Electronic Supplementary Information (ESI) for

Grind, shine and detect: Mechanochemical synthesis of AIE-active polyaromatic amide and its application as molecular receptor of monovalent anions or nucleotides

Jakub S. Cyniaka ${ }^{\text {a }}$, Artur Kasprzaka*

[^0]
Table of contents:

List of figures 3
List of abbreviations: 5
S1. Experimental section 6
S1.1 Materials and methods 6
S1.2 Synthesis of compound 3 - synthesis in solvent 7
S1.3 Synthesis of compound 3 - mechanochemistry 8
S1.4 Synthesis of compound 3 - sonochemistry 11
S1.5 Green chemistry metrics 12
S1.6 Characterisation of aggregation induced emission effect 17
S1.7 Anion binding experiments 17
S1.7.1 Spectrofluorimetry 17
S1.7.2 ${ }^{1} \mathrm{H}$ NMR spectroscopy 17
S1.9 Estimation of fluorescence quantum yield 17
S2. NMR spectra 19
S3 HRMS spectrum 21
S4. Absorption and emission spectra 22
S5. Anions binding experiments 26
S5.1 Emission spectra 27
S5.2 ${ }^{1} \mathrm{H}$ NMR spectroscopy 27
S7. DLS measurements 51
S8 SEM images 53
S9 Supporting references 54

List of figures

Figure S $1{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectrum of 3 19
Figure S $2\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d) spectrum of 3 19
Figure S $3{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR (500 MHz , DMSO-d 6) spectrum of 3 20
Figure S 4 ESI-HRMS (TOF) spectrum of 3 21
Figure S 5 UV-vis spectrum of compound 3 (DMSO, $\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$) 22
Figure S 6 Emission spectra of 3 (DMSO, $\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\mathrm{ex}}=270 \mathrm{~nm}$ (top), $\lambda_{\mathrm{ex}}=340$ nm (bottom)) 23
Figure S 7 3D emission spectrum of 3 (DMSO, $\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$) 24
Figure S 8 Emission spectra of compound 3 in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ system containing different vol\% of water in the sample ($\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$,). 24
Figure S 9 Emission spectra ($\lambda_{\mathrm{ex}}=270 \mathrm{~nm}$) of compound 3 in DMSO/ $\mathrm{H}_{2} \mathrm{O}$ system containing different vol\% of water in the sample ($\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$) 25
Figure S 10 3D emission spectra of $3\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}\right)$ 25
Figure S 11 Emission spectra $\left(\lambda_{\mathrm{ex}}=340 \mathrm{~nm}\right)$ of 3 in the presence of various molar equivalents of $\mathrm{Br}^{-}\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{V}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}\right.$, $\left.\lambda_{\mathrm{ex}}=270 \mathrm{~nm}\right)$. 33
Figure S 12 Stern-Volmer plot regarding the interactions between 3 and Br^{-}. The data for the linear plot are also presented. 34
Figure S 13 Plot for $\left(I-I_{\min }\right) /\left(I_{\max }-I_{\min }\right)$ versus $\log (\mathrm{CBr}-)$ regarding the interactions between 3 and Br^{-}. The data for the linear plot are also presented 34
Figure S 14 Emission spectra of 3 in the presence of various molar equivalents of I^{-} (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=270 \mathrm{~nm}$). 35
Figure S 15 Stern-Volmer plot regarding the interactions between 3 and I°. The data for the linear plot are also presented. 35
Figure S 16 Plot for $\left(I_{-} I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log \left(\mathrm{Cl}_{\boldsymbol{l}}\right)$ regarding the interactions between 3 and I°. The data for the linear plot are also presented. 36
Figure S 17 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathrm{HSO}_{4}{ }^{-}$ (DMSO $/ \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\text {ex }}=270 \mathrm{~nm}$). 36
Figure S 18 Stern-Volmer plot regarding the interactions between 3 and $\mathrm{HSO}_{4}{ }^{-}$. The data for the linear plot are also presented 37
Figure S 19 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\min }\right)$ versus $\log \left(\mathrm{CHSO}_{-}-\right)$regarding the interactionsbetween 3 and $\mathrm{HSO}_{4}{ }^{-}$. The data for the linear plot are also presented. 37
Figure S 20 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathrm{BF}_{4}{ }^{-}$ (DMSO $/ \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\text {ex }}=270 \mathrm{~nm}$). 38
Figure S 21 Stern-Volmer plot regarding the interactions between 3 and $\mathrm{BF}_{4}{ }^{-}$. The data for the linear plot are also presented. 38
between 3 and $\mathrm{BF}_{4}{ }^{-}$. The data for the linear plot are also presented. 39Figure S 23 Emission spectra of 3 in the presence of various molar equivalents of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$(DMSO $/ \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\text {ex }}=270 \mathrm{~nm}$).39
Figure S 24 Stern-Volmer plot regarding the interactions between 3 and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$. The datafor the linear plot are also presented.40
Figure S 25 Plot for $\left(1-I_{\min }\right) /\left(I_{\max }-I_{\min }\right)$ versus $\log (\mathrm{CH} 2 \mathrm{PO} 4-)$ regarding the interactionsbetween 3 and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$. The data for the linear plot are also presented..... 40
Figure S 26 Emission spectra of 3 in the presence of various molar equivalents of $\mathrm{ClO}_{4}{ }^{-}$ (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\text {ex }}=270 \mathrm{~nm}$). 41
Figure S 27 Benesi-Hildebrand plots regarding the interactions between $\mathbf{3}$ and $\mathrm{CIO}_{4}{ }^{-}$. The data for the linear plot are also presented 41
Figure S 28 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathbf{C N}^{-}$ (DMSO $/ \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=270 \mathrm{~nm}$). 42
Figure S 29 Stern-Volmer plot regarding the interactions between 3 and $\mathbf{C N}^{-}$. The data for the linear plot are also presented. 42
Figure S 30 Plot for $\left(I-I_{\min }\right) /\left(I_{\max }-I_{\min }\right)$ versus $\log (\mathrm{CCN}-)$ regarding the interactions between 3 and $\mathbf{C N}^{-}$. The data for the linear plot are also presented 43
Figure S 31 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of AMP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=270 \mathrm{~nm}$). 43
Figure S 32 Stern-Volmer plot regarding the interactions between 3 and AMP. The data for the linear plot are also presented. 44
Figure S 33 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log _{(\text {Camp }) \text { regarding the interactions between }}$ 3 and AMP. The data for the linear plot are also presented. 44
Figure S 34 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of ADP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\text {ex }}=270 \mathrm{~nm}$). 45
Figure S 35 Stern-Volmer plot regarding the interactions between 3 and ADP. The data for the linear plot are also presented. 45
Figure S 36 Plot for $\left(I-I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log \left(\mathrm{C}_{\text {AMP }}\right)$ regarding the interactions between 3 and ADP. The data for the linear plot are also presented 46
Figure S 37 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of ATP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=270 \mathrm{~nm}$). 46
Figure S 38 Stern-Volmer plot regarding the interactions between 3 and ATP. The data for the linear plot are also presented. 47
Figure S 39 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\min }\right)$ versus $\log \left(\mathrm{C}_{\text {AMP }}\right)$ regarding the interactions between 3 and ATP. The data for the linear plot are also presented 47
Figure S 40 Emission spectra of 3 in the presence of various molar equivalents of NADP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=270 \mathrm{~nm}$). 48
Figure S 41 Stern-Volmer plot regarding the interactions between 3 and NADP. The data for the linear plot are also presented. 48
Figure S 42 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $l_{\text {og }}\left(\mathrm{C}_{\text {Amp }}\right)$ regarding the interactions between 3 and NADP. The data for the linear plot are also presented. 49
Figure S 43 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of FAD (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=270 \mathrm{~nm}$). 49
Figure S 44 Stern-Volmer plot regarding the interactions between $\mathbf{3}$ and FAD. The data for the linear plot are also presented. 50
Figure S 45 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log _{\left(C_{A M P}\right)}$ regarding the interactions between 3 and NADP. The data for the linear plot are also presented 50
Figure S $46{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectrum of 3 in presence of various molar equivalents of Br^{-} 27
Figure S 47 Inset of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectrum of 3 in presence of various molar equivalents of Br^{-} 27
Figure S 48 Chemical formula of adenosine monophosphate (AMP) with the markedprotons (a, b) for which the shifts of signals were observed in the ${ }^{1} \mathrm{H}$ NMRspectrum28
Figure S $49{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molarequivalents of AMP (grey colour indicates signals that are shifted)........... 28
Figure S 50 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molar equivalents of AMP 29

