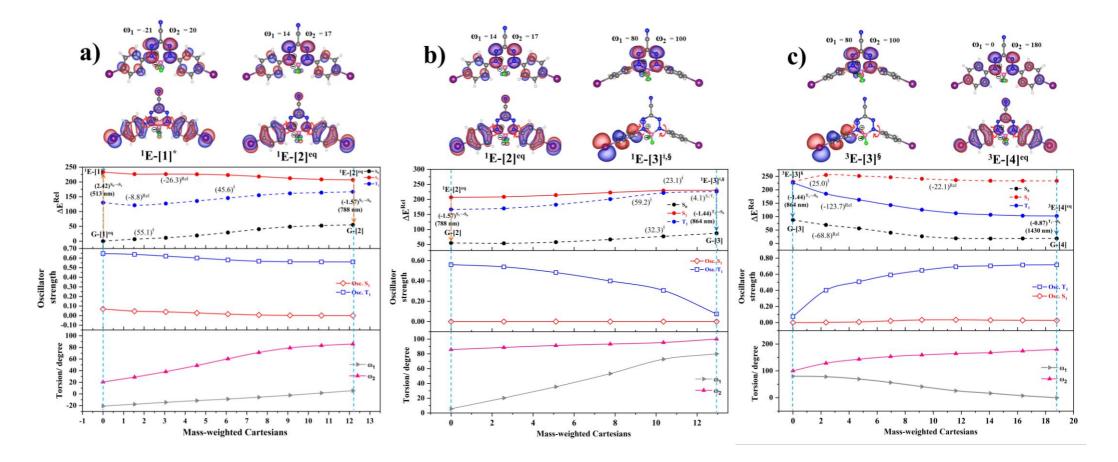

Electronic Supplementary Information (ESI)

Photoluminescence mechanisms of BF₂-formazanate dye sensitizers: A theoretical study


by

Parichart Suwannakham Pannipa Panajapo Phorntep Promma Tunyawat Khrootkaew Anyanee Kamkaew and Kritsana Sagarik^{*} School of Chemistry Institute of Science Suranaree University of Technology Nakhon Ratchasima 30000 Thailand

*corresponding author: *kritsana@sut.ac.th* Tel./Fax: (6681) 8783994

Figure S1 Potential energy surfaces for rotational motions of ω_1 and ω_2 in BF₂-FORM, obtained based on the hypothesized pathways in Figure 4, and the DFT/B3LYP/6-311G, TD-DFT/B3LYP/6-311G, and NEB methods. Dash lines are the potential energy curves computed using the geometries on the NEB potential energy curves (solid lines). a) (I)* \rightarrow (II)* b) (II)* \rightleftharpoons (III)^{4,§}. c) (III)^{4,§} \rightarrow (IV).

Figure S2 Potential energy surfaces for the rotational motions of ω_1 and ω_2 in BF₂-FORM-D, obtained based on the hypothesized pathways in Figure 4, and the DFT/B3LYP/6-311G, TD-DFT/B3LYP/6-311G, and NEB methods. Dash lines are the potential energy curves computed using the geometries on the NEB potential energy curves (solid lines). a) (I)^{*} \rightarrow (II)^{*}. b) (II)^{*} \approx (III)^{‡,§}. c) (III)^{‡,§} \rightarrow (IV).

TD-DFT NX RICC2 **BF2-FORM** $\Delta \mathbf{E}^{\mathbf{S}_0 \to \mathbf{S}_1} \left| \Delta \mathbf{E}^{\mathbf{S}_1 \to \mathbf{S}_0} \right| \Delta \mathbf{E}^{\mathbf{S}_1 \to \mathbf{T}_1}$ $\Delta E^{T_1 \rightarrow S_0}$ $\Delta E_{NX}^{S_0 \rightarrow S_1}$ $\Delta E_{NX}^{S_1 \rightarrow S_0}$ $\tau_{NX}^{S_1 \rightarrow S_0}$ $\Delta E_{SOC}^{T_1 \rightarrow S_0}$ $\tau_{SOC}^{T_1 \rightarrow S_0}$ G-[1]^{eq} $\omega_1 = -24$ 2.88 2.95×10-9 2.71 $E^{Tot} = -1037.31086$ ¹E-[2]^{eq} 8.88×10⁻⁷ -2.13 -2.46 $E^{Tot} = -1037.21702$ ¹E-[3][§] -1.82 -0.30 -1.52 (P₁) $-1.94(P_1)$ 0.36 $E^{Tot} = -1037.20770$ ³E-[4]^{eq} -0.91 (P₂) 1.13×10⁻⁶ -0.91 -0.91 $-1.05(P_2)$ 131 $E^{Tot} = -1037.26944$

Table S1 Characteristic structures and energies of BF₂-FORM in the S₀, S₁ and T₁ states obtained from DFT/B3LYP/6-311G and TD-DFT/B3LYP/6-311G calculations.

