Restriction of reaction sites on metal-sulfide cores induced by steric repulsion of bis-N-heterocyclic carbene ligands in trinuclear complexes bearing triply bridging sulfide ligands.

Natsuki Yabune, Hiroshi Nakajima and Takanori Nishioka*

Division of Molecular Materials Science, Graduate School of Science, Osaka City University,

Osaka 558-8585, Japan.

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan. E-mail: nishioka@omu.ac.jp.

Supplementary Information

- 1. ¹H NMR spectra of the complexes at 253 K and at 293 K.
- 2. ¹H NMR spectra of the reaction mixtures of the complexes with Ag(I) ions.
- 3. ¹⁹⁵Pt NMR spectroscopy
- 4. X-ray crystallography
- 5. DFT calculations
- 6. ¹H and ¹³C NMR data for the newly synthesised complexes.
- 7. Electrospray ionisation mass spectrometry
- 8. Reference

1. ¹H NMR spectra of the complexes at 253 K and at 293 K

Fig. S1 ¹H NMR spectrum of triplatinum complex with bisNHC-C3 ligands, $[Pt^{C3}_{3}]^{2+}$, at 293 K (600 MHz, CD₃CN). Three and one sets of signals attributed to bisNHC ligands of the unsymmetric C_{s-} and symmetric C_{3h} -isomers were observed, especially the signals in the N-Me region were clearly separated.

Fig. S2 ¹H NMR spectra of mixed-ligand triplatinum complex with two bisNHC-C1 and one bisNHC-C2 ligands, $[Pt^{C1}_2Pt^{C2}]^{2+}$, (a) at 293 K and (b) at 253 K (600 MHz, CD₃CN). Several sets of sharp signals of the bisNHC ligands were observed at 253 K showing the existence of isomers in solution. The signals at 253 K become broad at 293 K due to the flapping motion of the bisNHC ligands.

Fig. S3 ¹H NMR spectra of mixed-ligand triplatinum complex with two bisNHC-C1 and one bisNHC-C3 ligands, $[Pt^{C1}_2Pt^{C3}]^{2+}$, (a) at 293 K and (b) at 253 K (600 MHz, CD₃CN). Three sets of signals for the bisNHC ligands were observed both at 253 K and 293 K. The three signals for the N-Me protons of three bisNHC ligands in $[Pt^{C1}_2Pt^{C3}]^{2+}$ observed at 253 K clearly show the existence of one of the isomers. Three slightly broad signals observed at 293 K suggests the flapping motion and the equilibrium shifts to one of the isomers.

Fig. S4 ¹H NMR spectra of mixed-metal complex with two {Pt(bisNHC-C1)} and one {Rh(cod)} moieties, $[Pt^{C1}_2Rh^{cod}]^+$, (a) at 293 K and (b) at 253 K (600 MHz, CD₃CN). One set of signals of the bisNHC ligands was observed at 253 K showing the existence of one of the isomers. One set of slightly broad signals appeared at 295 K. suggesting the dynamic behaviour due to the flapping motion of the bisNHC ligands and the equilibrium among the isomers shifted to one of them.

Fig. S5 ¹H NMR spectra of mixed-metal complex with two {Pt(bisNHC-C1)} and one {RhCp*} moieties, $[Pt^{C1}_2Rh^{Cp*}]^{2+}$, (a) at 293 K and (b) at 253 K (600 MHz, CD₃CN). One set of signals of the bisNHC ligands was observed at 253 K showing the existence of one of the isomers. One set of slightly broad signals appeared at 295 K. suggesting the dynamic behaviour due to the flapping motion of the bisNHC ligands and the equilibrium among the isomers shifted to one of them.

2. ¹H NMR spectra of the reaction mixtures of the complexes with Ag(I) ions

Fig. S6 ¹H NMR spectra of (a) triplatinum complex bearing bisNHC-C3 ligands, $[Pt^{C3}_3]^{2+}$, and its reaction mixtures with (b) 0.5 eq. and (c) 25 eq. of Ag⁺, and (d) (c)+ex. of NH₄Cl (400 MHz, CD₃CN). Slightly broad signals were observed for $[Pt^{C3}_3]^{2+}$ and the highest signal observed in the N-Me region is attributed to the symmetric isomer beside the other three are assigned to the unsymmetric one in (a). With the addition of Ag)(I) ions, the highest peak in the N-Me region moves toward the higher magnetic field in (b) and (c) and the intensities of the three small signals for the *Cs* isomer decrease. The signals in (d) after the addition of chloride ions to extract the Ag(I) ion are the same as those of the complex in (a).

Fig. S7 ¹H NMR spectra of (a) triplatinum complex bearing two bisNHC-C1 and one bisNHC-C2 ligands, $[Pt^{C1}_2Pt^{C2}]^{2+}$, and its reaction mixtures with (b) 0.5 eq., (c) 1 eq., (d) 5 eq., (e) ex. of Ag(I) ions, and (f) (e)+ex. of NH₄Cl (400 MHz, CD₃CN). Broad signals appeared in (a) showing the dynamic behaviour due to the flapping motion of the bisNHC ligands. The signals become sharp after the addition of 0.5 eq. of Ag(I) ions (b). After the further addition of Ag(I) ions, the intensities of the sharp signals decrease, and other broad signals appear in (b)–(d). Only broad signals are observed in (e) after the addition of excess Ag(I) ions. The same spectrum (f) as (b) is obtained after the addition of chloride ions to extract Ag(I) ions.

Fig. S8 ¹H NMR spectra of (a) triplatinum complex bearing two bisNHC-C1 and one bisNHC-C3 ligands, $[Pt^{C1}_2Pt^{C3}]^{2+}$, and its reaction mixtures with (b) 0.5 eq., (c) 1 eq., (d) 5 eq., (e) ex. of Ag(I) ions, and (f) (e)+ex. of NH₄Cl (400 MHz, CD₃CN). Three sets of broad signals appeared in (a) showing the dynamic behaviour due to the flapping motion of the bisNHC ligands and the equilibrium shifts to one of the isomers. The signals become sharp after the addition of 0.5 eq. of Ag(I) ions (b). After the further addition of Ag(I) ions, the intensities of the sharp signals decrease, and other broad signals appear in (b)–(d). Only broad signals are observed in (e) after the addition of excess Ag(I) ions. The addition of chloride ions (f) affords the same spectrum as (b).

