Electronic Supplementary Information (ESI)

Mechanisms of photoisomerization of the prenylated flavin mononucleotide cofactor: A theoretical study[†]

by

Pannipa Panajapo Phorntep Promma and Kritsana Sagarik^{*}

School of Chemistry Institute of Science Suranaree University of Technology Nakhon Ratchasima 30000 Thailand

*corresponding author: *kritsana@sut.ac.th* Tel./Fax: (6681) 8783994 Figure S1 The S₀ PESs for the intramolecular proton transfer and concerted covalent bond dissociations (St0→St1^{Int}→St2^{Int}) in Type (1) mechanism⁵ (Figure 1), obtained from the DFT/B3LYP/DZP reaction path optimizations.
a) C₁^{prFMN}-H...O^{prFMN^{im}} intramolecular proton transfer in **prFMN^{im}** (St0→St1^{Int}).
b) Concerted N₅^{prFMN}-C_{5a}^{prFMN} and N₁₀^{prFMN}-C_{9a}^{prFMN} covalent bond dissociations in **prFMN^{im}** (St1^{Int}→St2^{Int}).

Figure S2 The S₀ PESs for the intermolecular proton transfer and concerted covalent bond dissociations (St0→St1^{Ext}→St2^{Ext}) in Type (2) mechanism⁵ (Figure 1), obtained from the DFT/B3LYP/DZP reaction path optimizations.
a) Intermolecular proton transfer in the C^{prFMN}₁−H→O^{Glu282} H-bond between prFMN^{im} and Glu282 (St0→St1^{Ext}).
b) Concerted N^{prFMN}₅−C^{prFMN}₅ and N^{prFMN}₁₀−C^{prFMN}_{9a} covalent bond dissociations in prFMN^{im} (St1^{Ext}→St2^{Ext}).

Figure S3 a) The S₁ PES (solid line) for the relaxation of the S₀ \rightarrow S₁ vertically excited active site cluster to the structure at the S₀/S₁ intersection (St0^{*} \rightarrow St0^{*,§}), obtained from TD-DFT/B3LYP/DZP reaction path optimizations; dash line = S₀ PES computed using the geometry on the S₁ PES and DFT/B3LYP/DZP method. b) The variation of the N^{Gln190}–H...O^{prFMN,–} H-bond distances on the S₁ PES, which reflects an increase in the N^{Gln190}–H...O^{prFMN,–} H-bond strength (red-shift) in the S₁ state towards the S₀/S₁ intersection.

Figure S3 (Cont.)

Figure S4 The S₀ PES for the $C_{1'}^{prFMN}$ -H \rightarrow O^{prFMN^{im}} intramolecular proton transfer after the S₁ \rightarrow S₀ nonradiative relaxation (St0[§] \rightarrow St1^{Int}), obtained from DFT/B3LYP/DZP reaction path optimizations.

Figure S5 The S₀ PESs for formation of **prFMN**^{ket} after the S₁ \rightarrow S₀ nonradiative relaxation in Type (3) mechanism (St0[§] \rightarrow St4), obtained from DFT/B3LYP/DZP reaction path optimizations.

a) $C_{1'}^{prFMN}$ -H \rightarrow O^{Glu282} intermolecular proton transfer (St0[§] \rightarrow St1^{Ext}).

- b) Ring expansion (St1^{Ext} \rightarrow St3^{Ext})
- c) Reverse protonation (St3^{Ext} \rightarrow St4).

Figure S6 The S₀ PES for formation of **prFMN**^{ket} after the S₁ \rightarrow S₀ nonradiative relaxation in Type (4) mechanism (St0[§] \rightarrow St4). The S₁ \rightarrow S₀ nonradiative relaxation is followed by concerted C₁^{prFMN} $-H\rightarrow$ N₅^{prFMN} intramolecular proton transfer and ring expansion (St0[§] \rightarrow St4), obtained from DFT/B3LYP/DZP reaction path optimization.

Table S1 Equilibrium structures and energies of molecules involved in the **prFMN**^{im} \rightarrow **prFMN**^{ket} photoisomerization obtained from DFT/B3LYP/DZP geometry optimizations. E^{Tot} = total energy in au; ΔE^{Ex} = the S₀ \rightarrow S₁ energy in eV; (...) = absorption wavelength in nm.