Figure S 51 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of $\mathbf{3}$ in presence of
various molar equivalents of AMP (amplification of the shifted proton signals
of the nucleobase of the nucleotide)... 29 Figure S 52 Job's plot regarding the interactions between 3 and AMP (the red arrow
Figure S 53 Chemical formula of adenosine diphosphate (ADP) with the marked protons (a, b), whose signals are shifted on the ${ }^{1} \mathrm{H}$ NMR spectrum 30
Figure S $54{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) spectrum of $\mathbf{3}$ in presence of various molar
equivalents of ADP (grey colour indicates signals that are shifted) 31
Figure S 55 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molar equivalents of ADP (amplification of the shifted proton signals of the amide group).
Figure S 56 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molar equivalents of ADP (amplification of the shifted proton signals of the nucleobase of the nucleotide)
Figure S 57 Job's plot regarding the interactions between 3 and ADP (the red arrow
Figure S 58 Size distribution pattern of 3 in DMSO... 51
Figure S 59 Size distribution pattern of 3 in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=1 / 1 \mathrm{v} / \mathrm{v}$ system 51
Figure S 60 Size distribution pattern of 3 in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=9 / 1 \mathrm{v} / \mathrm{v}$ system 52
Figure S 61 SEM image of solid 3 obtained after column chromatography.................... 53
Figure S 62 SEM image of dried aggregates of 3 ... 53

List of abbreviations:

- EDCI: 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
- DMAP: N,N-Dimethylpyridin-4-amine
- k-Oxyma: (Z)-ethyl 2-cyano-3-hydroxyacrylate potassium salt
- NHS: N-hydroxysuccinimide
- sulfo-NHS: N-hydroxy- sulfosuccinimide
- CDI: 1,1'-Carbonyldiimidazole
- HBTU: 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
- EDC: 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide
- DIC: N, N^{\prime}-Diisopropylcarbodiimide
- DCC: N, N '-Dicyclohexylcarbodiimide
- AMP: adenosine monophosphate
- ADP: adenosine diphosphate
- ATP: adenosine triphosphate
- NADP: nicotinamide adenine dinucleotide phosphate
- FAD: flavin adenine dinucleotide
- RT: room temperature
- h: hours

S1. Experimental section

S1.1 Materials and methods

Chemical reagents and solvents for the synthesis were commercially purchased and purified according to the standard methods, if necessary. Thin layer chromatography (TLC) was performed using Merck Silica gel 60 F254 plates.

The NMR experiments were conducted using a Varian VNMRS 500 MHz spectrometer $\left({ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ at 125 MHz$)$ equipped with a multinuclear z-gradient inverse probe head. The spectra were recorded at 25 ${ }^{\circ} \mathrm{C}$ and standard 5 mm NMR tubes were used. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) were reported in parts per million (ppm) relative to the solvent signal, i.e., DMSO-d ${ }_{6}$: $\delta_{н}$ (residual DMSO) 2.50 ppm, δ_{c} (residual DMSO) 39.5 ppm . In the case of NMR spectra were analyzed with the MestReNova v12.0 software (Mestrelab Research S.L).

ESI-HRMS (TOF) measurements were performed with a Q-Exactive ThermoScientific spectrometer.

Elemental analyzes were performed using CHNS Elementar Vario EL III apparatus. Each elemental composition was reported as an average of two analyses.

UV-vis measurements were performed with a WVR UV-1600PC spectrometer, with the spectral resolution of $2 \mathrm{~cm}^{-1}$. For the UV-Vis measurements, the wavelengths for the absorption maxima $\lambda_{\max }$ were reported in nm.

Emission spectra were recorded with a HITACHI F-7100 FL spectrometer; parameters for the spectra of liquid samples (DMSO solution): scan speed: $1200 \mathrm{~nm} / \mathrm{min}$, delay: 0.0 s , EX slit: 5.0 nm , EM slit: 5.0 nm , PMT voltage: 700 V ; parameters for the spectra of samples of aggregates (DMSO $/ \mathrm{H}_{2} \mathrm{O}$ solution in various proportions): scan speed: $1200 \mathrm{~nm} / \mathrm{min}$, delay: 0.0 s , EX slit: 5.0 nm , EM slit: 5.0 nm , PMT voltage: 400 V parameters for the spectra of solid samples: scan speed: $1200 \mathrm{~nm} / \mathrm{min}$, delay: 0.0 s , EX slit: 5.0 nm , EM slit: 5.0 nm , PMT voltage: 400 V . The wavelengths for the emission maxima (λ_{em}) were reported in nm .

SEM Field emission scanning electron microscope Helios 5 PFIB (Thermo Scientific) with the use of SE (secondary electron) detector.

Dynamic light scattering (DLS) measurements were performed with Brookhaven Instruments Particle Size Analyser 90Plus

For grinding in hand-held mortar agate mortar with pestle was used (mortar diameter: 62 mm , pestle diameter: 24 mm)

For grinding in glass vial a vial (diameter: 18 mm) and rod (diameter: 8 mm) made of borosilicate glass were used.

