
RSC Advances S1

Electronic Supplementary Information for

An Automated Protocol to Construct Flexibility Parameters for Classical

Forcefields: Applications to Metal-Organic Frameworks

Reza Ghanavati+, Alma C. Escobosa+, and Thomas A. Manz*

Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM 88001

*corresponding author email: tmanz@nmsu.edu. +These authors contributed equally to this work.

Contents

S1. Torsion model potential for dihedrals with linear equilibrium bond angle

S2. Python function to determine which dihedral middle bonds are contained in rings

S3. Detailed linear equations for flexibility parameters

S4. Python function to compute lambda best

S5. Test of training datasets not including AIMD data

S6. Test of torsion scans for all instances of a rotatable dihedral type

S7. Histograms showing the number of instances per type

S8. Additional LASSO results for MOFs without rotatable dihedrals

S.9 Images of MOF crystal structures

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2024

mailto:tmanz@nmsu.edu

RSC Advances S2

S1. Torsion model potential for dihedrals with linear equilibrium bond angle

 A dihedral in which one or both of the equilibrium bond angles is linear (or close to linear)

will be referred to here as a ‘linear dihedral’. For linear dihedrals, the leading angle-damped

dihedral torsion (ADDT) modes can be derived as follows. First, we start with the allowed angle-

damped dihedral torsion potential forms as given in ref [S1]:

  
   

 ABC BCD

ABC BCD

2

ABC BCDform _1 eq

form_1 ABC BCD ABCD ABCD ABCDeq eq

ABC BCD

f fk
U , , h h

2 f f

 

 

 

  
     =  −           

 (1)

  
   

 ()ABC BCD

ABC BCD

ABC BCD eq

form_2 ABC BCD ABCD form _ 2 ABCD ABCDeq eq

ABC BCD

f f
U , , k g g

f f

 

 

 

 
    =  −         

 (2)

(Here,  
ABC ABCf  is a generic placeholder for some angle-damping function(s) that depends on the

bond angle’s value. Moreover, we could use different specific functions for  
ABC ABCf  in the form_1

and form_2 potentials.) Because the torsion barrier becomes zero when the bond angle is linear,

we have

eq ABC
ABC

eq

ABClim f 0
 →

  =  (S3)

To avoid division by zero for linear dihedrals, we must modify the two forms above as

()

ABC BCD

form _1

form _1 2
eq eq

ABC BCD

k
k

f f 

=
       

 (S4)

        ()
ABC BCD

2form _1linear _ dihedral

form _1 ABC BCD ABCD ABC BCD ABCD

k
U , , f f h

2
     =    (S5)

ABC BCD

form _ 2

form _ 2 eq eq

ABC BCD

k
k

f f 

=
       

 (S6)

        
ABC BCD

linear _ dihedral

form _ 2 ABC BCD ABCD form _ 2 ABC BCD ABCDU , , k f f g     =    (S7)

Since eq

ABCD is undefined for linear dihedrals, form_2 for linear dihedrals omits the eq

ABCDg
   term.

 In a procedure analogous to that used for the nonlinear dihedrals in ref [S1], for the linear

dihedrals we first insert    ABCD ABCDh sin m  =  and    
ABC

ABC

ABC A Cm Bf f Ж  = into eqn (S5) to get

    ()  ()  
2 2

ABC BCD m

m,sin

form _1linear _ dihedral ABC BCD 2

sin_ form _1 ABCD m ABCDABC BCD

k
U , , f f iЖ Ж Ж Ж s n m

2
 =  (S8)

where the kangal is

  AABC BCcos 2Ж =  (S9)

This procedure is repeated for    ABCD ABCDh cos m  =  to give:

    ()  ()  
2 2

ABC BCD m

m,cos

form _1linear _ dihedral ABC BCD 2

cos_ form _1 ABCD m ABCDABC BCD

k
U , , f f oЖ Ж Ж Ж c s m

2
 =  (S10)

Clearly,

 linear _ dihedral eq eq linear _ dihedral eq eq

sin_ form _1 ABC BCD ABCD cos_ form _1 ABC BCD ABCDU , , U , , 0Ж Ж Ж Ж    =      (S11)

Since the potential energy increases whenever the system’s geometry is moved away from its

minimum energy (i.e., the optimized equilibrium ground-state geometry), this requires the

constraints

 m,sin

form _1k 0 (S12)

 m,cos

form _1k 0 (S13)

RSC Advances S3

Substituting

  
 ABCD2

ABCD

1 cos 2m
sin m

2

− 
 = (S14)

  
 ABCD2

ABCD

1 cos 2m
cos m

2

+ 
 = (S15)

into eqn (S8) and (S10) gives

    ()  ()
 m,sin

for

C

m _1 ABCDlinear _ dihedral ABC BCD

sin_ form _1 A

2 2

ABC BC mD ABC B DBCD m

k 1 cos 2m
U ,Ж Ж Ж Ж, f f

2 2

 − 
 =  

 
 (S16)

