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S1. Experimental section

S1.1 Materials and methods

Chemical reagents and solvents for the synthesis were commercially
purchased and purified according to the standard methods, if necessary. Thin
layer chromatography (TLC) was performed using Merck Silica gel 60 F254
plates.

The NMR experiments were conducted using a Varian VNMRS 500 MHz
spectrometer ("H at 500 MHz, '3C{'H} NMR at 125 MHz) equipped with a
multinuclear z-gradient inverse probe head. The spectra were recorded at 25
°C and standard 5 mm NMR tubes were used. "H and "3C chemical shifts (d)
were reported in parts per million (ppm) relative to the solvent signal, i.e.,
DMSO-de: dH (residual DMSO) 2.50 ppm, &c (residual DMSO) 39.5 ppm. In
the case of NMR spectra were analyzed with the MestReNova v12.0 software
(Mestrelab Research S.L).

ESI-HRMS (TOF) measurements were performed with a Q-Exactive
ThermoScientific spectrometer.

Elemental analyzes were performed using CHNS Elementar Vario EL Il
apparatus. Each elemental composition was reported as an average of two
analyses.

UV-vis measurements were performed with a WVR UV-1600PC
spectrometer, with the spectral resolution of 2 cm™'. For the UV-Vis
measurements, the wavelengths for the absorption maxima Amax were
reported in nm.

Emission spectra were recorded with a HITACHI F-7100 FL
spectrometer; parameters for the spectra of liquid samples (DMSO solution):
scan speed: 1200 nm/min, delay: 0.0 s, EX slit: 5.0 nm, EM slit: 5.0 nm, PMT
voltage: 700 V; parameters for the spectra of samples of aggregates
(DMSO/H20 solution in various proportions): scan speed: 1200 nm/min,
delay: 0.0 s, EX slit: 5.0 nm, EM slit: 5.0 nm, PMT voltage: 400 V parameters
for the spectra of solid samples: scan speed: 1200 nm/min, delay: 0.0 s, EX
slit: 5.0 nm, EM slit: 5.0 nm, PMT voltage: 400 V. The wavelengths for the
emission maxima (Aem) were reported in nm.

SEM Field emission scanning electron microscope Helios 5 PFIB (Thermo
Scientific) with the use of SE (secondary electron) detector.

Dynamic light scattering (DLS) measurements were performed with
Brookhaven Instruments Particle Size Analyser 90Plus



For grinding in hand-held mortar agate mortar with pestle was used (mortar
diameter: 62 mm, pestle diameter: 24 mm)

For grinding in glass vial a vial (diameter: 18 mm) and rod (diameter: 8 mm)
made of borosilicate glass were used.

For sonochemical reactions (Bandelin Sonorex RK 100H ultrasonic probe;
ultrasonic peak output/HF power: 320W/80W; 35kHz) was used.

S$1.2 Synthesis of compound 3 — synthesis in solvent

General method for the synthesis of compound 3 in solvent

In a round-bottom flask, 4-(1,2,2-triphenylvinyl) benzoic acid (1) was placed. Then
5'-phenyl-[1,1":3',1"-terphenyl]-4-amine (2) was added, followed by an addition of
coupling agent and an organic solvent (see Table S1). The reaction mixture was
stirred at room temperature under an argon atmosphere. Then, a 1 mol-dm-3
hydrochloric acid solution was added to the reaction mixture, and the crude product
was extracted with CH2Cl2 (3x20 mL). Organic layers were combined, washed with
water and brine. After drying with MgSO4 followed by filtration, volatiles were
distilled off on a rotary evaporator. Finally, the product was purified using a column
chromatography (SiO2, 2% hex/CH2Clz2) to provide the target compound 3 as a
yellow solid (Note: Compound 3 can also be purified by column chromatography
with 50% c-hex/AcOEt, Rf = 0.9).

"H NMR (DMSO-ds, 500 MHz, ppm), &1 10.29 (s, 1H) 7.91-7.85 (m, 11H), 7.78-
7.76 (m,2H), 7.53-7,50 (m, 4H), 7.43-7,40 (m, 2H), 7.20-7.12 (m, 11H), 7.04-7.00
(m, 6H); {TH}'*C NMR (DMSO-ds, 125 MHz, ppm), 165.0, 146.7, 142.9, 142.8,
142.7, 141.6, 141.1, 140.2, 139.7, 138.9, 135.1, 132.6x2, 130.6, 128.9, 128.0,
127.9x2, 127.8,127.7,127.3x2, 127.2, 126.9, 126.7, 124.0x2, 120.6; HRMS (ESI)
m/z [M]* calcd. for Cs1H37NO = 680.2948, found = 680.2942 m/z; Elemental
analysis: Anal. Calcd for Cs1H37NO: C, 90.1; H, 5.49; N. 2.06. Found: C, 89.86; H,
5.49; N, 2.08. Rt (2% hex/CH2Cl2 ) = 0.91



