Supporting information

Antimicrobial and alpha-glucosidase inhibitory flavonoid glycosides from the Plant

Mussaenda recurvata: in vitro and in silico approaches

Tran Thi Ngoc Mai¹, Phan Nhat Minh^{2,3}, Nguyen Tan Phat^{2,3}, Thuc Huy Duong^{4*}, Tran Nguyen Minh An^{5*}, Van Son Dang^{1,6}, Nguyen Van Hue⁷, Mai Dinh Tri^{2,3*}

Carbon - number	2	2 (Astragalin)		3 (Isoquercitrin)		
	δ _C ^{a,b} ppm	δ _H ^{a,c} ppm (mult., J in Hz)	δ _C ^{a,b} ppm	δ _C ^{a,c} (mult., J in Hz)		
2	156.2		156.2			
3	133.2		133.4			
4	177.4		177.5			
5	161.2		161.3			
6	98.7	6.20 (1H, d, 1.8)	98.7	6.20 (1H, d, 1.8)		
7	164.2		164.2			
8	93.6	6.42 (1H, d, 1.8)	93.6	6.41 (1H, d, 1.8)		
9	156.4		156.4			
10	104.0		104.0			
1'	120.9		121.6			
2'	130.9	8.03 (1H, d, 9.0)	116.3	7.57 (1H, d, 1.8)		
3'	115.1	6.88 (1H, d, 9.0)	144.8			
4'	159.9		148.5			
5'	115.1	6.88 (1H, d, 9.0)	115.3	6.85 (1H, d, 9.0)		
6'	130.9	8.03 (1H, d, 9.0)	121.2	7.58 (1H, dd, 1.8, 7.8)		
5-OH		12.61 (1H, s)		12.63 (1H, s)		
1"	100.9	5.45 (1H, d, 7.8)	100.9	5.46 (d, 7.8)		

Table S1. NMR data of 2 and 3

Carbon number		2 (Astragalin)	3 (Isoquercitrin)			
	δ _C ^{a,b} ppm	δ _H ^{a,c} ppm (mult., J in Hz)	δ _C ^{a,b} ppm	δ _C ^{a,c} (mult., J in Hz)		
2"	74.2	3.20 (1H, m)	74.1	3.25 (1H, m)		
3"	76,4	3.21 (1H, m)	76.5	3.21 (1H, m)		
4"	69.9	3.09 (1H, m)	70.0	3.09 (1H, m)		
5"	77.5	3.08 (1H, m)	77,6	3.09 (1H, m)		
6"	60.8	3.56 (1H, dd, 11.4, 4.2) 3.33 (1H, m)	61.0	3.58 (d, 11.4) 3.34 (d, 10.8)		

^a Recorded in DMSO-*d*₆, ^b150 MHz, ^c600 MHz, ^d125 MHz, ^c500 MHz

 Table S2. NMR data of 5-7

Carbon - number		5 (Rutin)		6 (Hesperidin)	7 (Neohesperidin)		
	δ _C ª,c ppm	δ _H ^{a,d} ppm (mult., J in Hz)	δ _C ^{b,e} ppm	δ _C ^{b,f} (mult., J in Hz)	δ _C ^{b,c} ppm	δ _C ^{b,d} (mult., J in Hz)	
2	159.3		78.3	5.50 (1H, dd, 12.0; 3.0)	78.6	5.51 (1H, dd, 12.0, 3.0)	
3	135.6		42.0	3.25 (1H, m) 2.78 (1H, dd, 17.4; 3.0)	42.1	3.24 (1H, m) 2.77 (1H, dd, 17.5; 3.5)	
4	179.4		196.9		197.0		
5	162.9		162.9		163.0		
6	99.9	6.23 (1H, d, 2.0)	96.3	6.11 (1H, d, 2.4)	96.4	6.12 (1H, d, 2.0)	
7	166.0		165.0		165.1		
8	94.8	6.42 (1H, d, 2.0)	95.5	6.14 (1H, d, 2.4)	95.5	6.13 (1H, d, 2.0)	
9	158.5		162.4		162.5		
10	105.6		103.2		103.3		
1'	123.1		130.8		130.4		