    ()  ()
 m,cos

for

C

m _1 ABCDlinear _ dihedral ABC BCD

cos_ form _1 A

2 2

ABC BC mD ABC B DBCD m

k 1 cos 2m
U ,Ж Ж Ж Ж, f f

2 2

 + 
 =  

 
 (S17)

 Since    2 2

ABCD ABCDsin m cos m 1 +  = , linear _ dihedral

sin_ form _1U and linear _ dihedral

cos_ form _1U are not fully linearly

independent. Consequently, to span the entire possible space of dihedral potential energy

functions, it is necessary to also include dihedral potentials of form_2. This is obvious, because

 linear _ dihedral

sin_ form _1 ABCDABC BCDU ,Ж,Ж  and  linear _ dihedral

cos_ form _1 ABCDABC BCDU ,Ж,Ж  are both even functions of
ABCD . The odd

functions of
ABCD can be included by choosing

    ()  ()  linear _ dihedral ABC BCD

form _ 2 ABC BCD ABCD form _ 2 m m ABCD

2 2

ABC BCD instanceU , , k f f sS in 2mЖ Ж   =  (S18)

instance 1S =  (S19)

 The form of eqn (S18) was specifically chosen so that the angle-damping prefactor

 ()  ()
2 2

ABC

ABC BCD

m m BCDf Ж Жf has the same form as in eqn (S16)–(S17) above, and also so that the

 ABCDsin 2m function in eqn (S18) complements the  ABCDcos 2m function appearing in eqn (S16)–

(S17) above. In eqn (S18), the lowest allowed power of
ABCЖ and

BCDЖ must be ≥ 2 (i.e., strictly

greater than one) to ensure the torsion force goes to zero when the bond angle reaches its

equilibrium linear value. To ensure combined angle-dihedral coordinate branch equivalency (see

ref [S1]), the sin function must contain an even multiple of
ABCD to match the even power of

ABCЖ

in  ()C

ABC

m

2

ABЖf . These observations show that eqn (S18) has the proper form.

  linear _ dihedral

form _ 2 ABC BCD ABCDU , ,   involves the sign
instanceS , because  linear _ dihedral

form _ 2 ABC BCD ABCDU , ,   is an odd

function of
ABCD . In general, different dihedral instances of the same dihedral type can have

different values of
instanceS . Because

eq is undefined for linear dihedrals, the value of
instanceS cannot

be assigned using the sign of
eq for linear dihedrals. For linear dihedrals, the value of

instanceS must

be determined by detecting local mirror-image environments (i.e., local chiral enantiomer

environments) for different dihedral instances of the same dihedral type. Owing to this

complication, we did not include  linear _ dihedral

form _ 2 ABC BCD ABCDU , ,   in the flexibility models parameterized

in this article.

 In general, the ADDT_linear model potential may contain contributions from m = 1, 2, 3,

etc. In practice, this will be truncated at some order. For calculations presented in this article, our

ADDT_linear model included the following two modes:

   () ()
 ABCDADDT _ linear ABC BCD

mod e _ 8 ABC BCD ABCD 1

2 2

1

1 cos 2
G , , f f

2

 − 
   =  

 
 (S20)

RSC Advances S4

   () ()
 ABCDADDT _ linear ABC BCD

mod e _ 9 ABC BCD ABCD 1

2 2

1

1 cos 2
G , , f f

2

 + 
   =  

 
 (S21)

    ADDT_linear 8 ADDT_linear

mode_8 ABC BCD ABCD mode_8 ABC BCD ABCDU , , k G , ,   =    (S22)

    ADDT_linear 9 ADDT_linear

mode_9 ABC BCD ABCD mode_9 ABC BCD ABCDU , , k G , ,   =    (S23)

The ADDT_linear potential modes were numbered as modes ‘8’ and ‘9’, to keep them separate

from the seven modes used in the ADDT_rotatable model potential. Comparing eqn (S20)–(S23)

to eqn (S16)–(S17) shows that

 8 1,sin

form _1k k 2 = (S24)

 9 1,cos

form _1k k 2 = (S25)

 In this work, we treated MOFs according to two cases. Case # 1: When the after-pruning

dihedral types for a particular MOF contained no linear dihedral types, then we did not include

any ADDT_linear model potential in the parameterized flexibility model for this MOF. In this

case, when we generated a before-pruning flexibility model for comparison purposes (to quantify

the effects of dihedral pruning on the R-squared and RMSE values) then we also did not include

any linear dihedral types (or ADDT_linear model potential) for this MOF in the before-pruning

parameterization. Case # 2: When the after-pruning dihedral types for a particular MOF contained

one or more linear dihedral types, then we included the ADDT_linear model potential in the

parameterized flexibility model for this MOF. In this case, when we generated a before-pruning

flexibility model for comparison purposes (to quantify the effects of dihedral pruning on the R-

squared and RMSE values) then we also included all linear dihedral types (and the ADDT_linear

model potential) for this MOF in the before-pruning parameterization.

