Supporting Information

Ethynyl-substituted benzosiloxaboroles: the role of $C(\pi)...B$ interactions in their crystal packing and use in Huisgen 1,3-dipolar cycloaddition

P. Pacholak,^{a,b} K. Durka*,^a K. Woźniak^b J. Krajewska,^c A. E. Laudy*,^c S. Luliński*^a

[a] Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
[b] University of Warsaw, Faculty of Chemistry, Warsaw, Poland, Pasteura 1, 02-093
[c] Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
Email address: sergiusz.lulinski@pw.edu.pl (S. Luliński).
Email address: alaudy@wp.pl (A. E. Laudy).

1. Structural and computational studies

Table S1.1	Selected	crystal	data,	data colle	ection a	nd refir	nement p	parameters	for 1	c, 1c∙MeC	CN
and 2c .											

	1c	1c·MeCN	2c
Formula	C10H10BO2SiF	C ₁₂ H ₁₃ BO ₂ SiNF	C10H10O2ClSiB
Weight	220.08	261.13	236.53
T/K	100(2)	100(2)	100(2)
Crystal system	triclinic	monoclinic	triclinic
Space group	<i>P</i> -1	$P2_1/m$	<i>P</i> -1
<i>a</i> /Å	6.9862(2)	8.6127(2)	6.9876(3)
<i>b</i> / Å	7.4451(2)	7.0177(2)	7.7137(4)
<i>c</i> / Å	10.5854(2)	11.1617(3)	10.6833(5)
α / °	92.553(2)	90	85.701(4)
β/°	97.855(2)	97.153(2)	81.858(4)
γ / °	91.766(2)	90	89.401(4)
V / Å ³	544.49(2)	669.38(3)	568.42(5)
Ζ	2	2	2
$ ho_{ m calc}$ / g·cm ⁻³	1.342	1.296	1.382
μ / mm^{-1}	0.204	0.179	3.788
F(000)	228.0	272.0	244.0
Crustal size / mm ³	$0.342 \times 0.129 \times$	0.212 imes 0.174 imes	$0.12 \times 0.11 \times 0.10$
Crystal size / mm	0.089	0.074	0.12 ^ 0.11 ^ 0.10
Radiation	ΜοΚα	ΜοΚα	Cu Ka
Radiation	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 1.54184)$
2Θ range for data collection / °	3.888 to 57.656	4.766 to 67.666	8.384 to 154.988
	-9 < h < 9,	-13 < h < 12,	-8 < h < 8.
Index ranges	-10 < k < 9.	-10 < k < 10.	-9 < k < 9.
8	-14 < l < 14	-16 < l < 17	-13 < l < 13
Reflections			10 _ / _ 10
collected	24998	14332	5118
Indonondont	2683	2733	2404
ndependent	$[R_{\rm int} = 0.0255,$	$[R_{\rm int} = 0.0292,$	$[R_{\rm int} = 0.0154,$
reflections	$R_{\rm sigma} = 0.0128$]	$R_{\rm sigma} = 0.0228$]	$R_{\rm sigma} = 0.0148$]
Data/restraints/para meters	2683/0/139	2733/1/114	2404/1/141
Goodness-of-fit	1.046	1.085	1.084
Final R indexes	$R_1 = 0.0284.$	$R_1 = 0.0335.$	$R_1 = 0.0300.$
$[I > = 2\sigma(I)]$	$wR_2 = 0.0768$	$wR_2 = 0.0916$	$wR_2 = 0.0773$
Final R indexes	$R_1 = 0.0304.$	$R_1 = 0.0402.$	$R_1 = 0.0302.$
[all data]	$wR_2 = 0.0783$	$wR_2 = 0.0971$	$wR_2 = 0.0775$
Largest diff.	0 44/-0 23		
peak/hole / e·Å ⁻³	0.TT/ 0.4J	0.47/-0.34	0.38/-0.37