Fig. S9 ¹H NMR spectra of (a) trinuclear complex bearing two {Pt(bisNHC-C1)} and one {Rh(cod)} moieties, $[Pt^{C1}_2Rh^{cod}]^+$, and its reaction mixtures with (b) 0.5 eq., (c) 1 eq., (d) 5 eq., (e) ex. of Ag⁺, and (f) (e)+ex. of NH₄Cl (400 MHz, CD₃CN). *Solvents (MeOH, EtOH, Et₂O). One set of the broad signals, which are assigned to the bisNHC ligands one of the isomers, appears in (a). The addition of 0.5 eq. of Ag(I) ions affords one set of the sharp signals in (b) suggesting the formation of the heptanuclear complex. The intensities of the signals decrease after the further addition of Ag(I) ions, the signals for the heptanuclear complex disappear (e) and only the appeared signals are observed. After the addition of chloride ions, the same signals for the heptanuclear complex (f) as those in (a) are obtained.

Fig. S10 ¹H NMR spectra of (a) trinuclear complex bearing two {Pt(bisNHC-C1)} and one {RhCp} moieties, $[Pt^{C1}_2Rh^{Cp^*}]^{2+}$, and its reaction mixtures with (b) 0.5 eq., (c) 1 eq., (d) 5 eq., (e) ex. of Ag⁺, (f) (e)+ex. of NH₄Cl and (g) (e) after purification to remove NH₄⁺ (400 MHz, CD₃CN). After the addition of Ag(I) ions, one set of signals other than those for $[Pt^{C1}_2Rh^{Cp^*}]^{2+}$ appears in (b) and their intensities increase in (c) and (d). Only the increased signals are observed in the presence of excess Ag(I) ions. The signals for $[Pt^{C1}_2Rh^{Cp^*}]^{2+}$ are retrieved by the addition of chloride ions to extract Ag(I) ions from the reaction system in (f) and (g).

Fig. S11 ¹⁹⁵Pt NMR spectra for reactions of $[Pt^{C1}_3]^{2+}$ and Ag(I) salt in CD₃CN.

3. ¹⁹⁵Pt NMR spectroscopy

Fig. S14 ¹⁹⁵Pt NMR spectra for reactions of $[Pt^{C1}_2Pt^{C2}]^{2+}$ with Ag(I) salt.

Fig. S13 ¹⁹⁵Pt NMR spectra for reactions of $[Pt^{C3}_3]^{2+}$ and Ag(I) salt in CD₃CN.

[Pt^{c3}₃]²⁺ + 20 eq. Ag⁺

Fig. S15 ¹⁹⁵Pt NMR spectra for reactions of $[Pt^{C1}_2Pt^{C3}]^{2+}$ with Ag(I) salt. The signals classified with black circles or triangles are assigned to each of Ag-adduct.

Fig. S16 ¹⁹⁵Pt NMR spectra for reactions of $[Pt^{C1}_2Rh^{cod}]^+$ with Ag(I) salts in CD₃CN.

Fig. S17 ¹⁹⁵Pt NMR spectra for reactions of $[Pt^{C1}_2Rh^{Cp^*}]^{2+}$ with Ag(I) salts in CD₃CN.

4. X-ray crystallography

Crystallographic data are summarised in Tables S1–S9 for $[Pt^{C_3}](PF_6)_2$, $[Pt^{C_1}_2Pt^{C_2}](PF_6)_2$, $[Pt^{C_1}_2Pt^{C_2}](PF_6)_2$, $[Pt^{C_1}_2Pt^{C_2}](PF_6)_2$, $[Pt^{C_1}_2Pt^{C_3}](PF_6)_2$, $[Pt^{C_1}_2Rh^{C_0}](PF_6)_2$, $[Ag \{ [Pt(bisNHC-C2)]_3[Ag(NCCH_3)_3](\mu_4-S)_2 \}_2](PF_6)_7$, $[\{Pt(bisNHC-C1)\}_2 \{Pt(bisNHC-C3)\}(\mu_4-S)_2 \{Ag(O_2PF_2)\} \{Ag(NCCH_3)_{0.5}(OCH_3)_{0.5}\}(\mu_4-O_2PF_2)](PF_6)_{1.5}$ and $[\{Pt(bisNHC-C3)\}_3 \{Ag(NCCH_3)_3\}_2(\mu_4-S)_2](PF_6)_4$, respectively. Some of the structures contain positionally disordered atoms as follows.

[Pt^{C1}2Pt^{C2}](PF6)2

Although electron densities attributed to one toluene molecule were found on the difference Fourier map, the toluene molecule in the crystal contained as a solvent for crystallisation was positionally disordered and least square refinement gave distorted structure and large temperature factors for the atoms of the solvent molecules. Because of the difficulty for the sufficient refinement, the solvent mask was applied using PLATON/SQUEEZE.¹

[Pt^{C1}2Pt^{C3}](PF6)2

Although electron densities attributed to two methanol molecules were found on the difference Fourier map, the molecules in the crystal contained as a solvent for crystallisation were positionally disordered and least square refinement gave distorted structure and large temperature factors for the atoms of the solvent molecules. Because of the difficulty for the sufficient refinement, the solvent mask was applied using PLATON/SQUEEZE.¹ Some of the F atoms in one of two PF_6 anions were treated as positionally disordered.

[Pt^{C1}₂Rh^{Cp*}](BPh₄)₂

Although electron densities attributed to three dichloromethane molecules were found on the difference Fourier map, the molecules in the crystal contained as a solvent for crystallisation were positionally disordered and least square refinement gave distorted structures and large temperature factors for the atoms of the solvent molecules. Because of the difficulty for the sufficient refinement, the solvent mask was applied using PLATON/SQUEEZE.¹ The Cp* ligand was also positionally disordered due to the rotation of the ligand. The structure was refined with two orientations of the ligand, which are related to each other by the crystallographic mirror plane.

