Supporting Information

The conjugates of 5'-deoxy-5-fluorocytidine and hydroxycinnamic acids synthesis, anti-pancreatic cancer activity and molecular docking studies

Marcin Cybulski, a Magdalena Zaremba-Czogalla, bartosz Trzaskowski, ${ }^{\text {c }}$ Marek Kubiszewski, d Joanna Tobiasz, a

${ }^{a}$ Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz-Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland.
${ }^{b}$ Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
${ }^{\text {c Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland. }}$
${ }^{\text {d Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland. }}$

* Correspondence: Łukasiewicz-Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; olga.michalak@ichp.lukasiewicz.gov.pl

	Table of contents
1	Table S1. Predicted selected ADMET properties of the tested compounds.
2	Table S2. Predicted selected ADMET properties of the tested compounds, cont.
3	(3,4-diallyloxy)cinnamic acid (18) - preparation
4	5'-deoxy-5-fluoro-2',3'-O-isopropylidene- $\mathrm{N}^{4}, \mathrm{~N}^{4}$-(bis(3,4-diallyloxy)cinnamoyl)cytidine (26) preparation
5	5'-deoxy-5-fluoro-2',3'-O-isopropylidene-N4*-(3,4-diallyloxy)cinnamoyl)cytidine (28) - preparation
6	5'-deoxy-5-fluoro- ${ }^{4}$-(3,4-diallyloxy)cinnamoyl)cytidine (29) - preparation
7	${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra
8	HRMS spectra of compounds 1-6

Table S1. Predicted selected ADMET properties of the tested compounds.

compound $^{\prime 2}$ MW $^{\mathbf{a}}$	dipole $^{\mathbf{b}}$	vol $^{\mathbf{c}}$	SASA $^{\mathbf{d}}$	dHB $^{\mathbf{e}}$	aHB $^{\mathbf{f}}$	logP $^{\mathbf{s}}$	logS $^{\mathbf{h}}$	metab $^{\mathbf{i}}$	$\mathbf{p}^{\mathbf{j}}$	Ro3 $^{\mathbf{k}}$	Ro5 $^{\mathbf{l}}$	
$\mathbf{1}$	517.5	2.54	1540.4	857.6	1	14.2	1.6	-5.3	1	68.8	0	2
$\mathbf{2}$	517.5	7.06	1539.8	853.2	1	14.2	1.8	-5.3	1	97.3	0	2
$\mathbf{3}$	517.5	4.88	1541.0	863.3	1	14.2	1.6	-5.4	1	69.3	0	2
$\mathbf{4}$	575.5	4.88	1683.2	928.9	1	16.7	1.1	-5.3	1	29.8	0	2
$\mathbf{5}$	575.5	4.61	1687.0	928.8	1	16.7	1.1	-5.3	1	31.1	0	2
$\mathbf{6}$	491.4	5.21	1423.3	792.5	3	13.2	1.0	-4.9	3	25.5	0	1
$\mathbf{3 0}$	491.4	9.36	1441.2	811.6	3	16.1	-0.1	-4.3	3	23.8	0	1
$\mathbf{3 1}$	407.4	9.58	1178.2	678.8	5	12.6	-0.5	-3.5	5	16.9	1	0
$\mathbf{3 2}$	633.5	4.79	1832.0	997.0	1	19.2	0.7	-5.3	1	16.9	1	2
$\mathbf{3 3}$	507.4	6.92	1470.2	832.5	4	14.0	0.3	-5.1	4	5.6	1	2
$\mathbf{3 4}$	423.4	6.09	1199.7	694.7	6	13.4	-1.2	-3.4	6	5.1	1	2
$\mathbf{5 - d F C R}$	245.2	5.85	691.2	416.1	4	9.1	-1.4	-1.8	3	80.6	0	0
benazepril	424.5	3.78	1360.8	744.9	2	8.5	1.7	-4.7	7	30.8	1	0
capecitabine	373.4	7.50	1107.9	635.8	3	11.1	0.3	-3.2	3	93.3	0	0
cis-ermethrin	391.3	2.61	1150.2	611.5	0	2.5	6.0	-5.9	2	5009	1	1
irinotecan	586.7	13.88	1780.8	952.1	1	12.8	3.4	-6.7	4	50.6	1	1

