Supporting Information

Enzyme stability in polymer hydrogel-enzyme hybrid nanocarrier containing

phosphorylcholine group

Xuejin Huang,^a Jincai Li,^a Yasuyuki Araki,^b Takehiko Wada,^b Yan Xu,^c Madoka Takai^a

^a Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan.

^b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan

^c Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, Japan.

List of Figures and Tables

Fig S1. Schematic illustration of the synthesis of PMS via RAFT polymerization

Fig S2. ¹H NMR of hydrolyzed PMS in D₂O

Table S1. Characterization of the synthesized PMS

Fig S3. Size of PMS with different polymerization degrees after centrifugation.

Fig S4. (a) Size of BNG synthesized by one-pot method; (b) comparison of the BNG activity

synthesized by different methods.

Fig S5. FE-SEM images of hybrid nanogels DNG and BNG

Fig S6. The calibration curve shows the relationship between the fluorescence intensity and the concentration of resorufin

Fig S7. (a) Illustration of the denaturation of β -gal immobilized inside zwitterionic nanogels caused by guanidinium chloride; (b)Residual activity of β -gal, BNG and DNG incubated with 6M guanidinium chloride for 30 min.

PMS

Fig S1. Schematic illustration of the synthesis of PMS via RAFT polymerization

Fig S2. ¹H NMR of hydrolyzed PMS in D₂O. δ H (400 MHz, D2O) 4.33 (2H), 4.25 (2H), 4.13(2H), 3.70 (2H), 3.26 (9H), 2.49 (2H), 2.40 (2H), 1.13 (3H), 1.02 (3H).

Table S1. Characterization of the synthesized Phys					
	Molar ratio in feed	Molar ratio in precursor ^a	Mn ^b	Mw/Mn ^b	
	MPC/MNHS	MPC/MNHS			
PMS	50/50	57/43	12200	1.37	
<u> </u>					

Table S1. Characterization of the synthesized PMS

a. Determined by ¹H NMR in D₂O

b. Detected by GPC

Fig S3. Size of PMS with different polymerization degrees after centrifugation (PMS100 and PMS200 mean their polymerization degree are 100 and 200, respectively).

Fig S4. (a) Size of BNG synthesized by one-pot method; (b) comparison of the BNG activity synthesized by different methods.

Fig S5. FE-SEM images of hybrid nanogels DNG and BNG.

Fig S6. The calibration curve shows the relationship between the fluorescence intensity and the concentration of resorufin.

Fig S7. (a) Illustration of the denaturation of β -gal immobilized inside zwitterionic nanogels caused by guanidinium chloride; (b)Residual activity of β -gal, BNG and DNG incubated with 6M guanidinium chloride for 30 min.