[Pt^{C1}2Rh^{cod}](PF6)

Although electron densities attributed to two acetonitrile molecules were found on the difference Fourier map, the molecules in the crystal contained as a solvent for crystallisation were positionally disordered and least square refinement gave distorted structures and large temperature factors for the atoms of the solvent molecules. Because of the difficulty for the sufficient refinement, the solvent mask was applied using SQUEEZE.¹ The cod ligand was also positionally disordered due to the mismatch of the cod ligand and the crystallographic *C*2 axis. The structure was refined with two orientations of the ligand, which are related to each other by the crystallographic *C*2 axis in the complex cation. Some of the F atoms in the PF₆ anion were also treated as positionally disordered.

$[{Pt(bisNHC-C1)}_{2}{Pt(bisNHC-C3)}(\mu_{4}-S)_{2}[{Ag(O_{2}PF_{2})}{Ag(NCCH_{3})_{0.5}(OCH_{3})_{0.5}}(\mu_{4}-O_{2}PF_{2})]$ (PF₆)_{1.5}

Although electron densities attributed to acetonitrile and methanol molecules were found on the difference Fourier map, the molecules in the crystal contained as a solvent for crystallisation were positionally disordered and least square refinement gave distorted structures and large temperature factors for the atoms of the solvent molecules. Because of the difficulty for the sufficient refinement, the solvent mask was applied using PLATON/SQUEEZE.¹ One water molecule was excluded the SQUEEZE calculation and its O atom was included in the refinement of the structure model. The F and O atoms of the bridging difluorophosphate ligands were treated with two orientations of the ligand. One of the two terminal ligands for Ag(I) ions was also disordered with acetonitrile and methoxy ligands in 1:1 ratio. The result of the analysis showed that the crystal contains 1.5 eq. of PF₆ anions meaning the pentanuclear complex has 1.5 positive charge. This strange positive charge is attributed to the disordered terminal ligand of Ag(I), which is a 1:1 mixture of neutral acetonitrile and methoxy monoanion.

Supplemental data of crystallographic analysis for [{Pt(bisNHC-C3)}3{Ag(NCCH3)3}2(µ4-S)2](PF6)4

The PF₆ anions are disordered and then some of the fluorine atoms could not be found in the difference Fourier maps. In the asymmetric unit, there are one and a half of the pentanuclear units. One of the two independent complex cations, which has a two-fold axis, exhibited huge disorder for the bisNHC ligands due to the crystallographic symmetry and insufficient quality of the crystal. The other showed the C_{3h} isomeric form of the triplatinum unit as shown in the main text of the article. Although this analysis is not suitable for discussion about the detail of the structure, the obtained framework of the complex dication clearly indicate the formation of the Ag-adduct containing two Ag–S bonds with both of the sulfide ligands in the triplatinum complex along with the C_{3h} -isomeric form of the triplatinum unit in the adduct.

Formula	$C_{30}H_{42}F_{12}N_{12}P_2Pt_3S_2$
M_w	1510.06
Crystal description	colourless, prism
Crystal size/mm	0.138 imes 0.073 imes 0.067
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (#14)
a/Å	15.4330(11)
$b/{ m \AA}$	15.7491(19)
c/Å	19.3229(15)
α'^{o}	90
$eta\!/^{\!\mathrm{o}}$	91.050(3)
$\gamma^{\prime o}$	90
$V/Å^3$	4695.8(8)
Ζ	4
F(000)	2840.00
$ ho_{ m calcd}/ m g~cm^{-1}$	2.136
μ/mm^{-1}	9.122
Total reflections	47348
Unique reflections (R_{int})	21456 (0.0457)
Scan range $\theta^{\prime \circ}$	27.445
Completeness	0.997
Index ranges	$-19{\leq}h{\leq}19$
	$-20 \le k \le 19$
	$-25 \le 1 \le 24$
Data/restrains/para.	10693/0/589
<i>R</i> 1 [$I > 2\sigma(I)$], <i>wR</i> 2 (all data)	0.0513, 0.1073
GOF on F^2	1.002
Max./min. ρ /eÅ ⁻³	2.40/-2.07
Min./max. T	0.325/0.543

 Table S1. Crystallographic data of triplatinum complex [Pt^{C2}₃](PF₆)₂ (CCDC 2238719).

Formula	$C_{39}H_{57}F_{12}N_{15}P_2Pt_3S_2$
$M_{\rm w}$	1675.28
Crystal description	colourless, prism
Crystal size/mm	$0.15 \times 0.12 \times 0.11$
Crystal system	hexagonal
Space group	<i>P</i> 6 ₃ / <i>m</i> (#176)
a/Å	14.1996(6)
<i>b</i> /Å	=a
c/Å	16.3484(7)
α'^{o}	90
β'^{o}	90
$\gamma^{\prime o}$	120
V/Å ³	2854.7(2)
Ζ	2
F(000)	1600.00
$ ho_{ m calcd}/ m g~cm^{-1}$	1.949
μ/mm^{-1}	7.542
Total reflections	95400
Unique reflections (R_{int})	29775 (0.0442)
Scan range $\theta/^{\circ}$	27.495
Completeness	0.997
Index ranges	$-18 \le h \le 17$
	$-18 \le k \le 18$
	$-21 \le 1 \le 21$
Data/restrains/para.	2264/0/119
<i>R</i> 1 [<i>I</i> >2σ(<i>I</i>)], <i>wR</i> 2 (all data)	0.0328, 0.0653
GOF on F^2	1.028
Max./min. $\rho/e^{A^{-3}}$	2.33/-1.12
Min./max. T	0.270/0.444

 Table S2. Crystallographic data of triplatinum complex [Pt^{C3}3](PF6)2•CH3CN (CCDC 2238720).