S2. Python function to determine which dihedral middle bonds are contained in rings

 Figure S1 shows a rigorously correct and complete Python function we wrote that

determines which middle bonds are parts of rings (i.e., bond path cycles) and which are not. The

algorithm we used is briefly described as follows. The function takes three inputs:

(1) The list of bonds that comprise middle bonds in (active) dihedral instances; this list is called

‘middle_bonds_dihedrals’.

(2) The list of first neighbor atom images (aka ‘first_neighbor_atoms’) for every atom in the

reference unit cell. For example, suppose that atom 43 in the reference (i.e., (0,0,0)) unit

cell is directly bonded to the (1,0,0) image of atom 10; then this would be stored as an entry

[10,(1,0,0)] in the list of first neighbors to atom 43.

(3) The number of atoms (Natoms) in the reference unit cell.

Here the term ‘atom image’ refers to an entry such as [10,(1,0,0)] that contains the atom index (in

this case = 10) and the unit cell translation indices (in this case = (1,0,0)). The middle bond of a

dihedral instance is read and the two corresponding atom images forming this bond are

‘atom_image_A’ and ‘atom_image_B’. Next, we initialized four working lists:

(a) ‘visited_A’ and ‘visited_B’ lists that are each initialized to [atom_image_A,

atom_image_B],

(b) A ‘not_searched_A’ list that is initialized to [atom_B], and a ‘not_searched_B’ list

that is initialized to [atom_A].

RSC Advances S5

 The algorithm contains an outer, middle, and inner layer of nested loops. The outer loop is

a FOR loop that runs over the middle bonds in the dihedral instances. The middle loop is a WHILE

loop that determines whether a particular middle bond is contained within a ring or not. The two

inner loops run over the first neighbor atoms of current_atom_A and current_atom_B, which are

the current atoms along the bond paths being searched and the first elements of not_searched_A

and not_searched_B, respectively.

 Current_atom_image_A is set to the first entry in not_searched_A. The inner loop for

current_atom_A works as follows. Using the first_neighbor_atoms list, the algorithm identifies all

of the first neighbors of current_atom_image_A. For example, if current_atom_image_A =

[43,(0,3,1)] then one of its first neighbors is identified as [10,(1,0,0) + (0,3,1)] = [10,(1,3,1)], where

the image indices in current_atom_image_A and first_neighbor_atoms are added together to get

‘atom image’ of the first neighbor (aka ‘adjusted_neighbor_atom_image’) of

current_atom_image_A. If neither current_atom_image_A nor adjusted_neighbor_atom_image

equals atom_image_B, then if adjusted_neighbor_atom_image is in visited_B then a ring has been

located and the inner loop iterations break. Otherwise, if adjusted_neighbor_atom_image is not in

visited_A, then it is appended to visited_A and also appended to not_searched_A if the edge depth

is ≤ 2Natoms. After looping over all of the first neighbor atom images of current_atom_A, the first

entry in not_searched_A is removed because it has now been searched.

 Current_atom_image_B is set to the first entry in not_searched_B. The algorithm then

proceeds to the inner loop for current_atom_B. This works analogously to the inner loop iterations

for current_atom_A described in the previous paragraph, except the roles of ‘A’ and ‘B’ are now

swapped.

 Here, the ‘edge_depth’ refers to the number of bonds in the shortest bond path connecting

current_atom_image_A to atom_image_A along the search path, or in the shortest bond path

connecting current_atom_image_B to atom_image_B along the search path. The algorithm

searches paths emanating from each end of the middle bond to an edge_depth of 2Natoms. By

adding the edge depths from each end, a total edge depth of 2Natoms + 2Natoms = 4Natoms is searched.

This guarantees the algorithm searches for all bond path cycles containing up to 4Natoms, which

guarantees that a bond path cycle (aka ring) will be discovered if one passes through the middle

bond being investigated. The algorithm finds a ring if any bond path emanating from the A end of

the middle bond joins up with any bond path emanating from the B end of the middle bond. The

algorithm determines a middle bond is not part of any ring if it exhausts all search paths on either

side (i.e., either not_searched_A or not_searched_B becomes empty) or it reaches a searched edge

depth of 2Natoms on both sides.

RSC Advances S6

Figure S1: Python function to determine which dihedral middle bonds are contained in rings.

RSC Advances S7

S3. Detailed linear equations for flexibility parameters

 First, we need to read the files containing lists of internal coordinate types and instances,

which were generated using the procedure described in Section 5 of the main text. Specifically,

files containing lists of the following are read: atom types; bond types; bond instances; angle types;

angle instances; dihedral types; dihedral instances; classification of each dihedral type as non-

rotatable, hindered, rotatable, or linear; training and validation geometries and their quantum-

mechanically-computed atom-in-material forces; the (experimental) lattice vectors; rigid torsion

scan geometries (and quantum-mechanically-computed single-point energies) for one instance of

each rotatable dihedral type. Then, the internal coordinates (i.e., bond lengths, UB lengths, angles,

and dihedrals) are parsed into nested arrays containing all the interactions grouped by type. The

angles list contains a flag indicating whether the angle is part of a 3-membered or 4-membered

ring or not. The bond-bond cross terms use the full list of angles, while the angle-bending potential

skips any angles that are part of a 3-membered or 4-membered ring.

