Probing capping mechanisms and polymer matrix loading of biogenic vaterite CaCO₃-Ag hybrid through X-ray photoelectron spectroscopy (XPS)

Mohammad Hossein Azarian¹, Supinya Nijpanich², Narong Chanlek², Wimonlak Sutapun^{1,3*}

¹ Research centre for Biocomposite Materials for Medical, Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

² Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand

³ School of Polymer Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

*Corresponding Author Email: wimonlak@sut.ac.th

Supplementary file

Atomic concentration determination

To determine the relative concentrations of constituents on the sample surface, the peak area and peak height sensitivity factors were utilized. For homogeneous sample, the number of photoelectrons per second in a specific spectra peak is given by:

$I = n f \sigma \lambda \theta y A T$

where n is the number of atoms of the element per cm³ of the sample, f is the x-ray flux in photons/cm²-sec, σ is the photoelectric cross-section for the atomic orbital of interest in cm², θ is an angular efficiency factor for the instrumental arrangement based on the angle between the photon path and detected electron, y is the efficiency in the photoelectric process for formation of photoelectrons of the normal photoelectron energy, λ is the mean free path of the

photoelectrons in the sample, A is the area of the sample from which photoelectrons are detected, and T is the detection efficiency for electrons emitted from the sample.

For our work, the atomic concentration of each element was calculated using the following equation.

Atomic Concentration =
$$\frac{\frac{I_x}{S_x \times T_x}}{\sum_{i=1}^{n} \frac{I_i}{S_i \times T_i}} \times 100$$

where I is intensity or area pea, S is sensitivity factor (SF), and T is time per second. The relative sensitivity factor (RSF) and corrected values according to the machine of each sample are shown in the following table.

	C1s	N1s	O1s	Na1s	Cl2p	Ca2p	Ag3d
RSF	0.314	0.499	0.733	1.102	0.954	1.927	6.277
Corrected RSF	36.823	58.53	85.994	129.358	126.513	250.487	833.710

Table S1. The relative sensitivity factor (RSF) and corrected values

Scanning Electron Microscopy

The morphology and size of vaterite CaCO₃–Ag microspheres were observed through a field emission scanning electron microscope (FE-SEM) (JEOL JSM 7800F Tokyo, Japan) coupled with energy-dispersive X-ray spectroscopy (EDX). The samples were coated with gold before SEM measurements. The statistical image processing was performed in three stages: (1) the microsphere dimensions were measured through Digi Mizer software (Media Cybernetics, Rockville, MD), (2) size distribution (PSD) determination using software Minitab 17.2.0 (Minitab Ltd., Coventry, U.K.) to obtain the mean diameter (D_m) and their respective histograms, and (3) the elemental composition of the vaterite CaCO₃–Ag microspheres by ESX in the mapping mode.

ICP-OES

The release of AgNPs in both closed-like and open-like systems was investigated under slightly acidic pH (pH 6, acetate buffer). In the closed-like conditions, the samples were incubated in the corresponding buffer solutions at 37 °C with a concentration of 2 mg/mL. At various time intervals (1, 6, 12, 24, and 48 h), an aliquot equal to 5% of the volume was collected for silver quantification using ICP-OES. The collected aliquots were then replaced with an equal volume of fresh buffer to maintain the same final volume. In the open-like conditions, both films and powders were incubated in the respective buffer at 37 °C with a concentration of 2 mg/mL. Like the closed-like conditions, at various time intervals (1, 6, 12, 24, and 48 h), an aliquot equal to 75% of the total volume was collected for silver quantification using ICP-OES. The collected for silver quantification using ICP-OES. The collected for silver at 37 °C with a concentration of 2 mg/mL. Like the closed-like conditions, at various time intervals (1, 6, 12, 24, and 48 h), an aliquot equal to 75% of the total volume was collected for silver quantification using ICP-OES. The collected aliquots were replaced with an equivalent amount of fresh buffer to maintain the final volume. All experiments were carried out in triplicate.

BET Analysis

The Brunauer, Emmett, and Teller (BET) surface area measurements and porosity analysis were carried out by Micromeritics 3Flex BET analyser. All samples were degassed at 40 °C for 24 h in a vacuum before the examination.

Morphology

Figure S1. SEM images of CaCO₃-Ag-CMC and CaCO₃-Ag-PSS (500x magnification). Histogram of CaCO₃ microparticles, AgNPs and their size distribution.