Formula	$C_{31.5}H_{42}F_{12}N_{12}P_2Pt_3S_2$
$M_{\rm w}$	1528.08
Crystal description	colourless, prism
Crystal size/mm	$0.010\times0.007\times0.006$
Crystal system	triclinic
Space group	P1 (#2)
a/Å	10.2266(3)
b/Å	13.0170(8)
c/Å	16.8232(11)
α'^{o}	99.891(4)
β'^{o}	93.302(3)
$\gamma^{\prime o}$	90.379(2)
V/Å ³	2202.2(2)
Z	2
F(000)	1438.00
$ ho_{ m calcd}/{ m g~cm^{-1}}$	2.304
μ/mm^{-1}	9.765
Total reflections	30075
Unique reflections (R_{int})	9933 (0.0265)
Scan range $\theta/^{\circ}$	27.450
Completeness	0.991
Index ranges	$-13 \le h \le 13$
	$-16 \le k \le 16$
	$-21 \le 1 \le 21$
Data/restrains/para.	9933/0/538
<i>R</i> 1 [<i>I</i> >2σ(<i>I</i>)], <i>wR</i> 2 (all data)	0.0248, 0.0585
GOF on F^2	1.119
Max./min. $\rho/e^{A^{-3}}$	2.596/-0.998
Min./max. T	0.624/0.943

 Table S3. Crystallographic data of triplatinum complex [Pt^{C1}2Pt^{C2}](PF₆)₂•0.5toluene (CCDC 2238721).

Formula	$C_{30.5}H_{46}F_{12}N_{12}O_{1.5}P_2Pt_3S_2\\$	
Mw	1544.12	
Crystal description	colourless, prism	
Crystal size/mm	$0.139 \times 0.124 \times 0.041$	
Crystal system	triclinic	
Space group	P1 (#2)	
a/Å	12.4809(2)	
b/Å	14.6151(5)	
c/Å	15.70520(10)	
α'^{o}	77.649(18)	
$\beta^{\prime \circ}$	66.585(13)	
$\gamma^{\prime o}$	77.483(17)	
V/Å ³	2540.2(3)	
Z	2	
F(000)	1458.00	
$ ho_{ m calcd}/ m g~cm^{-1}$	2.019	
μ/mm^{-1}	8.469	
Total reflections	32367	
Unique reflections (R_{int})	11397 (0.0347)	
Scan range $\theta/^{\circ}$	27.407	
Completeness	0.984	
Index ranges	$-16 \le h \le 16$	
	$-18 \le k \le 18$	
	$-20 \le 1 \le 20$	
Data/restrains/para.	11397/0/547	
<i>R</i> 1 [I >2 σ (I)], <i>wR</i> 2 (all data)	0.0384, 0.0938	
GOF on F^2	1.062	
Max./min. $\rho/e^{A^{-3}}$	3.058/-3.280	
Min./max. T	0.536/0.708	

 Table S4. Crystallographic data of triplatinum complex [Pt^{C1}2Pt^{C3}](PF6)2•1.5CH3OH (CCDC 2238722).

Formula	$C_{79}H_{85}B_2Cl_6N_8Pt_2RhS_2$
M_{w}	1938.17
Crystal description	green, plate
Crystal size/mm	$0.170\times0.040\times0.020$
Crystal system	monoclinic
Space group	<i>Cm</i> (#8)
a/Å	17.827(4)
b/Å	25.802(4)
c/Å	13.476(3)
a/°	90
β/°	128.641(5)
γ^{o}	90
$V/\text{\AA}^3$	4841.6(18)
Z	2
F(000)	1920
$ ho_{ m calcd}/ m g~cm^{-1}$	1.329
μ/mm^{-1}	3.298
Total reflections	29802
Unique reflections (R_{int})	9154 (0.0606)
Scan range $\theta/^{\circ}$	25.50
Completeness	0.997
Index ranges	$-22 \le h \le 22$
	$-33 \le k \le 33$
	$-17 \le l \le 17$
Data/restrains/para.	9154/365/412
<i>R</i> 1 [<i>I</i> >2σ(<i>I</i>)], <i>wR</i> 2 (all data)	0.0399, 0.1020
GOF on F^2	0.8978
Max./min. ρ /eÅ ⁻³	1.342/-1.250
Min./max. T	0.574/0.936

 Table S5. Crystallographic data of diplatinum rhodium complex [Pt^{C1}2Rh^{Cp*}](BPh4)2 (CCDC 2238723).

/	
Formula	$C_{30}H_{42}F_6N_{10}PPt_2RhS_2$
$M_{\rm w}$	1285.95
Crystal description	yellow, prism
Crystal size/mm	$0.143 \times 0.089 \times 0.031$
Crystal system	tetragonal
Space group	<i>I</i> 4 ₁ (#80)
a/Å	12.3687(11)
b/Å	=a
c/Å	27.8127(18)
a/°	90
β/°	90
$\gamma^{\prime o}$	90
V/Å ³	4254.9(6)
Ζ	4
F(000)	2376.00
$ ho_{ m calcd}/{ m g~cm^{-1}}$	2.007
μ/mm^{-1}	7.141
Total reflections	21520
Unique reflections (R_{int})	4875 (0.0534)
Scan range $\theta/^{\circ}$	27.489
Completeness	0.997
Index ranges	$-16 \le h \le 16$
	$-16 \le k \le 16$
	$-36 \le 1 \le 35$
Data/restrains/para.	4875/290/263
<i>R</i> 1 [I >2 σ (I)], <i>wR</i> 2 (all data)	0.0492, 0.1169
GOF on F^2	1.006
Max./min. ρ /eÅ ⁻³	1.801/-2.219
Min./max. T	0.596/0.802
Flack parameter	0.042(6)

Table S6. Crystallographic data of diplatinum rhodium complex [**Pt**^{C1}₂**Rh**^{cod}](PF₆)•2CH₃CN (CCDC 2238724).

