Supplementary Information

Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia

Kheireddine El-Boubbou,^{1*} O. M. Lemine,² Saja Algessair,² Nawal Madkhali,² Basma Al-Najar,³ Enas AlMatri,¹ Rizwan Ali,⁴ and Mohamed Henini⁵

¹Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain

²Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia

³Department of Physics, College of Science, University of Bahrain, Sakhir 32038, Bahrain

⁴Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia

⁵School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

*<u>Corresponding authors</u>: Kheireddine El-Boubbou and O.M.Lemine (E-mail: <u>khboubbou@uob.edu.bh</u>; Tel: +973 17437506; <u>mamamin@imamu.edu.sa</u>; Tel: +966112594627)

1. Effect of increasing metal doping:

Figure S1. Effect of metal doping on the ferrite phase. It can be clearly seen that no difference is observed when concentration of Ni^{2+} or Co^{2+} was increased from 0.1 to 0.15 g in the presence of Fe²⁺, however absence of Fe²⁺ will distort the crystalline phase.

2. <u>Rietveld analysis:</u>

Sample (Phase %)	DB card No.	Size (nm)	Micro strain	Lattice Parameter (A°)	Fitting Parameters					
PVP-Fe ₃ O ₄	01-071-6337	9	0.314 (7)	a:8.344	Rwp:	41.4	Rp:	31.06	Re:	37.85
(100 %)				b:8.344						
				c:8.344	S:	1.09	X2	1.19		
PVP-NiFe ₂ O ₄	01-071-3850	18.5	0.093 (6)	a:8.355	Rwp:	38.58	Rp:	27.38	Re:	36.92
(100 %)				b:8.355						
				c:8.355	S:	1.044	X2	1.09		
PVP-CoFe ₂ O ₄		9.3	0.09 (7)	a:8.379	Rwp:	41.29	Rp:	30.42	Re:	41.61
(100 %)	01-074- 6402			b:8.379						
				c:8.379	S:	0.992	X2	0.983		
PVP-ZnFe ₂ O ₄	01-071-5149	8.9	0.343 (12)	a:8.436	Rwp:	24.11	Rp:	16.76	Re:	22.91
(100 %)				b:8.436						
				c:8.436	S:	1.05	X2	1.1		
PVP-MgFe ₂ O ₄	01-071-4919	5.2	1.13 (4)	a:8.355	Rwp:	29.68	Rp:	22.84	Re:	27.24
(100 %)				b:8.355						
				c:8.355	S:	1.08	X2	1.18		
$PVP-Sn_{0.5}Fe_{2.5}O_4$			0.50	a:8.642						
	01-071-0695	10.7	(13)		Rwp:	31.2	Rp:	31.95	Re:	19.66
			× ,	b:8.642						
				c:8.642	S:	1.58	X2	2.5		

Table S1. Rietveld analysis results of XRD patterns of PVP-capped MFe₂O₄ NPs.

3. <u>Elemental analysis:</u>

Tables S2. SEM-EDX elemental composition of the different PVP-capped MFe₂O₄ doped ferrites.

<u>PVP-Fe₃O₄</u>

Element	Weight %	Atomic %
С	2.80	7.50
0	25.4	51.2
Fe	71.8	41.3

PVP-CoFe₂O₄

Element	Weight %	Atomic %
С	3.7	9.25
0	29.7	55.7
Fe	42.7	22.95
Со	23.9	12.1

<u>PVP-NiFe₂O₄</u>

Element	Weight %	Atomic %
С	3.0	7.6
0	29.9	56.6
Fe	49.6	26.8
Ni	17.5	9.00

PVP-ZnFe₂O₄

Element	Weight %	Atomic %
С	3.6	9.00
0	31.0	57.9
Fe	44.3	23.5
Zn	21.1	9.60

<u>PVP-MgFe₂O</u>₄

Element	Weight %	Atomic %
С	4.5	10.6
0	27.7	49.0
Fe	55.1	27.9
Mg	10.7	12.5

<u>PVP-Sn_{0.5}Fe_{2.5}O</u>₄

Element	Weight %	Atomic %
С	3.9	11.3
0	25.3	54.8
Fe	40.2	25.0
Sn	30.6	8.90