 Our linear regression problem contains two kinds of observation variables in the combined

training dataset: (a) quantum-mechanically-computed atom-in-material forces and (b) quantum-

mechanically-computed total energies. The quantum-mechanically-computed atom-in-material

forces are from the QM-optimized geometry, AIMD geometries, and finite-displacement ‘Hessian’

geometries. There are a total of

 atoms force_geomsf_rows 3N N= (S26)

force components in the forces training dataset. The quantum-mechanically-computed total

energies are from the rigid torsion scan (RTS) geometries and comprise the rotatable dihedrals

training dataset.

 Since the forces are zero at the equilibrium geometry, the no-intercept linear regression

model is used. Therefore, to be able to use a no-intercept model, we centered the observation

variable (i.e., the QM-computed energy) for rotatable dihedral torsions by subtracting the average

value:

rdtN T

SPG

avg i, j

i 1 j 1rdt

1
E E

TN = =

=  (S27)

T=36 is the number of equally spaced dihedral values along each rigid torsion scan. Nrdt is the

number of rotatable dihedral types. Here, SPG

i, jE is the quantum-mechanically-computed total energy

of the single-point geometry (SPG) corresponding to the jth displaced geometry of the ith rotatable

dihedral type.

 This gives the following observation variables for the combined training dataset QMY

comprised of the forces training dataset QM forces_Y and the rotatable dihedrals training dataset
QM energies_Y :

QM forces

QM

QM energies

_

_

Y
Y

Y

 
=  
 

 (S28)

RSC Advances S8

atoms

QM

atom1,x

QM

atom1,y

QM

atom1,zQM forces

QM

atom2,x

QM

N ,z

_

F

F

F
Y

F

F

 
 
 
 
 =
 
 
 
  

 (S29)

()

()

()

()
rdt

SPG

1,1 avg

SPG

1,2 avg

QM energies SPG

1,3

_

avg

SPG

N ,T avg

E E

E E

Y E E

E E

 −
 
 −
 
 = −
 
 
 

−  

 (S30)

Natoms is the number of atoms in the material’s unit cell. As a result, QM f e_ orc sY is a column vector

with ()QM forces

atoms forces_g

_

eomslength Y 3(N) N  =  , and QM ener es_ giY is a column vector with

QM energie

d

_ s

r tlength Y TN  =  .

The predictor variables also contain two sets of data: one for forces fitting and the other for

the rotatable dihedrals fitting. Let M be a matrix containing values of the predictor variables. This

leads to the following linear model:

 ()
p

pred

i ij j

j 1

Y M
=

=  (S31)

where i is the observation index and j is the model parameter index. In our case, each model

parameter is a force constant for a flexibility term:

 j jk = (S32)

The total number of attempted force constants in the model is p. Here, the term ‘total number of

attempted force constants’ refers to the number of flexibility terms (i.e., number of force constants)

that were ‘attempted’ before any of these were zeroed out by the bounds or regularization

constraints.

 Because the atom-in-material forces for the AIMD-generated geometries depend on all of

the force constants while the RTS energies depend only on the rotatable dihedral force constants,

it follows that the predictor variables matrix M has the form

()() ()()AFCs rd_AFCs AFCs rd_AFCs AFCs1: f_rows,1: N N 1: f_rows, 1 N N : N

0

 − + −
 =
  

M1 M1
M

M2
 (S33)

It directly follows that

   ()AFCssize f_rows, N=M1 (S34)

   ()rdt rd_AFCssize TN ,N=M2 (S35)

AFCsN is the total number of attempted force constants. rd_AFCsN is the number of rotatable dihedral

attempted force constants.

 To define the M1 , we need to start from the following relation:

RSC Advances S9

      
p

bonded bonded,new eq

A A cluster B j A j B h

j 1

F U R k G R ,
=

   = − = −  
    (S36)

Comparing eqn (S31) and (S32) to (S36) reveals that

()    

atoms

eq

j B h3N (1) 3(1) , j
M1 G R ,

− + − +
 = − 
 

 (S37)

where  is the geometry number.  = 1, 2, 3 for x, y, z force components of atom , respectively.

 eq

h are the equilibrium values of the internal coordinates. The derivatives in eqn (S37) can be

computed either numerically (using finite difference approximation) or analytically. In this article,

we used finite difference approximation with 0.0001 Å displacement of an atom along x, y, or z to

compute these derivatives:

()       eq eq

j B h j B hj
ˆG R ,R d x , G R ,R ,G

dR

    

    





   +   −     
=


 (S38)

where j is the interaction index;  is the geometry index;  is the atom index;  = 1, 2, 3 for x, y,

z components, respectively; d is the displacement distance; x̂

 is a unit vector.

