Figures Legends

Figure 1. XRD of Imatinib (drug), FericipXT tablet (iron supplement) used for coating, rutile TiO₂ NPs (T), FericipXT-coated rutile TiO₂ NPs in the 1:1 ratio (F), PEGylated FericipXT-coated rutile TiO₂ NPs (P), Imatinib-loaded TiO₂ NPs (TD), Imatinib-loaded FericipXT-coated rutile TiO₂ NPs (FD) and Imatinib-loaded PEGylated FericipXT-coated rutile TiO₂ NPs (PD) (*from bottom pattern to the top*).

Figure 2. The FTIR spectra of Imatinib, FericipXT, T, F, P, TD, FD and PD.

Figure 3. Calibration curve obtained for Imatinib under pH (a) 4.4, (b) 7.4 and (c) 9.0.

Figure 4. The UV-Visible absorption spectrum obtained for the drug D, TD, FD and PD at pH (a) 4.4, (b) 7.4 and (c) 9.0.

Figure 5. The HR-TEM images of (a) T, (b) F, (c) P, (d) D, (e) TD, (f) FD and (g) PD.

Figure 6. The SAED pattern obtained for (a) T, (b) F, (c) P, (d) D (e) TD, (f) FD and (g) PD

Figure 7. (a) DLS size distribution plots obtained for T, F, P, TD, FD and PD and (b) Zeta Potential plots of T, F, P, TD, FD and PD.

Figure 8. The VSM curves obtained for (a) T, (b) FericipXT, F and FD, (c) P and PD and (d) FericipXT, FD and PD.

Figure 9. The Imatinib release profiles of T, F and P at pH 4.4.

Figure 10. The Imatinib release profiles of TD, FD and PD at pH 7.4.

Figure 11. The Imatinib release profiles of TD, FD and PD at pH 9.0.

Figure 12. (a) The bar-chart representation of the % hemolysis obtained in all the five samples in comparison with the positive and negative control and (b) the images of all the five blood samples containing the NPs in the respective concentrations, positive control and negative control obtained after centrifugation.

Tables

Symbol	Meaning
D	Imatinib
FXT	FericipXT (Iron Supplement)
Т	Rutile TiO ₂ NPs
F	FericipXT@ rutile-TiO2 NPs (Iron tablet-coated rutile TiO2 NPs)
Р	PEGylated FericipXT@ rutile-TiO ₂ NPs (PEG coating onto the iron tablet-coated TiO ₂ NPs)
TD	Imatinib (Drug) loaded onto rutile-TiO2 NPs
FD	Imatinib (Drug) loaded onto FericipXT@rutile-TiO2 NPs
PD	Imatinib (Drug) loaded onto PEGylated FericipXT@rutile-TiO2 NPs

Table 1. The symbols used in this report and their meanings.

Table 2. Different phases obtained after XRD analysis of FericipXT-coated rutile TiO₂ NPs with 1:1 core:shell ratio and their quantification.

JCPDS Pattern	Compound Name	Quantification	Crystal System
01-084-0311	Iron (III) oxide- alpha (Fe ₂ O ₃)	8.9%	Rhombohedral
01-089-2428	Dioxygen-alpha (O ₂)	17.8%	Monoclinic
01-089-0599	(Hematite) Iron (III) oxide-alpha (Fe ₂ O ₃)	5%	Rhombohedral
01-076-1821	Iron (III) oxide-beta (Fe ₂ O ₃)	24.8%	Hexagonal
01-086-1350	Iron Oxide (Fe2.937O4)	1%	Cubic
01-080-2186	Iron oxide-gamma (Fe _{21.34} O ₃₂)	19.8%	Tetragonal
01-089-5894	(Maghemite Q Iron Oxide) Iron (III) oxide-gamma (Fe1.966O2.963)	22.7%	Tetragonal