Table S1 Conditions for the reaction in solvent

no ce;rctzgx(yil)m amine (2) solvent coupling agent time/ yield
(mg: mol: eq) (mg; mol; eq) (ml) (mg; mol; eq) temp. (mg; %)
' . DCM SOClz 24h/ 3.3mg
. . 5. . . 5.
1 | 20;5.31-10% 1.0 | 17.1;5.31-10%; 1.0 4) 7.58;6.37-10°%; 1.2 RT 9%
EDCI
DMF 10.0;5.31-10%; 1.0 24h/ 7.8 mg
. .15 . .41N-5- ’ ) =Y
2 20;5.31-10°;1.0 | 17.1;5.31-107; 1.0 4) DMAP RT 280
1.30; 1.06-10%; 0.2
EDCI
EtOAc 10.0; 5.37-10°%; 1.0 24h/ 16.7 mg
. . -5. . . -5. 1 ) =
3 20;5.31-10°;1.0 | 17.1;5.31-107; 1.0 4) DMAP RT 46%
1.30; 1.06-10%;, 0.2
EDCI
THF 10.0;5.31-10%; 1.0 170h/ 16.7 mg
. .1N-5- . .45 ’ ) =Y
4 20;5.37-10>; 1.0 | 17.1;5.31-10>; 1.0 ) DMAP RT 46%
1.30; 1.06-10%; 0.2
EDCI
DCM 10.0; 5.31-10°°; 1.0 170h/ 17.3 mg
. . 5. . . 5. 1 1 ===
5 | 20;5.31-10°5; 1.0 | 17.1; 5.31-105; 1.0 @) DMAP RT 48%

1.30; 1.06-10°%; 0

N

$1.3 Synthesis of compound 3 — mechanochemistry

General method for the mechanochemical synthesis of compound 3

4-(1,2,2-Triphenylvinyl) benzoic acid (1), 5-phenyl-[1,1":3',1"-terphenyl]-4-
amine (2) and a coupling agent were grinded in presence of small amount of organic
solvent (LAG — Liquid Assisted Grinding) at room temperature (see Table S2). Then a
1 mol-dm-2 hydrochloric acid solution was added to the reaction mixture, and the crude
product was extracted with CH2Cl2 (3x20 mL). Organic layers were combined, washed
with water and brine. After drying with MgSO4 followed by filtration, volatiles were
distilled off on a rotary evaporator. Finally, the product was purified using a column
chromatography (SiOz2, 2% hex/CH2Cl2) to provide the target compound 3 as a yellow
solid.



Table S2 Conditions for the mechanochemical synthesis

carboxylic acid

amine (2) solvent | coupling agent time/ yield
no- W (mgimolieq) | (W) | (mgimoliea) |temp. | (mg; %)
(mg; mol; ﬂ) 1 1 1 1 1
grinding in
' y DCM k-Oxyma 15min/ hand-held
. . 5. . . 5.
6 20;5.31-10% 1.0 | 17.1;5.37:10% 1.0 (50) 9.56;5.31-10%; 1 RT mortar
0.0 mg / 0%
EDCI grinding in
DCM 10.0;5.37-10°%; 1.0 | 15min/ hand-held
. . -5 . . -5. ’ 1 =
7 20;5.31-10>;1.0 | 17.1,5.31-10>; 1.0 (50) NHS RT mortar
6.11;5.31-105; 1 1.0 mg /3%
grinding in
DCM CDI 15 min/ hand-held
. 105 . 105"
8 | 20:5.3110% 1.0 | 17.1;5.3110% 1.0 | 54) | g61:531-1051.0 | RT mortar
2.7mg /5%
grinding in
DCM HBTU 15 min/ hand-held
. 105 . 105
9 | 20:5.3110% 1.0 | 17.1;8.3110% 1.0 | 54) | 201:531-10510 | RT mortar
2.8 mg /8%
EDCI grinding in
DCM 10.0; 5.31-10%; 1.0 | 15 min/ hand-held
. .41N5- . .15 , y e
10 | 20;5.31-10°;1.0 | 17.1;5.31-10®; 1.0 (50) FeCls RT mortar
43.1;1.59-10% 3 4.2mg/12%
EDCI grinding in
DCM 10.0; 6.44-10°; 1.2 | 15 min/ hand-held
. 105 . .15 ’ ) L&
11 | 20;5.37-10°; 1.0 | 17.1;5.31-10>; 1.0 (50) KsPOs RT mortar
33.8;1.59-10% 3 7.9 mg/ 22%
grinding in
EDC 15 min/ hand-held
. .10)-5- . .10-5- _
12 | 20;5.37-10°; 1.0 | 17.1;5.31-10%; 1.0 10.0; 6.44-105 1.2 RT mortar
7.9mg/22%
EDCI grinding in
DCM 10.0;5.37-10°; 1.0 | 15 min/ hand-held
. 105 . .15 ’ y .Y
13 | 20;5.37-10°; 1.0 | 17.1;5.31-10>; 1.0 (50) DIPEA RT mortar
20.6; 1.59-10*; 3.0 8.4 mg/ 23%
EDCI grinding in
DCM 10.0;5.37-10°; 1.0 | 15 min/ hand-held
. 105 . .15 ’ y .Y
14 | 20;5.37-10°; 1.0 | 17.1;5.31-10>; 1.0 (50) K2COs RT mortar
22.0; 1.59-10%; 3.0 8.8 mg / 24%
EDCI grinding in
DCM 10.0;5.37-10°%; 1.0 | 15 min/ hand-held
. .45 . .15 ’ )y =Y
15 | 20;5.37-10°; 1.0 | 17.1;5.31-10>; 1.0 (50) DMAP RT mortar
1.50; 1.06-10°; 0.2 9.3 mg/ 26%
EDCI grinding in
DCM 10.0;5.37-10°%; 1.0 | 15 min/ hand-held
. . -5 . . -5- ’ [ T1-4
16 | 20;5.37-10°; 1.0 | 17.1;5.31-10%; 1.0 (50) sulfo-NHS RT mortar
11.5;5.31-105;, 1.0 12.7 mg/ 35%
grinding in
DCM DIC 15 min/ hand-held
. .1()5- . .10-5-
17 | 20;5.31-10°; 1.0 | 17.1;5.31-10>; 1.0 (50) 6.70: 5.31-105 1.0 RT mortar
13.4mg/37%
grinding in
EDCI 15 min/ hand-held
. 105 . 105 -
18 | 20;5.37-10°; 1.0 | 17.1;5.31-10>; 1.0 10.0: 5.31-105 1.0 RT mortar
14.8 mg/41%
grinding in
DCM DCC 15 min/ hand-held
. 105 . 105
19 | 20;5.37-10°; 1.0 | 17.1;5.31-10>; 1.0 (50) 10.9: 5.31-105 1.0 RT mortar

