Supporting Information for

"Effect of temperature on anisotropic bending elasticity of dsRNA:

An all-atom molecular dynamics simulation"

Xianghong Wang ${ }^{1, \text { a) }}$, Tingting Huang ${ }^{1}$, Liyun $\mathbf{L i}^{\mathbf{2}}$, Yanliang Xu ${ }^{1}$
${ }^{1}$ School of Sino-German Engineering, Shanghai Technical Institute of Electronics and Information, Shanghai 201411, China
${ }^{2}$ Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China.

a)Authors to whom correspondence should be addressed.

Electronic addresses: wangxianghong@stiei.edu.cn (X.Wang)
(a)

(b)

(c)

(d)

(e)

Fig. S1
(a) Root mean square deviation (RMSD) curves of the 10 bases fragment in the center of the dsRNA at $T=280 \mathrm{~K}$, where the black line indicates the average value of the relevant parameter every 2 ns .
(b) Root mean square deviation (RMSD) curves of the 10 bases fragment in the center of the dsRNA at $T=290 \mathrm{~K}$, where the black line indicates the average value of the relevant parameter every 2 ns .
(c) Root mean square deviation (RMSD) curves of the 10 bases fragment in the center of the dsRNA at $T=300 \mathrm{~K}$, where the black line indicates the average value of the relevant parameter every 2 ns .
(d) Root mean square deviation (RMSD) curves of the 10 bases fragment in the center of the dsRNA at $T=310 \mathrm{~K}$, where the black line indicates the average value of the relevant parameter every 2 ns .
(e) Root mean square deviation (RMSD) curves of the 10 bases fragment in the center of the dsRNA at $T=320 \mathrm{~K}$, where the black line indicates the average value of the relevant parameter every 2 ns .

Fig. S2
The relationship between $-\ln (\mathrm{p}(\theta, l) / \sin \theta)$ and bending angle θ at $T=280 \mathrm{~K}, 290 \mathrm{~K}, 300 \mathrm{~K}, 310 \mathrm{~K}, 320 \mathrm{~K}$. The bending angle θ is formed by six consecutive base pairs on each of the 10 base segments at the center of the dsRNA.

Fig. S3

Fig. S3
(a) An example of correlation between tilt (τ) and roll (ρ). The data correlation coefficient is $c_{\tau \rho}=-0.022$.
(b) An example of correlation between tilt (τ) and roll (ρ). The data correlation coefficient is $c_{\tau \rho}=-0.011$.
(c) An example of correlation between tilt (τ) and roll (ρ). The data correlation coefficient is $c_{\tau \rho}=-0.029$.
(d) An example of correlation between tilt (τ) and roll (ρ). The data correlation coefficient is $c_{\tau \rho}=0.000$.
(e) An example of correlation between tilt (τ) and roll (ρ). The data correlation coefficient is $c_{\tau \rho}=-0.013$.

Fig. S4

Fig. S4
(a) An example of correlation between roll (ρ) and twist (ω). The data correlation coefficient is $c_{\rho \omega}=-0.018$.
(b) An example of correlation between roll (ρ) and twist (ω). The data correlation coefficient is $c_{\rho \omega}=-0.025$.
(c) An example of correlation between roll (ρ) and twist (ω). The data correlation coefficient is $c_{\rho \omega}=-0.036$.
(d) An example of correlation between roll (ρ) and twist (ω). The data correlation coefficient is $c_{\rho \omega}=-0.036$.
(e) An example of correlation between roll (ρ) and twist (ω). The data correlation coefficient is $c_{\rho \omega}=-0.055$.

Fig. S5

(c)

Fig. S5
(a) An example of correlation between tilt (τ) and twist (ω). The data correlation coefficient is $c_{\tau \omega}=0.009$.
(b) An example of correlation between tilt (τ) and twist (ω). The data correlation coefficient is $c_{\tau \omega}=0.010$.
(c) An example of correlation between tilt (τ) and twist (ω). The data correlation coefficient is $c_{\tau \omega}=0.015$.
(d) An example of correlation between tilt (τ) and twist (ω). The data correlation coefficient is $c_{\tau \omega}=0.006$.
(e) An example of correlation between tilt (τ) and twist (ω). The data correlation coefficient is $c_{\tau \omega}=0.010$.