${ }^{\text {a }}$ MW - molecular weight (Da); bdipole - dipole moment (D); ${ }^{\text {c } v o l}$ - total molecular volume (${ }^{3}{ }^{3}$); dSASA - solvent accessible surface (\AA^{2}); edHB - estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution; ${ }^{f} \mathrm{aHB}$ - estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution; $\operatorname{slog} \mathrm{P}$ - octanol/water partition coefficient; glog S - predicted aqueous solubility ($\mathrm{mol} / \mathrm{dm}^{3}$); ' ${ }^{\text {metab }}$ number of likely metabolic reactions; jp - apparent Caco-2 permeability ($\mathrm{nm} / \mathrm{sec}$); ${ }^{\text {kRo3 }}$ - number of violations of Jorgensen's rule of three; 'Ro5 - number of violations of Lipinski's rule of five.

Table S2. Predicted selected ADMET properties of the tested compounds, cont.

compound	FOSA ${ }^{\text {a }}$	FISA ${ }^{\text {b }}$	PISA ${ }^{\text {c }}$	glob ${ }^{\text {d }}$	HERG ${ }^{\text {e }}$	BB ${ }^{\text {f }}$	MDCKg	Kp ${ }^{\text {h }}$	HSA ${ }^{\text {i }}$	Jm ${ }^{\text {j }}$	$\mathrm{LD}_{50}{ }^{\text {k }}$
1	406.9	227.6	191.2	0.75	-6.5	-2.5	41.0	-4.4	-0.5	0.000	5000
2	388.6	211.7	210.9	0.76	-6.5	-2.2	67.7	-4.0	-0.5	0.000	5000
3	415.2	227.3	187.5	0.75	-6.5	-2.5	42.1	-4.4	-0.5	0.000	5000
4	488.2	265.9	142.9	0.74	-6.5	-3.1	16.6	-5.1	-0.7	0.000	5000
5	486.5	264.0	146.5	0.74	-6.5	-3.1	17.3	-5.1	-0.7	0.000	5000
6	296.6	273.0	181.0	0.77	-6.1	-2.9	15.9	-5.1	-0.4	0.000	5000
30	339.4	276.3	153.9	0.76	-6.1	-3.0	14.7	-5.3	-0.9	0.000	1000
31	162.5	291.8	182.5	0.79	-5.7	-2.9	10.2	-5.5	-0.8	0.000	1000
32	558.8	292.0	113.3	0.73	-6.5	-3.6	9.1	-5.6	-0.9	0.000	5000
33	308.1	342.4	149.0	0.75	-6.3	-3.9	2.8	-6.4	-0.5	0.000	5000
34	161.8	346.3	153.5	0.79	-5.7	-3.6	2.5	-6.5	-0.9	0.000	1000
5-dFCR	122.9	220.3	28.6	0.91	-3.1	-1.3	56.8	-5.2	-0.8	0.025	3390
benazepril	282.7	137.9	324.4	0.80	-5.3	-1.0	16.2	-4.1	0.1	0.001	4019
capecitabine	350.6	213.6	27.3	0.81	-4.7	-2.0	66.5	-4.6	-0.7	0.007	1000
cis-permethrin	201.9	31.2	293.7	0.87	-5.1	0.1	8214.0	-0.5	1.0	0.166	85
irinotecan	638.0	178.0	136.1	0.75	-7.0	-1.4	21.8	-6.0	0.6	0.000	765

