Supplementary Information

Food wastewater treatment by hybrid biofilm reactor: Nutrients removal performance and functional microorganisms on filler biofilm and suspended sludge

Zhenjun Tian ^{a, b}, Ying Xiong ^c, Guowen Li ^b, Xiaoxin Cao ^d, Xin Li ^d, Caili Du ^b, Lieyu Zhang ^{a, b, *}

^a College of Water Sciences, Beijing Normal University, Beijing 100875, China

^b State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese

Research Academy of Environmental Sciences, Beijing 100012, China

^c Beijing Water Science and Technology Institute, Beijing 100048, China

^d China Water Environment Group Co. Ltd., Beijing 101101, China

* Corresponding author: Lieyu Zhang (L.Y. Zhang) E-mail: zhanglieyu@163.com; Tel: +010-84918164.

Submitted to *RSC Advances* As an original research paper

Contents

Methods S1 The determination of biofilm mass.

Fig. S1 Filler biofilm status at different experimental stages.

Fig. S2 Denitrification activity of fillers and sludge in column A (a), and column O (b); Nitrification activity of fillers and sludge in column O (c), and oxygen consumption rate curve of fillers and sludge in column O (d).

Fig. S3 Operation status of the column O: (a) COD load and HRT at different experimental stages, and (b) temporal trends in DO and temperature; nutrient-removal profiles of (c) COD, (d) NH_4^+ -N, (e) NO_3^- -N and NO_2^- -N, and (f) TP.

Fig. S4 (a) The flowchart of the UASB+HBR process, and (b) the envisioned performance of the UASB+HBR process for treating FWW.

Table S1 The characteristics of the FWW (mg/L).

Table S2 Alpha diversity of total bacterial 16S rRNA gene in the HBR system.

 Table S3 Carbohydrate metabolism pathways and the abundance of metabolism genes

 in HBR system.

 Table S4 Abundance of nitrogen metabolism genes in HBR system.

Table S5 The network analysis topology features between different groups.

Table S6 Comparison of COD removal in FWW between HBR and other biological treatment processes.

Table S7 Contribution of column A and column O to COD removal in stage I.

Table S8 Performance of UASB process in degrading organic wastewater.

Table S9 Permissible organic volume loading rate of different wastewater at different temperatures.

Methods S1 The determination of biofilm mass.

Take 30 fillers from the column and dry them in a 105°C oven for more than 5 hours. After the fillers have cooled to room temperature, weigh them and record them as W_1 . Then, place the filler in a 1 mol/L 70°C NaOH solution and continuously stir for 1 hour. The hot alkaline solution can break the adhesive between the microorganisms on the biofilm and the filler carrier. After removing the filler, rinse it thoroughly and place it in an ultrasonic cracking tank for 30 minutes (40Hz). The stripped clean filler is then placed in a 105°C oven and dried for 5 hours. After cooling to room temperature, it is weighed and recorded as W_2 . The amount of biofilm (m) on the filler can be calculated by:

$$m = \frac{M_1 - M_2}{M_2} \times 10^3 \text{ (mg/g)}$$

Fig. S1 Filler biofilm status at different experimental stages.

Fig. S2 (a) Denitrification activity of fillers and sludge in column A (a), and column O (b); Nitrification activity of fillers and sludge in column O (c), and oxygen consumption rate curve of fillers and sludge in column O (d).

Fig. S3 Operation status of the column O: (a) COD load and HRT at different experimental stages, and (b) temporal trends in DO and temperature; nutrient-removal profiles of (c) COD, (d) NH₄⁺-N, (e) NO₃⁻-N and NO₂⁻-N, and (f) TP.

Fig. S4 (a) The flowchart of the UASB-HBR process, and (b) the envisioned performance of the

UASB+HBR process for treating FWW.

	Chemical oxygen	Ammonia nitrogen	Total nitrogen	Total
	demand (COD)	(NH_4^+-N)	(TN)	phosphorus (TP)
FWW	29860 ± 276	1072.3 ± 14.6	1245.7 ± 134.7	245.1 ± 15.3
Effluent standards	500	/	/	/

Table S1 The characteristics of the FWW (mg/L).