Fig. S6 The function of bending anisotropy B as a function of temperature T, and the line is a fitting result with a slope of $k_{3}=-0.208 \mathrm{~nm} / \mathrm{K}$.

Table S1

Table S1 The structural parameters and Pearson coefficient of dsRNA at different temperatures

Structure Parameters	280 K	290 K	300 K	310 K	320 K
Tilt, $\tau\left({ }^{\circ}\right)$	0.10 ± 0.85	0.10 ± 0.87	0.08 ± 0.90	0.10 ± 0.90	0.11 ± 0.94
Roll, $\rho\left(^{\circ}\right)$	8.75 ± 1.92	8.86 ± 1.95	9.05 ± 2.09	9.30 ± 2.10	9.61 ± 2.22
twist, $\omega\left(^{\circ}\right)$	30.30 ± 0.83	30.22 ± 0.86	30.16 ± 0.88	30.13 ± 0.88	30.06 ± 0.93
$\operatorname{corr}(\tau, \rho)$	-0.0199	0.0061	-0.0318	-0.0004	-0.0057
$\operatorname{corr}(\tau, \omega)$	0.0178	0.0106	0.0065	0.0062	0.0104
$\operatorname{corr}(\rho, \omega)$	-0.0409	-0.0567	-0.0857	-0.0860	-0.1309
$L_{0}(\mathrm{~nm})$	2.9608	2.9575	2.9538	2.9359	2.9190

Table S2

Table S2 Summary of elasticity matrix \mathbf{K} data for dsRNA at different temperatures.

K elements	280 K	290 K	300 K	310 K	320 K
$K_{\tau \tau}(\mathrm{pN} \cdot \mathrm{nm})$	175.04	172.36	169.39	174.68	164.45
$K_{\rho \rho}(\mathrm{pN} \cdot \mathrm{nm})$	34.43	34.86	31.50	32.27	30.00
$K_{\omega \omega}(\mathrm{pN} \cdot \mathrm{nm})$	182.68	179.34	177.96	182.25	172.61
$K_{\tau \rho}(\mathrm{pN} \cdot \mathrm{nm})$	1.49	-0.52	2.29	-0.01	0.31
$K_{\tau \omega}(\mathrm{pN} \cdot \mathrm{nm})$	-3.04	-1.93	-0.67	-1.10	-1.65
$K_{\rho \omega}(\mathrm{pN} \cdot \mathrm{nm})$	3.22	4.49	6.40	6.59	9.42

Table S3

Table S3 Summary of dsRNA elasticity parameters in the previous works.

Subject			Elastic parameters				
Length	Temperature	Ions Concentration	$K_{\text {SS }}$	$l_{\text {B }}$	$K_{\text {TT }}$	$K_{\text {ST }}$	References
4 kbp	298 K	150 mM NaCl	$500 \pm 29 \mathrm{pN}$	$60 \pm 1 \mathrm{~nm}$			Herrero-Galan et al. ${ }^{24}$
4.2 kbp	298 K	10 mM Tris $\cdot \mathrm{HCl}$ and 1 mM EDTA	$350 \pm 100 \mathrm{pN}$	66.3 nm $57 \pm 2 \mathrm{~nm}$	$410 \pm 8 \mathrm{pN} \cdot \mathrm{nm}^{2}$	$-0.85 \pm 0.04 \mathrm{~nm}$	Lipfert et al. ${ }^{25}$
12.5 kbp	295 K	1 mM NaCl	630 pN	61 nm			Zhang et al. ${ }^{26}$
16 bp	298.15 K	100 mM NaCl	$434 \pm 41.09 \mathrm{pN}$	$69 \pm 4 \mathrm{~nm}$	$214.34 \pm 32.48 \mathrm{pN} \cdot \mathrm{nm}^{2}$		Zhang et al. ${ }^{27}$
16 bp	300 K	Na^{+}	$602.83 \pm 27.73 \mathrm{pN}$	$66.99 \pm 1.38 \mathrm{~nm}$	$416.78 \pm 13.16 \mathrm{pN} \cdot \mathrm{nm}^{2}$		Chhetri et al. ${ }^{28}$
4.2 kbp	298 K	10 mM Tris $\cdot \mathrm{HCl}$ and 1 mM EDTA		$\begin{gathered} 63.8 \pm 0.7 \mathrm{~nm} \\ 62 \pm 2 \mathrm{~nm} \end{gathered}$			Abels et al. ${ }^{64}$