		5 (Rutin)		6 (Hesperidin)	7 (Neohesperidin)	
number	δ _C ^{a,c} ppm	δ _H ^{a,d} ppm (mult., J in Hz)	δ _C ^{b,e} ppm	δ _{C^{b,f} (mult., J in Hz)}	δc ^{b,c} ppm	δc ^{b,d} (mult., J in Hz)
2'	117.7	7.69 (1H, d, 2.5)	114.0	6.93 (1H, d, 2.4)	114.1	6.92 (1H, d, 2.5)
3'	145.8		146.4		146.4	
4'	149.8		147.8		147.9	
5'	116.0	6.90 (1H, d, 8.5)	112.0	6.94 (1H, d, 8.4, 2.4)	112.0	6.94 (1H, d, 8.0, 2.0)
6'	123.5	7.65 (1H, dd, 8.5, 2.0)	117.7	6.89 (1H, d, 8.4)	117.6	6.90 (1H, d, 8.0)
5-OH				12.63 (1H, s)		12.00 (1H, s)
4'-OMe			55.6	3.77 (3H, s)	55.7	3.76 (3H, s)
1"	104.7	5.13 (1H, d, 8.0)	99.3	4.96 (1H, d, 7.8)	99.4	4.96 (1H, d, 7.5)
2"	75.7	3.51 (1H, d, 8.0)	72.9	3.22 (1H, m)	76.2	3.28 (1H, m)
3"	77.2	3.34 (1H, m)	76.2	3.26 (1H, m)	75.8	3.48* (1H)
4"	71.4	3.30 (1H, d, 9.5)	72.0	3.15 (1H, m)	73.0	3.12 (1H, m)
5"	78.1	3.43 (1H, d, 9.0)	75.4	3.53 (1H, m)	75.5	3.51*(1H)
	68.5	3.42 (1H, dd, 11.0, 5.0)	66.0	3.42 (1H, dd, 12.0, 6.0)	62.6	3.78 (1H, m)
6"		3.83 (1H, dd, 11.0,1.0)		3.79 (1H, d, 10.4)		5.55 (III, III)
1'''	102.4	4.54 (1H, d, 1.5)	100.5	4.52 (1H, s)	100.6	4.52 (1H, brs)
2'''	72.1	3.66 (1H, dd, 3.5, 1.5)	69.5	3.13 (1H, m)	70.2	3.62 (1H, brs)
3'''	72.2	3.56 (1H, dd, 9.5, 3.5)	70.6	3.43 (1H, m)	70.7	3.42*(1H)
4"'	73.9	3.31 (1H, d, 8.5)	70.2	3.30 (1H, m)	72.0	3.16 (1H, m)
5"'	69.7	3.47 (1H, m)	68.2	3.63 (1H, m)	69.6	3.13 (1H, m)
6"''	17.8	1.14 (3H, d, 6.0)	17.7	1.08 (3H, d, 6.6)	17.7	1.00 (3H, d, 6.0)

^a Recorded in MeOD- d_4 , ^bRecorded in DMSO- d_6 , ^c125 MHz, ^d500 MHz, ^e150 MHz, ^f600 MHz, ^{*}overlap