/ indicates that there is no limit on the effluent concentration of this parameter.

	-			-	-	
Sample	ace	chao	coverage	shannon	simpson	sobs
F-A-P1-1	1258.45	1204.18	0.9921	4.7824	0.03150	1031
F-A-P1-2	1296.39	1266.96	0.9915	4.7791	0.0323	1043
F-A-P1-3	1275.64	1210.78	0.9919	4.7314	0.0350	1034
S-A-P1-1	1292.99	1222.60	0.9912	4.6272	0.0279	1027
S-A-P1-2	1304.38	1263.10	0.9908	4.4811	0.0329	1003
S-A-P1-3	1239.46	1170.54	0.9917	4.5200	0.0314	988
F-O-P1-1	1273.13	1251.72	0.9915	4.6601	0.0353	1015
F-O-P1-2	1248.40	1212.40	0.9916	4.6326	0.0352	984
F-O-P1-3	1232.04	1176.88	0.9923	4.6037	0.0380	1027
S-O-P1-1	1059.02	1020.78	0.9924	4.3212	0.0332	818
S-O-P1-2	1106.82	1099.16	0.9917	4.2499	0.0369	826
S-O-P1-3	1042.41	1004.57	0.9925	4.2602	0.0362	795
F-A-P2-1	1397.46	1378.04	0.9913	5.3907	0.0105	1143
F-A-P2-2	1391.91	1392.73	0.9913	5.3741	0.0112	1156
F-A-P2-3	1501.06	1448.06	0.9905	5.4242	0.0103	1230
S-A-P2-1	1427.55	1381.97	0.9896	4.6741	0.0284	1066
S-A-P2-2	1329.92	1270.23	0.9908	4.6543	0.0303	1038
S-A-P2-3	1382.59	1377.50	0.9897	4.6136	0.0313	1018
F-O-P2-1	1152.67	1133.62	0.9930	4.7146	0.0282	966
F-O-P2-2	1225.84	1188.61	0.9923	4.7523	0.0274	1015
F-O-P2-3	1177.82	1143.89	0.99263	4.6969	0.0285	968
S-O-P2-1	1108.70	1041.41	0.9922	4.1376	0.0595	859
S-O-P2-2	1101.54	1032.87	0.9924	4.1427	0.0558	864
S-O-P2-3	1106.54	1077.58	0.9920	4.1607	0.0533	834

Table S2 Alpha diversity of total bacterial 16S rRNA gene in the HBR system.

Metabolic	Pathway	Metabolism	F-A-P1	S-A-P1	F-O-P1	S-O-P1	F-A-P2	S-A-P2	F-O-P2	S-O-P2
pathways	modules									
	M00001	Glycolysis (Embden-Meyerhof pathway)	349538.88	377707.42	389636.68	373014.56	375335.80	363486.95	386219.73	381399.29
Glycolysis / Gluconeogenesis	M00002	Glycolysis, core module involving three-carbon compounds	218688.38	228672.85	248098.27	225851.20	229019.36	223835.29	244402.67	236925.59
	M00003	Gluconeogenesis	262729.46	284966.51	299057.73	283084.10	283364.67	269552.88	291470.87	290725.26
	M00307	Pyruvate oxidation	135156.93	201707.03	179433.83	186414.51	143693.26	198479.40	189168.63	202933.44
	M00003	Gluconeogenesis	262729.46	284966.51	299057.73	283084.10	283364.67	269552.88	291470.87	290725.26
	M00307	Pyruvate oxidation	135156.93	201707.03	179433.83	186414.51	143693.26	198479.40	189168.63	202933.44
Citrate cycle	M00009	Citrate cycle (TCA cycle, Krebs cycle)	393191.55	509322.09	532551.55	507395.63	403844.84	498792.99	511538.19	475843.50
(TCA cycle)	M00010	Citrate cycle, first carbon oxidation	75134.57	95968.20	120521.87	96092.18	79297.93	89876.86	112150.11	89297.06
	M00011	Citrate cycle, second carbon oxidation	318056.98	413353.90	412029.68	411303.45	324546.91	408916.13	399388.08	386546.44
	M00740	Methylaspartate cycle	89544.56	141280.67	161559.36	143453.10	99123.77	121620.90	153598.71	127597.22
	M00004 Pentose phosphate pathway (Pentose phosphate cycle)		186192.39	242576.59	242268.15	255248.69	203432.99	226972.66	235845.29	251905.83
	M00006	Pentose phosphate pathway, oxidative phase	28176.57	56742.93	74497.05	65869.41	34020.25	49343.03	70459.75	73368.27
	M00007	Pentose phosphate pathway, non- oxidative phase	131359.22	152237.95	139478.01	155147.15	140882.31	145248.99	136732.12	142908.71
Pentose phosphate	M00005	PRPP biosynthesis	31398.28	40126.08	31689.46	37858.84	29836.04	41338.16	32106.04	41165.35
pathway	M00008	Entner-Doudoroff pathway	33709.20	65040.97	74225.54	76029.25	41403.14	55875.71	67295.49	77863.08
	M00308	Semi-phosphorylative Entner- Doudoroff pathway	91853.47	110784.45	96892.40	113585.64	94673.25	103823.03	92181.08	115808.15
	M00633	Semi-phosphorylative Entner- Doudoroff pathway	391.27	3361.66	2333.73	3624.82	1040.78	3629.25	2890.11	5943.21
	M00309	Non-phosphorylative Entner-	9524.74	8060.90	3280.38	3888.60	19361.04	8921.48	5557.54	3744.82