 $E^{T_{ot}}$ = total energy in au; $\Delta E^{S_0 \rightarrow S_1}$ = excitation energy in eV; $\Delta E^{S_0 \rightarrow S_1}_{NX}$ = excitation energy obtained based on 200 Wigner sampled structures; ω_1 and ω_2 = dihedral angles defined in Figure 2; $\Delta E^{T_1 \rightarrow S_0}$ = singlet-triplet energy gap on the potential energy surface; [...]^{eq} = equilibrium structure; [...][§] = structure at the S₁/T₁ intersection; $\tau_{NX}^{S_1 \rightarrow S_0}$ and $\tau_{SOC}^{T_1 \rightarrow S_0}$ = fluorescence and phosphorescence lifetimes in s, respectively; $\Delta E_{SOC}^{T_1 \rightarrow S_0}$ = singlet-triplet energy gap obtained from SOC-PT-CC2/aug-cc-pVDZ calculations.

RICC2 NX **TD-DFT BF2-FORM-D** $\Delta E^{S_0 \rightarrow S_1} \Delta E^{S_1 \rightarrow S_0} \Delta E^{S_1 \rightarrow T_1}$ $\Delta E^{T_1 \rightarrow S_0}$ $\Delta E_{NX}^{S_0 \rightarrow S_1}$ $\Delta E_{NX}^{S_1 \rightarrow S_0}$ $\tau_{NX}^{S_1 \rightarrow S_0}$ $\Delta E_{SOC}^{T_1 \rightarrow S_0}$ $\tau_{SOC}^{T_1 \rightarrow S_0}$ G-[1]^{eq} $\omega_1 = -21$ $\omega_2 = 21$ 3.94×10-9 2.42 2.32 $E^{Tot} = -1058.87541$ ¹E-[2]^{eq} $\omega_1 = 5$ -1.57 -1.65 8.49×10-7 $E^{Tot} = -1058.79661$ ¹E-[3][§] -1.48 -0.04 -1.43 (P₁) -1.93 (P₁) 0.33 $E^{Tot} = -1058.78779$ ³E-[4]^{eq} $\omega_2 = 0$ -0.87 (P₂) -0.94 5.20×10⁻⁸ $-0.98(P_2)$ -0.88 194 $E^{Tot} = -1058.83644$

Table S2The characteristic structures and energies of BF2-FORM-D in the S0, S1 and T1 states obtained from DFT/B3LYP/6-311G and
TD-DFT/B3LYP/6-311G calculations.

 $E^{T_{ot}}$ = total energy in au; $\Delta E^{S_0 \rightarrow S_1}$ = excitation energy in eV; $\Delta E^{S_0 \rightarrow S_1}_{NX}$ = excitation energy obtained based on 200 Wigner sampled structures; ω_1 and ω_2 = dihedral angles defined in Figure 2; $\Delta E^{T_1 \rightarrow S_0}$ = singlet-triplet energy gap on the potential energy surface; [...]^{eq} = equilibrium structure; [...][§] = structure at the S₁/T₁ intersection; $\tau_{NX}^{S_1 \rightarrow S_0}$ and $\tau_{SOC}^{T_1 \rightarrow S_0}$ = fluorescence and phosphorescence lifetimes in s, respectively; $\Delta E_{SOC}^{T_1 \rightarrow S_0}$ = singlet-triplet energy gap obtained from SOC-PT-CC2/aug-cc-pVDZ calculations.

Table S3 Thermodynamics and kinetics of the photoluminescence pathway (Figure 4) for BF₂-FORM. Rate constants, temperatures and energies are in s⁻¹, K and kJ/mol, respectively; ΔE^{\ddagger} = energy barrier; $\Delta E^{\ddagger,ZPC}$ = zero-point energy-corrected barrier, obtained by including the zero-point correction energy to the energy barrier obtained from the NEB method (ΔE^{\ddagger}); ΔH^{\ddagger} = activation enthalpy; ΔS^{\ddagger} = activation entropy; ΔG^{\ddagger} = activation Gibbs free energies; T_{c} = crossover temperature; T = temperature; $k_{f/r}^{Q-vib}$ = rate constant obtained with quantized vibrations including the zero-point vibrational energy; f/r = forward or reverse direction.