16.5 mg /45%




. grinding in glass
20 | 20:5.31-105 1.0 | 17.1:5.31-105; 1.0 '?SCO'\)" 105500505 10 | e tube
e 28 16.2 mg / 45%
grinding in
21 | 20;5.37-105 1.0 | 17.1;5.37-105, 1.0 '?SCO'\)" 100531905 10 | ammt| hand-held
- 18.9 mg / 52%
grinding in
22 | 20;5.31:10% 10 | 17.1;5.31-10% 1.0 EE?SC 10.0; 5|533-C1|0-5- 1.0 15Rn;m/ harlgg;?aerld
- 18.9 mg / 52%
grinding in
28 | 20:5.31110% L0 | 17.1;5.31:10% 1.0 I?ssco'\)/I 10053140520 | RT. | morar
- 19.3 mg / 53%
EDCI grinding in
. . -5- i -
24 | 20;5.31-105 10 | 17.1;5.31-105; L0 '?SCO'\)A 100:58770% L0 | 15t | hand-held
18.7; 3.2-10% 6.0 19.9 mg / 55%
EDCI grinding in
25 | 20;5.31-105 1.0 | 17.1;5.31-105 1.0 '?;30'\)" 100;5.31:10% 10 | oM | hand-held
Si02 20 mg 19.9 mg / 55%
grinding in
26 | 20:5.37-10% 1.0 | 17.1:5.31-105 1.0 I?SCO'\)A 10.0: 5E33§1'0.5. 10 30Rn_|1_|n/ hiﬁ'g;g’;'d
- 19.9 mg / 55%
. grinding in glass
27 | 20:5.31-105 1.0 | 17.1:5.31-105; 1.0 Eggcﬁc 100531305 10 | ! tube
O 28 28.4 mg / 80%
. grinding in glass
28 | 20;5.37-105 1.0 | 17.1;5.37-105; 1.0 ?é:o'\)/l 100531705 10 | amm! tube
07 o P28 30.5 mg / 84%
. - 30 grinding in
. 5
29 | 20;5.31-105; 1.0 1L 51'%1 10° '?SCO'\)A 10.0: 5E3D1?1'05_ 10 min/ glass tube
22 U5 3 22 | RT | 34.8mg/96%

To check the repeatability of the designed grinding-induced protocol, we
performed the mechanochemical synthesis of the target compound 3 under optimized
mechanochemical conditions (grinding in glass vial with glass rod, reaction time: 30
minutes, 1.0 equiv. of EDCI) three times (independent runs), at the similar scales and
on different days. The obtained isolated yields were consistent and equalled 93+3%.
'H NMR analyses supported the isolation of pure 3 in each synthesis. The data for
these experiments are presented below:

Run#1:
Synthesis date: 6.12.2022, reaction scale (mmol of amine 2): 0.0531, mmol of the
product 3 obtained: 0.0510, isolated yield of 3: 96%

Run#2:
Synthesis date: 15.03.2024, reaction scale (mmol of amine 2): 0.0531, mmol of the
product 3 obtained: 0.0478, isolated yield of 3: 90%

Run#3:
Synthesis date: 18.03.2024, reaction scale (mmol of amine 2): 0.0531, mmol of the
product 3 obtained: 0.0489, isolated yield of 3: 92%

10



'H NMR spectra (DMSO-de) of the samples of compound 3 from the above-listed
mechanochemical reaction runs:

jc095a, dmso, 1H, 499.87, 25.0, 2022-12-06T12:07:59,

Reaction date: 6-12-2022
Isolated yield: 96%

)

jc211, dmso, 1H, 499.87, 25.0, 2024-03-15T10:26:07,

Reaction date: 15-03-2024
Isolated yield: 90%

Il ‘L B8

=

A

jc212, dmso, 1H, 499.87, 25.0, 2024-03-18T10:03:53,

Reaction date: 18-03-2024
Isolated yield: 92%

| |

T T T T T T T T T T T T T T T T T T T T T T T T
105 104 103 102 10.1 10.0 9.9 98 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67
ppm

