Electronic supplementary information

Propane dehydrogenation catalysis of group IIIB and IVB metal hydrides

Xiaoming Hu,^a Mengwen Huang,^a Tetsuya Kinjyo^b, Shinya Mine,^c Takashi Toyao,^a Yoyo Hinuma,^d Masaaki Kitano,^{e,f} Toyoto Sato,^g Norikazu Namiki,^b Ken-ichi Shimizu^{*a} and Zen Maeno^{*b}

a. Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.

b. School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-cho, Hachioji, 192-0015, Japan

c. National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Chemical Process Technology, 4-2-1 Nigatake, Miyagino, Sendai 983-8551, Japan

d. Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda 563-8577, Japan.

e. MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Midori, Yokohama 226-8503, Japan

f. Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

g. Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan

Preparation of PtSn and CrO_x catalysts

SiO₂-supported PtSn bimetallic catalyst was prepared by the pore-filling coimpregnation method using SiO₂ as the support (PtSn/SiO₂, Pt: 1 wt%, Pt:Sn = 1:1). Mixed aqueous solution of Pt(NH₃)₂(NO₂)₂ and SnCl₂ was added dropwise to ground dried SiO₂ (CARiACT G–6, Fuji Silysia) so that the solutions just filled the pores of the SiO₂. The mixture was kept in a sealed round-bottom flask overnight at room temperature, followed by quick freezing with liquid nitrogen, freeze-drying in vacuum at -5 °C. The resulting powder was further dried in an oven at 90 °C overnight, calcined in dry air at 400 °C for 1 h, and finally reduced by H₂ (50 mL/min) at 700 °C for 1 h.^{S1}

 AI_2O_3 -supported PtSn-K catalyst was prepared according to the previous report.^{S2} AI_2O_3 (SASOL, PURALOX SBa 200) was added into the mixed aqueous solution containing $Pt(NH_3)_2(NO_2)_2$, $SnCI_2$, and KNO_3 . The water was removed by evaporation from the above mixture. The obtained solid was dried in an oven at 90 °C overnight, calcined in dry air at 750 °C for 2 h, and finally reduced by H_2 (50 mL/min) at 700 °C for 1 h.²

 AI_2O_3 supported Cr-oxide catalysts (CrO_X/AI₂O₃, (Cr: 20 wt%)) was prepared according to the previous papers.^{S3} AI_2O_3 (purity: >99.99%, powder 2-3 µm, Kojundo Chemical Co.,Ltd.), was used as support material, and Cr(NO₃)₃·9H₂O (purity: >99.99%, powder, SIGMA-ALDRICH Co.,Ltd.) was used as a chromium source. Cr(NO₃)₃·9H₂O aqueous solution and AI_2O_3 were mixed by a magnetic stirrer at room temperature for 3 h. The mixture was evaporated at 50 °C to remove water. The resulting solid was dried in the oven at 100 °C for 1 h and then calcined for 6 h at 600 °C. After grinding in a mortar, the powder can be used in the experiment.

Characterization

XRD measurements were conducted using a Rigaku MiniFlex II/AP diffractometer with Cu K α radiation (Rigaku Corporation, Japan). The samples were transferred to the chamber without exposure to air. The detail analysis was performed using indexing program TREOR97⁴ and least-squares refinement of lattice constant program PIRUM⁵. N₂ adsorption measurements were conducted by using an AUTOSOBB 6AG (Yuasa lonics Co.). The samples used in this measurement were 0.2 g. For H₂ TPD and isotope experiments, the generated gases a mass spectrometer (BELMass, MicrotracBEL Corp.) was utilized to monitor m/z = 2 (H₂), 3 (HD), 4 (D₂), 42 (C₃H₆), 43 (C₃H₇⁺), 44 (C₃H₈), and 45 (C₃H₉⁺).

Figures

Fig. S1 Illustration of reactor systems for PDH reaction. Metal hydrides were loaded into a U-shaped quartz reactor connecting with 4-way valve in glove box, and then transfer to the reactor without exposure to air.

Fig. S2 H₂ TPD profile of the ScH₂ and ScH₂_BM under He flow (m/z = 2).

Fig. S3 Conversion and propylene selectivity of PDH reaction using LaH₃_BM at 450 $^{\circ}$ C.

Fig. S4 Comparison of conversion values of PDH reaction using different ball-illed metal hydrides at 450 °C.

Fig. S5 H_2 TPD profile of LaH₃ under He flow and successive H_2 TPR profile under H_2 /He flow (m/z = 2).

Fig. S6 XRD pattern of as-prepared LaH_3 and the LaH_3 after PDH reaction for 3 h. The sample was transfer to the XRD chamber without exposure to air.