${ }^{\text {a FOSA }}$ - hydrophobic component of the SASA; ${ }^{\text {b }}$ FISA - hydrophilic component of the SASA; CPISA - π (carbon and attached hydrogen) component of the SASA; dglob - globularity descriptor; ${ }^{\text {e }}$ HERG - predicted IC_{50} value for blockage of HERG K^{+} channels; ${ }^{\mathrm{f} B B}$ - predicted brain/blood partition coefficient; gMDCK - predicted apparent MDCK cell permeability ($\mathrm{nm} / \mathrm{sec}$); ${ }^{5} \mathrm{~K}_{\mathrm{p}}$ - predicted skin permeability; ${ }^{\mathrm{H}} \mathrm{HSA}$ - prediction of binding to human serum albumin; ${ }^{\mathrm{j}} \mathrm{J}_{\mathrm{m}}$ - Predicted maximum transdermal transport rate ($\mu \mathrm{g} \mathrm{cm}^{-2} \mathrm{hr}^{-1}$); ${ }^{\mathrm{k}} \mathrm{LD}_{50}$ - predicted value of median lethal dose ($\mathrm{mg} / \mathrm{kg}$).
(3,4-diallyloxy)cinnamic acid (18)

Methyl ester 12 [1] ($1.00 \mathrm{~g}, 5.15 \mathrm{mM}$) was dissolved in acetone (30 mL), then $\mathrm{K}_{2} \mathrm{CO}_{3}(2.84,20.60 \mathrm{mM}$) and allyl bromide $(2.49 \mathrm{~g}, 20.60 \mathrm{mM})$ were added. The mixture was stirred overnight at ambient temperature. The inorganic salts were filtered off, and solvents were evaporated to oily residue. Then, methanol (10 mL) was added, followed by the addition of a $\mathrm{NaOH}(0.41 \mathrm{~g}, 10.30 \mathrm{mM})$ solution in water (5 mL). After stirring in r.t. for 1 h , the mixture was diluted with water (100 mL) and washed twice with methylene chloride. The aqueous layer was acidified to pH 1 with conc. HCl aq. The product was extracted with methylene chloride ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried under anhydrous MgSO_{4}, evaporated, and dried in vacuo to give 18 as white solid. Yield 1.19 g (89%); m.p. $161.7^{\circ} \mathrm{C}\left(159-160^{\circ} \mathrm{C}\right.$ [2]); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.8 \mathrm{~Hz}, \mathrm{H}-10), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-16), 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-15), 6.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $15.8 \mathrm{~Hz}, \mathrm{H}-9$), 6.14-6.02 (m, 2H, H-18, H-21), 5.47-5.40 (m, 2H, H-19, H-22), 5.34-5.28 (m, 2H, H-19, H-22), 4.67-4.62 (m, 4H, $\mathrm{H}-17, \mathrm{H}-20$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6$ (C-8), 151.0 (C-14), 148.6 (C-13), 146.9 (C-10), 133.0 (C-18), 132.8 (C-21), 127.1 C-11), 123.1 (C-16), 118.0 (C-22), 117.9 (C-19), 114.9 (C-9), 113.3 (C-12), 112.8 (C-15), 69.9 (C-17), 69.7 (C-20); HRMS (ESI, m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 261.1127$; found 261.1139, calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 283.0946$; found 283.0951.