S1.4 Synthesis of compound 3 — sonochemistry

General method for the sonochemical synthesis of compound 3

In a round-bottom flask 4-(1,2,2-triphenylvinyl) benzoic acid (1) was placed. Then
5'-phenyl-[1,1":3',1"-terphenyl]-4-amine (2) was added, followed by coupling agent
and organic solvent. The flask was then placed in an ultrasonic bath Then a 1
mol-dm™3 hydrochloric acid solution was added to the reaction mixture, and the
crude product was extracted with CH2Cl2 (3x20 mL). Organic layers were
combined, washed with water and brine. After drying with MgSO4 followed by
filtration, volatiles were distilled off on a rotary evaporator. Finally, the product was
purified using a column chromatography (SiO2, 2% hex/CH2Cl2) to provide the
target compound 3 as yellow solid.

Table S3 Conditions for the sonochemical synthesis

carboxylic acid

no (1) amine (2) solvent coupling agent time/ yield
’ (mg; mol; eq) (mg; mol; eq) (ml) (mg; mol; eq) temp. (mg; %)
17.1;5.31-10°%; EtOAC EDCI 60 min/
. .45 ) y 0
33 20; 5.31-10°; 1.0 10 @) 10.0: 5.37-105: 1.0 RT 11.6 mg/32%
17.1;5.31-10°%; DCM EDCI 60 min/
. .45 ) y
34 20; 5.31-10°; 1.0 10 02) 10.0: 5.37-105: 1.0 RT 28.1 mg/ 78%
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$1.5 Green chemistry metrics

Safety considerations

Table S4 Hazards of the coupling reagents and solvents

compound hazard meaning thermal
statements stability
TPE-COOH H302 Harmful if swallowed
H315 Causes skin irritation
O O H319 Causes serious eye irritation
_ H335 May cause respiratory n/a
Q O irritation
COOH
TPB-NH:2 H302 Harmful if swallowed
H315 Causes skin irritation
O O H319 Causes serious eye irritation
O H332 Acute toxicity, inhalation
H335 Specific target organ toxicity, n/a
O single exposure; Respiratory
system
NH,
EDCI H302 Harmful if swallowed
| H315 Causes skin irritation
N N - H319 Causes serious eye irritation
Sding ‘C\\N/\ H335 May cause respiratory n/a
HEl irritation
H301, H331 | Toxic if swallowed or if
DMAP inhaled
H310 Fatal in contact with skin
N7 H315 Causes skin irritation
H318 Causes serious eye damage n/a
| N H370 Causes damage to organs
N7 (Nervous system)
H411 Toxic to aquatic life with long
lasting effects
H315 Causes skin irritation
H319 Causes serious eye irritation
dichloromethane H336 May cause drowsiness or n/a
dizziness
H351 Suspected of causing cancer

12




First pass green metrics calculations

EDCI/ DMAP, synthesis in solution Summary of First Pass Metrics Toolkit

Reactant
(Limiting Mass MW Reaction | Volume . 4 | Mass | Workup | Mass Workup | Volume | Density Mass
Reactant (9) (g/mol) Ll SRS RS ()| Reegent| Mo (@) solvent (cm3) DT (i) (9) chemical (9) solvent (cm3) (g-cm™) @)
First)
TPE-COOH 0.02 376.45 | 5.31E-05 DMAP 0.0013 DCM 4 1.33 5.32 n-hexane 3 0.661 1.983
TPB-NH, 0.017 | 321.41 |5.31E-05 DCM 147 1.33 195.51
EDCI 0.01 191.17 | 5.31E-05
Total 0.047 | 889.03 0.0013 5.32 197.49
Yield 48.0 Mass (g) Mw Mol Solvents (first pass) Tick
Selectivity 100.0 Product | 0.03477 | 679.846 | 0.0000511
Un_rea_lcted Problematic | DMSO, AcOH, Acetonitrile, AcOMe, THF, heptane, toluene, MTBE,
AE 67.2 Limited 0.0008
solvents cyclohexane, chlotrobenzene, Me-THF
Reactant
RME 71.9
mass of isolated product
RME = x 100
total mass of reactants Hi
ighly
OE 96.3 hazardous Et,O, benzene, CCl,, chloroform, nitromethane, CS,
_ molecular weight of product 100 solvents
PMI total 58344 "~ total molecular weight of reactants X
PMI reaction 154.4 Catalyst/enzyme (First pass) Tick
Reagents, catalyst 0.047 PMI = mass intensity = total mass in a process or process step
PMI reaction solvents | 153.0 mass of product Use of stoichometric quantities of reagents Amber Flag
PMI reagents 0.037 OE = RME x 100
PMI workup chemical 0.0 AE
PMI workup solvent 5680.0
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EDCI/ DMAP, synthesis in solution

Critical Elements
Supply Remaining Flag Colour elgr?wt:nt
50-500 years Amber Flag
+500 years Green Flag +
Energy Tick
Reaction run between 0 to
70°C Green Flag +
Reaction run between -20 to 0 Amber Fi
or 70 to 140°C LT REY