S.No.	Wavenumber (cm ⁻¹)	Sample ID (in sequence of the wavenumbers mentioned)	Functional Groups			
1	3550.83, 3546.26	D, PD	Stretching vibration of the hydroxyl group O-H			
2	3475.74, 3463.61, 3463.83, 3462.55, 3470.46	D, T, P, TD, PD	Dimeric OH stretch			
3	3414.83, 3429.14, 3425.40, 3434.15, 3414.61, 3431.66, 3416.92, 3414.12	D, FXT, T, F, P, TD, FD, PD	H-bonded OH stretch			
4	3237.05, 3238.17	D, PD	Normal "polymeric" OH stretch			
5	2920.87, 2917.30, 2915.98	D, FD, PD	Methylene C-H asym./sym. stretch			
6	2879.65	FD	Methylene C-H asym./sym. stretch			
7	1776.19	FD	C=O stretching			
8	1617.31, 1638.36; 1622.01,1637.07; 1619.09, 1637.31; 1617.73, 1637.72;	D, TD, FD, PD	C=C stretching			
9	1620.90, 1636.22, 1634.89, 1636.59	FXT, T, F, P	C=C stretching			
10	1466.85, 1452.94, 1449.61, 1462.97, 1452.30	D, F, TD, FD, PD	C-H bending			
11	1420.13, 1425.66, 1418.94	D, P, TD	C-H bending			
12	1386.88, 1381.78, 1382.41, 1381.65, 1383.43, 1383.00, 1383.85	D, FXT, T, P, TD, FD, PD	C-H bending			

Table 3. A description of wavenumbers relating to the FTIR spectra and their corresponding functional groups for all the samples.

13	1351.99	FD	O-H bending		
14	1312.90	D	O-H bending		
15	1282.75, 1297.97, 1288.37	D, FD, PD	C-O stretching		
16	1250.80	FD	C-O stretching		
17	1223.37	D	C-O stretching		
18	1167.39, 1157.86, 1156.93	D, P, TD	Hydrate		
19	1117.03, 1122.51, 1124.66, 1109.98, 1109.59, 1110.41	FXT, T, F, P, TD, PD	Secondary or tertiary alcohol C- O stretching		
20	1035.04, 1015.35, 1029.75, 1056.21, 1029.96, 1097.75, 1058.29	D, F, P, TD, FD, PD	C-N stretching		
21	903.50, 916.42, 945.98	F, P, FD	C–H (Bending of aromatic hydrocarbons)		
22	803.72, 876.80, 878.54, 897.28	D, FXT, F, PD	C–H (out of plane bending of aromatic hydrocarbons)		
23	753.96	D	C-H (Bending of aromatic hydrocarbons)		
24	620.10,617.44,613.00,619.31,613.76,621.13,617.87,620.01	D, FXT, T, F, P, TD, FD, PD	Ti-O-Ti bridging stretching mode, Fe-O in case of FXT		
25	525.57, 507.80	TD, FD	Bending vibrations of O-Ti-O		
26	480.34, 488.83, 476.60, 480.83	D, FXT, FD, PD	O–Ti–O bonding		

S.No.	Symbol	Hydrodynamic Diameter (nm)	Polydispersity
1	Т	466.0 nm	0.005
2	F	449.5 nm	0.227
3	Р	642.2 nm	0.277
4	TD	394.5 nm	0.252
5	FD	437.4 nm	0.198
6	PD	557.2 nm	0.241

Table 4. Hydrodynamic diameter and Polydispersity Index of T, F, P, TD, FD and PD.

Table 5. The terminologies used for studying drug release from different samples under different pH levels.

pH → Samples ↓	рН 4.4	рН 7.4	рН 9.0
TD	T4	Τ7	Т9
F D F4		F7	F9
PD	P4	P7	Р9

Samples >>	F4	T4	P4	F7	T7	P7	F9	Т9	P9
рН		4.4			7.4			9.0	
Zero Order Model	0.7129	0.7323	0.9807	0.8166	0.8692	0.7345	0.7475	0.2305	0.3384
First Order Model	0.9094	0.9138	0.9655	0.8388	0.8910	0.7647	0.7590	0.2617	0.3770
Higuchi Model	0.9178	0.9178	0.9178	0.9178	0.9178	0.9178	0.9178	0.9178	0.9178
Hixson-Crowell Model	0.8763	0.8887	0.9894	0.8316	0.8840	0.7548	0.7552	0.2512	0.3639
Weibull Model	0.9533	0.9464	0.9924	0.9682	0.9777	0.9752	0.9805	0.8467	0.8520
Noyes-Whitney Model	0.9094	0.9138	0.9655	0.8388	0.8910	0.7647	0.7590	0.2617	0.3770
Korsmeyer-Peppas	0.9895	0.9950	0.9933	0.9866	0.9887	0.9932	0.9926	0.9953	0.9662
Peppas-Sahlin	0.9895	0.9950	0.9933	0.9876	0.9894	0.9939	0.9928	0.9953	0.9662
2 nd Degree Polynomial	0.9180	0.9570	0.9920	0.8520	0.9800	0.9340	0.8350	0.7620	0.8630

Table 6. Representation of R^2 values obtained after fitting the data against different models.