Table S3

Reaction Pathway	$\Delta \mathbf{E}^{\dagger}$	$\Delta E^{\dagger, ZPC}$	$\Delta \mathbf{H}^{\dagger}$	Tc	Т	$\mathbf{k}^{ ext{Q-vib}}_{ ext{f/r}}$	$\Delta \mathbf{G}^{\dagger}$	$\Delta \mathbf{S}^{\dagger}$
¹ E-[1] [*] ← ¹ E-[2] ^{eq}		20.3	23.8	372	300	3.24×10 ⁹	18.87	1.63×10-2
	21.5				330	7.51×10 ⁹	18.71	1.53×10 ⁻²
	31.5				413	4.18×10 ¹⁰	18.27	1.34×10 ⁻
					550	2.47×10 ¹¹	17.55	1.13×10 ⁻
$^{1}\mathrm{E}\text{-}[2]^{\mathrm{eq}} ightarrow ^{1}\mathrm{E}\text{-}[3]^{^{\dagger\!},\$}$		20.7	21.8	5	300	5.85×10 ⁸	23.14	-4.51×10
	24.4				330	1.29×10 ⁹	23.55	-5.36×10
	24.4				413	6.27×10 ⁹	24.78	-7.25×10
					550	3.10×10 ¹⁰	27.03	-9.54×10
³ E-[3] [§] ← ³ E-[4] ^{eq}		127.1	129.3	42	300	5.26×10 ⁻¹⁰	126.78	8.40×10
	122.2				330	5.79×10 ⁻⁸	126.82	7.51×10
	133.3				413	7.13×10 ⁻⁴	126.99	5.60×10
					550	9.03×10 ⁰	127.45	3.38×10

Table S4 Thermodynamics and kinetics of the photoluminescence pathway (Figure 4) for BF₂-FORM-D. Rate constants, temperatures and energies are in s⁻¹, K and kJ/mol, respectively; ΔE^{\ddagger} = energy barrier; $\Delta E^{\ddagger,ZPC}$ = zero-point energy-corrected barrier, obtained by including the zero-point correction energy to the energy barrier obtained from the NEB method (ΔE^{\ddagger}); ΔH^{\ddagger} = activation enthalpy; ΔS^{\ddagger} = activation entropy; ΔG^{\ddagger} = activation Gibbs free energies; T_c = crossover temperature; T = temperature; $k_{f/r}^{Q-vib}$ = rate constant obtained with quantized vibrations including the zero-point vibrational energy; f/r = forward or reverse direction.

Table S4

Reaction Pathway	$\Delta \mathbf{E}^{\dagger}$	$\Delta E^{\dagger, ZPC}$	$\Delta \mathbf{H}^{\dagger}$	Tc	Τ	$\mathbf{k_{f/r}^{Q-vib}}$	$\Delta \mathbf{G}^{\dagger}$	$\Delta \mathbf{S}^{\dagger}$
¹ E-[1] [*] ← ¹ E-[2] ^{eq}	26.3	32.9	30.4	4	300	2.26×10 ⁴	48.49	-6.03×10-2
					330	6.92×10 ⁴	50.52	-6.10×10-2
					413	6.40×10 ⁵	56.29	-6.28×10 ⁻²
					550	5.74×10^{6}	66.34	-6.53×10 ⁻²
$^{1}\mathrm{E}\text{-}[2]^{\mathrm{eq}} \rightarrow ^{1}\mathrm{E}\text{-}[3]^{\mathrm{\dagger},\mathrm{\$}}$	23.1	30.0	26.9	4	300	2.45×10 ⁴	48.29	-7.12×10-
					330	6.64×10 ⁴	50.64	-7.18×10-
					413	4.78×10 ⁵	57.29	-7.36×10 ⁻
					550	3.31×10 ⁶	68.86	-7.62×10
³ E-[3] [§] ← ³ E-[4] ^{eq}	123.7	118.7	120.7	134	300	1.08×10 ⁻⁸	119.25	4.74×10 ⁻
					330	8.68×10 ⁻⁷	119.40	3.87×10-
					413	5.70×10 ⁻³	120.86	1.97×10-
					550	3.84×10 ¹	120.83	-2.81×10