	3b	4d	5b
Formula	C16H16BN3O5SiFCIS	$C_{17}H_{15}N_3O_4SiSBF_2Cl_3$	$C_{36}H_{40}N_8O_5F_2Si_2S_2$
Weight	455.73	540.63	823.06
T / K	100(2)	100(2)	100(2)
Crystal system	monoclinic	triclinic	monoclinic
Space group	P2/c	<i>P</i> -1	$P2_{1}/c$
a /Å	15.7378(4)	8.8484(4)	12.2547(2)
<i>b</i> / Å	5.96710(10)	11.1678(4)	21.3124(4)
<i>c</i> / Å	21.2618(5)	12.0146(5)	14.7890(2)
α/°	90	89.089(3)	90
β / °	97.318(2)	77.254(3)	91.9810(10)
γ / °	90	80.690(3)	90
$V/ m \AA^3$	1980.41(8)	1142.50(8)	3860.24(11)
Z	4	2	4
$ ho_{ m calc}$ / g·cm ⁻³	1.528	1.572	1.416
μ / mm ⁻¹	3.677	0.592	2.388
F(000)	936.0	548.0	1720.0
Crystal size / mm ³	$0.15 \times 0.11 \times 0.10$	$0.21\times0.107\times0.104$	0.231 × 0.146 × 0.087
Radiation	CuKa ($\lambda = 1.54178$)	MoKa ($\lambda = 0.71073$)	CuKa ($\lambda = 1.54178$)
20 range for data collection / °	5.662 to 145.38	4.784 to 60.008	7.218 to 153.4
	$-19 \le h \le 19,$	$-11 \le h \le 12,$	$-15 \le h \le 15,$
Index ranges	$-7 \le k \le 7,$	$-15 \le k \le 15,$	$-26 \le k \le 26,$
-	-21 < l < 26	-16 < l < 16	-18 < l < 12
Reflections	16(11	10((0	
collected	13011	19660	22446
Independent	$3890 [R_{int} = 0.0270,$	$6007 [R_{int} = 0.0317,$	$8052 [R_{int} = 0.0357,$
reflections	$R_{\rm sigma} = 0.0222$]	$R_{\rm sigma} = 0.0475$]	$R_{\rm sigma} = 0.0380$]
Data/restraints/para meters	3890/1/265	6007/1/313	8052/0/496
Goodness-of-fit	1.040	1.035	1.017
Final R indexes	$R_1 = 0.0298$.	$R_1 = 0.0489$.	$R_1 = 0.0445$.
$[I \ge 2\sigma(I)]$	$wR_2 = 0.0764$	$wR_2 = 0.1085$	$wR_2 = 0.1170$
Final R indexes	$R_1 = 0.0360$,	$R_1 = 0.0670$,	$R_1 = 0.0497$,
[all data]	$wR_2 = 0.0810$	$wR_2 = 0.1181$	$wR_2 = 0.1226$
Largest diff. peak/hole / e·Å ⁻³	0.35/-0.37	0.74/-0.68	0.56/-0.36

Table S1.2. Selected crystal data, data collection and refinement parameters for 3b, 4d and 5b.

Figure S1.1 Hirshfeld surfaces generated for 1c with mapped (*a*) d_{norm} property value over the range -0.50 to 1.30, (*b*) fragment patch, (*c*) electrostatic potential over the range -0.06 to 0.08 a.u. (*d*) Fingerprint plots with marked C...B contacts.

Figure S1.2. Hirshfeld surfaces generated for **2c** with mapped (*a*) d_{norm} property value over the range -0.50 to 1.30, (*b*) fragment patch, (*c*) electrostatic potential over the range -0.06 to 0.08 a.u. (*d*) Fingerprint plots with marked C...B contacts.

Figure S1.3. Hirshfeld surfaces generated for 1c·MeCN with mapped (*a*) d_{norm} property value over the range -0.50 to 1.30, (*b*) fragment patch, (*c*) electrostatic potential over the range -0.06 to 0.08 a.u. (*d*) Fingerprint plots with marked C...B contacts.

Table S1.3. The intermolecular donor-acceptor orbital $C(\pi)...B$ interaction energies (kJ·mol⁻¹) estimated by 2nd-order perturbation theory within NBO analysis.