5'-deoxy-5-fluoro-2',3'-O-isopropylidenocytidine (27) ($0.110 \mathrm{~g}, 0.386 \mathrm{mM}$) and 3,4-di-O-allycaffeic acid (17) ($0,100 \mathrm{~g}, 0.39$ mM) were dissolved in dry pyridine (2 mL) and cooled to $-25^{\circ} \mathrm{C}$. To the stirred on an ice-salt bath solution the $\mathrm{POCl}_{3}(0.04$ mL) was added dropwise over a period of 5 min . with the temperature kept below $-20^{\circ} \mathrm{C}$. The reaction was stirred 4 hours at $-20^{\circ} \mathrm{C}$, then it was allowed to reach ambient temperature and stirred overnight. After extraction by water/methylene chloride system, the separated organic layer was dried over anhydrous MgSO_{4}, and the solvent was distilled off under reduced pressure. The crude oil was purified using flash column chromatography on a silica gel with hexanes: ethyl acetate 3:1 to $1: 1(\mathrm{v} / \mathrm{v})$, to give two main products: monosubstituted 28 with the yield of $0.067 \mathrm{~g}(33 \%)$ as a yellow solid and disubstituted 26 as a yellow solid. Yield of $260.016 \mathrm{~g}(5.4 \%) ;$ m.p. $83^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, 1 \mathrm{H}, J=$ $4.9 \mathrm{~Hz}, \mathrm{H}-6$, double bound in flucytosine ring), 7.78 (d, $2 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{H}-10$, double bond), 7.12 (dd, $2 \mathrm{H}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.9$ $\mathrm{Hz}, \mathrm{H}-16$, aromatic CA), 7.05 (d, $2 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}, \mathrm{H}-12$, aromatic CA), 6.86 (d, $2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-15$, aromatic CA), 6.61 (d, 2H, J $=15.4 \mathrm{~Hz}, \mathrm{H}-9$, double bond), 6.11-6.00 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-21$, allyl CH$), 5.78\left(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right.$, deoxyribose), 5.46-5.39 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-19, \mathrm{H}-22$, allyl CH_{2}), 5.33-5.25 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-19, \mathrm{H}-22$, allyl CH_{2}), 4.96 (dd, $1 \mathrm{H}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$, deoxyribose), $4.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-20, \mathrm{CH}_{2}\right), 4.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-17, \mathrm{CH}_{2}\right), 4.51$ (dd, $1 \mathrm{H}, \mathrm{J}_{1}=6.3 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$, deoxyribose), 4,42 (dq, $1 \mathrm{H}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$, deoxyribose), $1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right.$ or $\mathrm{H}-8^{\prime}$, isopropylidene CH_{3}), $1.43\left(\mathrm{~d}, J=6,6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$, deoxyribose CH_{3}), $1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7\right.$ ' or $\mathrm{H}-8^{\prime}$, isopropylidene CH_{3}); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125} \mathrm{MHz} \mathrm{CDCl} 3,\right) \delta 167.3(\mathrm{C}-8, \mathrm{C}=\mathrm{OCA}), 157.3(\mathrm{~d}$, $J_{\text {CF }}=13.4 \mathrm{~Hz}, \mathrm{C}-4$, flucytosine ring), 152.4 ($\mathrm{C}-2, \mathrm{C}=\mathrm{O}$ flucytosine ring), 151.4 (C-14, aromatic CA), 148.5 (C-13, aromatic CA), 146.7 (C-10, double bond), 140.4 (d, $J_{\mathrm{CF}}=247.7 \mathrm{~Hz}, \mathrm{C}-5$, flucytosine ring), 133.0 (C-18, allyl CH), 132.7 (C-21, allyl CH), 130.6 ($\mathrm{d}, J_{\mathrm{CF}}=34.1 \mathrm{~Hz}, \mathrm{C}-6$, flucytosine ring), 127.3 ($\mathrm{C}-11$, aromatic CA), 123.5 (C-16, aromatic CA), 118.1 (C-22, allyl CH_{2}), 118.1 ($\mathrm{C}-19$, allyl CH_{2}), 117.3 (C-9, double bond), 114.6 ($\mathrm{C}-6$ ', isopropylidene), 113.5 ($\mathrm{C}-12$, aromatic CA), 113.3 (C-15, aromatic CA), 94.7 ($\mathrm{C}-1^{\prime}$, deoxyribose), 85.6 (C-2', deoxyribose), 84.6 (C-3', deoxyribose), 84.3 ($\mathrm{C}-4^{\prime}$, deoxyribose), $70.1\left(\mathrm{C}-17, \mathrm{CH}_{2}\right)$, $69.7\left(\mathrm{C}-20, \mathrm{CH}_{2}\right), 27.1\left(\mathrm{C}-7^{\prime}\right.$ or $\mathrm{C}-8^{\prime}$, isopropylidene CH_{3}), $25.3\left(\mathrm{C}-7^{\prime}\right.$ or $\mathrm{C}-8^{\prime}$, isopropylidene CH_{3}), 19.3 ($\mathrm{C}-5^{\prime}$, deoxyribose CH_{3}); HRMS (ESI, m/z): calculated for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+} 770.3089$; found 770.3081, calculated for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{FNa}$ [M $+\mathrm{Na}^{+}$792.2908; found 792.2902.