,	
Formula	$C_{72}H_{102}Ag_3F_{42}N_{30}P_7Pt_6S_4$
$M_{ m w}$	4024.93
Crystal description	colourless, prism
Crystal size/mm	$0.196 \times 0.063 \times 0.010$
Crystal system	triclinic
Space group	<i>P</i> 1 (#2)
a/Å	16.814(7)
b/Å	17.820(7)
c/Å	22.082(9)
α'^{o}	101.846(7)
$eta^{\prime \circ}$	92.738(12)
71 ⁰	92.657(5)
V/Å ³	6458(5)
Z	2
F(000)	3800.00
$ ho_{ m calcd}/ m g~cm^{-1}$	2.070
μ/mm^{-1}	7.149
Total reflections	66567
Unique reflections (R_{int})	29011 (0.0486)
Scan range $\theta/^{\circ}$	27.478
Completeness	0.980
Index ranges	$-21 \le h \le 21$
	$-22 \le k \le 23$
	$-26 \le 1 \le 28$
Data/restrains/para.	29011/0/1483
<i>R</i> 1 [I >2 σ (I)], wR 2 (all data)	0.0625, 0.1643
GOF on F^2	1.016
Max./min. $\rho/eÅ^{-3}$	3.22/-2.40
Min./max. T	0.628/0.931

Table S7. Crystallographic data of Ag-adduct $[Ag{[Pt(bisNHC-C2)]_3[Ag(NCCH_3)_3](\mu_4-S)_2}_2](PF_6)_7$ (CCDC 2238725).

Formula	$C_{33.5}H_{52}Ag_2F_{13}N_{13.5}O_{6.5}P_{3.5}Pt_3S_2$	
$M_{\rm w}$	2015.22	
Crystal description	colourless, platelet	
Crystal size/mm	$0.204\times0.038\times0.012$	
Crystal system	monoclinic	
Space group	<i>P</i> 2 ₁ / <i>c</i> (#14)	
a/Å	24.235(2)	
<i>b</i> /Å	12.8335(9)	
c/Å	20.6397(18)	
α'^{o}	90	
$eta^{\prime \circ}$	112.905(2)	
71 ^{/0}	90	
$V/\text{\AA}^3$	5913.2(8)	
Ζ	4	
F(000)	3702.00	
$ ho_{ m calcd}/ m g~cm^{-1}$	2.264	
μ/mm^{-1}	7.982	
Total reflections	59421	
Unique reflections (R_{int})	13383 (0.0547)	
Scan range $\theta/^{\circ}$	27.402	
Completeness	0.994	
Index ranges	$-31 \le h \le 31$	
	$-16 \le k \le 16$	
	$-26 \le 1 \le 26$	
Data/restrains/para.	13383/56/660	
<i>R</i> 1 [$I \ge 2\sigma(I)$], <i>wR</i> 2 (all data)	0.0684, 0.1283	
GOF on F^2	1.039	
Max./min. $\rho/e^{A^{-3}}$	2.382 /-2.865	
Min./max. T	0.687/0.909	

Table S8. Crystallographic data of Ag-adduct $[{Pt(bisNHC-C1)}_2 {Pt(bisNHC-C3)}(\mu_4-S)_2 {Ag} (O_2PF_2)} {Ag(NCCH_3)_{0.5}(OCH_3)_{0.5}}(\mu-O_2PF_2)](PF_6)_{1.5} \cdot CH_3CN \cdot CH_3OH \cdot H_2O (CCDC 2238726).$

Formula	$C_{45}H_{66}AgF_{24}N_{18}P_4Pt_3S_2$
$M_{\rm w}$	1362.57
Crystal description	colourless, prism
Crystal size/mm	0.174 imes 0.075 imes 0.070
Crystal system	orthorhombic
Space group	<i>Pbcn</i> (#60)
a/Å	43.897(18)
b/Å	25.323(11)
c/Å	25.885(11)
$lpha / ^{ m o}$	90
$\beta^{\prime o}$	90
$\gamma^{\prime o}$	90
$V/\text{\AA}^3$	28773(21)
Z	12
F(000)	13176.00
$ ho_{ m calcd}/{ m g~cm^{-1}}$	1.596
μ/mm^{-1}	4.935
Total reflections	134995
Unique reflections (R_{int})	30075 (0.0722)
Scan range $\theta/^{\circ}$	26.940
Completeness	0.964
Index ranges	$-55 \le h \le 47$
	$-30 \le k \le 28$
	$-32 \le 1 \le 32$
Data/restrains/para.	30075/0/649
<i>R</i> 1 [I >2 $\sigma(I$)], <i>wR</i> 2 (all data)	0.0651, 0.1813
GOF on F^2	1.095
Max./min. $\rho/e^{A^{-3}}$	10.10/-6.68
Min./max. T	0.511/0.708

Table S9. Preliminary crystallographic data of Ag-adduct $[{Pt(bisNHC-C3)}_3{Ag(NCCH_3)_3}_2(\mu_4-S)_2](PF_6)_4.$

Fig. S18 Supplementary data for structure of pentanuclear Ag-adduct of triplatinum complex bearing three bisNHC-C3 ligands.

5. DFT calculations

Table S10. Optimised atomic coordinates of triplatinum complex $[Pt^{C1}_2Rh^{Cp^*}]^{2+}$ obtained from DFT calculations.

Number	atom	X	У	Z
1	Pt	1.637181	-0.667715	0.002490
2	Pt	-1.706967	-0.551709	0.002792
3	Rh	0.105700	2.157372	-0.003892
4	S	-0.000588	0.328573	1.597454
5	S	-0.000404	0.323096	-1.595207
6	Ν	3.367659	-2.784447	1.199640
7	Ν	3.368461	-1.098487	2.578258
8	Ν	3.356043	-2.790970	-1.199707
9	Ν	3.343376	-1.110035	-2.584516
10	Ν	-3.581106	-2.537496	1.208386
11	Ν	-3.453785	-0.853420	2.583679
12	Ν	-3.582000	-2.543680	-1.190616
13	Ν	-3.457102	-0.865738	-2.573580
14	С	2.844136	-1.515928	1.380081
15	С	4.200030	-3.151979	2.269485
16	С	4.193498	-2.092749	3.136558
17	С	3.153120	0.210721	3.217586
18	С	3.067971	-3.577181	0.003666
19	С	2.832939	-1.522663	-1.378930
20	С	4.174091	-3.164426	-2.278459
21	С	4.158668	-2.108356	-3.149671
22	С	3.108823	0.194096	-3.227734
23	С	-0.361699	4.089113	1.103234
24	С	0.019384	4.064969	-1.247974
25	С	-2.968294	-1.316586	-1.372426
26	С	-4.434110	-2.853794	-2.263181
27	С	-4.348423	-1.800271	-3.133037