For sonochemical reactions (Bandelin Sonorex RK 100H ultrasonic probe; ultrasonic peak output/HF power: 320W/80W; 35kHz) was used.

S1.2 Synthesis of compound 3 - synthesis in solvent

General method for the synthesis of compound 3 in solvent

In a round-bottom flask, 4-(1,2,2-triphenylvinyl) benzoic acid (1) was placed. Then 5'-phenyl-[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-4-amine (2) was added, followed by an addition of coupling agent and an organic solvent (see Table S1). The reaction mixture was stirred at room temperature under an argon atmosphere. Then, a $1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ hydrochloric acid solution was added to the reaction mixture, and the crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Organic layers were combined, washed with water and brine. After drying with MgSO_{4} followed by filtration, volatiles were distilled off on a rotary evaporator. Finally, the product was purified using a column chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ hex $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide the target compound 3 as a yellow solid (Note: Compound 3 can also be purified by column chromatography with 50% c-hex/AcOEt, $R f=0.9$).
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }^{2}, 500 \mathrm{MHz}, \mathrm{ppm}\right)$, $\boldsymbol{\delta}_{\mathrm{H}} 10.29$ (s, 1H) 7.91-7.85 (m, 11H), 7.78$7.76(\mathrm{~m}, 2 \mathrm{H}), 7.53-7,50(\mathrm{~m}, 4 \mathrm{H}), 7.43-7,40(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 11 \mathrm{H}), 7.04-7.00$ (m, 6H); \{ $\left.{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (DMSO-d6, $125 \mathrm{MHz}, \mathrm{ppm}$), 165.0, 146.7, 142.9, 142.8, 142.7, 141.6, 141.1, 140.2, 139.7, 138.9, 135.1, 132.6x2, 130.6, 128.9, 128.0, 127.9x2, 127.8, 127.7, 127.3x2, 127.2, 126.9, 126.7, 124.0x2, 120.6; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{51} \mathrm{H}_{37} \mathrm{NO}=680.2948$, found $=680.2942 \mathrm{~m} / \mathrm{z}$; Elemental analysis: Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{37} \mathrm{NO}: \mathrm{C}, 90.1$; H, 5.49; N. 2.06. Found: C, 89.86; H, 5.49; N, 2.08. Rf $\left(2 \%\right.$ hex $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.91$

Table S1 Conditions for the reaction in solvent

no.	carboxylic acid (1) (mg; mol; eq)	amine (2) (mg; mol; eq)	solvent (mI)	coupling agent (mg; mol; eq)	time/ temp.	$\begin{gathered} \text { yield } \\ (\mathrm{mg} ; \%) \end{gathered}$
1	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; 1.0$	$\begin{gathered} \hline \text { DCM } \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SOCl}_{2} \\ 7.58 ; 6.37 \cdot 10^{-5} ; 1.2 \end{gathered}$	$\begin{gathered} \hline 24 \mathrm{~h} / \\ \mathrm{RT} \\ \hline \end{gathered}$	$\begin{gathered} 3.3 \mathrm{mg} \\ 9 \% \\ \hline \end{gathered}$
2	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	DMF (4)	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \text { DMAP } \\ 1.30 ; 1.06 \cdot 10^{-5} ; \underline{0.2} \end{gathered}$	$\begin{gathered} 24 \mathrm{~h} / \\ \mathrm{RT} \end{gathered}$	$\begin{aligned} & 7.8 \mathrm{mg} \\ & 28 \% \end{aligned}$
3	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	EtOAc (4)	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \mathrm{DMAP} \\ 1.30 ; 1.06 \cdot 10^{-5} ; \underline{0.2} \end{gathered}$	$\begin{gathered} 24 \mathrm{~h} / \\ \mathrm{RT} \end{gathered}$	$\begin{gathered} 16.7 \mathrm{mg} \\ 46 \% \end{gathered}$
4	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	THF (4)	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \text { DMAP } \\ 1.30 ; 1.06 \cdot 10^{-5} ; \underline{0.2} \end{gathered}$	$\begin{gathered} \text { 170h/ } \\ \text { RT } \end{gathered}$	$\begin{gathered} 16.7 \mathrm{mg} \\ 46 \% \end{gathered}$
5	20; $5.31 \cdot 10^{-5} ; 1.0$	17.1; 5.31-10-5; 1.0	DCM (4)	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \\ \text { DMAP } \\ 1.30 ; 1.06 \cdot 10^{-5} ; \underline{0.2} \end{gathered}$	$\begin{gathered} \text { 170h/ } \\ \text { RT } \end{gathered}$	$\begin{gathered} 17.3 \mathrm{mg} \\ 48 \% \end{gathered}$

S1.3 Synthesis of compound 3 - mechanochemistry

General method for the mechanochemical synthesis of compound 3

4-(1,2,2-Triphenylvinyl) benzoic acid (1), 5'-phenyl-[1, $1^{\prime}: 3^{\prime}, 1$ "'terphenyl]-4amine (2) and a coupling agent were grinded in presence of small amount of organic solvent (LAG - Liquid Assisted Grinding) at room temperature (see Table S2). Then a $1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ hydrochloric acid solution was added to the reaction mixture, and the crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Organic layers were combined, washed with water and brine. After drying with MgSO_{4} followed by filtration, volatiles were distilled off on a rotary evaporator. Finally, the product was purified using a column chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ hex $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide the target compound 3 as a yellow solid.