Table S3 Carbohydrate metabolism pathways and the abundance of metabolism genes in HBR system.

		Doudoroff pathway								
	M00014	Glucuronate pathway (uronate pathway)	49078.00	54133.68	55801.94	54858.36	60824.80	51922.07	66466.53	51740.53
Pentose and glucuronate	M00631	D-Galacturonate degradation (bacteria)	38295.74	59954.54	42267.09	62786.50	40085.07	54705.94	38013.16	67628.84
interconversions	M00061	D-Glucuronate degradation	38681.70	54840.98	46740.44	59467.77	42657.54	52655.59	42247.90	64800.00
M00081	M00081	Pectin degradation	301.06	7045.05	548.89	7627.00	235.48	7472.07	777.20	12197.32
	M00633	Semi-phosphorylative Entner- Doudoroff pathway	391.27	3361.66	2333.73	3624.82	1040.78	3629.25	2890.11	5943.21
	M00309	Non-phosphorylative Entner- Doudoroff pathway	9524.74	8060.90	3280.38	3888.60	19361.04	8921.48	5557.54	3744.82
Galactose	M00632	Galactose degradation, Leloir pathway	71011.32	90050.25	94366.66	91429.20	75387.16	80971.07	98611.59	104408.32
metabolism	M00552	D-galactonate degradation, De Ley- Doudoroff pathway	69820.12	84585.74	85542.24	88333.82	71899.38	78354.55	79803.61	84491.81
	M00554	Nucleotide sugar biosynthesis	12976.49	20141.84	17226.70	17455.59	14283.33	17465.42	20643.27	22978.91
Starch and	M00854	Glycogen biosynthesis	94089.58	92750.91	101323.62	84151.55	96857.89	92456.44	91844.32	79766.39
sucrose	M00855	Glycogen degradation	75946.27	74795.46	77458.83	68210.80	78298.89	83693.74	72957.11	70135.53
metabolism	M00565	Trehalose biosynthesis	73518.46	73179.98	84292.27	63303.86	77435.30	73643.88	75302.97	61172.66
	M00549	Nucleotide sugar biosynthesis	76572.65	89317.37	100284.57	88815.98	87501.53	84966.79	97740.76	83322.29
. .	M00554	Nucleotide sugar biosynthesis	12976.49	20141.84	17226.70	17455.59	14283.33	17465.42	20643.27	22978.91
Amino sugar and nucleotide	M00892	UDP-N-acetyl-D-glucosamine biosynthesis, eukaryotes	82934.50	101926.15	101375.89	103223.11	92113.35	95639.30	102270.88	95906.89
metabolism	M00909	UDP-N-acetyl-D-glucosamine biosynthesis, prokaryotes	127319.44	142802.78	153744.15	143345.26	143608.92	137756.76	155349.69	139742.74
	M00761	Undecaprenylphosphate alpha-L- Ara4N biosynthesis	2076.49	843.05	445.97	665.89	3717.11	1568.21	268.00	321.09
Pyruvate	M00307	Pyruvate oxidation	135156.93	201707.03	179433.83	186414.51	143693.26	198479.40	189168.63	202933.44
metabolism	M00172	C4-dicarboxylic acid cycle, NADP -	37435.23	58965.07	55498.53	62513.32	38649.34	55138.02	50850.55	55678.12