For the predictor variables in rotatable dihedrals fitting, as discussed in Sections 2.2 and

7.1, we can have up to seven active modes for each rotatable dihedral. We first determine which

dihedral modes are active for each rotatable dihedral type using the method described in Section

7.1. Then let SPG

,i, ,mG
  be the k-free flexibility term for the th dihedral instance’s th smart-selected

torsion mode  m 1,2,...7  of the ith rotatable dihedral type of the th geometry in the rotatable

dihedrals training dataset. We sum these over all instances belonging to the same rotatable dihedral

type to get

 SPG SPG

,i,m ,i, ,mG G
   



= (S39)

For a rigid torsion scan along an instance of a particular rotatable dihedral type, we still have to

compute SPG

,i, ,mG
  for every instance of every rotatable dihedral type, because the dihedral

displacements of different instances and/or different types are not necessarily independent of each

other. Next, we average over all of the rigid torsion scan geometries:

rdtTN

avg SPG

i,m ,i,m

1rdt

1
G G

TN 

=

=  (S40)

This allows us to construct a zero-intercept model by defining the matrix M2 as follows:

() () ()

()

() ()

1 1 2 2 rdt last rdt last

1 1

rdt 1 1 rdt rdt last rdt last

SPG avg SPG avg SPG avg

1,1,m 1,m 1,1,m 1,m 1,N ,m N ,m

SPG avg

2,1,m 1,m

SPG avg SPG avg

TN ,1,m 1,m TN ,N ,m N ,m

G G G G G G

G G

G G G G

 − − −
 
 −
 =
 
 

− − 
 

M2 (S41)

(Note: In the software code, the columns for the dihedral potential modes (and associated

dihedral torsion force constants) could be presented in a different order than that shown in eqn

(S41). However, regardless of the particular ordering, the set of equations solved would be

functionally equivalent.)

RSC Advances S10

S4. Python function to compute lambda best

Figure S2: Python function to compute lambda_best.

RSC Advances S11

S5. Test of training datasets not including AIMD data

 For one MOF without rotatable dihedrals and one MOF with rotatable dihedrals, we tested

the impact of omitting AIMD data from the training dataset. In this case, the training dataset was

comprised of only finite-displaced ‘Hessian’ geometries, the optimized geometry, and single-point

displaced dihedral geometries (if any rotatable dihedrals were present in the MOF). The validation

datasets were comprised of the optimized geometry plus AIMD data from runs independent of

AIMD data (if any) used in the training dataset. For each MOF, the same validation dataset was

used irrespective of the training dataset used. As shown in Table S1, including AIMD data in the

training dataset resulted in a better flexibility model, because it significantly increased the R-

squared validation and significantly lowered the RMSE validation.

Table S1: Effects of excluding AIMD data from the training dataset. Values are listed with using

individual [average] equilibrium values of internal coordinates. These calculations were performed

after dihedral pruning with no bond-bond cross terms.

 R-squared validation RMSE (eV/Å) validation

PEYPIU with AIMD in training 0.9317 [0.9231] 0.1779 [0.1887]

PEYPIU without AIMD in training 0.8951 [0.8536] 0.2204 [0.2603]

PEGBEK01 with AIMD in training 0.9464 [0.9394] 0.1486 [0.1581]

PEGBEK01 without AIMD in training 0.9323 [0.9181] 0.1670 [0.1838]

RSC Advances S12

S6. Test of torsion scans for all instances of a rotatable dihedral type

 Among the MOFs from quadrants 3 and 4 (i.e., having at least one rotatable dihedral type),

we used a random number generator to randomly select one MOF. Then we used a random number

generator to randomly select one of this MOF’s rotatable dihedral types that had more than one

instance. As it happened, this process randomly selected a rotatable dihedral type with six instances

in the MOF BEPMEQ. Then we quantum-mechanically-computed torsion scan curves for every

instance of this rotatable dihedral type. As shown in Figure S3, all of these torsion scan curves

were identical. More generally, if two instances of the same type have different signs for
eq , then

one would have torsion scan curves for these two instances that are mirror images of each other;

since this case is automatically handled by Manz’s torsion model potentials, it does not require

generating separate torsion scan curves for these two instances. This validates the method of

generating a torsion scan curve for one instance of each rotatable dihedral type.

Figure S3: Torsion scan curves for six instances of the same rotatable dihedral type in the MOF

BEPMEQ. All of the curves are directly on top of each other.

RSC Advances S13

S7. Histograms showing the number of instances per type

Figure S4: Histograms showing the number of stretch instances per stretch type (top panel), the

number of angle bend instances per angle bend type (middle panel), and the number of dihedral

torsion instances per dihedral torsion type (bottom panel). The data includes all MOFs in quadrants

1, 2, 3, and 4.

RSC Advances S14

S8. Additional LASSO results for MOFs without rotatable dihedrals

All results in this section are for calculations following dihedral pruning. In Figure S5, we

present a histogram illustrating the difference between the R-squared value for 0 → compared to

best =  , on forces fitting within the training dataset of MOFs in quadrants 1 and 2. This R-squared

difference peaked within the range 0 to 0.0001. Hence, the effect on R-squared was almost

negligible. Notably, the subsequent range, spanning from 0.0001 to 0.001, gave the second-highest

bar in the plot.

