Supporting Information

Heterogeneous solvent-metal-free aerobic Oxidation of alcohol under ambient

condition catalyzed by TEMPO-functionalized porous poly(ionic liquid)s

Yaping She^a, Xinyu Chen^a, Mengya Wang^a, Anqiu Liu^{*a}, Xiaochen Wang^{*a}, Daming Gao^a, Kunhong Hu^a and Miao Hu^a

^aSchool of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China

Corresponding Authors * Tel: +86-551-62158395 E-mail: liuaq@hfuu.edu.cn (A. Liu); wxc@hfuu.edu.cn (X. Wang)

Scheme S1 Synthesis of rigid bis-vinylimidazolium salt monomer [C₁DVIM]Br.

Scheme S2 Synthesis of TEMPO functionalized ionic liquid monomer TEMPO-IL-Cl.

Scheme S3 Synthetic route of TEMPO-IL-Br-X. (X is the molar ratio of TEMPO-IL-Cl to [C₁DVIM]Br, X=1, 0.5, 0.2, 0.1)

Scheme S4 Synthetic route of TEMPO-IL-DVB-0.5.

Fig. S1 (A) Nitrogen sorption isotherms and (B) pore size distribution curve of TEMPO-IL-DVB-0.5.

Fig. S2 SEM images of (A, B) TEMPO-IL-Br-1, (C, D) TEMPO-IL-Br-0.2, and (E, F) TEMPO-IL-Br-0.1.

Fig. S3 EDS spectrum of TEMPO-IL-Br-0.5.

Fig. S4 XRD patterns of [C₁DVIM]Br, TEMPO-IL-Cl and TEMPO-IL-Br-X (X=1, 0.5, 0.2, 0.1).

Fig. S5 FT-IR spectra of TEMPO-IL-Br-X (X=1, 0.5, 0.2, 0.1) and TEMPO-IL-DVB-0.5.

Fig. S6 Thermogravimetry curves of P[C₁DVIM]Br and TEMPO-IL-Br-X (X=1, 0.2, 0.1).

Fig. S7 (A) XPS survey scan spectra, (B) O 1s and (C) Br 3d XPS spectra of TEMPO-IL-Br-X (X=1,0.5,0.2,0.1).

Fig. S8 (A) XPS survey scan spectrum and (B) N 1s XPS spectrum of $P[C_1DVIM]Br$.

Fig. S9 Benzyl alcohol contact angle on a thin slice of (A) TEMPO-IL-Br-0.5 and (B) TEMPO-IL-DVB-0.5.

Fig. S10 Effect of CH₃CN dosage on the oxidation of benzyl alcohol.

Fig. S11 FT-IR spectra of (a) fresh TEMPO-IL-Br-0.5, (b) recovered TEMPO-IL-Br-0.5 in CH_3CN and (c) recovered TEMPO-IL-Br-0.5 without solvent.

Fig. S12 Solid state EPR spectra of TEMPO-IL-Br-0.5 recovered in (A) solvent-free and (B) CH₃CN.

Fig. S13 Recyclability study of TEMPO-IL-Br-0.5 in CH₃CN for the oxidation of benzyl alcohol.

Fig. S14 (A, B) SEM images, (C) Nitrogen sorption isotherms and (D) pore size distribution curve of recovered TEMPO-IL-Br-0.5.

Table S1The proportional relation of chemical component in the final copolymers.

Entry	Samples	x: y
1	TEMPO-IL-Br-1	1:1.147
2	TEMPO-IL-Br-0.5	1:0.736
3	TEMPO-IL-Br-0.2	1:0.479
4	TEMPO-IL-Br-0.1	1:0.250

Table S2Elemental analysis data of different samples.

Entry	Samples	Nitrogen(%)	Carbon(%)	Hydrogen(%)
1	TEMPO-IL-Cl	11.11	51.34	7.36
2	[C ₁ DVIM]Br	15.53	36.85	3.99
3	TEMPO-IL-Br-1	12.92	38.83	5.08
4	TEMPO-IL-Br-0.5	13.43	37.95	5.32
5	TEMPO-IL-Br-0.2	13.9	35.85	5.21
6	TEMPO-IL-Br-0.1	14.49	35.97	5.21
7	TEMPO-IL-Br-r	13.63	37.48	5.57
8	TEMPO-IL-DVB-0.5	3.05	78.57	7.51

TEMPO loading of TEMPO-IL-DVB-0.5 based on CHN analysis:

3.05mg N	1 mmol N	1mmol TEMPO	1000mg Sample	= 0.726 mmol/g
100mg Sample	14mg N	3mmol N	1g Sample	e = 0.720mm017 g