Batch/Flow Tick
Flow Gren Flag
Batch Amber Flag 9r

Health and Safety

Amber Flag

Green Flag

H205,
H220, H224

Highly Explosive

Explosive thermal runaw ay

H301,

Toxic H311, H331

Long Term Toxicity

Environmental Implications H401, H412

If no red or amber flagged H
codes present then green flag

Use of chemicals of environmental concern

Chemical identified as Substances of Very
High Concern by ChemSec which are utilised

List of substances

Tick 1 Remaining years |2
H until depletion of He
200791 known reserves | conem
3 T (based on current rate of s . ] ] 10
3 ‘extraction)
) U | Be B|C|N|O|F|Ne
Reactionrun 5°C orbelowthe | o |
solvent boiling point 9 (8 T
Na | Mg 100-500 years Al | si [NPRINSE o | Ar
rsss | awsme sussiss | 2uoess | 3mare |32 | 07 | o
. n ER e PR PR . w .
Workup Tick K [C|[S|Ti|V|e Fe | Co | Ni [ Cu Se | Br | Kr
quenching o |won | ussm | oo | sess | 1o saes | oo | s | masss n% | nso [um
A » > & [« & o - @ s |-
fllt.ratlon. Rb Y | zZr [Nb|Mo| T Pd Te | 1| X
centrifugation sun sy [z | msosm | maw | 5o e s | v [ 110
crystalisation % |v n » © 3 “ |5 [=
o Srecnliiag Cs | Ba [la* T Re Hg Pb Po | At | Rn
low temperature distillation/ e e e e P e e T (PR, PR
evaporation/ sublimation Fr | Ra |Act| Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uug | Uup | v | Uus | Uuo
solvent exchange, quenchi
into a ue:t?s ’sglve it "9 | Amber Flag =T e & = = [ = [= [« = = = |
o Lanthanides* | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu
sason | [ [0 e |mon [ e |sewn w0 [won [0 | wse [mo | voe
w % Sl s = | = v |w |m |m |w
Actinidest | Th | Pa Np | Pu [Am [ Cm | Bk | Cf | Es | Fm | Md | No | Lr
me | LNEs o {204 43 2 a7 51} @52 7) 58) 2%9) (262

List substances nad H-codes

List substances nad H-codeg

TPE-COOH

TPB-NH,

DMAP

DCM
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EDCI, mechanochemistry Summary of First Pass Metrics Toolkit

Reactant
(Limiting MW Mass Reaction | Volume i 4 Workup Workup | Volume | Density Mass
Reactant Mass (g) (g/mol) Mol Catalyst @ Reagent | Mass () A (cm3) Density (g-ml™) | Mass (@) chemical Mass (g) solvent (Cm3) (g-cm'l) ©
First)
TPE-COOH 0.02 376.45 | 5.30E-05 DCM 0.05 1.33 0.0665 n-hexane 3 0.661 1.983
TPB-NH, 0.017 | 321.41 | 5.30E-05 DCM 147 1.33 195.51
EDCI 0.01 191.17 | 5.30E-05
Total 0.047 | 889.03 0.07 197.49
Yield 96.0 Mass (9) MwW Mol Solvents (first pass) Tick
Selectivity 100.0 Erael 0.03477 | 679.846 |0.0000511 Preferred water, EtOH, n-BuOH, i -PrOH, EtOAc, i -PrOAc, n-BuOAc, anisole,
solvents sulfolane
Unreacted Limited Problematic DMSO, AcOH, Acetonitrile, AcOMe, THF, heptane, toluene, MTBE,
AE 76.4 0.0008
Reactant solvents cyclohexane, chlotrobenzene, Me-THF
RME 73.4
RME = mass of isolated product 100
= Ttotal mass of reactants Highly
OE 96.1 hazardous Et,0, benzene, CCl,, chloroform, nitromethane, CS,
solvents
_ molecular weight of product 100
PMI tOta_I 5683.2 " total molecular weight of reactants X
PMI reaction 3.3 Catalyst/enzyme (First pass) Tick
Reagents, catalyst 0.000 . catalyst or enzyme used or reaction takes place without any catalyst/ reagent | Green Flag
PMI = mass intensity = total mass in a process or process step
PMI reaction solvents 1.9 B v = mass of product Use of stoichometric quantities of reagents Amber Flag +
PMI workup chemical 0.0 OF = AE 100
PMI workup solvent 5680.0
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EDCI, mechanochemistry

Critical Elements

Supply Remaining

Note element

Flag Colour

50-500 years Amber Flag
+500 years Green Flag aF
Energy Tick
Reaction run between 0 to 70°C | Green Flag +
Reaction run between -20 to 0 or Amber Fl
70 to 140°C erag

Batch/Flow Tick
Flow Gren Flag
Batch Amber Flag +

Health and Safety

Amber Flag

Green Flag

Highly Explosive

H205, H220,
H224

Explosive thermal runaway

Toxic

H301, H311,
H331

Long Term Toxicity

H341, H351,
H361, H371,
H373

Environmental Implications

H401, H412

If no red or amber flagged H
codes present then green flag

Use of chemicals of environme

ntal concern

Chemical identified as Substances of Very High
Concern by ChemSec which are utilised

