Supplementary Information

Manganese Tetraphenylporphyrin and Carbon Nanocoils Interface based Electrochemical Sensing of Tyrosine

Syeda Aqsa Batool Bukhari¹, Abeera Aziz¹, Habib Nasir^{1*}, Sharif Ullah¹, Tehmina Akhtar¹, Sadia Iram^{1,2}, Effat Sitara^{1,3}, Shehla Mushtaq^{1,4} and Syed Abdul Moiz⁵

¹Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad (44000) Pakistan

²Department of Chemistry, Rawalpindi women university Rawalpindi Pakistan

³Department of Chemistry, Karakoram International University, Gilgit, Pakistan.

⁴Department of Chemistry, University of Management and Technology, Sialkot, Pakistan

⁵Department of Electrical Engineering, Umm Al-Qura University, Saudi Arabia

*Corresponding Author's Email: habibnasir@sns.nust.edu.pk

Figures

Figure S1. Chemical structure of (a) tetraphenylporphyrin and (b) Manganese

tetraphenylporphyrin.

Figure S2. Analysis of CNC/MnTPP nanocomposite (a) SEM and (b) EDS.

Figure S3. Cyclic voltammograms obtained in 5 mM potassium ferricyanide solution (0.1 M

KCl).

Schemes

Calculation:

Slope of
$$\frac{E_{pa}}{\log v} = 0.06$$
 (From calibration curve of Figure 9 d)
As we know that,
Slope of $\frac{E_{pa}}{\log v} = \frac{2.303 R \times T}{n\alpha F}$

As we know that,

By substituting the values of R, T, F which are the parameters with usual meanings such as gas constant, absolute temperature, Faraday's constant, respectively and Slope in Eq.1, the value obtained for nα equals to 1.002.

Eq. 1

While the value of α can be obtained from another equation (Eq. 2)

$$\alpha = \frac{47.7}{E_p - E_{p_{1/2}}}$$
 Eq. 2

Whereas $E_p = E_{pa} = 800 \text{ mV}$; $E_{p1/2} = 715 \text{ mV}$, so by placing these values in Eq. 2 the value of α equals to 0.56

After solving Eq. 3

$$n\alpha = 1.002$$
 Eq. 3
 $n = \frac{1.002}{0.56} = 1.78 \cong 2$

Scheme S1. Probable mechanism of tyrosine detection.

Tables

Table S1. Selectivity study data for CNC/MnTPP/GC towards tyrosine at pH 5.

Interfering agents	Current (µA)	Tolerance (%)
Tyrosine	9.67	
Tyrosine + Dopamine	10.06	-4.03 %
Tyrosine + Ascorbic acid	9.68	-0.10 %
Tyrosine + Uric acid	8.91	+7.85 %

Tyrosine + Glucose	9.19	+4.96 %
Tyrosine + Glycine	9.63	+0.41 %

Table S2. Comparison of the Performance of CNC/MnTPP/GC Sensor with Existing Literature.

Sr.	Electrode	Linear	LoD	Method	Reference
#		range			
1	CB–GO/CP ^a	0.1–2 mM	100 µM		1
2	GR/ZnO/GSPE ^b	1.0×10^{-6} to	3.4×10 ⁻⁷	SQV	2
		8.0×10 ⁻⁴	М		
		М			
3	CoTPyPRu(bipy) ₂ –Ba ^c	1 to 24 µM	0.5 μM	SQV	3
4	Hemin/PAMAM/MWCNT ^d	0.1 µM to	0.01 µM	Chronoamperometry	4
		28.8 µM			
5	TCPP–Sa/CPE ^e	3 to 51 µM	0.7 μΜ	SQV	5
6	CNC/MnTPP/GC	0.05 to 100	0.021	DPV	Present
		μΜ	μΜ		work

^aCB–GO/CP: carbon black/graphene oxide/hydrophilic carbon paper

^b GR/ZnO/GSPE: Graphene oxide/ZnO nanorods/graphite screen-printed electrodes.

°CoTPyPRu(bipy)₂–Ba:µ-*meso*-tetra(4-pyridyl)porphyrinatecobalt(II)tetrakis[bis(bipyridine) (chlorido) ruthenium(II)- Cameroonian smectite clay form Bagba hill.

^d Hemin/PAMAM/MWCNT: iron protoporphyrin IX/poly(amidoamine)/multi-walled carbon nanotube.

^eTCPP–Sa/CPE: Meso-tetra(4-carboxyl phenyl) porphyrin immobilized Cameroonian smectite clay from Sabga hill deposited on carbon paste electrode.

References

- 1. Q. Bao, G. Li, Z. Yang, P. Pan, J. Liu, R. Tian, Q. Guo, J. Wei, W. Hu and W. Cheng, *Microchemical Journal*, 2023, **185**, 108238.
- 2. H. Beitollahi and F. Garkani Nejad, *Electroanalysis*, 2016, **28**, 2237-2244.
- 3. J. C. Kemmegne-Mbouguen, H. E. Toma, K. Araki, V. R. L. Constantino, E. Ngameni and L. Angnes, *Microchimica Acta*, 2016, **183**, 3243-3253.
- 4. Q. Ma, S. Ai, H. Yin, Q. Chen and T. Tang, *Electrochimica Acta*, 2010, **55**, 6687-6694.
- 5. J. C. Kemmegne-Mbouguen and E. Ngameni, *Analytical Methods*, 2017, 9, 4157-4166.