Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Support imformation

Preparation of biochar-lignosulfonate composite material and its adsorption performance for Cu^{2+}

Ying Zhang^{1,*,#}, Qi He^{1,#}, Yonglin Yang², Qian Bai³

¹Department of chemical Power Engineering, Shenmu Vocational & Technical College, yulin 719300, shaanxi, China ¹Production and operation Department, Shenmu Electrochemical Development Co.,Ltd, yulin 719300, shaanxi, China

²School of Chemistry& Chemical Engineering, Yulin University, yulin 719000, shaanxi, China

³School of Mechanical Engineering, Yulin Vocational & Technical College, yulin 719000, shaanxi, China

Figure S1 Nitrogen adsorption and desorption curves of BC and BC-CLS

Figure S1 shows the nitrogen adsorption/desorption isotherms and pore size distributions of BC and BC-CLS. The isotherms can be classified as type III isotherms, which indicate that there is a weak interaction force between the samples and N_2 . In addition, the specific surface area, total pore volume and porosity of BC and BC-CLS are listed in Table S1. From Table S1, it can be seen that the specific surface area, total pore volume and porosity of BC.

Гab	le S1	Mesosca	le properties	of adsor	bents
-----	-------	---------	---------------	----------	-------

Material	Specific surface area (m^2/g)	Total pore volume (cm ³ /g)	Porosity (%)
BC	6.245	0.065	4.6
BC-CLS	7.658	0.824	7.8