		malic enzyme type								
	M00579	Phosphate acetyltransferase-acetate kinase pathway	51866.09	30402.28	33718.24	24651.95	44088.12	37765.24	31357.27	29596.56
	M00012	Glyoxylate cycle	73209.65	109697.51	154449.46	118096.21	82545.29	99066.58	143279.25	103859.33
Glyoxylate and	M00373	Ethylmalonyl pathway	103376.19	207084.68	265153.45	225349.28	112256.88	191454.59	244343.36	211722.31
dicarboxylate	M00740	Methylaspartate cycle	89544.56	141280.67	161559.36	143453.10	99123.77	121620.90	153598.71	127597.22
metabolism	M00532	Photorespiration	132111.01	205540.32	215070.23	208272.58	139232.64	198386.49	204490.03	205648.88
	M00741	Propanoyl-CoA metabolism	52965.76	102265.22	131786.94	116481.89	61202.39	93359.68	123269.60	96848.84
Propanoate	M00013	Malonate semialdehyde pathway	21015.56	20874.58	51165.54	20846.34	22933.75	18616.71	48126.28	22583.44
metabolism	M00741	Propanoyl-CoA metabolism	52965.76	102265.22	131786.94	116481.89	61202.39	93359.68	123269.60	96848.84

Metabolic pathways	Enzyme	КО	Functional genes	F-A-P1	S-A-P1	F-O-P1	S-O-P1	F-A-P2	S-A-P2	F-O-P2	S-O-P2
	1.14.99.39	K10944	pmoA-amoA	15.33	3.50	33.00	2.67	26.17	1.50	34.17	2.67
Complete nitrification,	1.7.2.6	K10535	hao	2.83	2.34	24.83	1.34	6.83	0.67	23.17	0.50
comammox	1.7.99	K00370	narG, narZ, nxrA	1533.98	2439.26	7527.90	1460.14	840.12	3245.05	6082.61	2223.38
	1.14.99.39	K10944	pmoA-amoA	15.33	3.50	33.00	2.67	26.17	1.50	34.17	2.67
Nitrification	1.7.2.6	K10535	hao	2.83	2.34	24.83	1.34	6.83	0.67	23.17	0.50
	1.7.99	K00370	narG, narZ, nxrA	1533.98	2439.26	7527.90	1460.14	840.12	3245.05	6082.61	2223.38
	1.9.6.1	K02567	napA	2438.05	2404.77	913.66	1364.20	1525.58	3323.04	1166.89	2165.52
Denitrification	1.7.2.1	K00368	nirK	549.23	4210.61	3317.02	4355.83	890.57	3880.90	3580.00	6382.16
	1.7.2.5	K04561	norB	1959.23	3308.31	2883.02	2904.00	2791.27	4452.68	2512.97	4059.25
	1.7.2.4	K00376	nosZ	1941.93	8100.53	2554.88	7047.47	1270.46	7871.41	2977.33	9404.16
	1.7.99	K00370	narG, narZ, nxrA	1533.98	2439.26	7527.90	1460.14	840.12	3245.05	6082.61	2223.38
	1.7.2.2	K00367	narB	748.56	6097.45	1443.44	5798.89	551.33	4722.78	645.45	6800.00
Assimilatory nitrate	NR	K10534	NR	0.01	1.01	0.01	0.01	0.01	0.01	0.01	0.01
reduction	1.7.7.1	K00366	nirA	925.10	292.83	512.45	396.00	707.93	186.31	765.46	501.15
	1.7.1.4	K17877	NIT-6	-	-	-	-	-	-	-	-
	1.7.99	K00370	narG, narZ, nxrA	1533.98	2439.26	7527.90	1460.14	840.12	3245.05	6082.61	2223.38
	1.7.5.1	K00370	narG, narZ, nxrA	1533.98	2439.26	7527.90	1460.14	840.12	3245.05	6082.61	2223.38
Dissimilatory nitrate	1.9.6.1	K02567	napA	2438.05	2404.77	913.66	1364.20	1525.58	3323.04	1166.89	2165.52
reduction	1.7.1.15	K00362	nirB	3503.63	10979.94	20353.87	10430.37	3659.93	10847.16	17574.96	12588.49
	1.7.2.2	K00367	narB	748.56	6097.45	1443.44	5798.89	551.33	4722.78	645.45	6800.00
	1.7.2.1	K00368	nirK	549.23	4210.61	3317.02	4355.83	890.57	3880.90	3580.00	6382.16
Anammox	1.7.2.7	K20932	K20932	-	-	-	-	-	-	-	-
	1.7.2.8	K20935	hdh	-	-	-	-	-	-	-	