Reaction run 5°C or below the
solvent boiling point

Green Flag

Workup

Tick

quenching

filtration

centrifugation

crystalisation

low temperature distillation/
evaporation/ sublimation

Green Flag

solvent exchange, quenching into
agueous solvent

Amber Flag

Remaining years

H until depletion of
scare known reserves
T (based on current rate of
- extraction)
100-500 years
Fe [ Co | Ni | cu Se | Br | Kr
SRR vy o e ne | oo |
T Pd Te | 1
s o sz s | wsoes | 11
Ta Re Hg b Po
1o sz o059 02 pon
Db | sg [ Bh | Hs | Mt | Ds [ Rq |Uub | Uut | Uug |Uup | v | Uus | Uuo
Lanthanides* | Ce | Pr | Nd Eu | Gd | Tb | Dy |Ho [ Er | Tm [ Yb | Lu
s s oo Jwose |umser [ss fswom [saws 1050 [womn w20 |sanes | e | oeser
Actinides ¢ | Th Np | Pu [Am | Ccm | Bk | Cf | Es | Fm | Md | No | Lr
» @n ow |oo oo oo |ow |ewm on_|osm |emn |ow

List substances nad H-codes

List substances nad H-codes

TPE-COOH

TPB-NH,

EDCI

DCM

List of substances
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$1.6 Characterisation of aggregation induced emission effect

The characterisation of aggregation induced emission behavior of compound
3 was performed employing measurements of the emission spectra. The
experiments were performed in the DMSO/H20 solvent mixture. Stock solution
of 3 (2:1072 M) in DMSO was diluted with proper volume of pure DMSO followed
by addition of H20 to reach given vol% of H20 in the sample.

$1.7 Anion binding experiments
$1.7.1 'H NMR spectroscopy

The binding experiments between compound 3 (receptor) and anions (Br, AMP
and ADP) were performed employing the 'H NMR titration experiments.
Tetrabutylammonium bromide ([N(Cs4H9)4]*) was used in these experiments. The
experiments were performed in DMSO-ds containing TMS (tetramethylsilane, 0.03%
vol) as follows. To a stock solution of 3 (7.5-103 M) in DMSO-ds a stock solution of
analyte (7.5-1073 M) in DMSO-ds was added, followed by addition of DMSO-ds to reach
given concentration of analyte in the sample (in case of AMP and ADP stock solution
of 3 and stock solution of analyte were mixed in such a way that the sum of receptor
(3) and analyte concentrations in the sample were on the constant level with varying
molar fractions). Final volume of the samples was 1 mL.

$1.7.2 Spectrofluorimetry

The anion binding experiments between compound 3 (receptor) and anions

(analytes; Br, I, HSO4, BF4, H2PO4, CIO4, CN', AMP, ADP, ATP, NADP and FAD)
were performed employing the emission spectra titration experiments. In all cases,
tetrabutylammonium ([N(C4Ho)4]*) salts of anions were used. The experiments were
performed in the DMSO/H20 = 1:1 v/v system as follows. Stock solution of 3 (2:1073
M) in DMSO was diluted with adequate volume of pure DMSO (to reach volume of 1
mL), followed by addition of H20 solution containing given anion (final concentration of
anion was between 5-107% M and 2:107* M)

S$1.9 Estimation of fluorescence quantum yield

The measurements were performed at room temperature according to the
published procedures.’? Fluorescence quantum yields (®r) were determined by
comparison with quinine sulfate (QS) in 0.5M H2SO4 (®Prref = 0.55 3) as the
standard. The measurements were performed with diluted solutions
(absorbance for the highest wavelength A < 0.1 a.u.). The selected excitation
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wavelengths (Aex) were as follows: Cas =2:-107% M; C3 =2-107"% M, Aex = 351 nm;
C3agg. = 2:107% M, Aex = 343 nm.
The following formula was used for the calculation of O®k:

—A 2
Fsample 1 — 107 “ref nsample

2
reference

oF = cI)F,ref '

Freference 1- 10_Asample n

where Orrefis the quantum vyield for QS (0.55"), F is the integrated area under the
fluorescence spectra, A is the absorbance at the excitation wavelength, n is the
refractive index of the solvent (1.346 for 0.5M H2SO4, 1.4772 for DMSO, n for the
aggregates solution (DMSO/H20 = 1:1 v/v) was taken as weighted arithmetic mean
with weights equal to vol% of H20 (n = 1.3329) and DMSO in the mixture). The
calculated ®©r for 3 and aggregates of 3 , were 0.0042 and 0.2437, respectively.

18



S2. NMR spectra
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Figure S 1 '"H NMR (500 MHz, DMSO-ds) spectrum of 3
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Figure S 2 {"H}"*C NMR (125 MHz, DMSO-ds) spectrum of 3
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Figure S 3 'H-'H COSY NMR (500 MHz, DMSO-ds) spectrum of 3
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S3 HRMS spectrum
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Figure S 5 ESI-HRMS (TOF) spectrum of 3
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S4. Absorption and emission spectra
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Figure S 6 UV-vis spectrum of compound 3 (DMSO, C3 =2:-10° M)
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Figure S 7 Emission spectra of 3 (DMSO, C3 =2:107° M, Aex = 270 nm (top), Aex =
340 nm (bottom))
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Figure S 8 3D emission spectrum of 3 (DMSO, C3 =2-10"% M)
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Figure S 9 Emission spectra (lex = 270 nm) of compound 3 in DMSO/H20 system
containing different vol% of water in the sample (C3 =2:10"° M,)
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Figure S 10 Emission spectra (lex = 340 nm) of compound 3 in DMSO/H20 system
containing different vol% of water in the sample (C3 = 2:107° M)
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Figure S 11 3D emission spectra of 3 (DMSO/H20 = 1:1 v/v, C3 = 2:107° M)