Entry	Solvent(ml)	Con. ^b (%)	Sel. ^b (%)	Yield ^b (%)
1	MeOH	3.4	8.4	0.3
2	EtOH	8.2	40.0	3.3
3	H ₂ O	9.8	95.1	9.3
4	THF	42.1	98.6	41.5
5	EtOAc	58.6	73.9	43.3
6	Toluene	50.1	99.0	49.6
7	N-hexane	72.0	99.1	71.4
8	DCM	77.7	99.8	77.5
9	MeCN	85.2	99.9	85.1
10	none	99.9	99.9	99.9

 Table S3

 The aerobic oxidation of benzyl alcohol under various conditions.^a

^a Reaction conditions: 1.0 mmol of alcohol, 13.0 mg of TEMPO-IL-Br-0.5 (1.5 mol% of nitroxide radical), 5.5 mg of NaNO₂ (8.0 mol%), and 4.4 μ L of H₂SO₄ (8.0 mol%) in 0.25 mL of solvent with an O₂ balloon at 25°C.

^b Determined by GC.

Table S4

The aerobic oxidation of benzyl alcohol in the presence of different acid.^a

OH <u>TEMPO-IL-Br-0.5</u> NaNO ₂ , acid, 25°C, O ₂ balloon					
Entry	Acid (mol%)	Con. ^b (%)	Sel. ^b (%)		
1	-	0	-		
2	HOAC(8)	9.3	>99		
3	$HNO_3(8)$	66.2	>99		
4	HCl(8)	96.5	>99		
5	$H_2SO_4(8)$	99.9	>99		

^a Reaction conditions: 1.0 mmol of benzyl alcohol, 13.0 mg TEMPO-IL-Br-0.5(1.5 mol% of nitroxide radicals), 5.5 mg of NaNO₂ (8.0 mol%) with an O₂ balloon at 25°C for 5h. ^b The Conversion and selectivity were determined by GC.

Table S5

Recovery performance of TEMPO-IL-Br-0.5 under solvent-free conditions.^a

Entry	TBAB (mol%)	Yield (%) ^c
1	0	30
2 ^b	6	91

^a Reaction conditions: 1 mmol of alcohol, 13.0 mg of TEMPO-IL-Br-0.5 (1.5 mol% of nitroxide radical), 5.5 mg of NaNO₂ (8.0 mol%), and 4.4 μ L of H₂SO₄ (8.0 mol%) with an O₂ balloon at 25°C.

^b Reaction conditions: 0.5 mmol of alcohol, 9.7 mg TBAB (6%) and all other conditions remained the same.

^c Determined by GC.

^d Wash with HAc, MeCN, and DCM for 0.5 h respectively.

Table S6

Comparison of catalysis performance for various TEMPO-anchored materials.

Entry	Catalyst (mol%)	Conditions	Salvant	Temp	Yield	TOF ^a	Dof
Entry Catalyst (mor/o)		Conditions	Solvent	(°C)	(%)	(h ⁻¹)	Kel.
1	TEMPO-IL-Br-0.5 (1.5)	NaNO ₂ , H ₂ SO ₄ , O ₂ , 5 h	-	25	>99	>13.3	This work
2	FRPCP (3.5)	TBN, O ₂ , 24 h	$C_2D_2Cl_4$	80	94	1.1	1
3	PEG-TEMPO (5)	Mn(NO ₃) ₂ , Co(NO ₃) ₂ , O ₂ , 3 h	AcOH	25	>99	6.7	2
4	silica-supported TEMPO (20)	$NO^+BF_4^-, O_2, 4 h$	DCM	25	97	1.2	3
5	NMI-TEMPO-1 (5)	CuI, ^t Bu ₂ -bipy, air, 3 h	CH ₃ CN	25	96	6.4	4
6	UiO-67-TEMPO(38%) (1)	TBN, durene, O ₂ , 24 h	DCE	25	>99	4.2	5
7	UiO-68-TEMPO (5)	TBN, air, 8 h	DCE+H ₂ O	80	>99	2.5	6
8	iGO-TEMPO (1)	NaNO ₂ , O ₂ , 20 h	DCM+ACOH	25	>99	5	7
9	HPAF-TEMPO (5)	TBN, air, 6 h	PhCF ₃	80	96	3.3	8
10	IL/SMNP (50)	2 atm O ₂ , 5 h	toluene	80	97	0.4	9
11	PAES-TEMPO/NOx (15.7)	air, 6 h	DCM	25	>99	1.1	10
12	MIL-101(Fe)/TEMPO-IsoNTA (5)	TBN, O ₂ , 1.5 h	PhCF ₃	80	>99	13.3	11
13	IL@SBA-15-TEMPO(1)	TBN, O ₂ , 3.5 h	AcOH	40	>99	28.6	12
14	MNS-TEG-IL-TEMPO (0.9)	TBN, HNO ₃ , O ₂ , 5 h	H_2O	50	>99	22.2	13
15	TEMPO@PMO-IL-Br (1.5)	TBN, ACOH, O ₂ , 1 h	toluene	50	>99	66.7	14
16	JUC-566 (5)	NaNO ₂ , DBDMH, O ₂ , 0.15 h	AcOH	25	>99	132	15
17	TEMPO-CMP-4 (5)	NaNO ₂ , DBDMH, O ₂ , 0.5 h	AcOH	25	>99	40	16