28	С	-3.144526	0.422924	-3.214509
29	С	-3.348938	-3.350266	0.010890
30	С	-2.967006	-1.309610	1.383733
31	С	-4.431562	-2.842719	2.283676
32	С	-4.344373	-1.785314	3.148632
33	С	-3.139559	0.437385	3.219711
34	С	1.050956	4.013815	0.887684
35	С	1.289835	3.977972	-0.573400
36	С	-1.011685	4.066086	-0.218223
37	С	2.123709	4.071510	1.934938
38	С	-1.064186	4.241126	2.421640
39	С	-0.204230	4.185659	-2.728375
40	С	-2.486026	4.192404	-0.454141
41	Ċ	2.643946	3.988283	-1.217078
42	Ĥ	4 705566	-4.102193	2 327810
43	Н	4 698411	-1 962412	4 079931
44	Н	2 566939	0.090809	4 134014
45	Н	2.606436	0.855136	2 530737
46	Н	4 120854	0.652190	3 459200
40	и П	3 677608	1 182033	0.003264
47	и П	2 008680	3 851561	0.003204
40	и П	2.000000	-5.851501	2 338746
49 50		4.670318	-4.113192	-2.338740
51	П	4.052325	-1.962977	-4.099393
51	П	4.033202	0.372702	-3.030809
52 52	П	2.720876	0.891373	-2.483894
55 54	П	2.3/8046	0.093423	-4.055984
54	Н	-5.006760	-3./03133	-2.320912
55	Н	-4.839163	-1.63/0/4	-4.0/8/53
56	Н	-2.591412	1.043950	-2.510/5/
5/ 50	H	-4.0/6004	0.923681	-3.49/463
58	H	-2.529659	0.262869	-4.105609
59	H	-4.02/954	-4.205421	0.013360
60	H	-2.315023	-3.708285	0.011439
61	Н	-5.004171	-3./53/66	2.346459
62	Н	-4.833527	-1.617/54	4.094408
63	Н	-2.581588	1.053697	2.515922
64	Н	-2.528216	0.279462	4.113593
65	Н	-4.070411	0.942343	3.497326
66	Н	1.762121	3.720040	2.905913
67	Н	2.464861	5.108931	2.066144
68	Н	2.999327	3.476503	1.654853
69	Н	-0.524700	3.740570	3.231628
70	Н	-2.080756	3.836426	2.389381
71	Н	-1.145775	5.305425	2.685536
72	Н	-2.779344	3.801321	-1.432665
73	Н	-2.774606	5.254107	-0.424243
74	Н	-3.069213	3.674316	0.313380
75	Н	0.586884	3.693680	-3.302313
76	Н	-0.219987	5.244077	-3.025016
77	Н	-1.158540	3.745259	-3.033429
78	Н	2.604541	3.647474	-2.255789
79	Н	3.359642	3.363003	-0.672813
80	Н	3.045011	5.012852	-1.222765

Number	atom	X	У	Z
1	Pt	1.682984	-0.536633	-0.006634
2	Pt	-1.682964	-0.536636	0.006574
3	Rh	0.000075	2.268159	0.000379
4	S	0.005122	0.342271	1.593698
5	S	-0.005141	0.342792	-1.593494
6	Ν	3.575866	-2.515301	1.180005
7	Ν	3.441175	-0.838571	2.564517
8	N	3.568509	-2.505399	-1.221672
9	N	3.425224	-0.815943	-2.589945
10	N	-3.568408	-2.506070	1.220648
11	N	-3.42.5241	-0.817314	2.589798
12	N	-3.575871	-2.514722	-1.181030
13	N	-3.441410	-0.837093	-2.564480
14	C	2.943765	-1.293822	1 365954
15	Č	4 444519	-2.812714	2 243297
16	Č	4 351109	-1 759934	3 114435
17	Č	3 111988	0 451034	3 194532
18	Č	3 333654	-3 315189	-0.023472
19	C	2 935112	-1 282596	-1 392841
20	C	4 430990	-2 792783	-2 292753
20	C	4 332140	-1 732007	-3 153577
21	C	3 091934	0.479375	-3 206461
22	C	-0.658427	3 836478	1 398138
23	C	-0.753773	3 705265	-1 454167
25	C	_2 943813	_1 293120	_1 366301
25	C	-4 444646	-2.811477	_2 244395
20	C	_4 351401	-1 758120	-2.244375
27	C C	3 112002	-1.758120	3 103701
20	C C	3 333503	3 315211	0.022026
30	C C	2 935027	1 283327	1 302/80
30	C	-2.935027	-1.283327	2 201521
37	C C	4 332224	1 733661	2.291321
32	C C	3 002163	-1.755001	3.152870
33	C	-3.092103	0.477727	0.680475
34	C	-1.595565	3 705131	1.455012
36	C	0.753875	3.836577	1.455012
30	C	1 765471	J.630372 A.626464	-1.397292
37	C	1 202605	4.020404	-0.780303
30	C	1.595005	4.978838	-0.088439
39 40	с ц	5 020207	3 715042	0.781212
то //1	н Н	J.UJU297 A QA711A	-5.715942	2.293247 1 056060
+1 12	п Ц	4.04/114 2/61200	-1.307013	4.030000 1 060061
+∠ 13	п ц	2.401399	0.290030	4.000901
43	П Ц	2.363226	0.040272	2.409032
 15	п u	4.033370	U.7472/2 1 100016	0.020022
ч.) 16	п ц	4.001237	-4.100010	-0.029023
-+0 17	п Ц	2.272337 5.016660	-5.055792	-0.021009
+/ /8	п Ц	J.010000 A 877470	-3.073310	-2.330320 1 006577
40 40	П U	4.822429	-1.3331/3	-4.0903//
+7 50	л U	4.013484	0.977944	-3.323439 7 171017
50	п u	2.3/3001	0 222772	-2.4/104/
57	п u	2.432320	0.332//3	-4.00/313
5∠ 52	л U	-3.030449 1 017512	-3./14001 1 597/15	-2.290041
55 54	П	-4.84/343	-1.30/413	-4.030311
34	н	-2.38/823	1.0/3525	-2.40/494

Table S11. Optimised atomic coordinates of triplatinum complex $[Pt^{C1}_2Rh^{cod}]^+$ obtained from DFT calculations.