Table S2 Conditions for the mechanochemical synthesis

no.	carboxylic acid (1) (mg; mol; eq)	$\begin{gathered} \text { amine (2) } \\ (\mathrm{mg} ; \mathrm{mol} ; \mathrm{eq}) \end{gathered}$	solvent ($\mu \mathrm{l}$)	coupling agent (mg; mol; eq)	time/ temp.	$\begin{gathered} \text { yield } \\ (\mathrm{mg} ; \%) \end{gathered}$
6	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	k-Oxyma $9.56 ; 5.31 \cdot 10^{-5} ; 1$	$\underset{R T}{15 \mathrm{~min} /}$	grinding in hand-held mortar $0.0 \mathrm{mg} / 0 \%$
7	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \mathrm{NHS} \\ 6.11 ; 5.31 \cdot 10^{-5} ; \underline{1} \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $1.0 \mathrm{mg} / 3 \%$
8	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { CDI } \\ 8.61 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $2.7 \mathrm{mg} / 5 \%$
9	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; 1.0$	$\begin{aligned} & \text { DCM } \\ & (50) \end{aligned}$	$\begin{gathered} \text { HBTU } \\ 20.1 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $2.8 \mathrm{mg} / 8 \%$
10	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \\ \mathrm{FeCl}_{3} \\ 43.1 ; 1.59 \cdot 10^{-4} ; \underline{3} \\ \hline \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $4.2 \mathrm{mg} / 12 \%$
11	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; 1.0$	$\begin{aligned} & \text { DCM } \\ & (50) \end{aligned}$	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 6.44 \cdot 10^{-5} ; 1.2 \\ \mathrm{~K}_{3} \mathrm{PO}_{4} \\ 33.8 ; 1.59 \cdot 10^{-4} ; \underline{3} \\ \hline \end{gathered}$	$\underset{\mathrm{RT}}{15 \mathrm{~min} /}$	grinding in hand-held mortar $7.9 \mathrm{mg} / 22 \%$
12	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; 1.0$	-	$\begin{gathered} \text { EDC } \\ 10.0 ; 6.44 \cdot 10^{-5} ; 1.2 \end{gathered}$	$\underset{\mathrm{RT}}{15 \mathrm{~min} /}$	grinding in hand-held mortar $7.9 \mathrm{mg} / 22 \%$
13	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \text { DIPEA } \\ 20.6 ; 1.59 \cdot 10^{-4} ; 3.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $8.4 \mathrm{mg} / 23 \%$
14	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \mathrm{~K}_{2} \mathrm{CO}^{3} \\ 22.0 ; 1.59 \cdot 10^{-4} ; 3.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $8.8 \mathrm{mg} / 24 \%$
15	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \text { DMAP } \\ 1.50 ; 1.06 \cdot 10^{-5} ; 0.2 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $9.3 \mathrm{mg} / 26 \%$
16	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \text { sulfo-NHS } \\ 11.5 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $12.7 \mathrm{mg} / 35 \%$
17	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; 1.0$	$\begin{aligned} & \text { DCM } \\ & (50) \end{aligned}$	$\begin{gathered} \text { DIC } \\ 6.70 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	```grinding in hand-held mortar 13.4 mg / 37%```
18	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	-	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $14.8 \mathrm{mg} / 41 \%$
19	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { DCC } \\ 10.9 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\underset{\mathrm{RT}}{15 \mathrm{~min} /}$	grinding in hand-held mortar $16.5 \mathrm{mg} / 45 \%$

20	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { DCC } \\ 10.9 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in glass tube $16.2 \mathrm{mg} / 45 \%$
21	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $18.9 \mathrm{mg} / 52 \%$
22	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{aligned} & \text { EtOAc } \\ & (50) \end{aligned}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $18.9 \mathrm{mg} / 52 \%$
23	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \end{gathered}$	$\underset{\mathrm{RT}}{5 \mathrm{~min} /}$	grinding in hand-held mortar 19.3 mg / 53\%
24	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \\ \mathrm{NaCl} \\ 18.7 ; 3.2 \cdot 10^{-4} ; \underline{6.0} \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $19.9 \mathrm{mg} / 55 \%$
25	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \\ \mathrm{SiO}_{2} 20 \mathrm{mg} \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $19.9 \mathrm{mg} / 55 \%$
26	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 30 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in hand-held mortar $19.9 \mathrm{mg} / 55 \%$
27	20; $5.31 \cdot 10^{-5} ; 1.0$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{aligned} & \text { EtOAc } \\ & (50) \end{aligned}$	$\begin{gathered} \mathrm{EDCI} \\ 10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0} \end{gathered}$	$\begin{gathered} 30 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in glass tube 28.4 mg / 80\%
28	20; $5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 15 \mathrm{~min} / \\ \mathrm{RT} \end{gathered}$	grinding in glass tube $30.5 \mathrm{mg} / 84 \%$
29	$20 ; 5.31 \cdot 10^{-5} ; 1.0$	$\begin{gathered} 17.1 ; 5.31 \cdot 10^{-5} ; \\ \underline{1.0} \end{gathered}$	$\begin{gathered} \text { DCM } \\ (50) \end{gathered}$	$\begin{gathered} \text { EDCI } \\ 10.0 ; 5.31 \cdot 10^{-5} ; 1.0 \end{gathered}$	$\begin{gathered} 30 \\ \min / \\ \mathrm{RT} \\ \hline \end{gathered}$	grinding in glass tube $34.8 \mathrm{mg} / 96 \%$

To check the repeatability of the designed grinding-induced protocol, we performed the mechanochemical synthesis of the target compound 3 under optimized mechanochemical conditions (grinding in glass vial with glass rod, reaction time: 30 minutes, 1.0 equiv. of EDCl) three times (independent runs), at the similar scales and on different days. The obtained isolated yields were consistent and equalled $93 \pm 3 \%$. ${ }^{1} \mathrm{H}$ NMR analyses supported the isolation of pure 3 in each synthesis. The data for these experiments are presented below:

Run\#1:

Synthesis date: 6.12.2022, reaction scale (mmol of amine 2): 0.0531, mmol of the product 3 obtained: 0.0510, isolated yield of 3: 96\%

Run\#2:

Synthesis date: 15.03.2024, reaction scale (mmol of amine 2): 0.0531 , mmol of the product 3 obtained: 0.0478, isolated yield of 3: 90\%

Run\#3:

Synthesis date: 18.03.2024, reaction scale (mmol of amine 2): 0.0531, mmol of the product 3 obtained: 0.0489, isolated yield of 3: 92\%
${ }^{1} \mathrm{H}$ NMR spectra (DMSO- d_{6}) of the samples of compound 3 from the above-listed mechanochemical reaction runs:

S1.4 Synthesis of compound 3 - sonochemistry

General method for the sonochemical synthesis of compound 3

In a round-bottom flask 4-(1,2,2-triphenylvinyl) benzoic acid (1) was placed. Then 5^{\prime}-phenyl-[1, $1^{\prime}: 3^{\prime}, 1$ "'terphenyl]-4-amine (2) was added, followed by coupling agent and organic solvent. The flask was then placed in an ultrasonic bath Then a 1 $\mathrm{mol} \cdot \mathrm{dm}^{-3}$ hydrochloric acid solution was added to the reaction mixture, and the crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Organic layers were combined, washed with water and brine. After drying with MgSO_{4} followed by filtration, volatiles were distilled off on a rotary evaporator. Finally, the product was purified using a column chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ hex $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide the target compound 3 as yellow solid.

