Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary material

Table S1 The standard Gibbs energies of formation $(\Delta_{f} G_{m})$ for BN(cr)²⁷, CrN(cr)²⁷,

and TiN(cr)²⁷ related to the B–N bond along the phase boundary between $NH_3(cr)$ and the B_2O_3 (gl)–B(OH)₃ (gl) glass matrix (GM).

Substance	$\Delta_{\rm f} G_{\rm m/(kJ} \text{ (mol of compd.)}^{-1})$
BN(cr) ^{27, *1}	-228.501
CrN(cr) ²⁷	-92.703
TiN(cr) ²⁷	-309.155
*1Hexagonal	

The $C_{p, m}$ values for the solid state cubic NH₃(cr) were evaluated by the recently developed formulas: ^{32-34, 46,47} a semi-empirical power law function composed of the electronic and lattice vibration terms at 0 < T < 5-6 K; an empirical power law temperature function at 5-6 < T < 40 - 50 K; the Debye-Einstein (DE) at 40 - 50 < T < 300 K, expressed as

$$C_{p,m}^{\circ} = \gamma T + \sum_{j=3,5,7,9} A_i T^i = 0 < T < 5 - 6 \text{ K}$$
 (S1)

$$C_{p,m}^{\circ} = \sum_{j=0}^{6} B_j T^j \qquad 5-6 \text{ K} < T < 40-50 \text{ K}$$
(S2)

$$C_{p,\ m=3} \stackrel{\circ}{\mathbf{R}} \left\{ mD\left(\frac{\Theta_D}{T}\right) + nE\left(\frac{\Theta_{E_1}}{T}\right) + lE\left(\frac{\Theta_{E_2}}{T}\right) \right\} \quad 40-50 \text{ K} < T < 300 \text{ K} \quad (S3)$$

where, for NH₃(cr), the fitting functions were divided in three temperature ranges: at 0.5 – 5.20 K; 5.20 – 41.36 K; 41.36 – 300 K, as shown in Tables S1-S3. At 0 – 5.20 K (eq.(S1)), γ is the coefficient of the electronic term contributing to $C_{p,m}^{\circ}$. ³¹⁻³⁶ For insulating substances, it results from vacancies³² A_i are the coefficients for the lattice vibration term contributing to $C_{p,m}^{\circ}$. ²⁹⁻³⁴ At 5.20 – 41.36 K (eq.(S2)), B_i are the adjustable coefficients for providing sufficient overlap to the

measured $C_{p,m}^{\circ}$ data and for connecting smoothly near the inflection points around 5.02 K and

41.36 K. At 41.36 – 300 K (eq.(S3)), $\left(\frac{\Theta_D}{T}\right)$, $\left(\frac{\Theta_{E_1}}{T}\right)$ and $\left(\frac{\Theta_{E_2}}{T}\right)$ are Debye and Einstein functions;

 Θ_D , Θ_{E_1} and Θ_{E_2} are the Debye and Einstein temperatures used for adjustable parameter; *m*, *n* and *l* are the adjustable parameters and the sum of *m*, *n* and *l* should be approximately closed to the number of atoms in the formula unit. ³³⁻³⁶. Tables S1-S3 shows the adjustable parameters. Six digits numbers for Θ_D , Θ_{E_1} , Θ_{E_2} , *m*, *n* and *l* are necessary to reproduce the experimental $C_{p,m}$ data as five digits numbers.

The $C_{p,\ m}$ data at 298.15 K of metal elements are about 25 (J K⁻¹ (mol of atoms)⁻¹) following the Dulong-Petit law, and the Debye and Einstein functions are the theories⁽²⁹⁾ to satisfy the Dulong-Petit law. However, the compounds composed of non-metallic element do not follow the Dulong-Petit law, and their $C_{p,\ m}$ data are empirically half values, e.g. the $C_{p,\ m}$ data at 298.15 K of B₂O₃(cr) and B(OH)₃ are 62.761 (J K⁻¹ (mol of compd.)⁻¹), i.e. , 12.552 (J K⁻¹ (mol of atoms)¹), and 86.060 (J K⁻¹ (mol of compd.)⁻¹), i.e. , 12.294 (J K⁻¹ (mol of atoms)⁻¹, respectively. Therefore, the $C_{p,\ m}$ data for NH₃(cr) were adopted as the half values calculated from the parameters summarized in Table S2.

Table S2 Parameters for the fitting functions used to fits the $C_{p,m}^{\circ}$ data for the solid state cubic NH₃(cr) from Eqs.S1-S3. The notation E $\pm kl$ indicates the power of 10.

-	-
Temp. range: 0.5 – 5.20 K	Coefficient
γ (J K ⁻² (mol of compd.) ⁻¹	8.07997E-08
A_3 (J K ⁻⁴ (mol of compd.) ⁻¹	1.98334E-03
A_5 (J K ⁻⁶ (mol of compd.) ⁻¹	2.67852E-08
A_7 (J K ⁻⁸ (mol of compd.) ⁻¹	-3.48652E-09
A_9 (J K ⁻¹⁰ (mol of compd.) ⁻¹	1.93042E-10
A_{11} (J K ⁻¹² (mol of compd.) ⁻¹	-3.81599E-12
Temp. range: 5.20 – 44.29 K	Coefficient
$B_0/(J \text{ K}^{-1} \text{ (mol of comd.)}^{-1})$	-2.49757E-01
$B_1/(J \text{ K}^{-2} \text{ (mol of comd.)}^{-1})$	2.18229E-01
$B_2/(J \text{ K}^{-3} \text{ (mol of comd.)}^{-1})$	-6.30746E-02

$B_3/(J \text{ K}^{-4} \text{ (mol of comd.)}^{-1})$	9.77004E-03
$B_4/(J \text{ K}^{-5} \text{ (mol of comd.)}^{-1})$	-4.12224E-04
$B_5/(J \text{ K}^{-6} \text{ (mol of comd.)}^{-1})$	7.37473E-06
B ₆ /(J K ⁻⁷ (mol of comd.) ⁻¹)	-4.92858E-08
Temp. range: 44.29 – 300 K	Coefficient
$\Theta_{ m D}/ m K$	1.10961.E+02
т	6.20324E-01
$artheta_{ m E1}/ m K$	5.32855E+03
п	1.37968E+00
$\Theta_{ m E2}/ m K$	1.31707E+02
1	2.00000E+00