Figure S2. ¹H NMR spectrum of 1

Figure S3. ¹³C NMR spectrum (JMOD) of 1

Figure S4. HSQC spectrum of 1

Figure S6. COSY spectrum of 1

Figure S7. NOESY spectrum of 1

Figure S8. ¹H and ¹³C NMR spectra of 4

Simulation Details

Jobname: desmond_md_anti-diabetic_20042023 Entry title: Full System

CPU #	≠ Job Ty	/pe	Ensemble	Temp. [K]	Sim. Time [ns]	# Atoms	# Waters	Charge
1	mdsi	m	NPT	300.0	100.102	185274	52285	0
Protein Info	ormation							
	Tot Residue	s F	Prot Chain(s) R	es in Chain(s	s) # Atoms	# Heavy Ato	ms Charge	
	1784		'A', 'B' ict y	values([892, 8	392] 27992	14324	-46	
		100	102 105 170 175	982 985 991 993	1990 1008 1010 1018	1020 1025		
	- A - 55A - 3	960	DEEKIDCYPDENGASAENCT 140 355 370 975 DEEKIDCYPDENGASAENCT	ARGCIWEASNSSGVPFCY MA MA 391 593 ARGCIWEASNSSGVPFCY	1000 1005 1010 1015 FVNDLYSVSDVQYNSHGATAD	1020 1025 ISLESSVIANA 1029		
			1838 1835 1040 1045	1054 1055 1048 1055	1070 1075 1080 1083	1099 1095		
	- 5	1030	1830 1835 1840 1845 PPSTPVNPLRLDVTYHENEM	1050 1055 1060 1065 LOFKIYDPNENRYEVPVP	1970 1975 1000 1045	1090 1095 KNPFGIEIRRK 1099		
			1199 1195 1110 1115	1120 1125 1130 1135	1140 1145 1150 1155	1160 1165		
	- 5	1100	1100 1105 1110 1115 STOTIEWDSOLLOFTFSDMF	INISTRUPSKTUTGPGET	1140 1145 1150 1155 EHRSYRRDLENHTNONFSRDO	1160 1165 PPGYKKNSYGV 1169		
	SSA		1170 1175 1140 1145	1190 1195 1300 1205	1210 1215 1236 1225	1338 1335		
	- B BSA	1170	1175 1175 1180 1185 HPYYNGLEEDGSAHGVLLLS	SNANDVIFQFLFALITRI SNANDVIFQFLFALITRI	1210 1215 1226 1225 TGGVLDFYVFLGPTFELVTQQ	1238 1235 YTELIGRPVNV 1239		
	55A		1243 1245 1250 1255	1280 1285 1278 1275	1280 1285 1296 1395	1300 1305		
	- B	1240	1240 1245 1250 1255 PYWSLGFQLCRYGYQNDSEI	1240 1245 1271 1275 ASLYDENVAAQIPYDVQY	1240 1245 1290 1295 SDIDYMERQLDF7LSPKFAGF	1340 1345 PALINRMEADG 1309		
		1210		1334 1335 1344 1345	1350 1355 1346 1345	1378 1375 NDEOUVELYDAY 1379		
	- B	1310	1310 1315 1320 L325 MRVILILDPAISGNETOPYP	L330 L335 L340 L345 AFTRGVEDDVFIKYPNDG	1350 1355 1340 L345 DIVWGKVWPDPPDVVVNGSLD	1376 1375 NDSQVELYRAY 1379		
	- A	1380	1340 1385 1290 1595 VAFPDFFRNSTAKNWKREIE	1400 1405 1410 1415 ELYNNPONPERSLEFDGN	1420 1425 1430 1435 INIDMNEPSSFVNGAVSPGCRD	1440 1445 ASLNHPPYMPH 1449		
	= B 853	1380	1389 1385 1390 1385 VAFPDFFRNSTAKNWKREIE	1400 1405 1410 1415 ELYNNPQNPERSL&PDGN	1420 1425 1430 1435 NIDMNEPSSFVNGAVSPGCRD	1440 1445 ASLNEPPYMPH 1449		