 Figure S6 contains raincloud plots showing the distribution of R-squared and RMSE

(eV/Å) values for forces in the training and validation datasets for MOFs in quadrants 1 and 2

using best. As shown in these raincloud plots, R-squared > 0.81 for each MOF in these quadrants.

Such high R-squared values indicate strong agreement between the model-predicted and quantum-

mechanically-computed forces. Even when using new geometries (i.e., validation dataset) that

were not part of the model’s training, the model accurately reproduced the ab-initio forces.

 Figure S7 shows a stacked histogram of the R-squared difference when bond-bond cross

terms are included in the potential model versus when they are not. The plotted data is for MOFs

in quadrants 1 and 2 after dihedral pruning and using best. When using either average equilibrium

values or individual equilibrium values, the distribution peaked at a R-squared difference of 0.015–

0.02. This shows that including bond-bond cross terms slightly improves the flexibility model’s

accuracy; however, this improvement in accuracy comes with some increased computational costs

due to the added bond-bond cross terms.

Figure S8 shows the number of force constants eliminated by the LASSO method for 0 →

and the additional number that were eliminated when increasing  to λbest. The results plotted in

this figure included bond-bond cross terms. Results without bond-bond cross terms were already

plotted in Section 8.6.1 of the main text. Some of the k’s eliminated for 0 → may have been

eliminated by the non-negative bounds placed on stretches, bends, single-mode torsions, and

linear-dihedral torsions, while others may have been eliminated due to linear dependencies

between the flexibility terms. The k’s eliminated when increasing  to λbest also correspond to

unimportant flexibility terms that contribute negligibly to the model’s accuracy. Examining Figure

S8, the percentage of k’s eliminated was relatively small but nonzero.

RSC Advances S15

Figure S5: Histogram of difference between R-squared for λ → 0 and R-squared for λ = λbest for

forces training dataset in MOFs belonging to quadrants 1 and 2.

Figure S6: Raincloud plots of R-squared (left panels) and RMSE (right panels) for forces training

datasets (top panels) and validation datasets (bottom panels) for MOFs in quadrants 1 and 2

without cross terms and after pruning. The red distributions represent the values for individual

equilibrium values, while the blue distributions represent the values for average equilibrium

values.

RSC Advances S16

Figure S7: Histogram of difference between R-squared with bond-bond cross terms and R-squared

without bond-bond cross terms for MOFs without rotatable dihedrals.

Figure S8: Histograms of force constants eliminated by the bounds or regularization constraints in

the LASSO method applied to MOFs in quadrants 1 and 2 for flexibility models including bond-

bond cross terms. Data shown in the left (right) panel used average (individual) equilibrium values.

RSC Advances S17

S.9 Images of MOF crystal structures

 In the below images, the gold lines indicate the unit cell boundary within the displayed

2×2×2 supercell. The three panels display views along each of the three lattice vectors.

Figure S9: AFITEP contains the chemical elements Zn, H, C, N, and O.

Figure S10: AMOYOR contains the chemical elements Zn, H, C, N, and O.

RSC Advances S18

Figure S11: ARAKAH contains the chemical elements O, C, H, Zn, and N.

RSC Advances S19

Figure S12: ARIBOS contains the chemical elements Cd, O, C, H, and N.

RSC Advances S20

Figure S13: ATOBIW contains the chemical elements C, H, O, Zn, and N.

RSC Advances S21

Figure S14: ATOXEN contains the chemical elements C, H, O, Zn, and N.

RSC Advances S22

Figure S15: BEPMEQ contains the chemical elements C, H, N, Zn, O, and Cl.

RSC Advances S23

Figure S16: BEPNUH contains the chemical elements Zn, H, C, Br, N, and O.

RSC Advances S24

Figure S17: BEPVID contains the chemical elements Cu, H, C, and N.

RSC Advances S25

Figure S18: BIBBUL contains the chemical elements Zn, H, C, N, and O.

Figure S19: BOMCOX contains the chemical elements Zn, O, N, C, and H.

RSC Advances S26

Figure S20: BUSQIQ contains the chemical elements Al, H, C, and O.

RSC Advances S27

Figure S21: BUVWOF03 contains the chemical elements Fe, H, C, and N.

RSC Advances S28

Figure S22: BUVYIB contains the chemical elements Fe, H, C, and N.

RSC Advances S29

Figure S23: BUYDEG contains the chemical elements C, H, N, O, and Zn.

Figure S24: CEGDUO contains the chemical elements Ag, H, C, and N.

RSC Advances S30

Figure S25: CEGFAW contains the chemical elements Ag, H, C, and N.

RSC Advances S31

Figure S26: COMDOY contains the chemical elements Ga, H, C, and O.

RSC Advances S32

Figure S27: CUQRIR contains the chemical elements Zn, N, O, C, and H.

Figure S28: DIXJIF contains the chemical elements Zn, O, C, H, and N.

RSC Advances S33

Figure S29: DONNEA contains the chemical elements Ga, H, C, and O.

RSC Advances S34

Figure S30: DONNIE contains the chemical elements O, C, H, and Ga.