S5. Anions binding experiments

For anions for which a decrease in emission intensity was observed (I, HSOa4,
BF4, H2PO4, CN, AMP, ADP, ATP, NADP, FAD) the Stern-Volmer constant
values (Ksv) were estimated using the Stern-Volmer method, given by the
equation:

Iy
7:1+KSV

where /o and | are the fluorescence intensities of 3 in the absence and presence of
given anion, respectively. Ksv were taken as slope of 7/C(a-) vs. 1/Al linear plots.

The limit of detection (LOD) values were estimated from the plot: of (I=Imin)/ (Imax—Imin)
vs Log ([A]).

For ClO4 where an increase in emission intensity was observed the apparent
binding constant (Kapp) values were estimated using the Benesi-Hildebrand 4°
method, given by the equation:

1 —1+ 1
I—1, a a Kgy C(AY)

where /o and / are the fluorescence intensities of 3 in the absence and presence

of given anion, respectively, a is a constant, and C(A) is the concentration of
given anion in solution. Kapp were determined as a ratio of intercept-to-slope of
1/(I — Io) vs. 1/C(A) linear plots.

The data (for the estimation of Kapp for the studied systems were collected
from emission maxima (Aem) = 496 nm (Aex = 270 nm).

The limit of detection (LOD) values were estimated by the equation:
LOD =3S/b
Where S is standard error of intercept, and b is slope of regression line

The stoichiometry of the complexes formed was estimated using Job's plot
method, from the plot: (1- x)-(&- do) vs x. The x stands from the mole fraction of
nucleotide. The expected stoichiometry is indicated by the maximum on the plot.

All the spectra and plots are presented below.
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S$5.1 TH NMR spectroscopy
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Figure S 12 'H NMR (500 MHz, DMSO-ds) spectrum of 3 in presence of various
molar equivalents of Br
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Figure S 13 Inset of the "H NMR (500 MHz, DMSO-d6) spectrum of 3 in presence of

various molar equivalents of Br
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Signals on the "H NMR spectra were assigned according to the literature data®.
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Figure S 14 Chemical formula of adenosine monophosphate (AMP) with the marked
protons (a, b) for which the shifts of signals were observed in the 'TH NMR

spectrum
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Figure S 15 'H NMR (500 MHz, DMSO-ds) spectrum of 3 in presence of various
molar equivalents of AMP (grey colour indicates signals that are shifted)
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Figure S 16 Insets of the "H NMR (500 MHz, DMSO-ds) spectrum of 3 in presence of
various molar equivalents of AMP
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Figure S 17 Insets of the '"H NMR (500 MHz, DMSO-ds) spectrum of 3 in presence of
various molar equivalents of AMP (amplification of the shifted proton
signals of the nucleobase of the nucleotide)
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Figure S 18 Job’s plot regarding the interactions between 3 and AMP (the red arrow
indicates the estimated stoichiometry of the complex formed)
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Figure S 19 Chemical formula of adenosine diphosphate (ADP) with the marked
protons (a, b), whose signals are shifted in the '"H NMR spectrum
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Figure S 20 'H NMR (500 MHz, DMSO-ds) spectrum of 3 in presence of various molar
equivalents of ADP (grey colour indicates signals that are shifted)
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Figure S 21 Insets of the '"H NMR (500 MHz, DMSO-ds) spectrum of 3 in presence of
various molar equivalents of ADP (amplification of the shifted proton
signals of the amide group)
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Figure S 22 Insets of the '"H NMR (500 MHz, DMSO-ds) spectrum of 3 in presence of
various molar equivalents of ADP (amplification of the shifted proton
signals of the nucleobase of the nucleotide)
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Figure S 23 Job’s plot regarding the interactions between 3 and ADP (the red arrow
indicates the estimated stoichiometry of the complex formed)
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$5.2 Emission spectra
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Figure S 24 Emission spectra of 3 in the presence of various molar equivalents of Br
(DMSO/H20 1:1 v/v, C3 =2:107° M, Aex = 270 nm).
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Figure S 25 Stern-Volmer plot regarding the interactions between 3 and Br'. The
data for the linear plot are also presented.
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Figure S 26 Plot for (I-Imin)/(Imax-Imin) versus log(Cg,- ) of the interactions between 3
and Br’. The data for the linear plot are also presented.
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Figure S 27 Emission spectra of 3 in the presence of various molar equivalents of I
(DMSO/H20 1:1 v/v, C3 =2:10"° M, Aex = 270 nm).
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Figure S 28 Stern-Volmer plot regarding the interactions between 3 and I'. The data
for the linear plot are also presented.
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Figure S 29 Plot for (I-Imin)/(Imax-Imin) versus log(Cr) regarding the interactions between
3 and I'. The data for the linear plot are also presented.
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Figure S 30 Emission spectra of 3 in the presence of various molar equivalents of
HSO4 (DMSO/H20 1:1 v/v, C3 =2:10"° M, Aex = 270 nm).
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Figure S 31 Stern-Volmer plot regarding the interactions between 3 and HSO4. The
data for the linear plot are also presented.
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Figure S 32 Plot for (I-Imin)/(Imax-Imin) versus log(Cysp;) regarding the interactions
between 3 and HSO4 . The data for the linear plot are also presented.
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Figure S 33 Emission spectra of 3 in the presence of various molar equivalents of
BFs (DMSO/H20 1:1 v/v, C3=2:107° M, Aex = 270 nm).
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Figure S 34 Stern-Volmer plot regarding the interactions between 3 and BF4. The
data for the linear plot are also presented.
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Figure S 35 Plot for (I-lmin)/(Imax-Imin) versus log(Cgr;) regarding the interactions
between 3 and BF4. The data for the linear plot are also presented.
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Figure S 36 Emission spectra of 3 in the presence of various molar equivalents of
H2PO4 (DMSO/H20 1:1 v/v, C3 =2:10"° M, Aex = 270 nm).
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Figure S 37 Stern-Volmer plot regarding the interactions between 3 and H2PO4 . The
data for the linear plot are also presented.
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Figure S 38 Plot for (I-Imin)/(Imax-Imin) versus log(Cy,po;) regarding the interactions
between 3 and H2PO4 . The data for the linear plot are also presented.
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Figure S 39 Emission spectra of 3 in the presence of various molar equivalents of
ClO4 (DMSO/H20 1:1 v/v, C3=2:-107° M, Aex = 270 nm).
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Figure S 40 Benesi-Hildebrand plots regarding the interactions between 3 and ClO4
. The data for the linear plot are also presented.
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Figure S 41 Emission spectra of 3 in the presence of various molar equivalents of
CN (DMSO/H20 1:1 v/v, C3 =2:107° M, Aex = 270 nm).
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Figure S 42 Stern-Volmer plot regarding the interactions between 3 and CN'". The data
for the linear plot are also presented.

