Supplemental Material for "Exploring the potential of MB₂ MBene family as promising anodes for Li-ion batteries"

Ying Han^a, Lianli Wang^{a*}, Bin. Zheng ^a, Jinlei Wang ^a, Li Zhang^a, Beibei Xiao^b ^aSchool of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China

^bSchool of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, PR China

Structural dynamic stability can be used to evaluate the properties of 2D materials. Here, we calculate the phonon spectrum using the finite displacement method. The phonon spectra of CrB₂, CuB₂, ZnB₂, YB₂ and NiB₂ have more virtual frequencies and are not suitable for use as negative electrode materials for LIBs. The phonon spectrum of TiB₂, VB₂, HfB₂ and NbB₂ is calculated, and there is no virtual frequency in the phonon spectrum curve. The dynamic stability of these four materials was proved.¹ FeB₂ and MnB₂ have previously been reported as anode materials for LIBs.^{2, 3} CoB₂ and ZrB₂ are distorted in the optimization process, and their structures are easy to collapse, which are not suitable for the LIBs anode materials. Therefore, we won't conduct additional calculations for FeB₂, MnB₂, CoB₂ and ZrB₂.

In order to better understand the electronic properties of the MB₂ monolayer, we calculated the band structure of MB₂ monolayer. The ScB₂, TiB₂, VB₂, NbB₂, MoB₂ and WB₂ monolayers exhibit metallicity due to the Fermi energy level crossing the valence band (Fig. S6). Their Dirac cones lying above the Fermi level suggest their potential for experimental preparation. As shown in Fig. S6(g), the band structure of HfB₂ exhibits non-metallic properties and is not suitable for LIBs electrode materials.

^{*} Corresponding author E-mail: <u>wanglianli@xust.edu.cn</u>

MBenes	Layer thickness(Å)
ScB ₂	1.409
YB_2	1.682
TiB ₂	1.189
ZrB_2	0.079
HfB_2	1.348
VB_2	0.997
NbB ₂	1.738
TaB_2	1.466
CrB ₂	0.878
MoB_2	1.574
WB_2	1.607
MnB_2	0.739
FeB ₂	0.625
CoB ₂	0.433
NiB ₂	0.995
CuB ₂	1.055
ZnB_2	1.730

Table S1 The "Layer thickness" represents the distance between the B-layer and theM-layer.

MBenes	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
ScB ₂	-1.87	-1.00	-1.09	-0.17	-0.29	-0.27
TiB ₂	-0.92	-0.08	-0.14	0.207	0.06	0.07
VB ₂	-0.77	0.02	0.01	-0.10	-0.32	-0.31
CrB ₂	-0.87	0.18	0.20	0.01	-0.21	-0.20
MnB ₂	-0.11	-0.02	0.01	-0.43	-0.80	-0.84(move to site 5)
FeB ₂	0.22	0.22	0.29	-0.28	-0.63	-0.57
CuB ₂	-2.16	-1.33	-2.11	0.36	-0.31	-0.19
ZnB ₂	-1.74	-1.26	-1.74(move to site 1)	-0.29	-0.48	-0.48
YB ₂	-2.10	-2.07	-2.10	-0.12	-0.19	-0.18
NbB ₂	-1.01	-0.23	-0.28	0.84	0.79	0.77
MoB ₂	-2.30	-1.60	-2.31(move to site 1)	-0.85	-1.01	-0.99
HfB ₂	-1.71	-0.83	-1.71(move to site 1)	-0.30	-0.48	-0.46
TaB ₂	-2.25	-1.38	-2.24	-0.86	-0.96	-0.95
WB ₂	-1.96	-1.24	-1.96(move to site 1)	-0.62	-0.86	-0.83

Table S2 The corresponding adsorption energy of Li atom at different optimal sites

on the surface of MBenes (Unit: eV)

Table S3 The amount of charge transfer of the Li, B, and M atoms at the most stableadsorption position of the Li atom is determined by Bader charge analysis. (M=Sc, Ti,

ΔQ(e)/atom	ScB ₂	TiB ₂	VB ₂	CrB ₂	MnB ₂	FeB ₂	CuB ₂
M1	-1.037	-1.028	-0.900	-0.694	-0.375	-0.119	-0.300
M2	-1.040	-1.034	-0.897	-0.700	-0.376	-0.121	-0.296
M3	-1.040	-1.036	-0.897	-0.701	-0.375	-0.122	-0.296
M4	-0.852	-0.979	-0.855	-0.671	-0.312	-0.027	-0.305
B 1	0.537	0.596	0.519	0.456	0.420	0.137	0.326
B2	0.612	0.692	0.482	0.369	0.281	0.201	0.241
B3	0.674	0.605	0.602	0.467	0.410	0.267	0.170
B4	0.584	0.660	0.576	0.422	0.116	0.022	0.203
B5	0.626	0.659	0.570	0.423	0.138	0.021	0.279
B6	0.651	0.511	0.639	0.465	0.339	0.269	0.169
B7	0.534	0.600	0.518	0.548	0.340	0.140	0.405
B8	0.591	0.599	0.483	0.456	0.261	0.205	0.244
Li	-0.840	-0.845	-0.841	-0.838	-0.866	-0.874	-0.840

V, Cr, Mn, Fe and Cu)