Structure	1c		2c		1c·MeCN
Motif	D2a	D2b	D2a	D2b	D2
$E(\pi_{CC(ethynyl)} \rightarrow p_B)$	5.1	2.6	5.4	2.3	2.7
$E(\pi_{\rm CC(aromatic)} \rightarrow \pi^*_{\rm CC(ethynyl)})$	0.6	0.8	0.6	1.0	0.5

Table S1.4. Electron density $(\rho, e \cdot Å^{-3})$ and negative Laplacian $(\nabla^2 \rho, e \cdot Å^{-5})$ at BCPs of $C(\pi)...B$ interactions.

Structure	1c		2c		1c·MeCN
Motif	D2a	D2b	D2a	D2b	D2
ρ	0.033	0.035	0.035	0.036	0.036
$\nabla^2 \rho$	0.33	0.36	0.35	0.36	0.35

2. Antimicrobial activity.

		MIC in mg·L ⁻¹ [M	IBC in mg·L ⁻¹] ^a (Diamete	er of inhibition zon	ie in mm)	
Agent tested	S. aureus ATCC 6538P	<i>S. aureus</i> ATCC 43300 MRSA	<i>S. epidermidis</i> ATCC 12228	<i>E. faecalis</i> ATCC 29212	<i>E. faecium</i> ATCC 6057	<i>B. subtilis</i> ATCC 6633 ^b
1c	25 <i>[50/400]^c</i> (25)	25 [50] (20)	12.5 <i>[25/>400]^c</i> (29)	100 (15)	100 (16)	NT (26)
2c	12.5 [25/200] ^c (21)	12.5 [25] (23)	12.5 [400] (26)	50 (20)	50 (21)	NT (27)
3a	25 (22)	50 (20)	50 (24)	200 (-)	200 (11)	NT (21)
3 b	50 (20)	50 (22)	50 (23)	200 (-)	200 (-)	NT (21)
3c	12.5 [25/>400] ^c (22)	12.5 [25] (23)	12.5 [25/>400] ^c (29)	100 (16)	50 (16)	NT (27)
4a	25 (20)	50 (20)	50 (25)	200 (-)	200 (-)	NT (23)
4 b	25 (25)	50 (21)	50 (20)	200 (-)	200 (-)	NT (18)
4c	25 (20)	50 (22)	50 (24)	200 (-)	200 (-)	NT (20)
5a	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	NT (-)
5b	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	NT (-)
LIN ^d	1 [>128] (25)	2 [>128] (25)	1 [>128] (26)	2 [>128] (15)	2 [>128] (14)	NT (30)

Table S2.1. The antibacterial activity of tested agents against standard Gram-positive strains

The highest activity against Gram-positive bacteria indicated by the low MIC values ($\leq 12.5 \text{ mg} \cdot \text{L}^{-1}$) is shown in boldface.

(-): The inhibition zone was not observed in the disc-diffusion method. The diameter of the paper discs was 9 mm. ^a Only the MBC values $\leq 400 \text{ mg} \cdot \text{L}^{-1}$ are presented. ^b The growth type of *B. subtilis* in the MHB medium prevented reading the MIC values of tested substances.

^c The Eagle effect [1,2] was observed during the determination of the MBC value of the same tested agents against *Staphylococcus* spp. strains. The Eagle effect is shown in the italic face.

^d LIN, linezolid was used as a reference agent active against Gram-positive bacteria. The diameter of a commercial disc containing 0.03 mg of linezolid was 6 mm; the MIC of linezolid was determined according to the CLSI recommendations [3].