Table S2 a) Equilibrium structures, energies and residue-to-residue (R-to-R) distances in the
active site clusters on the $prFMN^{im} \rightarrow prFMN^{ket}$ photoisomerization pathways
obtained from DFT/B3LYP/DZP geometry optimizations.

b) The average residue-to-residue distances and standard deviation (SD) for all the equilibrium structures of the active site clusters.

 E^{Tot} = total energy in au; ΔE^{Ex} = the S₀ \rightarrow S₁ energy in eV; (...) = absorption wavelength in nm; sp = single point calculation.

Table S2a

Model molecular cluster	E ^{Tot} / au	$\Delta \mathbf{E}^{\mathbf{E}\mathbf{x}} / \mathbf{eV}$	R-to-R/ Å
Glu282 Glu282 St0	-2331.560638	2.60 (477 nm)	$\begin{split} R_{C_{R}^{Gin190}-C_{R}^{Arg173}} &= 12.40 \\ R_{C_{R}^{Gin190}-C_{R}^{Gin277}} &= 17.47 \\ R_{C_{R}^{Gin190}-C_{R}^{Gin282}} &= 17.13 \\ R_{C_{R}^{Arg173}-C_{R}^{Gin277}} &= 9.79 \\ R_{C_{R}^{Arg173}-C_{R}^{Gin282}} &= 10.11 \\ R_{C_{R}^{Gin277}-C_{R}^{Gin282}} &= 13.25 \end{split}$
Glu277 Arg173 Glu282 St1 ^{Int}	-2331.460634	2.69 (462 nm)	$\begin{split} R_{C_{R}^{Gin190}-C_{R}^{Arg173}} &= 12.42 \\ R_{C_{R}^{Gin190}-C_{R}^{Gin277}} &= 17.48 \\ R_{C_{R}^{Gin190}-C_{R}^{Gin282}} &= 17.14 \\ R_{C_{R}^{Arg173}-C_{R}^{Gin277}} &= 9.82 \\ R_{C_{R}^{Arg173}-C_{R}^{Gin282}} &= 10.10 \\ R_{C_{R}^{Gin277}-C_{R}^{Gin282}} &= 13.26 \end{split}$
Glu282 St2 ^{Int}	-2331.289127 ^{sp}	2.96 (419 nm)	$\begin{split} R_{C_R^{Gin190}-C_R^{Arg173}} &= 12.40 \\ R_{C_R^{Gin190}-C_R^{Gin277}} &= 17.47 \\ R_{C_R^{Gin190}-C_R^{Gin282}} &= 17.14 \\ R_{C_R^{Arg173}-C_R^{Gin277}} &= 9.80 \\ R_{C_R^{Arg173}-C_R^{Gin282}} &= 10.11 \\ R_{C_R^{Gin277}-C_R^{Gin282}} &= 13.74 \end{split}$
Glu277 Glu277 Glu282 St3Int	-2331.559782	2.70 (460 nm)	$\begin{split} R_{C_R^{Gin190}-C_R^{Arg173}} &= 12.58 \\ R_{C_R^{Gin190}-C_R^{Gin277}} &= 17.60 \\ R_{C_R^{Gin190}-C_R^{Gin282}} &= 17.20 \\ R_{C_R^{Arg173}-C_R^{Gin282}} &= 10.00 \\ R_{C_R^{Arg173}-C_R^{Gin282}} &= 10.05 \\ R_{C_R^{Gin277}-C_R^{Gin282}} &= 13.34 \end{split}$
Glu282 Glu282 St4	-2331.569793	2.27 (546 nm)	$\begin{split} R_{C_{R}^{Gin190}-C_{R}^{Arg173}} &= 12.48 \\ R_{C_{R}^{Gin190}-C_{R}^{Giu277}} &= 17.52 \\ R_{C_{R}^{Gin190}-C_{R}^{Giu282}} &= 17.11 \\ R_{C_{R}^{Arg173}-C_{R}^{Giu282}} &= 9.98 \\ R_{C_{R}^{Arg173}-C_{R}^{Giu282}} &= 10.04 \\ R_{C_{R}^{Giu277}-C_{R}^{Giu282}} &= 13.35 \end{split}$

Table S2a (Cont.)