^a Turnover frequency: yield of Benzyl alcohol (mmol) per [TEMPO content (mmol) \times reaction time (h)], We assume that all of the TEMPO sites participated in the reaction.

1H NMR (400 MHz, DMSO-D6) δ (ppm): 9.81 (t, 1H), 8.31(t, 1H), 8.19(t, 1H), 7.42(q, 1H), 6.77(s, 1H), 6.03(q, 1H), 5.52(q, 1H).

13C NMR (100 MHz, DMSO-D6) δ (ppm): 137.6, 129.3, 123.4, 120.0, 110.5, 58.7. **Fig. S15** (A) ¹H NMR and (B) ¹³C NMR of [C₁DVIM]Br using DMSO as the solvent.

Fig. S16 MS spectrum of the TEMPO-IL-Cl, MALDI-TOF-MS: m/z: 307.1873, [M-Cl]⁺=307.39, Calculated value: 342.84.

GC Chromatographs of the Reaction Products

Supplementary References

1 L. Li, R. Matsuda, I. Tanaka, H. Sato, P. Kanoo, H. J. Jeon, M. L. Foo, A. Wakamiya, Y. Murata and S. Kitagawa, *J. Am. Chem. Soc.*, 2014, **136**, 7543–7546.

2 M. Benaglia, A. Puglisi, O. Holczknecht, S. Quici and G. Pozzi, *Tetrahedron*, 2005, **61**, 12058–12064.

3 A. J. Shakir, C. Paraschivescu, M. Matache, M. Tudose, A. Mischie, F. Spafiu and P. Ionita, *Tetrahedron Lett.*, 2015, **56**, 6878–6881.

- 4 L. Wang, Z. Bie, S. Shang, G. Li, J. Niu and S. Gao, *ChemistrySelect*, 2018, 3, 3386–3390.
- 5 K. M. Zwoliński and M. J. Chmielewski, ACS Appl. Mater. Interfaces, 2017, 9, 33956–33967.
- 6 J. L. Zhuang, X. Y. Liu, Y. Zhang, C. Wang, H. L. Mao, J. Guo, X. Du, S. Bin Zhu, B. Ren and A. Terfort, *ACS Appl. Mater. Interfaces*, 2019, **11**, 3034–3043.

7 A. J. Shakir, D. C. Culita, J. Calderon-Moreno, A. Musuc, O. Carp, G. Ionita and P. Ionita, *Carbon N. Y.*, 2016, **105**, 607–614.

8 Y. M. Shen, Y. Xue, M. Yan, H. L. Mao, H. Cheng, Z. Chen, Z. W. Sui, S. Bin Zhu, X. J. Yu and J. L. Zhuang, *Chem. Commun.*, 2021, **57**, 907–910.

9 J. Zhu, P. C. Wang and M. Lu, *RSC Adv.*, 2012, 2, 8265–8268.

10 W. Zhang, Y. Zhang, W. Cai, D. Wang and S. Zhang, J. Appl. Polym. Sci., 2024, 141, 1–10.

11 B. Wang, J. Zhang, Y. Xue, Y. Chong, D. Zhao, H. Cheng, L. Tian and J. Zhuang, *Molecules*, , DOI:10.3390/molecules28020593.

12 B. Karimi and E. Badreh, Org. Biomol. Chem., 2011, 9, 4194–4198.

13 B. Karimi, B. Ghaffari and H. Vali, J. Colloid Interface Sci., 2021, 589, 474–485.

14 B. Karimi, S. Vahdati and H. Vali, RSC Adv., 2016, 6, 63717–63723.

15 F. Chen, X. Guan, H. Li, J. Ding, L. Zhu, B. Tang, V. Valtchev, Y. Yan, S. Qiu and Q. Fang, *Angew. Chemie*, 2021, **133**, 22404–22409.

16 M. Liu, B. Zhou, L. Zhou, Z. Xie, S. Li and L. Chen, J. Mater. Chem. A, 2018, 6, 9860–9865.