5'-deoxy-5-fluoro-2',3'-O-isopropylidene-N43-(3,4-diallyloxy)cinnamoyl)cytidine (28)

To 5'-deoxy-5-fluoro-2',3'-O-isopropylidenocytidine (27) (1.10 g, 3.86 mmol) in methylene chloride (4 mL), $50 \% \mathrm{NaOH}(0.925$ g; 11.57 mM) was added. Then, after 1 min . stirring in ambient temperature, the solution (3,4-diallyloxy)cinnamoyl chloride (24) $(1.08,3.86 \mathrm{mM})$ in methylene chloride (6 mL) was added dropwise. The reaction mixture was heated with stirring for 1 h at $50^{\circ} \mathrm{C}$. After cooling, it was extracted with water/methylene chloride. The separated organic layer was dried over anhydrous MgSO_{4}, and the solvent was distilled off under reduced pressure. The crude product 28 was purified by flash column chromatography on a silica gel with hexanes: ethyl acetate $4: 1$ to $1: 1$ (v/v). Yield $1,85 \mathrm{~g}(91 \%) ; \mathrm{m} . \mathrm{p} .85^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz}, \mathrm{H}-10$, double bond), 7.56 (bs, $1 \mathrm{H}, \mathrm{H}-7, \mathrm{NH}$), 7.22-7.12 (m, $2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-16$, aromatic CA), $6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-15$, aromatic CA$), 6.15-6.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-21$, allyl CH$), 5.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{CHN}\right.$ deoxyribose), $5.55-5.38\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=15.3 \mathrm{~Hz}, \mathrm{H}-19, \mathrm{H}-22\right.$, allyl $\left.\mathrm{CH}_{2}\right), 5.30\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-19, \mathrm{H}-22\right.$, allyl $\left.\mathrm{CH}_{2}\right), 4.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$
$=5.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$, deoxyribose), $4.65\left(\mathrm{~d}, 4 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{H}-17, \mathrm{H}-20, \mathrm{CH}_{2}\right), 4.51$ (dd, $1 \mathrm{H}, J_{1}=J_{2}=4.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$, deoxyribose), 4.31 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$, deoxyribose), $1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}\right.$ or $\mathrm{H}-8^{\prime}$, isopropylidene CH_{3}), $1.41\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right.$, deoxyribose CH_{3}), 1.34 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7^{\prime}$ or $\mathrm{H}-8^{\prime}$, isopropylidene CH_{3}); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.9$ (C-14, aromatic CA), 148.5 (C-13, aromatic CA), 146.0 (C-10, double bound), 133.0 (C-18, allyl CH), 132.9 (C-21, allyl CH), 127.8 (C-11, aromatic CA), 123.3 (C-16, aromatic CA), 118.0 (C-19, C-22, allyl CH_{2}), 114.7 (C-6', isopropylidene), 113.3 (C-15, aromatic CA), 113.1 (C-12, aromatic CA), 93.9 (C1^{\prime}, deoxyribose), 85.3 (C-2', deoxyribose), 84.7 (C-3', deoxyribose), 83.5 (C-4', deoxyribose), 69.9 (C-17, CH 2), 69.7 (C-20, CH_{2}), 27.1 ($\mathrm{C}-7^{\prime}$ or $\mathrm{C}-8^{\prime}$, isopropylidene CH_{3}), 25.3 ($\mathrm{C}-7^{\prime}$ or $\mathrm{C}-8^{\prime}$, isopropylidene CH_{3}), 19.1 ($\mathrm{C}-5^{\prime}$, deoxyribose CH_{3}); HRMS (ESI, m / z): calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$528.2146; found 528.2145, calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{FNa} \quad[\mathrm{M}+\mathrm{Na}]^{+} 550.1965$; found 550.1964.