Model molecular cluster	E ^{Tot} / au	$\Delta \mathbf{E}^{\mathbf{E}\mathbf{x}} / \mathbf{eV}$	R-to-R/ Å		
Glu282 Glu282 St1Ext	-2331.560638	3.21 (386 nm)	$R_{C_{R}^{Gin190}-C_{R}^{Arg173}} = 12.48$ $R_{C_{R}^{Gin190}-C_{R}^{Gin277}} = 17.52$ $R_{C_{R}^{Gin190}-C_{R}^{Gin282}} = 17.11$ $R_{C_{R}^{Arg173}-C_{R}^{Gin277}} = 9.98$ $R_{C_{R}^{Arg173}-C_{R}^{Gin282}} = 10.04$ $R_{C_{R}^{Gin277}-C_{R}^{Gin282}} = 13.35$		
Glu282 St2 ^{Ext}	-2331.351063 ^{sp}	1.88 (658 nm)	$\begin{split} R_{C_{R}^{Gin190}-C_{R}^{Arg173}} &= 12.39 \\ R_{C_{R}^{Gin190}-C_{R}^{Glu277}} &= 17.47 \\ R_{C_{R}^{Gin190}-C_{R}^{Glu282}} &= 17.11 \\ R_{C_{R}^{Arg173}-C_{R}^{Glu277}} &= 9.79 \\ R_{C_{R}^{Arg173}-C_{R}^{Glu282}} &= 10.08 \\ R_{C_{R}^{Glu277}-C_{R}^{Glu282}} &= 13.22 \end{split}$		
Glu282 Glu282 St3 ^{Ext}	-2331.582516	2.67 (465 nm)	$\begin{split} R_{C_{R}^{Gin190}-C_{R}^{Arg173}} &= 12.41 \\ R_{C_{R}^{Gin190}-C_{R}^{Giu277}} &= 17.43 \\ R_{C_{R}^{Gin190}-C_{R}^{Giu282}} &= 17.02 \\ R_{C_{R}^{Arg173}-C_{R}^{Giu277}} &= 9.93 \\ R_{C_{R}^{Arg173}-C_{R}^{Giu282}} &= 9.96 \\ R_{C_{R}^{Gin277}-C_{R}^{Giu282}} &= 13.21 \end{split}$		

Model molecular cluster	$R_{C_R^{Gln190}-C_R^{Arg173}}$	$R_{C_R^{Gln190}-C_R^{Glu277}}$	$R_{C_R^{Gln190}-C_R^{Glu282}}$	$R_{C_R^{Arg173}-C_R^{Glu277}}$	$R_{C_R^{Arg173}-C_R^{Glu282}}$	$R_{C_R^{Glu277}-C_R^{Glu282}}$
St0	12.40	17.47	17.13	9.79	10.11	13.25
St1 ^{Int}	12.42	17.48	17.14	9.82	10.10	13.26
St3 ^{Int}	12.58	17.60	17.20	10.00	10.05	13.34
St4	12.48	17.52	17.11	9.98	10.04	13.35
St1 ^{Ext}	12.80	17.51	17.06	9.92	9.91	13.12
St3 ^{Ext}	12.41	17.43	17.02	9.93	9.96	13.21
Average±SD	12.52±0.15	17.50±0.06	17.11±0.06	9.91±0.08	10.03 ± 0.08	13.26±0.09

Table S3 Thermodynamics and kinetics of the elementary reactions for the **prFMN**^{im} \rightarrow **prFMN**^{ket} photoisomerization (Type (3) mechanism), obtained from DFT/B3LYP/DZP reaction path optimizations and TST methods. Rate constants, temperatures and energies are in s⁻¹, K and kJ/mol, respectively; ΔE^{\dagger} = energy barriers; $\Delta E^{\dagger, ZPC}$ = energy barrier with the zero-point vibrational energy; ΔH^{\dagger} = activation enthalpy; T_c = crossover temperature; T = temperature; $k_{f/r}^{Q-Vib}$ = rate constant obtained with quantized vibration correction; ΔG^{\dagger} = activation free energy; ΔS^{\dagger} = activation entropy; f/r = forward or reverse direction.