Fig. S7 Temperature dependence of propylene formation rate in PDH using K-PtSn/Al₂O₃.

Fig. S8 Effects of the partial pressures of C_3H_8 and H_2 ($p(C_3H_8)$ and $p(H_2)$) on PDH using ZrH₂. (a) Effect of $p(C_3H_8)$ (C_3H_8 concentration: 2% - 8%, H₂ concentration: zero (without H₂ co-feeding)). (b) Effect of $p(H_2)$ (C_3H_8 concentration: 10% (fixed), H₂ concentration: 2% - 8%). 100 mg of as-prepared ZrH₂ was utilized, and the total flow rate was fixed at 50 mL/min.

Fig. S9 The gas products in PDH using (a) LaH₃ and (b) LaD₃ including Ar pretreatment. The temperature was isothermal after being increased from 30 to 450 °C. After the signals for H₂ or D₂ were stabilized, propane was introduced at a concentration of 10%. The total flow rate was 10 mL/min, and the carrier gas was Ar. The mass numbers of the gases shown are m/z = 2 (H₂), 3 (HD), 4 (D₂), 42 (C₃H₆), 43 (C₃H₇⁺), 44 (C₃H₈), and 45 (C₃H₉⁺).

Fig. S10 C_3H_6 yield in PDH reaction (10 mL/min of 10% C_3H_8/Ar) of 450 °C using 100 mg of LaH₃ or LaD₃.

Fig. S11 The gas products in the reaction of LaD_3 with H_2 . The temperature was isothermal after being increased from 30 to 450 °C. After the signals for D_2 were stabilized, H_2 was introduced at a concentration of 10%. The total flow rate was 10 mL/min, and the carrier gas was Ar. The mass numbers of the gases shown are m/z = 2 (H₂), 3 (HD), and 4 (D₂).

Calculation of normalized formation rate

The normalized formation rate was calculated using the following equation.

Normalized formation rate
$$\left[\frac{\mu mol}{h \cdot m^2}\right]$$

= $\frac{Propane\ molar\ flow\ rate\ \left[\frac{\mu mol}{min}\right] \times 60\left[\frac{min}{h}\right] \times Propylene\ yield}{Catalyst\ amount\ [g] \times Specific\ surface\ area\ [m^2/g]}$

Time (min)	Conversion (%)	Yield (%)	Selectivity (%)				Carbon
			CH_4	C_2H_6	C_2H_4	C_3H_6	balance
0	15.4	0.7	94.7	0.3	0.2	4.8	0.60
10	3.0	2.9	1.7	0.4	0.9	97.0	0.98
20	2.7	2.6	1.0	0.0	0.9	98.1	0.98
30	2.5	2.5	0.8	0.0	0.8	98.4	0.98
40	2.4	2.4	0.7	0.0	0.9	98.4	0.98
50	2.3	2.3	0.0	0.0	0.0	100	0.98

Table S1. Detail results of PDH reaction using LaH₃_BM.

Reaction conditions: 100 mg of LaH₃_BM(1h), 100 mL/min of 10% C_3H_8 /Ar flow, 450 °C. The conversion, yield and selectivity values were determined by FID GC.

Table S2. Detail results of regeneration test in PDH reaction using LaH₃_BM. The used LaH₃_BM for PDH was treated with H₂ (100 mL/min of 10% H₂/Ar) at 300 °C to investigate the regeneration.

Time (min)	Conversion (%)	Yield (%)	Selectivity (%)				a halanaa
			CH_4	C_2H_6	C_2H_4	C_3H_6	C.Daiance
0	0.2	0.2	0.9	0.0	0.0	99.1	1.0
10	0.5	0.5	0.0	0.0	0.0	100	1.0
30	<0.1	<0.1	0.0	0.0	0.0	100	1.0
40	0.6	0.6	0.0	0.0	0.0	100	1.0
50	0.7	0.7	0.0	0.0	0.0	100	1.0

Reaction conditions: 100 mg of the H₂ treated LaH₃_BM(1h) after PDH, 100 mL/min of 10% C₃H₈/Ar flow, 450 °C. The conversion, yield and selectivity values were determined by FID GC.

References

- S1 Y. Nakaya, J. Hirayama, S. Yamazoe, K. Shimizu and S. Furukawa, *Nat. Commun*, 2020, **11**, 2838.
- S2 J. Im and M. Choi, ACS Catal., 2016, 6, 2819.
- S3 A. D. Erdali, S. Cetinyokus and M. Dogan, *Chem. Eng. Process.*, 2022, **175**, 108904.
- S4 P. E. Werner, L. Eriksson and M. Westdahl, J. Appl. Crystallogr., 1985, 18, 367-370.
- S5 P. E. Werner, *Ark. Kemi.*, 1969, **31**, 513.