 Table S4 Abundance of nitrogen metabolism genes in HBR system.

Topological indices	F-A-P1	S-A-P1	F-O-P1	S-O-P1	F-A-P2	S-A-P2	F-O-P2	S-O-P2
Nodes	69	61	69	65	63	68	66	59
Links	58	54	51	50	63	45	60	59
Desitive	36	24	28	22	28	22	29	35
Positive	(62%)	(44%)	(55%)	(44%)	(44%)	(49%)	(48%)	(59%)
Nagativa	22	30	23	28	35	23	31	24
Negative	(38%)	(56%)	(45%)	(56%)	(56%)	(51%)	(52%)	(41%)
Degree	1.681	1.770	1.478	1.538	2.000	1.324	1.818	2.000
Diameter	3	3	2	3	3	3	3	3
Density	0.025	0.030	0.022	0.024	0.032	0.020	0.028	0.034
Clustering coefficient	0.787	0.865	0.806	0.806	0.857	0.682	0.863	0.952
Modularity	0.935	0.927	1.105	0.924	0.856	0.955	0.936	0.874

 Table S5 The network analysis topology features between different groups.

Treatment process	Inlet COD concentration (mg/L)	COD load (kg/m ³ ·d)	HRT (h)	Temperature (°C)	Effluent COD concentration (mg/L)	COD Removal rate (%)	Reference
MBR	$1500\sim 2000$	3.4	15	22~23	< 70	96%	(Wang et al., 2005)
AnMBR	12770	4.52	60	37.0 ± 0.5	2388	$80 \sim 85\%$	(He et al., 2005)
AnMBR	90200	9.3	/	39 ± 1	< 1600	>98%	(Xiao et al., 2019)
AnDMBR	$2050\sim 6880$	0.44	120	24 ± 2	$100 \sim 200$	94.5	(Galib et al., 2016)
HBR	29860 ± 276	2.67	268.84	22~23	900 ~ 1400	96.7 ~ 97.3%	This study
HBR	29860 ± 276	1.68	426.63	22~23	194 ~ 458	96.6~98.2%	This study

Table S6. Comparison of COD removal in FWW between HBR and other biological treatment processes.

MBR: Membrane bioreactor; AMBR: Anaerobic membrane bioreactor; AnDMBR: Anaerobic dynamic membranebioreactor;HBR:hybrid biofilm reactor.