42



0.2 4 Equation y=a+ b*

Adj. R-Squar 0.762

- Value Standard Erro

E Intercept -3.1219 1.13342

Slope -0.7982 0.24512 u

109(C,y)

Figure S 43 Plot for (I-Imin)/(Imax-Imin) versus log(Ccn- ) regarding the interactions
between 3 and CN'. The data for the linear plot are also presented.
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Figure S 44 Emission spectra of 3 in the presence of various molar equivalents of
AMP (DMSO/H20 1:1 v/v, C3=2:107° M, Aex = 270 nm).
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Figure S 45 Stern-Volmer plot regarding the interactions between 3 and AMP. The
data for the linear plot are also presented.
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Figure S 46 Plot for (I-Imin)/(Imax-Imin) versus log(Cawp) of the interactions between 3
and AMP. The data for the linear plot are also presented.
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Figure S 47 Emission spectra of 3 in the presence of various molar equivalents of
ADP (DMSO/H20 1:1 v/v, C3 =2:1075 M, Aex = 270 nm).
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Figure S 48 Stern-Volmer plot regarding the interactions between 3 and ADP. The
data for the linear plot are also presented.
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Figure S 49 Plot for (I-Imin)/(Imax-Imin) versus log(Cawp) of the interactions between 3
and ADP. The data for the linear plot are also presented.
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Figure S 50 Emission spectra of 3 in the presence of various molar equivalents of
ATP (DMSO/H20 1:1 v/v, C3 =2:10"° M, Aex = 270 nm).
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Figure S 51 Stern-Volmer plot of the interactions between 3 and ATP. The data for
the linear plot are also presented.
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Figure S 52 Plot for (I-Imin)/(Imax-Imin) versus log(Cawmp) of the interactions between 3
and ATP. The data for the linear plot are also presented.
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Figure S 53 Emission spectra of 3 in the presence of various molar equivalents of
NADP (DMSO/H20 1:1 v/v, C3 =2:107° M, Aex = 270 nm).
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Figure S 54 Stern-Volmer plot of the interactions between 3 and NADP. The data for
the linear plot are also presented.
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Figure S 55 Plot for (I-Imin)/(Imax-Imin) versus log(Cawvr) regarding the interactions
between 3 and NADP. The data for the linear plot are also presented.
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Figure S 56 Emission spectra of 3 in the presence of various molar equivalents of
FAD (DMSO/H20 1:1 v/v, C3 =2:107° M, Aex = 270 nm).
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Figure S 57 Stern-Volmer plot of the interactions between 3 and FAD. The data for
the linear plot are also presented.
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Figure S 58 Plot for (I-Imin)/(Imax-Imin) versus log(Cawp) of the interactions between 3
and NADP. The data for the linear plot are also presented.
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S6. DLS measurements
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Figure S 59 Size distribution pattern of 3 in DMSO
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Figure S 60 Size distribution pattern of 3 in DMSO/H20 = 1/1 v/v system
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Figure S 61 Size distribution pattern of 3 in DMSO/H20 = 9/1 v/v system
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S7 SEM images
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Figure S 62 SEM image of solid 3 obtained after column chromatography
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Figure S 63 SEM image of dried aggregates of 3
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