Table S3

$S_1 \rightarrow S_0$ relaxation	$\Delta \mathbf{E}^{\dagger}$	$\Delta \mathbf{E}^{\text{+,ZPC}}$	$\Delta \mathbf{H}^{\dagger}$	Т	$k_{f/r}^{Q-Vib}$	$\Delta \mathbf{G}^{\dagger}$	$\Delta \mathbf{S}^{\dagger}$
				273	1.61×10 ⁻⁷	102.2	3.46×10 ⁻²
				277	3.22×10 ⁻⁷	102.1	3.44×10 ⁻²
St0 [*] ← St0 ^{*,§}	119.7	107.6	111.6	298	1.03×10 ⁻⁵	101.5	3.37×10 ⁻²
				303	2.05×10 ⁻⁵	101.4	3.36×10 ⁻²
				353	1.06×10 ⁻²	100.2	3.24×10 ⁻²
Intermolecular proton transfer	$\Delta \mathbf{E}^{\dagger}$	$\Delta \mathbf{E}^{\dagger, \mathbf{ZPC}}$	$\Delta \mathbf{H}^{\dagger}$	Т	k ^{Q-Vib} f/r	$\Delta \mathbf{G}^{\dagger}$	$\Delta \mathbf{S}^{\dagger}$
				273	4.33×10^{0}	63.3	1.26×10 ⁻²
$\mathbf{St0^{\$} \leftarrow St0\text{-}[1]^{Ext}}$	68.6	66.1	66.8	277	6.56×10^{0}	63.3	1.25×10 ⁻²
				298	5.22×10 ¹	63.2	1.18×10 ⁻²
				303	7.91×10^{1}	63.2	1.17×10 ⁻²
				353	3.32×10 ³	63.1	1.05×10 ⁻²
				273	1.89×10 ⁻⁴	86.1	-2.74×10 ⁻²
			78.7	277	3.08×10 ⁻⁴	86.3	-2.75×10 ⁻²
$St0\text{-}[1]^{Ext} \rightarrow St0\text{-}[1]^{Ext,\ddagger}$	86.9	78.7		298	3.53×10 ⁻³	87.0	-2.82×10 ⁻²
				303	5.76×10 ⁻³	87.2	-2.83×10 ⁻²
				353	4.71×10 ⁻¹	89.1	-2.95×10 ⁻²
				273	2.17×10 ¹⁶	-18.7	1.28×10 ⁻¹
				277	2.44×10 ¹⁶	-19.2	1.28×10 ⁻¹
$\textbf{St0-[1]}^{\text{Ext},\ddagger} \leftarrow \textbf{St1}^{\text{Ext}}$	17.4	17.4	16.3	298	4.39×10 ¹⁶	-22.0	1.28×10 ⁻¹
				303	4.93×10 ¹⁶	-22.6	1.28×10 ⁻¹
				353	1.60×10^{17}	-29.8	1.28×10 ⁻¹

