Optimization of Isotropic MoS₂/PES Membrane for Efficient Treatment of Industrial Oily Wastewater

Oscar Kayanja¹, Mohsen A. Hassan¹, Ahmed Hassanin^{1,2}, Hidenori Ohashi³, Ahmed S. G. Khalil^{4,5*}

*Corresponding author: Prof. Ahmed S. G. Khalil (asg05@fayoum.edu.eg)

Supporting Information

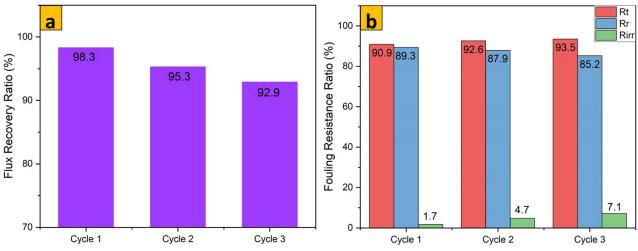


Fig. SI1 (a) FRR, and (b) Flux resistance ratio of M0 for 100 mg/L

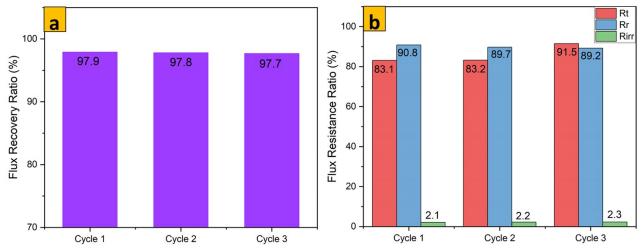


Fig. SI2 (a) FRR, and (b) Flux resistance ratio of M1 for 100 mg/L

¹ Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City, Alexandria, Egypt.

² Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt.

³ Faculty of Engineering, Tokyo University of Agriculture and Technology (TUAT) 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan.

Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City, Alexandria, Egypt.

⁵ Environmental and Smart Technology Group, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt.

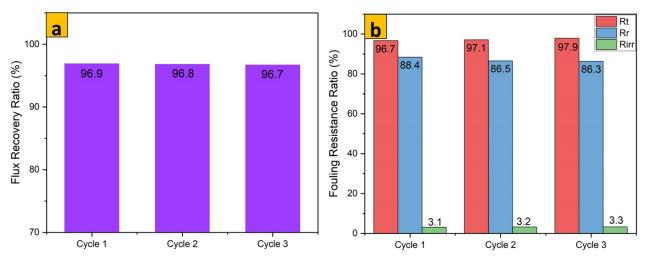


Fig. SI3 (a) FRR, and (b) Flux resistance ratio of M2 for 100 mg/L

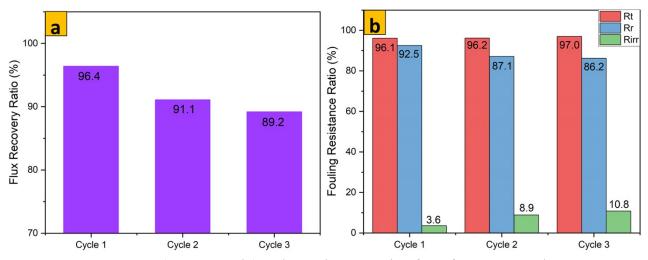


Fig. SI4 (a) FRR, and (b) Flux resistance ratio of M0 for 10,000 mg/L

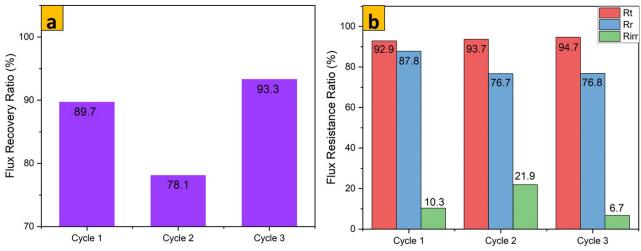


Fig. SI5 (a) FRR, and (b) Flux resistance ratio of M1 for 10,000 mg/L

Fig. SI6 (a) FRR, and (b) Flux resistance ratio of M2 for 10,000 mg/L