Table S3 Conditions for the sonochemical synthesis

no.	carboxylic acid (1) ($\mathbf{m g} ; \mathbf{m o l} ; \mathbf{e q})$	amine (2) $(\mathbf{m g} ; \mathbf{m o l} ; \mathbf{e q})$	solvent $(\mathbf{m I})$	coupling agent (mg; mol; eq)	time/ temp.	yield (mg; \%)
33	$20 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ;$ 1.0	EtOAc (4)	EDCI $10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$60 \mathrm{~min} /$ RT	$11.6 \mathrm{mg} / 32 \%$
34	$20 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$17.1 ; 5.31 \cdot 10^{-5} ;$ 1.0	DCM (0.2)	EDCI $10.0 ; 5.31 \cdot 10^{-5} ; \underline{1.0}$	$60 \mathrm{~min} /$ RT	$28.1 \mathrm{mg} / 78 \%$

S1.5 Green chemistry metrics

Safety considerations

Table S4 Hazards of the coupling reagents and solvents

| hazard |
| :--- | :--- | :--- | :--- |
| stability |,

First pass green metrics calculations
EDCI/ DMAP, synthesis in solution
Summary of First Pass Metrics Toolkit

Reactant (Limiting Reactant First)	Mass (g)	$\begin{gathered} \text { MW } \\ (\mathrm{g} / \mathrm{mol}) \end{gathered}$	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm^{3})	Density ($\mathrm{g} \cdot \mathrm{ml}^{-1}$)	Mass (g)	Workup chemical	Mass (g)	Workup solvent	Volume (cm ${ }^{3}$)	Density $\left(\mathrm{g} \cdot \mathrm{~cm}^{-1}\right)$	Mass (g)
TPE-COOH	0.02	376.45	5.31E-05			DMAP	0.0013	DCM	4	1.33	5.32			n-hexane	3	0.661	1.983
TPB-NH2	0.017	321.41	5.31E-05											DCM	147	1.33	195.51
EDCI	0.01	191.17	5.31E-05														
Total	0.047	889.03					0.0013				5.32						197.49

Yield	48.0
Selectivity	100.0
AE	67.2
RME	71.9
OE	96.3
PMI total	5834.4
PMI reaction	154.4
Reagents, catalyst	0.047
PMI reaction solvents	153.0
PMI reagents	0.037
PMI workup chemical	0.0
PMI workup solvent	5680.0

	Mass (g)	MW	Mol
Product	0.03477	679.846	0.0000511
Unreacted Limited Reactant	0.0008		
RME $=\frac{\text { mass of isolated product }}{\text { total mass of reactants }} \times 100$ AE $=\frac{\text { molecular weight of product }}{\text { total molecular weight of reactants }} \times 100$			

	Solvents (first pass)	Tick
Preferred solvents	water, $\mathrm{EtOH}, n-\mathrm{BuOH}, i-\mathrm{PrOH}, \mathrm{EtOAc}, i-\mathrm{PrOAc}, n-\mathrm{BuOAc}$, anisole, sulfolane	
Problematic solvents	DMSO, AcOH, Acetonitrile, AcOMe, THF, heptane, toluene, MTBE, cyclohexane, chlotrobenzene, Me-THF	
Hazardous solvents	dioxane, TEA, DME, DCM, DMF, hexane	+
Highly hazardous solvents	$\mathrm{Et}_{2} \mathrm{O}$, benzene, CCl_{4}, chloroform, nitromethane, CS_{2}	

$$
\text { PMI }=\text { mass intensity }=\frac{\text { total mass in a process or process step }}{\text { mass of product }}
$$

mass of product

$$
\mathrm{OE}=\frac{\mathrm{RME}}{\mathrm{AE}} \times 100
$$

Catalyst/enzyme (First pass)		Tick
catalyst or enzyme used or reaction takes place without any catalyst/	Green Flag	
Use of stoichometric quantities of reagents	Amber Flag	$\boldsymbol{+}$
use of reagents in excess	Red Flag	

EDCI/ DMAP, synthesis in solution

Critical Elements		
Supply Remaining	Flag Colour	Note element
$5-50$ years	Red Flag	
$50-500$ years	Amber Flag	
+500 years	Green Flag	+

Batch/Flow		Tick
Flow	Gren Flag	
Batch	Amber Flag	+

Health and Safety						
	Red Flag	Amber Flag	Green Flag	-ist substances nad H-codes	List substances nad H-codes	-ist substances nad H-codes
Highly Explosive	$\begin{aligned} & \text { H200, H201, } \\ & \text { H202, H203 } \end{aligned}$	$\begin{gathered} \mathrm{H} 205, \\ \mathrm{H} 220, \mathrm{H} 224 \end{gathered}$		DMAP		TPE-COOH
Explosive thermal runaway	$\begin{gathered} \mathrm{H} 230, \mathrm{H} 240, \\ \text { H250 } \\ \hline \end{gathered}$	H241				TPB-NH2
Toxic	$\begin{gathered} \mathrm{H} 300, \mathrm{H} 310, \\ \mathrm{H} 330 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { H301, } \\ \text { H311, H331 } \\ \hline \end{array}$			DMAP	
Long Term Toxicity	$\begin{gathered} \text { H340, H350, } \\ \text { H360, H370, } \\ \text { H372 } \end{gathered}$	H341, H351, H361, H371, H373				DCM
Environmental Implications	$\begin{aligned} & \text { H400, H410, } \\ & \text { H411, H420 } \end{aligned}$	H401, H412				

Use of chemicals of environmental concern		List of substances
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

EDCI, mechanochemistry

Summary of First Pass Metrics Toolkit

	Mass (g)	$\begin{gathered} \mathrm{MW} \\ (\mathrm{~g} / \mathrm{mol}) \end{gathered}$	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm^{3})	Density ($\mathrm{g} \cdot \mathrm{ml} \mathrm{F}^{-1}$)	Mass (g)	Workup chemical	Mass (g)	Workup solvent	Volume (cm^{3})	Density ($\mathrm{g} \cdot \mathrm{cm}^{-1}$)	Mass (g)
TPE-COOH	0.02	376.45	5.30E-05					DCM	0.05	1.33	0.0665			n-hexane	3	0.661	1.983
TPB-NH2	0.017	321.41	$5.30 \mathrm{E}-05$											DCM	147	1.33	195.51
EDCI	0.01	191.17	5.30E-05														
Total	0.047	889.03									0.07						197.49

Yield	96.0
Selectivity	100.0
AE	76.4
RME	73.4
OE	96.1
PMI total	5683.2
PMI reaction	3.3
Reagents, catalyst	0.000
PMI reaction solvents	1.9
PMI reagents	0.0
PMI workup chemical	0.0
PMI workup solvent	5680.0