Ring expansion	$\Delta \mathbf{E}^{\dagger}$	$\Delta \mathbf{E}^{\text{+,ZPC}}$	$\Delta \mathbf{H}^{\dagger}$	Τ	k ^{Q-Vib} f/r	$\Delta \mathbf{G}^{\dagger}$	$\Delta \mathbf{S}^{\dagger}$
				273	4.87×10 ¹⁰	10.8	1.53×10 ⁻³
				277	5.22×10^{10}	10.8	1.41×10 ⁻³
$St1^{Ext} \rightarrow St1^{Ext,\ddagger}$	11.2	10.3	11.2	298	7.40×10^{10}	11.0	7.85×10 ⁻⁴
				303	7.94×10^{10}	11.0	6.56×10 ⁻⁴
				353	1.49×10 ¹¹	11.4	-6.04×10 ⁻⁴
				273	1.84×10 ⁻²⁵	195.9	-3.66×10 ⁻²
				277	5.84×10 ⁻²⁵	196.1	-3.67×10 ⁻²
St1 ^{Ext,‡} ← St3 ^{Ext}	186.8	186.2	186.0	298	1.89×10 ⁻²²	197.1	-3.73×10 ⁻²
				303	6.00×10 ⁻²²	197.3	-3.74×10 ⁻²
				353	1.98×10 ⁻¹⁷	199.6	-3.87×10 ⁻²
Reverse protonation	$\Delta \mathbf{E}^{\dagger}$	$\Delta \mathbf{E}^{\text{+,ZPC}}$	$\Delta \mathbf{H}^{\dagger}$	Τ	k ^{Q-Vib} f/r	$\Delta \mathbf{G}^{\dagger}$	$\Delta \mathbf{S}^{\dagger}$
Reverse protonation	$\Delta \mathbf{E}^{\dagger}$	$\Delta \mathbf{E}^{\dagger, \mathbf{ZPC}}$	$\Delta \mathbf{H}^{\dagger}$	T 273	$\mathbf{k}_{\mathbf{f/r}}^{\mathbf{Q-Vib}}$ 6.10×10 ⁷	$\Delta \mathbf{G}^{\dagger}$ 26.0	ΔS^{\dagger} 1.31×10 ⁻¹
Reverse protonation	$\Delta \mathbf{E}^{\dagger}$	$\Delta \mathbf{E}^{\text{*,ZPC}}$	$\Delta \mathbf{H}^{\dagger}$	T 273 277	$k_{f/r}^{Q-Vib}$ 6.10×10 ⁷ 9.11×10 ⁷	$\Delta \mathbf{G}^{\dagger}$ 26.0 25.5	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹
Reverse protonation $St3^{Ext} \rightarrow St3^{Ext,\ddagger}$	$\Delta \mathbf{E}^{\dagger}$ 63.9	$\Delta \mathbf{E}^{\dagger, \mathbf{ZPC}}$ 62.8	$\Delta \mathbf{H}^{\dagger}$ 61.8	T 273 277 298	$\begin{array}{c} \mathbf{k_{f/r}^{Q-Vib}} \\ \hline 6.10{\times}10^7 \\ 9.11{\times}10^7 \\ 6.75{\times}10^8 \end{array}$	$\Delta \mathbf{G}^{\dagger}$ 26.0 25.5 22.6	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹
Reverse protonation $St3^{Ext} \rightarrow St3^{Ext,\ddagger}$	$\Delta \mathbf{E}^{\dagger}$ 63.9	Δ E ^{‡,ZPC} 62.8	$\Delta \mathbf{H}^{\dagger}$ 61.8	T 273 277 298 303	$\begin{array}{c} \mathbf{k_{f/r}^{Q-Vib}} \\ \hline 6.10 \times 10^7 \\ 9.11 \times 10^7 \\ 6.75 \times 10^8 \\ 1.01 \times 10^9 \end{array}$	$\Delta \mathbf{G}^{\dagger}$ 26.0 25.5 22.6 22.0	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹
Reverse protonation $St3^{Ext} \rightarrow St3^{Ext,\ddagger}$	$\Delta \mathbf{E}^{\dagger}$ 63.9	Δ E ^{‡,ZPC} 62.8	$\Delta \mathbf{H}^{\dagger}$ 61.8	T 273 277 298 303 353	$\begin{array}{c} \mathbf{k_{f/r}^{Q-Vib}} \\ \hline 6.10 \times 10^7 \\ 9.11 \times 10^7 \\ 6.75 \times 10^8 \\ 1.01 \times 10^9 \\ 3.73 \times 10^{10} \end{array}$	$\Delta \mathbf{G}^{\dagger}$ 26.0 25.5 22.6 22.0 15.5	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹
Reverse protonation $St3^{Ext} \rightarrow St3^{Ext,\ddagger}$	Δ E [‡] 63.9	Δ E ^{‡,ZPC} 62.8	$\Delta \mathbf{H}^{\dagger}$ 61.8	T 273 277 298 303 353 273	$\begin{array}{c} \mathbf{k_{f/r}^{Q-Vib}} \\ \hline 6.10 \times 10^7 \\ 9.11 \times 10^7 \\ 6.75 \times 10^8 \\ 1.01 \times 10^9 \\ \hline 3.73 \times 10^{10} \\ \hline 1.75 \times 10^{11} \end{array}$	$\Delta \mathbf{G}^{\dagger}$ 26.0 25.5 22.6 22.0 15.5 7.9	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 4.27×10 ⁻²
Reverse protonation $St3^{Ext} \rightarrow St3^{Ext,\ddagger}$	Δ E [‡] 63.9	Δ E^{‡,ZPC} 62.8	Δ H [‡] 61.8	T 273 277 298 303 353 273 277	$\begin{array}{c} \mathbf{k_{f/r}^{Q-Vib}} \\ \hline 6.10 \times 10^7 \\ 9.11 \times 10^7 \\ 6.75 \times 10^8 \\ 1.01 \times 10^9 \\ \hline 3.73 \times 10^{10} \\ \hline 1.75 \times 10^{11} \\ 1.97 \times 10^{11} \end{array}$	$\Delta \mathbf{G}^{\dagger}$ 26.0 25.5 22.6 22.0 15.5 7.9 7.8	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 4.27×10 ⁻² 4.26×10 ⁻²
Reverse protonation $St3^{Ext} \rightarrow St3^{Ext,\ddagger}$ $St3^{Ext,\ddagger} \leftarrow St4$	Δ E [‡] 63.9 26.6	Δ E ^{‡,ZPC} 62.8 17.2	Δ H [‡] 61.8 19.6	T 273 277 298 303 353 273 277 298	$\begin{array}{c} \mathbf{k_{f/r}^{Q-Vib}} \\ \hline 6.10 \times 10^7 \\ 9.11 \times 10^7 \\ 6.75 \times 10^8 \\ 1.01 \times 10^9 \\ \hline 3.73 \times 10^{10} \\ \hline 1.75 \times 10^{11} \\ 1.97 \times 10^{11} \\ \hline 3.61 \times 10^{11} \end{array}$	ΔG^{\dagger} 26.0 25.5 22.6 22.0 15.5 7.9 7.8 7.1	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 4.27×10 ⁻² 4.26×10 ⁻² 4.19×10 ⁻²
Reverse protonation $St3^{Ext} \rightarrow St3^{Ext,\ddagger}$ $St3^{Ext,\ddagger} \leftarrow St4$	Δ E [‡] 63.9 26.6	Δ E ^{‡,ZPC} 62.8 17.2	Δ H [‡] 61.8 19.6	T 273 277 298 303 353 273 277 298 303	$\begin{array}{c} \mathbf{k_{f/r}^{Q-Vib}} \\ \hline 6.10 \times 10^7 \\ 9.11 \times 10^7 \\ 6.75 \times 10^8 \\ 1.01 \times 10^9 \\ \hline 3.73 \times 10^{10} \\ \hline 1.75 \times 10^{11} \\ 1.97 \times 10^{11} \\ \hline 3.61 \times 10^{11} \\ 4.07 \times 10^{11} \end{array}$	ΔG^{\dagger} 26.0 25.5 22.6 22.0 15.5 7.9 7.8 7.1 6.9	ΔS^{\dagger} 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 1.31×10 ⁻¹ 4.27×10 ⁻² 4.26×10 ⁻² 4.19×10 ⁻² 4.18×10 ⁻²