Time (d)	COD volumetric load of O column	Contribution of column A (%)	Contribution of column O (%)	Total COD removal rate (%)
D ₅₁	1.82	29.38	68.19	97.57
D ₅₂	2.06	20.27	77.31	97.59
D ₅₃	2.07	19.19	77.82	97.02
D ₅₄	2.49	3.83	93.30	97.13
D ₅₅	2.32	9.13	86.98	96.10
D ₅₆	2.35	7.61	88.05	95.66
D ₅₇	2.31	7.88	86.72	94.60
D_{58}	2.57	-2.01	96.59	94.58
D ₅₉	2.25	7.21	84.39	91.60
D_{60}	2.53	1.62	94.78	96.40
D ₆₁	2.10	15.99	78.77	94.76
D ₆₂	2.45	4.91	92.00	96.91
D ₆₃	2.17	14.02	81.30	95.32
D ₆₄	2.21	12.74	82.93	95.66
D ₆₅	2.08	18.83	77.90	96.73
D ₆₆	2.17	14.39	81.48	95.87
D ₆₇	2.18	13.80	81.84	95.64
D_{68}	2.18	13.67	81.66	95.33
D ₆₉	2.10	17.18	78.93	96.11
D_{70}	1.96	22.29	73.61	95.89
D_{71}	1.85	24.87	69.40	94.27
D ₇₂	1.71	30.52	63.98	94.49
D ₇₃	1.97	20.79	73.97	94.76
D ₇₄	1.88	24.54	70.68	95.23
D ₇₅	1.93	25.58	72.33	97.91
Mean	2.15	15.13	80.60	95.73

Table S7 Contribution of column A and column O to COD removal in stage I.

Wastewater types	Inlet COD concentration (mg/L)	Inlet COD load (kg/m ³ ·d)	Temperature (°C)	Reactor volume (m ³)	COD Removal rate (%)
Alcohol wastewater	34060	13.6	32	130	81
Brewing wastewater	$2000\sim 6000$	4.2	Ambient	64.8	82.4
Slaughterhouse wastewater	1000	2.5	Ambient	250	77
Acetone butanol wastewater	15000	2.5	35	3000*2	80
Fermented drug mixture	23450	11.8	35	200*4	91
Sugar fermentation wastewater	20000	4	35	-	85
Citric acid wastewater	10000	10	35	380	80

Table S8 Performance of UASB process in degrading organic wastewater.

Data sourced from: Hu JC, Zhou MJ, Zuo JE, Zhou Qi, He M. Theory and technology of anaerobic biological treatment of wastewater[M], China Architecture Publishing & Media Co., Ltd. 2003: 1-303. (In Chinese)

Temperature	Organic volume loading rate (kg COD /m ³ ·d)							
(°C)	VFA containing	VFA free	Wastewater with SS accounting					
	wastewater	wastewater	for 30% of COD					
15	2~4	1.5 ~ 3	1.5 ~ 2					
20	4~6	$2 \sim 4$	2 ~ 3					
25	6~12	$4 \sim 8$	3~6					
30	10 ~ 18	8~12	6 ~ 9					
35	15 ~ 24	$12 \sim 18$	9~14					
40	20~32	$15 \sim 24$	$14 \sim 18$					

Table S9 Permissible organic volume loading rate of different wastewater at different

temperatures.

Data sourced from: Hu JC, Zhou MJ, Zuo JE, Zhou Qi, He M. Theory and technology of anaerobic biological treatment of wastewater[M], China Architecture Publishing & Media Co., Ltd. 2003: 1-303. (In Chinese) (VFA: volatile fatty acids, SS: suspended solid)

References

- Galib, M., Elbeshbishy, E., Reid, R., et al. 2016. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR). Journal of Environmental Management. 182, 477-485. https://doi.org/10.1016/j.jenvman.2016.07.098
- He, Y., Xu, P., Li, C., et al. 2005. High-concentration food wastewater treatment by an anaerobic membrane bioreactor. Water Research. 39 (17), 4110-4118. <u>https://doi.org/10.1016/j.watres.2005.07.030</u>
- Wang, Y., Huang, X., Yuan, Q. 2005. Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor. Process Biochemistry. 40 (5), 1733-1739. <u>https://doi.org/10.1016/j.procbio.2004.06.039</u>
- Xiao, X., Shi, W., Ruan, W. 2019. Performance and Microbial Community Structure of Anaerobic Membrane Bioreactor for Lipids-Rich Kitchen Waste Slurry Treatment: Mesophilic and Thermophilic Processes. Processes. 7 (12), 879. <u>https://doi.org/10.3390/pr7120879</u>