Solvents (first pass)			Tick
Preferred solvents	water, EtOH, n-BuOH, i-PrOH, EtOAc, i-PrOAc, n-BuOAc, anisole, sulfolane		
Problematic solvents	DMSO, AcOH, Acetonitrile, AcOMe, THF, heptane, toluene, MTBE, cyclohexane, chlotrobenzene, Me-THF		
Hazardous solvents	dioxane, TEA, DME, DCM, DMF, hexane		+
Highly hazardous solvents	$\mathrm{Et}_{2} \mathrm{O}$, benzene, CCl_{4}, chloroform, nitromethane, CS_{2}		
Catalyst/enzyme (First pass)			Tick
catalyst or enzyme used or reaction takes place without any catalyst/ reagent		Green Flag	
Use of stoichometric quantities of reagents		Amber Flag	+
Use of reagents in excess		Red Flag	

EDCI, mechanochemistry

Critical Elements		
Supply Remaining	Flag Colour	Note element
$5-50$ years	Red Flag	
$50-500$ years	Amber Flag	
+500 years	Green Flag	+
Energy		Tick
Reaction run between 0 to $70^{\circ} \mathrm{C}$	Green Flag	+
Reaction run between -20 to 0 or 70 to $140^{\circ} \mathrm{C}$	Amber Flag	
Reaction run between below -20 or above $140^{\circ} \mathrm{C}$	Red Flag	

Batch/Flow		Tick
Flow	Gren Flag	
Batch	Amber Flag	+

Health and Safety

	Red Flag	Amber Flag	Green Flag	List substances nad H-codes	List substances nad H -codes	List substances nad H -codes
Highly Explosive	$\begin{array}{\|l} \hline \text { H200, H201, } \\ \text { H202, H203 } \\ \hline \end{array}$	$\begin{gathered} \text { H205, H220, } \\ \text { H224 } \end{gathered}$				TPE-COOH
Explosive thermal runaway	$\begin{gathered} \text { H230, H240, } \\ \text { H250 } \end{gathered}$	H241				TPB-NH ${ }_{2}$
Toxic	$\begin{gathered} \text { H300, H310, } \\ \text { H330 } \end{gathered}$	$\begin{gathered} \text { H301, H311, } \\ \text { H331 } \end{gathered}$				EDCI
Long Term Toxicity	$\begin{gathered} \text { H340, H350, } \\ \text { H360, H370, } \\ \text { H372 } \end{gathered}$	$\begin{gathered} \text { H341, H351, } \\ \text { H361, H371, } \\ \text { H373 } \end{gathered}$				DCM
Environmental Implications	$\begin{aligned} & \mathrm{H} 400, \mathrm{H} 410, \\ & \mathrm{H} 411, \mathrm{H} 420 \end{aligned}$	H401, H412				

Use of chemicals of environmental concern		List of substances
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

S1.6 Characterisation of aggregation induced emission effect

The characterisation of aggregation induced emission behavior of compound 3 was performed employing measurements of the emission spectra. The experiments were performed in the DMSO/H2O solvent mixture. Stock solution of $3\left(2 \cdot 10^{-3} \mathrm{M}\right)$ in DMSO was diluted with proper volume of pure DMSO followed by addition of $\mathrm{H}_{2} \mathrm{O}$ to reach given vol $\%$ of $\mathrm{H}_{2} \mathrm{O}$ in the sample.

S1.7 Anion binding experiments

S1.7.1 ${ }^{1} \mathrm{H}$ NMR spectroscopy

The binding experiments between compound 3 (receptor) and anions ($\mathrm{Br}^{-}, \mathrm{AMP}$ and ADP) were performed employing the ${ }^{1} \mathrm{H}$ NMR titration experiments. Tetrabutylammonium bromide $\left(\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$was used in these experiments. The experiments were performed in DMSO- ${ }_{6}$ containing TMS (tetramethylsilane, 0.03% $v o l)$ as follows. To a stock solution of $3\left(7.5 \cdot 10^{-3} \mathrm{M}\right)$ in DMSO-d ${ }_{6}$ a stock solution of analyte $\left(7.5 \cdot 10^{-3} \mathrm{M}\right)$ in DMSO-d ${ }_{6}$ was added, followed by addition of DMSO-d d_{6} to reach given concentration of analyte in the sample (in case of AMP and ADP stock solution of 3 and stock solution of analyte were mixed in such a way that the sum of receptor (3) and analyte concentrations in the sample were on the constant level with varying molar fractions). Final volume of the samples was 1 mL .

S1.7.2 Spectrofluorimetry

The anion binding experiments between compound 3 (receptor) and anions (analytes; $\mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{BF}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{CN}^{-}$, AMP, ADP, ATP, NADP and FAD) were performed employing the emission spectra titration experiments. In all cases, tetrabutylammonium $\left(\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right]^{+}\right)$salts of anions were used. The experiments were performed in the $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=1: 1 \mathrm{k} / \mathrm{v}$ system as follows. Stock solution of $3\left(2 \cdot 10^{-3}\right.$ M) in DMSO was diluted with adequate volume of pure DMSO (to reach volume of 1 mL), followed by addition of $\mathrm{H}_{2} \mathrm{O}$ solution containing given anion (final concentration of anion was between $5 \cdot 10^{-6} \mathrm{M}$ and $2 \cdot 10^{-4} \mathrm{M}$)

S1.9 Estimation of fluorescence quantum yield

The measurements were performed at room temperature according to the published procedures. ${ }^{1,2}$ Fluorescence quantum yields (Φ_{F}) were determined by comparison with quinine sulfate (QS) in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\left(\Phi_{\mathrm{F}, \text { ref }}=0.55{ }^{3}\right.$) as the standard. The measurements were performed with diluted solutions (absorbance for the highest wavelength $\mathrm{A}<0.1$ a.u.). The selected excitation
wavelengths ($\lambda_{\text {ex }}$) were as follows: $C_{Q s}=2 \cdot 10^{-6} \mathrm{M} ; C_{3}=2 \cdot 10^{-6} \mathrm{M}$, $\lambda_{\text {ex }}=351 \mathrm{~nm}$; $C_{\text {3agg. }}=2 \cdot 10^{-6} \mathrm{M}$, $\lambda_{\text {ex }}=343 \mathrm{~nm}$.

The following formula was used for the calculation of Φ_{F} :

$$
\phi_{\mathrm{F}}=\phi_{\mathrm{F}, \mathrm{ref}} \cdot \frac{F_{\text {sample }}}{F_{\text {reference }}} \cdot \frac{1-10^{-A_{\mathrm{ref}}}}{1-10^{-A_{\text {sample }}}} \cdot \frac{n_{\text {sample }}^{2}}{n_{\text {reference }}^{2}}
$$

where $\Phi_{F, \text { ref }}$ is the quantum yield for QS $\left(0.55^{1}\right), F$ is the integrated area under the fluorescence spectra, A is the absorbance at the excitation wavelength, n is the refractive index of the solvent (1.346 for $0.5 \mathrm{M} \mathrm{H} \mathrm{H}_{2}, 1.4772$ for DMSO, n for the aggregates solution ($\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=1: 1 \mathrm{v} / \mathrm{v}$) was taken as weighted arithmetic mean with weights equal to vol\% of $\mathrm{H}_{2} \mathrm{O}(n=1.3329)$ and DMSO in the mixture). The calculated Φ_{F} for 3 and aggregates of 3 , were 0.0042 and 0.2437 , respectively.