RSC Advances S35

Figure S31: EBEMII contains the chemical elements Cd, H, C, N, and O.

RSC Advances S36

Figure S32: EBOBIJ contains the chemical elements O, N, C, H, and Zn.

RSC Advances S37

Figure S33: EBOBUV contains the chemical elements C, H, O, Zn, and N.

RSC Advances S38

Figure S34: EKEHUZ contains the chemical elements Zn, P, H, O, N, and C.

Figure S35: EMIVAY contains the chemical elements Zn, H, N, C, S, and O.

RSC Advances S39

Figure S36: EMOFIX contains the chemical elements Zn, O, N, C, and H.

RSC Advances S40

Figure S37: ESEDAJ contains the chemical elements C, H, O, and Zn.

RSC Advances S41

Figure S38: ESIFIX contains the chemical elements C, H, Cd, N, and O.

RSC Advances S42

Figure S39: EWUGEK contains the chemical elements C, H, N, O, and Cd.

RSC Advances S43

Figure S40: FIPWOS contains the chemical elements Zn, H, C, N, and O.

RSC Advances S44

Figure S41: FIPXEJ contains the chemical elements Zn, H, C, N, and O.

RSC Advances S45

Figure S42: FOCYUT contains the chemical elements Nd, O, H, and C.

RSC Advances S46

Figure S43: FUBNOH contains the chemical elements C, H, O, Zn, and N.

RSC Advances S47

Figure S44: FURFOP contains the chemical elements Zn, C, H, O, N, and S.

RSC Advances S48

Figure S45: GIRYIR contains the chemical elements Zn, H, C, N, and O.

RSC Advances S49

Figure S46: GIWMOP contains the chemical elements Cd, C, H, N, and S.

RSC Advances S50

Figure S47: GULPIN contains the chemical elements Zn, H, C, N, O, and F.

RSC Advances S51

Figure S48: GUMDEZ contains the chemical elements Zn, S, C, H, N, and O.

RSC Advances S52

Figure S49: GUYLOC contains the chemical elements Zn, O, C, H, N, and S.

RSC Advances S53

Figure S50: GUYLUI contains the chemical elements O, C, S, H, Zn, and N.

RSC Advances S54

Figure S51: HEBZAR contains the chemical elements C, Br, N, Zn, H, and O.

RSC Advances S55

Figure S52: HEBZEV contains the chemical elements C, Cl, N, Zn, H, and O.

RSC Advances S56

Figure S53: HECQUB contains the chemical elements N, C, H, Zn, and O.

RSC Advances S57

Figure S54: HIFTOG02 contains the chemical elements Zn, H, C, and O.

RSC Advances S58

Figure S55: HIFVUO contains the chemical elements Zn, N, C, and H.

RSC Advances S59

Figure S56: HIHJUF contains the chemical elements O, N, C, H, and Zn.

Figure S57: HOXGEH contains the chemical elements Sn, H, C, and O.

RSC Advances S60

Figure S58: HOZDOR contains the chemical elements Al, P, O, C, and H.

RSC Advances S61

Figure S59: IBICED contains the chemical elements Zn, H, C, Br, N, and O.

RSC Advances S62

Figure S60: IBOCIO contains the chemical elements H, C, O, N, Zn, and P.

RSC Advances S63

Figure S61: JIVFUQ contains the chemical elements Zn, P, H, C, and O.

RSC Advances S64

Figure S62: KACZUM contains the chemical elements O, C, H, Zn, and N.

RSC Advances S65

Figure S63: KATDAM contains the chemical elements Cd, H, C, N, and O.

RSC Advances S66

Figure S64: KEWZOD contains the chemical elements O, C, H, Zn, and N.

RSC Advances S67

Figure S65: KINDIW contains the chemical elements Er, H, C, N, and O.

RSC Advances S68

Figure S66: KINJUO contains the chemical elements C, H, N, Cd, and O.

Figure S67: KURSOH contains the chemical elements Zn, O, C, H, and N.

RSC Advances S69

Figure S68: LALYOO contains the chemical elements Cd, Cl, O, S, N, C, and H.

RSC Advances S70

Figure S69: LIWXIZ contains the chemical elements Zn, H, C, N, and O.

Figure S70: LODPOL contains the chemical elements N, H, C, O, and Zn.

RSC Advances S71

Figure S71: LOJLAZ contains the chemical elements N, C, Au, Fe, and H.

RSC Advances S72

Figure S72: LUFCAS contains the chemical elements O, N, C, H, and Cd.

RSC Advances S73

Figure S73: MADVUJ contains the chemical elements Cu, H, C, S, and I.

Figure S74: MADWAQ contains the chemical elements Cu, H, C, S, and Br.

RSC Advances S74

Figure S75: MAZSUD contains the chemical elements Zn, H, C, N, and O.

RSC Advances S75

Figure S76: MEJQID contains the chemical elements Zn, H, C, N, and O.

Figure S77: MEKDUC contains the chemical elements Cd, H, C, S, N, and O.