5'-deoxy-5-fluoro- N^{4}-(3,4-diallyloxy)cinnamoyl)cytidine (29)

To 5'-deoxy-5-fluoro-2',3'-O-isopropylidenocytidine (27) ($0.48 \mathrm{~g}, 1.68 \mathrm{mmol}$) in methylene chloride (2 mL), $50 \% \mathrm{NaOH}(0.27$ $\mathrm{g}, 3.37 \mathrm{mM}$) was added. Then, after 1 min . stirring in ambient temperature, the solution of (3,4-diallyloxy)cinnamoyl chloride (24) ($0.47 \mathrm{~g}, 1.69 \mathrm{mM}$) in methylene chloride (3 mL) was added dropwise. The reaction mixture was heated with stirring for 1 h at $50^{\circ} \mathrm{C}$. After cooling, 5 M HCl aq. $(2.5 \mathrm{~mL})$ and methanol (2 mL) were added to reaction mixture and stirred 20 min . in ambient temperature. Due to the lack of progress, methylene chloride was distilled off and another portion of methanol (10 mL) and conc. HCl aq. $(1.5 \mathrm{~mL})$ were added to reaction mixture. After additional 1 h stirring, it was diluted with an aqueous saturated sodium bicarbonate solution, then extracted with methylene chloride. The organic layer was dried over anhydrous MgSO_{4}, and the solvent was distilled off under reduced pressure. The crude product 29 was purified by flash column chromatography on a silica gel with methylene chloride: methanol 50:1 to 25:1. Yield 0.19 g (23\%); m.p. $59^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{H}-10$, double bond), $7.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-16$, aromatic CA), $7.13(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{H}-12$, aromatic CA), $6.84(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-15$, aromatic CA), 6.11-6.01 (m, 2H, H-18, H-21, allyl $\mathrm{CH}), 5.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}, \mathrm{CHN}\right.$ deoxyribose), 5.47-4.38(m,2H$, \mathrm{H}-19, \mathrm{H}-22$, allyl CH 2), 5.32-5.27 (m, 2H, H-19, H-22, allyl CH_{2}), $4.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-17, \mathrm{CH}_{2}\right.$), $4.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-20, \mathrm{CH}_{2}\right), 4.30\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$, deoxyribose), 4.27 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$, deoxyribose), 3.86 (bs, 1H, H-3', deoxyribose), 3.56 (bs, 1 H, deoxyribose OH), $1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6,5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}, \mathrm{CH}_{3}\right.$ deoxyribose), ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.1$ (C-14, aromatic CA), 148.4 (C-13, aromatic CA), 146.6 (C-10, double bond), 133.0 (C-18, allyl CH), 132.8 (C-21, allyl CH), 127.5 (C-11, aromatic CA), 123.2 (C-16, aromatic CA), 118.0 (C-19, C-22, allyl CH2 $), 113.7$ (C-12, aromatic CA), 113.3 (C-15, aromatic CA), 92.9 (C-1', deoxyribose), 81.9 (C-4', deoxyribose), 76.2 (C-2', deoxyribose), 75.3 (C-3', deoxyribose), $70.0\left(\mathrm{C}-17, \mathrm{CH}_{2}\right)$, $69.6\left(\mathrm{C}-20, \mathrm{CH}_{2}\right)$, $18.8\left(\mathrm{C}-5^{\prime}\right.$, deoxyribose $\left.\mathrm{CH}_{3}\right)$; HRMS (ESI, m/z): calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+} 488.1833$; found 488.1830.
[1] N. Bukowski, J. Pandey, L. Doyle, T. Richard, C .Anderson and Y. Zhu, Bioconjug Chem. 2014, 25(12), 2189.
[2] H. Tozuka, M. Ota, H. Kofujita and K. Takahashi, J. Wood Sci. 2005, 51, 48.

(1) is

11^{11}

Figure $\mathbf{S 5} .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 8}\left(\mathrm{CDCl}_{3}\right)$

Figure ST . ${ }^{1} \mathrm{H}$ NMR spectrum of compound $29\left(\mathrm{CDCl}_{3}\right)$

Figure $\mathbf{S 9} .^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\right.$ DMSO- $\left._{6}\right)$

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ (DMSO- d_{6})

Figure $\mathrm{S} 18 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}\left(\mathrm{CDCl}_{3}\right)$

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of compound (DMSO- d_{6})

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $6\left(\right.$ DMSO-d $\left.{ }_{6}\right)$