	Region	Binding	FWHM	Height	Area
		energy (eV)	(eV)		
	C1s	281.20	2.00	157	367
		283.44	2.00	327	762
		284.80	2.00	535	1248
		287.48	2.00	229	533
ESP		289.07	1.66	521	1006
	01s	529.21	1.80	1000	2099
		530.97	1.80	3642	7642
		532.58	1.80	177	3.67
	Ca2p	346.34	2.18	2106	5444
		349.94	2.25	1040	2722
	N1s	399.28	2.01	78	182
		282.34	2.00	492	1148
		284.00	1.90	665	1474
		286.33	1.56	407	742
	C1s	287.62	1.93	235	530
		289.54	1.79	457	957
	O1s	529.87	1.80	70	1485
CaCO ₃ -Ag-CMC		531.7	1.82	3157	6607
		533.08	1.80	943	1998
	Ca2p Ag3d	347.06	2.18	1692	4268
		350.66	2.24	817	2134
		367.80	2.09	169	410
		368.84	2.03	128	303
		373.80	2.07	119	287
		374.84	1.90	96	212
	C1s	282.78	2.00	657	1531
		284.80	2.00	1038	2419
		286.6	2.00	312	727
		189.86	2.10	273	667
	O1s	529.80	1.80	623	1307
CaCOΔg-PSS		531.54	1.80	2545	5340
		532.58	1.91	1067	2379
	Ca2p	347.29	1.96	1423	3275
		350.89	2.16	649	1637
	Ag3d	367.80	1.90	145	321
		368.99	1.80	204	427
		373.80	2.00	96	225
		374.99	1.76	146	299
		284.80	1.14	548	730
	C1s	286.29	1.34	4388	6879
Neat CMC		287.73	1.23	697	1002
		530.93	1.38	987	1587

 Table S2.
 Table summarizing XPS data analysis results.

	01s	532.72	1.52	5782	10215
		535.52	1.60	129	241
	Na1s	1071	1.65	571	1094
		284.80	1.40	1607	2624
CMC/CaCO ₂ -Ag-CMC	C1s	286.33	1.40	2097	3432
		287.91	1.87	300	652
	01s	530.96	1.53	439	788
		532.69	1.70	2710	5371
		346.84	1.37	192	306
	Ca2p	347.71	1.58	126	236
		350.44	1.37	96	153
		351.31	1.94	52	118
	Ag3d	367.57	1.52	157	278
		373 57	2.00	84	195
	Na1s	1071 73	1.80	106	222
	11015	1073 63	1 75	104	211
	Cl2n	1075.05	1.70	78	15/
		100.24	1.76	19	77
		200 56	1.50	1/2	262
		200.30	1.58	72	121
		202.15	1.55	2323	5007
	C1s	284.00	1.25	1883	2610
		280.42	1.15	260	102
	016	521.28	1.37	644	1041
	013	522.74	1.59	2245	1041
_		246.94	1.39	147	4115
CMC/CaCO ₃ -Ag-PSS	Ca2p	247.69	1.39	147	237
		250.44	1.50	02	110
		251.20	1.11	92	119
	Ag3d	267.05	0.88	121	124
		272.05	1.50	101	177
	Cl2n	109 72	2.51	101	176
	Cizp	200.22	2.36	22	00
	C1c	200.32	2.20	1110	2907
		204.00	1.70	1449	2007
Neat PVA	016	280.33	1.80	1412	2903
	015	284.80	1.02	3320	7005
		204.00	1.77	3373	0014
	016	Z00.49	1.42	145 F16	230
_	015	531.31	1.80	510	026
PVA/CaCO ₃ -Ag-CMC	<u> </u>	532.09	1.80	440	930
	Cazp	347.23	1.83	298	037
	A ~ 2 d	350.83	2.UL	200	310
	Авза	307.82	1.55	300	103
		3/3.82	1.51	2/9	493
		284.80	1.81	2995	9313
	01	288.04	20.1	111	2.94
	OIS	531.18	1.75	597	1217
PVA/CaCO ₃ -Ag-PSS		532.22	1.82	468	1004
	Ca2p	347.28	1.91	331	/36
		350.88	2.05	154	368

Ag3d	367.80	1.86	243	527
	373.80	1.74	182	369