

Figure S1: The asymmetric unit of $[C_8H_{10}NO]_2HgBr_4$ compound (expanded by symmetry to give complete metallic tetrahedron). Hydrogen bonds are represented by dashed lines.

Figure S2: [010] view showing alternation of organic and inorganic sheets in $[C_8H_{10}NO]_2HgBr_4$ sample.

Figure S3: π - π interactions between the organic cations in the [C₈H₁₀NO]₂HgBr₄ compound.

a) All interaction (100 %)

b) H...Br/Br...H (59.1%)

c) H...H/H...H (17.7%)

d) O...H/H...O (7.9%)

e) C...H/H...C (7.4%)

f) C...C/C...C (3.3%)

g) C...O/O...C (1.7%)

h) H...Hg/Hg...H (1.5%)

Figure S4 : The two-dimensional fingerprint plot for [C8H10NO]₂HgBr₄ showing contributions from different contactsa): all contacts, b): H…Br/Br...H, c): H…H, d): O...H/H...O, e): C…H/H...C, f): C…C, g): C...O/O...C, h): H...Hg/Hg...H

Figure S5: Relative contributions to the Hirshfeld surface areas for the various intermolecular contact

Figure S6: FT-IR spectrum of [C₈H₁₀NO]₂HgBr₄ compound measured at room temperature

Figure S7: (a) the variation Resistance of [C₈H₁₀NO] ₂HgBr₄ at different temperatures.

Figure S7 : (b) Arrhenius plots of dc conductivity for [C₈H₁₀NO] ₂HgBr₄.

Figure S8: The variation of Ln (ω_{max}) versus 1000 / T. (inset: Temperature dependence of β value)

Atome	x	у	z	Uéq
Hg1	0.50000	0.25764(1)	0.64600(1)	0.02288(4)
Brl	0.39316(1)	0.17174(1)	0.64602(2)	0.02655(6)
Br2	0.50000	0.35170(2)	0.48913(2)	0.02194(7)
Br02	0.50000	0.35245(2)	0.80651(2)	0.02165(7)
N1	0.63189(9)	0.26326(1)	0.90983(1)	0.02055(4)
C2	0.68157(1)	0.32937(1)	0.89396(1)	0.01668(4)
C3	0.74428(1)	0.30375(1)	0.87978(2)	0.01917(4)
C4	0.7915(1)	0.36711(1)	0.86900(1)	0.01835(4)
C5	0.77506(1)	0.45514(1)	0.87280(1)	0.01602(4)
C6	0.71147(1)	0.47875(1)	0.88542(1)	0.01827(4)
C7	0.66392(1)	0.41645(1)	0.89640(1)	0.01910(4)
C8	0.82519(1)	0.52506(1)	0.86662(1)	0.01772(4)
C10	0.89316(1)	0.50129(1)	0.84616(2)	0.02334(4)
09	0.80890(8)	0.60105(9)	0.88007(1)	0.02588(3)

Table S1. Fractional atomic coordinates and equivalent isotropic temperature factors (\mathring{A}^2) .

Table S2. Principal intermolecular distances (Å) and angles (°).

	Distances (Å)	Angles	5 (°)
Hg1-Br1	2.586(1)	Br1 ⁱ -Hg1-Br1	118.69(1)
Hg1-Br1 ⁱ	2.586(2)	Br2-Hg1-Br1	106.53(1)
Hg1-Br2	2.589(1)	Br1 ⁱ -Hg1-Br2	106.53(1)
Hg1-Br02	2.637(1)	Br1-Hg1-Br02	106.34(1)
N1-C2	1.465(3)	Br1 ⁱ -Hg1-Br02	106.34(1)
C2-C7	1.387(3)	Br2-Hg1-Br02	112.60(1)
C2-C3	1.378(3)	C7-C2-C3	121.99(2)
C3-C4	1.391(3)	C7-C2-N1	118.48(2)
C4-C5	1.395(3)	C3-C2-N1	119.50(2)
C5-C6	1.384(3)	C4-C3-C2	119.04(2)
C5-C8	1.500(3)	C3-C4-C5	120.00(2)
C6-C7	1.385(3)	C4-C5-C6	119.55(2)
C8-O9	1.229(2)	C4-C5-C8	121.36(2)
C8-C10	1.488(3)	C6-C5-C8	119.06(2)
		C5-C6-C7	121.13(2)
		C2-C7-C6	118.27(2)
		O9-C8-C10	121.57(2)
		O9-C8-C5	118.61(2)
		C10-C8-C5	119.81(2)
Symmetry coo	de: ⁱ -x. v. z		

Table S3. Assignments of the most important observed bands in IR spectra of $[C_8H_{10}NO]_2HgBr_4 \ at \ room \ temperature.$

[C ₈ H ₁₀ NO] ₂	₂ ZnBr ₄ Attribution	
IR	Attribution	
2968	v _{as} CH ₃	
2852.93	vsCH3	
1660.89	v(C=O)	
1619.35	δ _{as} NH3	
1618.29	C=C stretching vibrations	
1600.12	C=C stretching vibrations	
1571.91	C=C stretching vibrations	
1482.89	C=C stretching vibrations	
1414.16	C=C stretching vibrations	
1483.53	δ _{as} NH3	
1313.65	C-H in-plane bending	
1173.68	C-H in-plane bending	
963.97	C-H out-of-plane bending	
830	C-H out-of-plane bending	
1091.13	ρ(NH ₃).	
634.15	C–C–C in plane	
	bending	
572.73	C–C–C in plane	
	bending	
463.34	C–C–C out-of-plane bending	

373 439 3.27 383 306 3.28 393 176 3.30 403 91.80 3.32 413 35.80 3.30	0.848 1.18 1.78 2.22	0.6821 0.65305 0.61743
383 306 3.28 393 176 3.30 403 91.80 3.32 413 35.80 3.30	1.18 1.78 2.22	0.65305 0.61743
393 176 3.30 403 91.80 3.32 413 35.80 3.30	1.78	0.61743
40391.803.3241335.803.30	2 22	0 56861
413 35.80 3.30	3.22	0.30804
	3.87	0.57336
423 14.30 3.29	5.04	0.56793
433 4.84 3.29	8.78	0.5442
443 1.17 3.26	7.18	0.59239

Table S4. Electrical parameters obtained from the fit of Nyquist plots using the Zview software for $[C_8H_{10}NO]_2HgBr_4$.