S2. NMR spectra

Figure S $1{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d 6) spectrum of 3

Figure S $2\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) spectrum of 3

Figure S $3{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR (500 MHz , DMSO-d) spectrum of 3

Figure S $4{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR (DMSO- d_{6}) spectrum of 3

S3 HRMS spectrum

Figure S 5 ESI-HRMS (TOF) spectrum of 3

S4. Absorption and emission spectra

Figure S 6 UV-vis spectrum of compound $\mathbf{3}$ (DMSO, $\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$)

Figure S 7 Emission spectra of 3 (DMSO, $\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\mathrm{ex}}=270 \mathrm{~nm}$ (top), $\lambda_{\mathrm{ex}}=$ 340 nm (bottom))

Figure S 8 3D emission spectrum of 3 (DMSO, $\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$)

Figure S 9 Emission spectra ($\lambda_{\mathrm{ex}}=270 \mathrm{~nm}$) of compound 3 in DMSO/ $\mathrm{H}_{2} \mathrm{O}$ system containing different vol\% of water in the sample ($\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$,)

Figure S 10 Emission spectra ($\lambda_{\mathrm{ex}}=340 \mathrm{~nm}$) of compound $\mathbf{3}$ in DMSO/ $\mathrm{H}_{2} \mathrm{O}$ system containing different vol\% of water in the sample ($\mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$)

Figure S 11 3D emission spectra of $3\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}\right)$

S5. Anions binding experiments

For anions for which a decrease in emission intensity was observed ($\mathrm{I}^{-}, \mathrm{HSO}_{4}{ }^{-}$, $\mathrm{BF}_{4}{ }^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{CN}^{-}$, AMP, ADP, ATP, NADP, FAD) the Stern-Volmer constant values ($\mathrm{K}_{\text {sv }}$) were estimated using the Stern-Volmer method, given by the equation:

$$
\frac{I_{0}}{I}=1+K_{S V}
$$

where I_{0} and I are the fluorescence intensities of 3 in the absence and presence of given anion, respectively. Ksv were taken as slope of $1 / \mathrm{C}\left(\mathrm{A}_{-}\right)$vs. $1 / \Delta /$ linear plots.

The limit of detection (LOD) values were estimated from the plot: of (I-Imin) $/\left(I_{\max }-I_{\min }\right)$ vs Log ([A-]).

For $\mathrm{ClO}_{4}{ }^{-}$where an increase in emission intensity was observed the apparent binding constant ($K_{\text {app }}$) values were estimated using the Benesi-Hildebrand ${ }^{4,5}$ method, given by the equation:

$$
\frac{1}{I-I_{0}}=\frac{1}{a}+\frac{1}{a \cdot K_{a p p} \cdot C\left(\mathrm{~A}^{-}\right)}
$$

where I_{0} and I are the fluorescence intensities of 3 in the absence and presence of given anion, respectively, a is a constant, and $C(A)$ is the concentration of given anion in solution. Kapp were determined as a ratio of intercept-to-slope of $1 /\left(I-I_{0}\right)$ vs. $1 / C\left(A^{-}\right)$linear plots.

The data (for the estimation of Kapp for the studied systems were collected from emission maxima $\left(\lambda_{\mathrm{em}}\right)=496 \mathrm{~nm}\left(\lambda_{\mathrm{ex}}=270 \mathrm{~nm}\right)$.

The limit of detection (LOD) values were estimated by the equation:
LOD = 3S/b

Where S is standard error of intercept, and b is slope of regression line

The stoichiometry of the complexes formed was estimated using Job's plot method, from the plot: $(1-x) \cdot\left(\delta-\delta_{0}\right)$ vs x. The x stands from the mole fraction of nucleotide. The expected stoichiometry is indicated by the maximum on the plot.

All the spectra and plots are presented below.

S5.1 ${ }^{1} \mathrm{H}$ NMR spectroscopy

Figure S $12{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molar equivalents of Br^{-}

$\begin{array}{lllllllllllllllll}.311 & 10.309 & 10.307 & 10.305 & 10.303 & 10.301 & 10.299 & 10.297 & 10.295 & 10.293 & 10.291 & 10.289 & 10.287 & 10.285 & 10.28:\end{array}$
Figure S 13 Inset of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectrum of 3 in presence of various molar equivalents of Br^{-}

Signals on the ${ }^{1} \mathrm{H}$ NMR spectra were assigned according to the literature data ${ }^{6}$.

Figure S 14 Chemical formula of adenosine monophosphate (AMP) with the marked protons (a, b) for which the shifts of signals were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum

Figure S $15{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molar equivalents of AMP (grey colour indicates signals that are shifted)
\qquad
$\mathrm{x}_{\text {AMP }}: \mathbf{0 . 1 0}$
$\mathrm{x}_{\text {AMP }}: 0.25$
\qquad
$\mathrm{x}_{\text {AMP }}: 0.75$
\qquad

Figure S 16 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molar equivalents of AMP

Figure S 17 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d) spectrum of 3 in presence of various molar equivalents of AMP (amplification of the shifted proton signals of the nucleobase of the nucleotide)

Figure S 18 Job's plot regarding the interactions between 3 and AMP (the red arrow indicates the estimated stoichiometry of the complex formed)

Figure S 19 Chemical formula of adenosine diphosphate (ADP) with the marked protons (a, b), whose signals are shifted in the ${ }^{1} \mathrm{H}$ NMR spectrum

Figure S $20{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectrum of $\mathbf{3}$ in presence of various molar equivalents of ADP (grey colour indicates signals that are shifted)

Figure S 21 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) spectrum of 3 in presence of various molar equivalents of ADP (amplification of the shifted proton signals of the amide group)

Figure S 22 Insets of the ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) spectrum of 3 in presence of various molar equivalents of ADP (amplification of the shifted proton signals of the nucleobase of the nucleotide)

Figure S 23 Job's plot regarding the interactions between 3 and ADP (the red arrow indicates the estimated stoichiometry of the complex formed)

S5.2 Emission spectra

Figure S 24 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of Br^{-} (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=270 \mathrm{~nm}$).

Figure S 25 Stern-Volmer plot regarding the interactions between $\mathbf{3}$ and Br^{-}. The data for the linear plot are also presented.

Figure S 26 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\min }\right)$ versus $\log \left(\mathrm{C}_{\mathrm{Br}^{-}}\right)$of the interactions between 3 and Br^{-}. The data for the linear plot are also presented.