55	Н	-4.035477	0.950046	-3.509533
56	Н	-2.459192	0.299245	-4.058521
57	Н	-4.000936	-4.180155	0.027162
58	Н	-2.292327	-3.653625	0.020007
59	Н	-5.016582	-3.696609	2.354821
60	Н	-4.822613	-1.555286	4.095906
61	Н	-2.572448	1.093547	2.473328
62	Н	-2.434269	0.330583	4.069139
63	Н	-4.013913	0.976850	3.524588
64	Н	2.736017	4.112204	0.786812
65	Н	1.898750	5.550554	1.369563
66	Н	1.155780	3.115720	2.280271
67	Н	-1.226679	3.322832	2.173759
68	Н	-0.781132	5.888179	0.717331
69	Н	-2.312802	5.213526	1.241448
70	Н	-2.735977	4.112293	-0.785996
71	Н	-1.898712	5.550749	-1.368519
72	Н	-1.155702	3.115849	-2.279406
73	Н	1.226751	3.323127	-2.173073
74	Н	0.780936	5.888086	-0.716222
75	Н	2.312743	5.213835	-1.240460

6. ¹H and ¹³C NMR spectroscopy

Fig. S19 ¹H NMR spectrum of [Pt^{C3}₃](PF₆)₂ (CD₃CN, 600 MHz, 293 K):

*C*_{3h}-isomer: δ 6.99–9.96 (m, 4,5-im), 4.87 (dd, ²*J*_{H-H} = 14.3 Hz, ³*J*_{H-H} = 10.9 Hz, 6H, N-CH₂-), 4.22 (dd, ²*J*_{H-H} = 14.2 Hz, ³*J*_{H-H} = 6.4 Hz, 6H, N-CH₂-), 4.04 (s, 18H, N-Me), 2.39 (ddd, ²*J*_{H-H} = 13.3 Hz, ³*J*_{H-H} = 6.7 Hz, ³*J*_{H-H} = 6.7 Hz, 3H, -CH₂-), 1.85 (ddd, ²*J*_{H-H} = 16.3 Hz, ³*J*_{H-H} = 10.8 Hz, ³*J*_{H-H} = 10.8 Hz, ³*J*_{H-H} = 10.8 Hz, 3H, -CH₂-).

*C*_s-isomer: δ 6.99–9.96 (m, 4,5-im), 5.34 (dd, ²*J*_{H-H} = 14.1 Hz, ³*J*_{H-H} = 11.6 Hz, 2H, N-CH₂-), 5.05 (ddd, ²*J*_{H-H} = 14.2 Hz, ³*J*_{H-H} = 11.0 Hz, ³*J*_{H-H} = 11.0 Hz, 4H, N-CH₂-), 4.25 (dd, ²*J*_{H-H} = 14.1 Hz, ³*J*_{H-H} = 6.9 Hz, 6H, N-CH₂-), 4.05 (s, 6H, N-Me), 4.01 (s, 6H, N-Me), 3.98 (s, 6H, N-Me), 2.46 (ddd, ²*J*_{H-H} = 16.5 Hz, ³*J*_{H-H} = 11.1 Hz, ³*J*_{H-H} = 5.6 Hz, , 3H, -CH₂-), 1.90–1.92 (m, 3H, -CH₂-).

Fig. S20 ¹³C NMR spectrum of [**Pt**^{C3}₃](PF₆)₂ (CD₃CN, 150 MHz, 293 K):

 C_{3h} -isomer: δ 160.3 (2-im), 122.5 (4,5-im), 122.1 (4,5-im), 53.1 (N-CH₂), 38.8 (N-Me), 33.2 (-CH₂-).

 C_s -isomer: δ 160.6 (2-im), 160.5 (2-im), 160.2 (2-im), 122.51 (4,5-im), 122.49 (4,5-im), 122.39 (4,5-im), 122.31 (4,5-im), 122.26 (4,5-im), 122.2 (4,5-im), 52.9 (N-CH₂), 52.7 (N-CH₂), 52.4 (N-CH₂), 38.8 (N-Me), 38.7 (N-Me), 33.1 (-CH₂-).

Fig. S21 ¹H NMR spectrum of [**Pt**^{C1}₂**Pt**^{C2}](PF₆)₂ (CD₃CN, 600 MHz, 253 K): a mixture of the isomers: δ7.23–6.91 (m, 4,5-im), 5.87–5.68 (m, N-CH₂), 5.42–5.38 (m, N-CH₂), 5.19-5.15 (m, N-CH₂), 4.34–4.30 (m, N-CH₂), 4.24–4.20 (m, N-CH₂), 3.91 (s, N-Me), 3.90 (s, N-Me), 3.87 (s, N-Me), 3.85 (s, N-Me), 3.60 (s, N-Me), 3.55 (s, N-Me).

Fig. S22 ¹³C NMR spectrum of [**Pt**^{C1}₂**Pt**^{C2}](PF₆)₂ (CD₃CN, 150 MHz, 253 K): a mixture of the isomers: δ157.9 (2-im), 157.8 (2-im), 157.7 (2-im), 157.6 (2-im), 156.2 (2-im), 154.9 (2-im), 122.6 (4,5-im), 122.2 (4,5-im), 121.99-121.89 (4,5-im), 121.5 (4,5-im), 120.6 (4,5im), 120.21 (4,5-im), 120.17 (4,5-im), 62.8-62.5 (N-CH₂-), 48.2 (N-CH₂-), 47.7 (N-CH₂-), 38.6 (N-Me), 37.9 (N-Me), 37.7 (N-Me), 37.5 (N-Me), 37.4 (N-Me), 37.1 (N-Me), 36.9 (N-Me).