Table S3 (Cont.)

Table S4 Thermodynamics and kinetics of the elementary reactions for the **prFMN**^{im} \rightarrow **prFMN**^{ket} photoisomerization (Type (4) mechanism), obtained from DFT/B3LYP/DZP reaction path optimizations and TST methods. Rate constants, temperatures and energies are in s⁻¹, K and kJ/mol, respectively; ΔE^{\dagger} = energy barriers; $\Delta E^{\dagger, ZPC}$ = energy barrier with the zero-point vibrational energy; ΔH^{\dagger} = activation enthalpy; T_c = crossover temperature; T = temperature; $k_{f/r}^{Q-Vib}$ = rate constant obtained with quantized vibration correction; ΔG^{\dagger} = activation free energy; ΔS^{\dagger} = activation entropy; f/r = forward or reverse direction.

Table S4

Intramolecular proton transfer and ring expansion	$\Delta \mathbf{E}^{\dagger}$	$\Delta E^{a,ZPC}$	$\Delta \mathbf{H}^{\dagger}$	Т	k ^{Q-Vib} f/r	$\Delta \mathbf{G}^{\dagger}$	$\Delta {\bf S}^{\dagger}$
				273	3.05×10 ⁻⁷	100.7	3.23×10 ⁻²
				277	6.01×10 ⁻⁷	100.6	3.22×10 ⁻²
$St0^{\$} \leftarrow St0-[1]^{direct}$	109.9	107.0	109.5	298	1.81×10 ⁻⁵	100.1	3.16×10 ⁻²
				303	3.57×10 ⁻⁵	100.0	3.14×10 ⁻²
				353	1.64×10 ⁻²	98.9	3.02×10 ⁻²
				273	1.08×10^{0}	66.5	-1.35×10 ⁻¹
	31.7	29.0	29.7	277	1.30×10^{0}	67.0	-1.35×10 ⁻¹
$St0\text{-}[1]^{direct} \rightarrow St0\text{-}[1]^{direct,\dagger}$				298	3.26×10^{0}	70.1	-1.36×10 ⁻¹
				303	3.92×10^{0}	70.8	-1.36×10 ⁻¹
				353	2.07×10^{1}	78.0	-1.37×10 ⁻¹
				273	1.91×10 ⁻⁵	91.3	-1.26×10 ⁻¹
				277	2.73×10 ⁻⁵	91.8	-1.26×10 ⁻¹
$St0-[1]^{direct,\dagger} \leftarrow St4$	59.3	57.2	56.9	298	1.60×10 ⁻⁴	94.7	-1.27×10 ⁻¹
				303	2.28×10 ⁻⁴	95.4	-1.27×10 ⁻¹
				353	5.51×10 ⁻³	102.1	-1.28×10 ⁻¹

