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Supplementary Figure 1. AFM characterizations of AMC-400 (1a-1f) and AMC-600 (1g-1l), respectively, after 

transferring onto SiO2/Si substrates, showing a uniform thickness of ~ 1 nm. 

  



Supplementary Figure 2. ID/IG (area ratio) versus the synthesis temperatures for AMC samples. After analyzing 

multi-Raman spectra (> 50), ID/IG slightly increases with the synthesis temperature, but with a large variation and 

uncertainty for each data point.  

 

  



Supplementary Figure 3. Full scan of XPS on AMC-400, AMC-500, and AMC-600, respectively, after 

transferring onto SiO2/Si substrates.  

  



Supplementary Figure 4. More spectroscopic characterizations on AMC samples. (a, b) UV-Vis absorbance 

spectra and derived optical bandgaps of 5.32 eV, 5.38 eV, and 5.44 eV, corresponding to AMC-300, AMC-400, 

and AMC-500 respectively. (c) Photoluminescence spectra of AMC samples. The excitation wavelength is 532 

nm. 

  



Supplementary Figure 5. Additional STEM images to show the relatively large nanopores for AMC-400 (a), 

AMC-450 (b), and AMC-500 (c), respectively. 

 

  



Supplementary Figure 6. Schematic diagram of AMC growth process under varying temperatures. When the 

precursor is exposed to different temperatures, distinct crack levels can result in different distribution of fragments. 

For example, at higher temperature the molecules experience more thorough thermal cracking. This feature, 

combined with the temperature-tuned catalytic property of Cu surface and species mobility, together determine 

the different level of nanopores, in terms of the size and density, in the as-grown AMC films. 

  



Supplementary Figure 7. More transmembrane ionic transport measurements of AMC samples obtained 

between 400 C and 500 C. (a) Optical image of AMC samples on Cu foils (left column), after transferring onto 

glass pores (middle column), and on the Trans/Cis chips. (b) The transmembrane current versus bias curves. (c) 

The transmembrane conductance of AMC samples calculated from I-V curves in (b). 

  



Supplementary Figure 8. Schematic diagram of carbon nanomaterials: AMC (a), graphene (b), carbon nanotube 

(c), and fullerene (d).  

  



 

Supplementary Table 1. Comparison of AMC with other 2D materials reported as ionic transmembrane.  

Materials Nanopore Fabrication Pore Size Testing Area Conductance 

Graphene 1-4 

Electron irradiation 5-23 nm 0.04 μm2 50-240 nS 

Electrochemical reaction - 0.8 μm2 0.4-16 nS 

O2 plasma treatment - 0.2 mm2 0.14-11 nS 

Ga+/He+ ion bombardment 

or H2/N2 plasma treatment 
0.4-3 nm 20 μm2 

2-8 nS 

(0.1 M KCl) 

MoS2 
5-7 

Electron irradiation or 

electrochemical reaction 
2-25 nm 3-500 nm2 20-300 nS 

Ga+ ion bombardment 0.4-1.4 nm 0.03 μm2 0.02-3 nS 

PAN etchant reaction 14-26 nm 0.008 μm2 0.9-130 nS 

WS2 
8 Electron irradiation 2-8 nm 0.07 μm2 27-108 nS 

AMC  

(This work) 
None 0-4 nm 0.8 μm2 0.6-23 nS 
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