∆Q(e)/atom	ZnB ₂	YB ₂	NbB ₂	MoB ₂	HfB_2	TaB ₂	WB_2
M1	-0.327	-0.929	-0.616	-0.442	-1.031	-0.730	-0.501
M2	-0.316	-0.921	-0.619	-0.434	-0.840	-0.734	-0.506
M3	-0.418	-0.921	-0.620	-0.437	-1.053	-0.740	-0.494
M4	-0.401	-0.701	-0.564	-0.414	-1.060	-0.686	-0.479
B 1	0.191	0.463	0.288	0.387	0.642	0.617	0.242
B2	0.150	0.515	0.382	0.311	0.515	0.531	0.406
B3	0.513	0.662	0.380	0.208	0.598	0.470	0.402
B4	0.363	0.470	0.388	0.390	0.646	0.364	0.423
B5	0.250	0.556	0.386	0.390	0.600	0.399	0.356
B6	0.295	0.651	0.383	0.293	0.604	0.505	0.421
B7	0.076	0.475	0.577	0.210	0.625	0.351	0.267
B8	0.476	0.516	0.479	0.384	0.597	0.495	0.311
Li	-0.851	-0.837	-0.843	-0.845	-0.843	-0.842	-0.849

Table S4 The amount of charge transfer of the Li, B, and M atoms at the most stable

adsorption position of the Li atom is determined by Bader charge analysis. (M=Zn, Y,

Table S5 The migration barrier of Li atoms along Path I and Path II. (B side)

MBenes	Path II	Path I-1	Path I-2
ScB ₂	0.831	2.386	-
TiB ₂	0.809	2.440	0.814
VB ₂	0.967	2.836	0.951
CrB ₂	0.955	0.001	1.280
MnB ₂	0.305	0.733	0.280
FeB ₂	0.114	0.006	0.362
CuB ₂	0.662	0.751	-
ZnB ₂	0.330	0.330	-
YB ₂	0.844	3.220	0.841
NbB ₂	0.682	2.190	-
MoB ₂	0.631	2.145	-
HfB ₂	0.903	2.689	0.902
TaB ₂	0.732	2.351	-
WB ₂	0.604	2.211	-

The "-" is means no transition state is found.

MBenes	Path IV	Path III-1	Path III-2
ScB ₂	0.042	0.020	0.073
TiB ₂	0.029	0.037	-
VB ₂	0.028	0.337	0.048
CrB ₂	0.001	0.151	-
MnB ₂	0.001	0.603	-
FeB ₂	0.052	0.773	0.070
CuB ₂	0.044	0.449	0.006
ZnB ₂	0.029	0.451	0.032
YB ₂	0.014	0.026	0.117
NbB ₂	0.011	0.120	0.070
MoB ₂	0.029	0.076	0.030
HfB ₂	0.135	0.051	0.018
TaB ₂	0.130	0.134	0.117
WB ₂	0.029	0.083	0.044

Table S6 The migration barrier of Li atoms along Path III and Path IV. (Metal side)

Fig. S1 The adsorption energy of Li atom on metal side of MB₂ monolayers.

Fig. S2 The relationship between the *p*-band center and (a) the migration energy barrier of Li atom on the B atomic side and (b) the migration energy barrier and (c) the adsorption energy of Li atom on the metal side of MB_2 monolayer.

Fig. S3 The relationship between the *d*-band center and the adsorption energy on the (a) B / (b) metal side and the migration energy barrier on the (c) B/ (d) metal side of MB_2 monolayer.

Fig. S4 Possible diffusion paths of Li atom on (a) B atomic side and (b) metal side of MB₂ monolayer. The purple, orange, and green spheres represent the M, Li, B atoms, respectively.

Fig. S5 Diffusion barrier profiles for Li atom and the diffusion path of Li atom on the metal side of MB_2 monolayer. The purple, orange, and green spheres represent the M, Li, B atoms, respectively.

Fig. S6 Charge density difference, band structure and PDOS of Li atom at the most stable adsorption site on MB_2 surface. (M= Sc, Ti, V, Nb, Mo, W, Hf and Ta) The purple, blue, red, black, pink, gray, grass green, white, orange, and green spheres represent Sc, Ti, V, Nb, Mo, W, Hf, Ta, Li and B atoms, respectively.

Fig. S7 The phonon dispersion curves of (a) ScB_2 , (b) CrB_2 , (c) NiB_2 , (d) CuB_2 , (e) ZnB_2 , (f) YB_2 , (g) MoB_2 (h) TaB_2 and (i) WB_2 .

Fig. S8 (a-f)The potential energies and temperatures of the MB_2 (M=Sc, Ti, V, Nb, Mo and W) monolayer were analyzed via AIMD simulations at 300 K, along with the resultant structural evolution observed over a 6.0 ps duration.

Fig. S9 (a-f)The potential energy and temperature of MB_2 (M=Sc, Ti, V, Nb, Mo and W) monolayers at 300 K after adsorption of a Li atom were analyzed by AIMD simulation, and the structural evolution observed at 6.0 ps duration was also analyzed.

- 1. C. Zhang, T. He, S. K. Matta, T. Liao, L. Kou, Z. Chen and A. Du, *The Journal* of *Physical Chemistry Letters*, 2019, **10**, 2567-2573.
- 2. S. Luo, J. Zhao, Y. Wang, Y. Zhang, Y. Xiong, N. Ma and J. Fan, *The Journal of Physical Chemistry C*, 2023, **127**, 12484-12491.
- 3. B. Zhang, L. Fan, J. Hu, J. Gu, B. Wang and Q. Zhang, *Nanoscale*, 2019, **11**, 7857-7865.