RSC Advances S76

Figure S78: MIBQAR01 contains the chemical elements Zn, O, C, and H.

RSC Advances S77

Figure S79: MIZKOW contains the chemical elements La, Cu, H, C, N, and O.

Figure S80: MOPFOO contains the chemical elements O, H, N, C, and Zn.

RSC Advances S78

Figure S81: MUGQAI contains the chemical elements Cu, N, C, and H.

RSC Advances S79

Figure S82: NEKREB contains the chemical elements N, C, H, Pd, and O.

RSC Advances S80

Figure S83: NOMQAJ01 contains the chemical elements C, H, N, O, and Zn.

RSC Advances S81

Figure S84: OGIBUD contains the chemical elements Zn, O, C, and H.

RSC Advances S82

Figure S85: OJIWIO contains the chemical elements Zn, H, C, N, and O.

RSC Advances S83

Figure S86: OPOBIF contains the chemical elements Zn, H, C, N, and O.

RSC Advances S84

Figure S87: OTOZOO contains the chemical elements Zn, C, H, O, and N.

RSC Advances S85

Figure S88: OVICUS contains the chemical elements Zn, H, C, S, N, and O.

Figure S89: PEGBEK01 contains the chemical elements N, H, Zn, and C.

RSC Advances S86

Figure S90: PEYPIU contains the chemical elements Zn, H, C, N, and O.

RSC Advances S87

Figure S91: PITMOW contains the chemical elements F, C, H, O, Zn, N, and S.

RSC Advances S88

Figure S92: PIXHUB contains the chemical elements O, C, Zn, H, and N.

RSC Advances S89

Figure S93: PORVUO contains the chemical elements Zn, H, C, N, and O.

Figure S94: POSFOU contains the chemical elements Cd, H, C, N, and O.

RSC Advances S90

Figure S95: PUFVUJ contains the chemical elements C, H, Cd, Cl, N, and O.

RSC Advances S91

Figure S96: QESYOD contains the chemical elements Cu, H, C, I, and N.

RSC Advances S92

Figure S97: QIVYUR contains the chemical elements C, H, O, N, and Zn.

RSC Advances S93

Figure S98: QIWCUW contains the chemical elements O, H, Zn, N, and C.

RSC Advances S94

Figure S99: QOKCID contains the chemical elements Zn, H, C, and O.

RSC Advances S95

Figure S100: QOTBAE contains the chemical elements N, C, H, Zn, and O.

Figure S101: QUPHUF contains the chemical elements Zn, H, C, N, and O.

RSC Advances S96

Figure S102: QURSEC contains the chemical elements Zn, H, Pd, C, N, and O.

Figure S103: REDROI contains the chemical elements Zn, H, C, and O.

RSC Advances S97

Figure S104: REYBAA contains the chemical elements Zn, H, C, N, and O.

Figure S105: SARBOE contains the chemical elements Zn, O, C, H, and N.

RSC Advances S98

Figure S106: SARBUK contains the chemical elements Zn, C, H, N, and O.

RSC Advances S99

Figure S107: SOCLAZ contains the chemical elements Cd, H, C, N, and O.

RSC Advances S100

Figure S108: SOWCOY01 contains the chemical elements Zn, O, N, C, and H.

RSC Advances S101

Figure S109: TEPGUS contains the chemical elements O, Zn, C, H, and N.

RSC Advances S102

Figure S110: TUBLIN contains the chemical elements Cd, H, C, N, and O.

Figure S111: TUMDEM contains the chemical elements C, H, N, O, and Cd.

RSC Advances S103

Figure S112: UKALEZ contains the chemical elements C, H, N, O, and Zn.

RSC Advances S104

Figure S113: VACFUB01 contains the chemical elements Zn, H, C, N, and O.

RSC Advances S105

Figure S114: WECJAR contains the chemical elements Zn, C, H, N, O, and S.

Figure S115: WIYFAM contains the chemical elements Zn, H, C, N, and O.

RSC Advances S106

Figure S116: WOBHIF01 contains the chemical elements O, Zn, C, and H.

RSC Advances S107

Figure S117: XAHROQ contains the chemical elements Cu, N, C, and H.

RSC Advances S108

Figure S118: XARCEB contains the chemical elements H, Zn, C, N, and O.

RSC Advances S109

Figure S119: XEDPIH contains the chemical elements Zn, H, C, Br, and N.

RSC Advances S110

Figure S120: XEXMEU contains the chemical elements Zn, H, C, N, and O.

RSC Advances S111

Figure S121: XORGUI contains the chemical elements Cd, N, C, and H.

RSC Advances S112

Figure S122: YARKEJ contains the chemical elements Zn, H, C, N, and O.

RSC Advances S113

Figure S123: YARSIV contains the chemical elements Zn, H, C, N, and O.

RSC Advances S114

Figure S124: YUSGID contains the chemical elements Zn, H, C, S, N, and O.

Reference

S1. T. A. Manz, “A Formally Exact Theory to Construct Nonreactive Forcefields using Linear

Regression to Optimize Bonded Parameters,” submitted to RSC Advances, 2024.