			MIC in mg·L ⁻¹ [M	MBC in mg·L ⁻¹]	^a / x-fold reduction	n of MIC in the p	resence of PABN ^b	(Diameter of inhibit	tion zone in mm)		
Agent tested	<i>E. coli</i> ATCC 25922	<i>K. pneumoniae</i> ATCC 13883	<i>P. mirabilis</i> ATCC 12453	<i>E. cloacae</i> DSM 6234	<i>S. marcescens</i> ATCC 13880	<i>A. baumannii</i> ATCC 19606	P. aeruginosa ATCC 27853	<i>S. maltophilia</i> ATCC 13637	S. maltophilia ATCC 12714	<i>B. cepacia</i> ATCC 25416°	<i>B. bronchiseptica</i> ATCC 4617 ^c
1c	400 [400]/4 (13)	400 [400]/2 (-)	400/2 (-)	400/2 (-)	>400/8 (-)	>400 (-)	>400 (-)	200 [400]/2 (11)	100 [400] (12)	>400 (-)	400 (-)
2c	>400/8 (-)	>400 (-)	>400/2 (-)	>400/2 (-)	>400/4 (-)	>400/4 (-)	>400 (-)	400 [400]/ 8 (13)	400/4 (-)	>400 (-)	400 (-)
3a	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
3b	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400/2 (-)	>400 (-)	>400 (-)	400 (-)
3c	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	400/4 (15)	>400/4 (-)	>400 (-)	>400 (-)
4a	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
4b	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400/2 (-)	>400/2 (-)	>400 (-)	400 (-)
4c	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400/2 (-)	>400 (-)	>400 (-)	>400 (-)
5a	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
5b	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
Nf ^g	8 [8] (24)	32 [32] (23)	128 [>128] (9)	32 [32] (17)	128 [>128] (12)	64 [128] (9)	>128 [>128] (-)	128 [>128] (-)	128 [>128] (-)	32 [32] (12)	64 [128] (-)

Table S2.2. The antibacterial activity of tested agents against standard Gram-negative strains.

PAβN: efflux pump inhibitor. The significant decreases (at least a 4-fold) in the MIC values of tested compounds after the addition of PAβN are shown in boldface. The test was performed in the MHB medium supplemented with 1 mM MgSO₄.

(-): The inhibition zone was not observed in the disc-diffusion method. The diameter of the paper discs was 9 mm.

^a Only the MBC values $\leq 400 \text{ mg} \cdot \text{L}^{-1}$ are presented.

^b In the table, only at least 2-fold decreases in the MIC values of tested compounds after the addition of PAβN are presented.

^c The growth of *B. cepacia* ATCC 25416 and *B. bronchiseptica* ATCC 4617 strains was inhibited in the MHB medium supplemented with 1 mM MgSO₄ and 20 mg·L⁻¹PAβN.

^d Nf, nitrofurantoin was used as a reference agent active against Gram-negative bacteria. The diameter of a commercial disc containing 0.3 mg of nitrofurantoin was 6 mm; the MIC of nitrofurantoin was determined according to the CLSI recommendations [3].

		MIC in mg	g·L ^{−1} [MFC in r	ng∙L ⁻¹]ª (Diamet	er of inhibition zone	e in mm)	
tested	<i>C. albicans</i> ATCC 90028	<i>C. parapsilosis</i> ATCC 22019	<i>C. tropicalis</i> ATCC 750	<i>C. tropicalis</i> IBA 171	C. guilliermondii IBA 155	C. krusei ATCC 6258	<i>S. cerevisiae</i> ATCC 9763
1c	200 (20)	400 (15)	100 (20)	25 [400] (24)	400 (23)	400 (23)	200 (14)
2c	100 [400] (22)	200 (21)	50 [400] (20)	12.5 [200] (25)	100 (37)	100 (15)	12.5 [200] (28)
3a	>400 (-)	>400 (-)	>400 (-)	>400 (-)	400 (-)	>400 (-)	>400 (-)
3b	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
3c	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
4a	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
4b	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
4c	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
5a	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
5b	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)	>400 (-)
Flb	1 (43)	2 (32)	0.38 (40)	0.38 (39)	0.75 (40)	64° (16)	16 ^d (12)

Table S2.3. The antifungal activity of tested agents against standard yeasts strains.

The highest activity against yeasts indicated by the low MIC values (25 mg \cdot L⁻¹) is shown in boldface.

(-): The inhibition zone was not observed in the disc-diffusion method. The diameter of the paper discs was 9 mm. ^a Only the MFC values $\leq 400 \text{ mg} \cdot \text{L}^{-1}$ are presented.