Fig. S23 ¹H NMR spectrum of [**Pt**^{C1}₂**Pt**^{C3}](PF₆)₂ (CD₃CN, 600 MHz, 253 K): δ 7.19 (d, ³*J*_{H-H} = 1.9 Hz, 2H, 4-im^{C1a}), 7.18 (d, ³*J*_{H-H} = 1.9 Hz, 2H, 5-im^{C1a}), 7.03–7.01 (m, 8H, im^{C1b, C3}), 5.80 (d, ²*J*_{H-H} = 13.2 Hz, 2H, N-CH₂^{C1}), 5.78 (d, ²*J*_{H-H} = 13.6 Hz, 2H, N-CH₂^{C1}), 5.71 (d, ²*J*_{H-H} = 12.9 Hz, 1H, N-CH₂^{C1}), 5.71 (d, ²*J*_{H-H} = 12.9 Hz, 1H, N-CH₂^{C1}), 5.20 (dd, 2H, ²*J*_{H-H} = 14.3 Hz, ³*J*_{H-H} = 11.1 Hz, N-CH₂^{C3}), 4.16 (dd, ²*J*_{H-H} = 14.2 Hz, ³*J*_{H-H} = 6.1 Hz, 2H, N-CH₂^{C3}), 4.01 (s, 6H, N-Me^{C3}), 3.88 (s, 6H, N-Me^{C1a}), 3.79 (s, 6H, N-Me^{C1b}), 2.26 (ddd, ²*J*_{H-H} = 16.0 Hz, ³*J*_{H-H} = 6.6 Hz, ³*J*_{H-H} = 6.0 Hz, 2H, N-CH₂^{C3}), 1H, -CH₂-^{C3}), 1.80 (ddd, ²*J*_{H-H} = 16.3 Hz, ³*J*_{H-H} = 10.9 Hz, ³*J*_{H-H} = 10.9 Hz, 1H, -CH₂-^{C3}).

Fig. S24 ¹³C NMR spectrum of [Pt^{C1}₂Pt^{C3}](PF₆)₂ (CD₃CN, 150 MHz, 253 K): δ 159.8 (2-im^{C3}), 156.8 (2-im^{C1a,b}), 156.5 (2-im^{C1a,b}), 122.2 (s, 4,5-im^{C3}), 121.92 (s, 4,5-im^{C1b,C3}),121.86 (s, 4,5-im^{C1b,C3}), 121.7 (s, 4,5-im^{C1b,C3}), 120.3 (s, 4,5-im^{C1a}), 120.2 (s, 4,5-im^{C1a}), 62.7 (s, N-CH₂^{C1a,b}), 62.6(s, N-CH₂^{C1a,b}), 51.8 (s, N-CH₂^{C3}), 37.8 (s, N-Me^{C3}), 37.4 (s, N-Me^{C1a}), 37.3 (s, N-Me^{C1b}), 32.8 (s, -CH₂-^{C3}).

Fig. S25 ¹H NMR spectrum of [$Pt^{C1}_{2}Rh^{cod}$](PF₆) (CD₃CN, 600 MHz, 253 K): δ 7.13 (d, ³*J*_{H-H} = 1.9 Hz, 4H, 4-im), 6.97 (d, ³*J*_{H-H} = 1.9 Hz, 4H, 5-im), 5.74 (d, ²*J*_{H-H} = 12.7 Hz, 2H, N-CH₂), 5.69 (d, ²*J*_{H-H} = 12.7 Hz, 2H, N-CH₂), 4.50 (br, 4H, cod-CH), 3.84 (s, 12H, N-Me), 2.26 (br, 4H, cod-CH₂), 2.03 (d, 4H, ²*J*_{H-H} = 8.0 Hz, cod-CH₂).

Fig. S26 ¹³C NMR spectrum of [**Pt**^{C1}₂**Rh**^{cod}](PF₆) (CD₃CN, 150 MHz, 253 K): δ 159.1 (2-im), 121.8 (s, 5-im), 119.8 (s, 4-im), 75.2 (d, ¹J_{C-Rh} = 11.2 Hz, cod-CH), 62.6 (s, N-CH₂), 37.9 (s, N-Me), 31.6 (s, cod-CH₂).

Fig. S27 ¹H NMR spectrum of $[\mathbf{Pt}^{C1}_{2}\mathbf{Rh}^{Cp^{*}}](\mathbf{PF}_{6})_{2}$ (CD₃CN, 600 MHz, 253 K): δ 7.19 (d, ³*J*_{H-H} = 1.9 Hz, 4H, 4-im), 7.03 (d, ³*J*_{H-H} = 1.9 Hz, 4H, 5-im), 5.76 (d, ²*J*_{H-H} = 12.9 Hz, 2H, N-CH₂), 5.72 (d, ²*J*_{H-H} = 12.9 Hz, 2H, N-CH₂), 3.79 (s, 12H, N-Me), 1.99 (s, 15H, Cp*-Me).

Fig. S28 ¹³C NMR spectrum of $[Pt^{C1}_2Rh^{Cp^*}](PF_6)_2$ (CD₃CN, 150 MHz, 253 K): δ 155.3 (2-im), 122.4 (s, 5-im), 120.6 (s, 4-im), 100.3 (d, ${}^{1}J_{C-Rh} = 7.2$ Hz Cp*-ring), 62.6 (s, N-CH₂), 37.7 (s, N-Me), 10.3 (s, Cp*-Me).

7. Electrospray ionisation mass spectrometry

Fig. S29 ESI-mass spectrum of [Pt^{C3}₃](PF₆)₂ in CH₃CN.

Fig. S30 ESI-mass spectrum of $[Pt^{C1}_2Pt^{C2}](PF_6)_2$ in CH₃CN.

Fig. S31 ESI-mass spectrum of $[Pt^{C1}_2Pt^{C3}](PF_6)_2$ in CH₃CN.

Fig. S32 ESI-mass spectrum of $[Pt^{C1}_2Rh^{Cp^*}](PF_6)_2$ in CH₃CN.

Fig. S33 ESI-mass spectrum of [Pt^{C1}₂Rh^{cod}](PF₆) in CH₃CN.

8. Reference

1. A. L. Spek, Acta Cryst., 2015, C71, 9-18.