a) Type (3)	St0*- (I)	→St0-[1] ^{Ext} *→(III)	$St0^* \rightarrow St0-[1]^{Ext,\dagger}$ $(I)^* \rightarrow (IV)^{\dagger}$		St0 [*] (I)	$St0^* \rightarrow St1^{Ext}$ (I)* \rightarrow (V)		St0 [*] →St3 ^{Ext}		[*] →St4
Т	ΔG°	ΔS°	ΔG°	ΔS°	ΔG°	ΔS°	ΔG°	ΔS°	$\Delta G^{\circ,Tot}$	$\Delta S^{\circ,Rx}$
273	-165.5	-4.72×10 ⁻²	-79.4	-7.45×10 ⁻²	-60.66	-2.03×10 ⁻¹	-245.8	-1.65×10 ⁻¹	-227.7	-7.61×10 ⁻²
277	-165.4	-4.69×10 ⁻²	-79.1	-7.44×10 ⁻²	-59.90	-2.03×10 ⁻¹	-245.2	-1.65×10 ⁻¹	-227.5	-7.59×10 ⁻²
298	-164.8	-4.56×10 ⁻²	-77.7	-7.37×10 ⁻²	-55.75	-2.02×10 ⁻¹	-241.9	-1.64×10 ⁻¹	-226.3	-7.45×10 ⁻²
303	-164.6	-4.53×10 ⁻²	-77.4	-7.36×10 ⁻²	-54.85	-2.02×10 ⁻¹	-241.1	-1.64×10 ⁻¹	-226.0	-7.43×10 ⁻²
353	-163.3	-4.28×10 ⁻²	-74.2	-7.24×10 ⁻²	-45.26	-2.01×10 ⁻¹	-233.4	-1.63×10 ⁻¹	-223.2	-7.18×10 ⁻²

Table S5 Thermodynamic properties of the elementary reactions in Type (3) and Type (4) mechanisms, obtained based on the hypothesizedphoto-to-thermal pathway in Figure 4 and from the DFT/B3LYP/DZP, TD-DFT/B3LYP/DZP and TST methods.

b)	St0*-	→St0-[1] ^{Ext}	St0*-	→St0-[1] ^{Ext,‡}	St0 [*] →St1		
Type (4)	(I)*→(III)		(I)	$* \rightarrow (IV)^{\dagger}$	(I)*→(V)		
Т	ΔG°	ΔS°	ΔG°	ΔS°	$\Delta G^{\circ,Tot}$	$\Delta S^{\circ,Rx}$	
273	-202.9	-6.69×10 ⁻²	-136.4	-2.02×10 ⁻¹	-227.7	-7.59×10 ⁻²	
277	-202.7	-6.66×10 ⁻²	-135.7	-2.02×10 ⁻¹	-227.5	-7.56×10 ⁻²	
298	-201.7	-6.53×10 ⁻²	-131.6	-2.01×10 ⁻¹	-226.3	-7.43×10 ⁻²	
303	-201.4	-6.50×10 ⁻²	-130.7	-2.01×10 ⁻¹	-226.0	-7.40×10 ⁻²	
353	-199.1	-6.26×10 ⁻²	-121.1	-2.00×10 ⁻¹	-223.2	-7.15×10 ⁻²	

 ΔG° and $\Delta H^{\circ} =$ Gibbs free energy and enthalpy in kJ/mol; $\Delta S^{\circ} =$ entropy in kJ/mol^{*}K; $\Delta G^{\circ,Tot} =$ total reaction Gibbs free energy for **prFMN**^{im} \rightarrow **prFMN**^{ket} and; $\Delta S^{\circ,Rx} =$ reaction entropy of all the elementary processes; T = temperature in K.