40 ± 0	LA	LA	-	40 ± 0	-	-		
Black pepper	26.6±11.5	40 ± 0	23.1 ± 15.5	16.4 ± 6.1	12.9 ± 6.1	-	12.9 ± 6.1	-	-		
Black pepper (autoclaved)	LA	LA	LA	LA	LA	-	40 ± 0	-	-		

Table S1: Vapor-phase antimicrobial activity of the tested ground pepper n=3, Average ± SD

(-) indicates that there was no antimicrobial activity detected under the tested conditions

(LA) Indicates the loss of activity after autoclaving.

Table S2: Minimum inhibitory concentration of pepper methanol extracts using microdilution method, n=3, Av±SD.

Minimum inhibitory concentration (MIC) mg/mL								
MRSA USA300	Acinetobacter baumannii AB5075	Salmonella typhi ATCC35664	Enterococcus faecalis ATCC19433	Enterobacter cloacae	Pseudomonas aeruginosa PAO1			

White pepper extract	6.6 ± 2.8	26.6 ± 11.5	33.3 ± 0	16.6 ± 5.7	11.6 ± 7.6	20 ± 0
Black pepper extract	2.9 ± 1.9	20.0	33.3 ± 0	13.3 ± 5.7	11.6 ± 7.6	16.6 ± 5.7

Figure S1. Signal assignment of the ¹H-NMR markers for piperine alkaloid

Figure S2. ¹H-¹H correlations observed in the TOCSY spectrum for piperine

Figure S3. ¹H-¹³C correlations observed in the HSQC spectrum for piperine

Figure S4. ¹H-¹³C correlations observed in the HMBC spectrum identified metabolites

Figure S5. ¹H-¹³C correlations observed in the HMBC spectrum for piperine

Figure S6. ¹H-¹³C correlations observed in the HSQC spectrum for major primary metabolites

Figure S7. ¹H-¹³C correlations observed in the HSQC spectrum for major primary metabolites

Figure S8. ¹H-¹³C correlations observed in the HMBC spectrum for major primary metabolites

Figure S9. A heat map for identified metabolites in black and white pepper as extracted from NMR Table 1

Figure S10. Representative GC–MS chromatograms of volatile constituents of black and white pepper.

Figure S11. A) OPLS-DA score plot. B) Loading S-plots derived from modeling black pepper against white pepper as analyzed using SPME GC-MS showing the covariance p(1) against the correlation p(cor)(1) of the variables of the discriminating component of the OPLS-DA model. C) Permutation plot (n=20).

Figure S12. GC–MS-based OPLS-DA score plot derived from modeling volatile metabolites in raw and autoclaved black pepper (A), .and raw and autoclaved white pepper (B) alongside their respective loading plots (C & D) Designated variables are highlighted and identifications are discussed in the text.

Figure S13: Inverted petri dishes showing the vapor-phase MIC experiment for (A) ground white pepper, (B) ground Black pepper, (C) growth control.

The cultures were spotted on MHA and numbered as follow: 1- MRSA *Staphylococcus aureus* USA 300, 2- *Acinetobacter baumannii* AB5075, 3- *Salmonella typhi* ATCC35664, 4- *Enterococcus faecalis* ATCC19433, 5- *Enterobacter cloacae*, 6-*Escherichia coli* ATCC87, 7- *Pseudomonas aeruginosa* PAO1, 8- *Klebsiella pneumoniae* ATCC13883, 9- *Candida albicans*. The cultured agar was upward while the ground pepper was placed downwards. The white arrows on the spots in (A) and (B) indicate a positive growth suppression. VP-MIC was determined as the least concentration of the tested sample that resulted in apparent growth inhibition of the tested microorganism when compared to the control.