Figure S23. HRMS data of compound 1

Monoisotopic Mass. Even Electron Ions
577 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used
C: 0-60 H: 0-70 N: 0-6 O: 0-15 F: 1-1
$210914 _7 _81 _1 \mathrm{~A} 16(0.177) \mathrm{Cm}(15: 20-(3: 8+131: 145))$ TOF MS ES+
$100-518.1580$
100
19.1609

Monoisotopic Mass. Even Electron lons
559 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-60 } & \mathrm{H}: 0-70 & \mathrm{~N}: 0-6 & \mathrm{O}: 0-15 & \mathrm{~F}: ~ 1-1 & \mathrm{Na}: 1-1\end{array}$
210914_7_81_1A $16(0.177) \mathrm{Cm}(15: 20-(3: 8+131: 145))$ TOF MS ES $)$
$\begin{array}{ll}100 & 540.1398\end{array}$

Figure S24. HRMS data of compound 2

```
Monoisotopic Mass. Even Electron Ions
5 7 7 \text { formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass}
Elements Used
C:0-60 H: 0-70 N: 0-6 O: 0-15 F: 1-1
210914_7_64_1A 16 (0.177) Cm (15:23-(1.7+142:150))_ TOF MS ES+
100-518.157¢
                                    519.1608
    | 501.9659503.9613 506.1074 [ 510.3752 514.1066516.1586 518.0930 
    500.0
Monoisotopic Mass. Even Electron Ions
559 formula(e) evaluated with }2\mathrm{ results within limits (all results (up to 1000) for each mass)
Elements Used
C: 0-60 H: 0-70 N: 0-6 O:0-15 F: 1-1 Na: 1-1
210914_7_64_1A 16 (0.177) Cm (15:23-(1:7+142:150)) TOF MS ES+
100 540.1398
                                    541.1426
\begin{tabular}{lllllllllll}
0 & 533.3264 & 535.1061 & 537.1318 & 537.6331 & & 542.1452 & 543.1475 & 545.1183545 .6191 & 547.1196 & 550.1320 \\
\hline 532.0 & 534.0 & 536.0 & 538.0 & 540.0 & 542.0 & 544.0 & 546.0 & 548.0 & 550.0
\end{tabular}
```

Figure S25. HRMS data of compound $\mathbf{3}$

```
Monoisotopic Mass. Even Electron Ions
624 formula(e) evaluated with }3\mathrm{ results within limits (all results (up to 1000) for each mass)
Elements Used
C: 0-60 H: 0-70 N: 0-6 O: 0-15 F: 1-1
```



```
576.1631
577.1664
0}
```



```
Monoisotopic Mass. Even Electron Ions
616 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:
\(\begin{array}{llllll}\text { C: 0-60 } & \mathrm{H}: 0-70 & \mathrm{~N}: 0-6 & \mathrm{O}: 0-15 & \mathrm{~F}: 1-1 & \mathrm{Na}: 1-1\end{array}\)
\(210914 \_\)7_82_2A \(16(0.177) \mathrm{Cm}(14: 22-(3: 6+169: 194)) \quad\) TOF MS ESt
100


Figure S26. HRMS data of compound 4


Figure S27. HRMS data of compound 5
```

Monoisotopic Mass. Even Electron Ions
545 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used
C: 0-60 H: 0-70 N: 0-6 O: 0-15 F: 1-1
210914_7_31_2A 16(0.177) Cm(13:24-(4.8+43:50))_ TOFMM ES+
100-492.4418
493.1449
0 483.2339 485.1145 4.488.1498 4.400.1340 491.9218
Monoisotopic Mass. Even Electron Ions
5 3 1 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used
C: 0-60 H: 0-70 N: 0-6 O:0-15 F: 1-1 Na: 1-1
210914 7 312 216(0.177) Cm(13.24-(4:8+43:50))_ 1:TOF MS ESt
100 54.1234
515.1266

| 0 | 503.1273 | 505.3212505 .9503 | 508.0279 | 511.1155 | 512.1146 | | 516.1287 | 519.1016 | 520.1046 | 521.9871 | 524.1268 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

Figure S28. HRMS data of compound 6```