^b FL, fluconazole was used as a reference antifungal agent; the diameter of a commercial disc containing 0.025 mg of fluconazole was 6 mm; the MIC value of fluconazole was determined by the Etest method [4].

^c The ellipse was visible pointing the MIC value 64 mg·L⁻¹. However, with macro-colonies up to a concentration $\geq 256 \text{ mg} \cdot \text{L}^{-1}$. In accordance with the recommendations for the Etest method, the MIC value of fluconazole against *C. krusei* can also be interpreted as $\geq 256 \text{ mg} \cdot \text{L}^{-1}$ [4,5]. *C. krusei* is intrinsically resistant to fluconazole.

^d The ellipse was visible pointing the MIC value 16 mg·L⁻¹, with colonies up to concentration \geq 256 mg·L⁻¹. There are no recommendations for the Etest method interpretation of the MIC value of fluconazole against *S. cerevisiae*. The obtained MIC 16 mg·L⁻¹ is in line with the published results [6].

3. References

1. H. Eagle and A. D. Musselman. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. *J. Exp. Med.*, 1948, **88**, 99–131.

2. A. Prasetyoputri, A. M. Jarrad, M. A. Cooper and M. A. T. Blaskovich. The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin? *Trends Microbiol.*, 2019, **27**, 339–354.

3. Clinical and Laboratory Standards Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard, 9th ed. CLSI guideline M07-A9. Wayne, PA, USA.

4. ETEST. Application guide, BioMerieux., https://www.biomerieux-

usa.com/sites/subsidiary_us/files/supplementary_inserts_-_16273_-_b_-_en_-_eag_-

_etest_application_guide-3.pdf (accessed 1 February 2024).

5. A. Espinel-Ingroff. Etest for antifungal susceptibility testing of yeasts, *Diagn. Microbiol. Infect. Dis.*, 1994, **19**, 217–220.

6. M. A. Pfaller, M. Bale, B. Buschelman, M. Lancaster, A. Espinel-Ingroff, J. H. Rex and M. G. Rinaldi. Selection of candidate quality control isolates and tentative quality control ranges for *in vitro* susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards proposed standard methods, *J. Clin. Microbiol.*, 1994, **32**, 1650–1653.

4. NMR spectra of new compounds

Figure S4.1. ¹H NMR (400 MHz, CDCl₃) spectrum of 1a.

Figure S4.2. ¹³C NMR (101 MHz, CDCl₃) spectrum of **1a**.

Figure S4.3. ¹H NMR (400 MHz, CDCl₃) spectrum of 1b.

Figure S4.4. ¹³C NMR (101 MHz, CDCl₃) spectrum of 1b.

Figure S4.6. ¹³C NMR (101 MHz, CDCl₃) spectrum of 1c.

Figure S4.8. ¹³C NMR (101 MHz, CDCl₃) spectrum of 2a.

Figure S4.9. ¹H NMR (400 MHz, CDCl₃) spectrum of 2b.

Figure S4.10. ¹³C NMR (101 MHz, CDCl₃) spectrum of 2b.

Figure S4.12. ¹³C NMR (101 MHz, CDCl₃) spectrum of 2c.

Figure S4.13. ¹H NMR (400 MHz, DMSO- d_6) spectrum of 3a.

Figure S4.14. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **3a**.

Figure S4.15. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3b**.

Figure S4.16. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **3b**.

Figure S4.17. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of **3c**.

Figure S4.18. ¹H NMR (400 MHz, acetone- d_6) spectrum of 4a.

										5 1			5 U U	5 1 3					
190	180	170	160	150	140	130	120	110	100 f1 (90 ppm)	80	70	60	50	40	30	20	10	0

Figure S4.19. ¹³C NMR (400 MHz, acetone- d_6) spectrum of 4a.

Figure S4.20. ¹H NMR (400 MHz, acetone- d_6) spectrum of 4b.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) Figure S4.21. ¹³C NMR (400 MHz, acetone- d_6) spectrum of 4b.

Figure S4.24. ¹H NMR (400 MHz, CDCl₃) spectrum of 5b.

Figure S4.26. ¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of 5b.