Figure S 27 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of \mathbf{I}^{-} (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=270 \mathrm{~nm}$).

Figure S 28 Stern-Volmer plot regarding the interactions between 3 and I^{-}. The data for the linear plot are also presented.

Figure S 29 Plot for $\left(I-I_{\min }\right) /\left(I_{\max }-I_{\min }\right)$ versus $\log \left(\mathrm{Cl}^{-}\right)$regarding the interactions between 3 and I^{-}. The data for the linear plot are also presented.

Figure S 30 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathrm{HSO}_{4}{ }^{-}\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}\right.$, $\left.\lambda_{\mathrm{ex}}=270 \mathrm{~nm}\right)$.

Figure S 31 Stern-Volmer plot regarding the interactions between 3 and $\mathrm{HSO}_{4}{ }^{-}$. The data for the linear plot are also presented.

Figure S 32 Plot for $\left(I-I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log \left(\mathrm{C}_{\mathrm{HSO}_{4}^{-}}\right)$regarding the interactions between 3 and $\mathrm{HSO}_{4}{ }^{-}$. The data for the linear plot are also presented.

Figure S 33 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathrm{BF}_{4}{ }^{-}\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=270 \mathrm{~nm}\right)$.

Figure S 34 Stern-Volmer plot regarding the interactions between 3 and $\mathrm{BF}_{4}{ }^{\circ}$. The data for the linear plot are also presented.

Figure S 35 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log \left(\mathrm{C}_{\mathrm{BF}_{4}^{-}}\right)$regarding the interactions between 3 and $\mathrm{BF}_{4}{ }^{-}$. The data for the linear plot are also presented.

Figure $\mathbf{S} 36$ Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\text {ex }}=270 \mathrm{~nm}\right)$.

Figure S 37 Stern-Volmer plot regarding the interactions between 3 and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$. The data for the linear plot are also presented.

Figure S 38 Plot for $\left(I-I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log \left(\mathrm{C}_{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}\right)$regarding the interactions between 3 and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$. The data for the linear plot are also presented.

Figure S 39 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathrm{ClO}_{4}{ }^{-}\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=270 \mathrm{~nm}\right)$.

Figure S 40 Benesi-Hildebrand plots regarding the interactions between 3 and $\mathrm{CIO}_{4}{ }^{-}$. The data for the linear plot are also presented.

Figure S 41 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of $\mathrm{CN}^{-}\left(\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}\right.$, $\left.\lambda_{\mathrm{ex}}=270 \mathrm{~nm}\right)$.

Figure S 42 Stern-Volmer plot regarding the interactions between 3 and $\mathbf{C N}^{-}$. The data for the linear plot are also presented.

Figure S 43 Plot for $\left(I-I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log \left(\mathrm{C}_{\mathrm{CN}^{-}}\right)$regarding the interactions between 3 and $\mathbf{C N}^{-}$. The data for the linear plot are also presented.

Figure S 44 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of AMP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\left.\lambda_{\mathrm{ex}}=270 \mathrm{~nm}\right)$.

Figure S 45 Stern-Volmer plot regarding the interactions between 3 and AMP. The data for the linear plot are also presented.

Figure S 46 Plot for $\left(I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\text {min }}\right)$ versus $\log \left(C_{A M P}\right)$ of the interactions between 3 and AMP. The data for the linear plot are also presented.

Figure S 47 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of ADP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\text {ex }}=270 \mathrm{~nm}$).

Figure S 48 Stern-Volmer plot regarding the interactions between 3 and ADP. The data for the linear plot are also presented.

Figure S 49 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\min }\right)$ versus $\log \left(C_{A M P}\right)$ of the interactions between 3 and ADP. The data for the linear plot are also presented.

Figure S 50 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of ATP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}$, $\lambda_{\mathrm{ex}}=270 \mathrm{~nm}$).

Figure S 51 Stern-Volmer plot of the interactions between $\mathbf{3}$ and ATP. The data for the linear plot are also presented.

Figure S 52 Plot for $\left(I-I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\min }\right)$ versus $\log \left(C_{A M P}\right)$ of the interactions between 3 and ATP. The data for the linear plot are also presented.

Figure S 53 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of NADP (DMSO/ $\mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=270 \mathrm{~nm}$).

Figure S 54 Stern-Volmer plot of the interactions between 3 and NADP. The data for the linear plot are also presented.

Figure S 55 Plot for $\left(1-I_{\text {min }}\right) /\left(I_{\text {max }}-I_{\min }\right)$ versus $\log ($ Camp) regarding the interactions between 3 and NADP. The data for the linear plot are also presented.

Figure S56 Emission spectra of $\mathbf{3}$ in the presence of various molar equivalents of FAD (DMSO $/ \mathrm{H}_{2} \mathrm{O} 1: 1 \mathrm{v} / \mathrm{v}, \mathrm{C}_{3}=2 \cdot 10^{-5} \mathrm{M}, \lambda_{\mathrm{ex}}=270 \mathrm{~nm}$).

Figure S 57 Stern-Volmer plot of the interactions between $\mathbf{3}$ and FAD. The data for the linear plot are also presented.

Figure S 58 Plot for $\left(I-I_{\min }\right) /\left(I_{\text {max }}-I_{\min }\right)$ versus $\log \left(C_{A M P}\right)$ of the interactions between 3 and NADP. The data for the linear plot are also presented.

S6. DLS measurements

Figure S 59 Size distribution pattern of $\mathbf{3}$ in DMSO

Figure S $\mathbf{6 0}$ Size distribution pattern of $\mathbf{3}$ in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=1 / 1 \mathrm{v} / \mathrm{v}$ system

Figure S 61 Size distribution pattern of $\mathbf{3}$ in $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=9 / 1 \mathrm{v} / \mathrm{v}$ system

S7 SEM images

Figure S 62 SEM image of solid $\mathbf{3}$ obtained after column chromatography

Figure S 63 SEM image of dried aggregates of 3

S8 Supporting references

1. Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 83, 2213-2228 (2011).
2. Würth, C., Grabolle, M., Pauli, J., Spieles, M. \& Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 8, 1535-1550 (2013).
3. Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 83, 2213-2228 (2011).
4. Benesi, H. A. \& Hildebrand, J. H. A Spectrophotometric Investigation of the Interaction of lodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 71, 27032707 (1949).
5. Goswami, S. et al. A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd2+ in aqueous media. The Analyst 138, 1903 (2013).
6. Wang, D. et al. Efficient Gene Delivery Based on Guanidyl-Nucleic Acid Molecular Interactions. Adv. Funct. Mater. 30, 2004783 (2020).

[^0]: ${ }^{\text {a }}$ Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00664 Warsaw, Poland

 * Corresponding author e-mail: artur.kasprzak@pw.edu.pl