	- 4	1450	1450 1455 1460 1465 LESRDRGLSSKTLCMESOOI	1470 1475 1488 1485 LPDGSLVQHYNVHNLYGW	1490 1495 1500 1505 ISQTRPTYEAVQEVTGQRGVVI	1510 1515 TRETFPESCRW 1519		
	- B	1450	1450 1455 1860 1465 LESRDRGLSSKTLCMESQQI	1410 1435 1489 1485 LPDGSLVQHYNVHNLYGN	1000 1005 1500 1505 ISQTRPTYEAVQEVTGQRGVVI	TRSTFPSSCRW 1519		
	- 2	1520	1520 1525 1530 1535 AGHWLGDNTAAWDQLKKSII	1548 1545 1558 1558 GMMEPSLPGISYTGADIC	1540 1545 1570 1575 GFFQDAEYENCVRNNQLGAFY	ISAN 1585 PPERMHNTIGT 1589		
	- B	1520	1525 1525 1530 1535 AGHWLGDNTAAWDQLKESII	GMMEFSLFGISYTGADIC	GFFQDAEYENCVENNQLGAFY	PFSRNHNTIGT 1589		
	- 4	1590	REGOPVENDVAFVNISETVL	1410 1413 1428 1425 QTRYTLLPYLTTLMHKAH	TEGVTVVRPLLHEFVSDQVTW	DEDSOFLEGRA 1659		
	- B - 85A	1590	1599 1595 1600 1605 RRQDPVSNDVAFVNISRTVL	1610 1613 1620 1625 OTRYTLLPYLYTLMHNAN	1630 1635 1640 1645 TEGVTVVRPLLHEFVSDQVTW	DEDSOFELGPA 1659		
	- A	1660	1660 1665 1670 1675 FLUSPVLERNARNVTAYFPR	ARWYDYYTGVDINARGEN	1700 1705 1710 1715 KTLPAPLDHINLHVRGGYILP	NOEPALNTHLS 1729		
	- B - B - BSA	1660	1669 1665 1670 1675 FLUSPULERNARNUTATEPR	1640 1645 1698 1695 ARWYDYYTGUDINARGEN	1700 1705 1710 1715 KTLPAPLDHINLHVRGGYTLP	NOEPALNTHLS 1729		
	- 4	1730	1738 1735 1740 1745 ROKFNGFKTALDDEGTAGON	1754 1755 1768 1765 LFWDDGOSIDTYGKGLYY	1770 1775 1760 1785 LASPSASONTHOBHIIPNNYI	1758 1785 TGTNPLNLGYI 1799		
	- B - SSA	1730	1730 1725 1740 1745 RORPHOPHIALDDEGTAGON	1756 1755 1768 1765 LPWDD0Q8IDTYOKOLYY	1770 1775 1780 1785 LASFBASONTHOSHIIPSNYI	1798 1795 TOTNPLELOYI 1799		
	- A	1800	1899 1895 1810 1815 EINOVOSVPVTSVSIBVSOM	1826 1825 1838 1835 VITPSFNNDPTTOVLSID	1840 1845 INTORNISCHNPTX 1849A			
	Disa	1010	1800 1805 1810 1815	1820 1825 1830 1835	1810 1845			

Figure S9. Protein information is indicated Desmond 2018, version 4.

Counter Ion/Salt Information

Figure S10. Ligand information is showed by Desmond 2018 software in Linux or Ubuntu enviroment.

Figure S11. The RMSF (Å) values of 3TOP enzyme

12

Figure S12. The secondary structure of 3TOP

Figure S13. The contacts between pose 472 and 3TOP.

Figure S14. The torsion profile of pose 472.

Figure S15. One 2D diagram showed the interactions between pose 305 and 2VF5

Figure S16. One 2D diagram showed the interactions between pose 387 and 2VF5

Figure S17. One 2D diagram showed the interactions between pose 136 (compound

4) and 2VF5

Figure S18. One 2D diagram showed the interactions between pose 43 (compound

1) and 2VF5

Scheme S1. Procedure molecular dynamic of the best docking pose 472 and 3TOP

enzyme: PDB.