Electronic supplementary information

Propane dehydrogenation catalysis of group IIIB and IVB metal hydrides

Xiaoming Hu,ª Mengwen Huang,ª Tetsuya Kinjyo^b, Shinya Mine,^c Takashi Toyao,ª Yoyo Hinuma,^d Masaaki Kitano, e,f Toyoto Sato, ^g Norikazu Namiki, b Ken-ichi Shimizu^{*a} and Zen Maeno*b

a. Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.

b. School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-cho,

Hachioji, 192-0015, Japan

c. National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Chemical Process Technology, 4-2-1 Nigatake, Miyagino, Sendai 983-8551, Japan

d. Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda 563-8577, Japan.

e. MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Midori, Yokohama 226-8503, Japan

f. Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

g. Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan

Preparation of PtSn and CrO^X catalysts

 $SiO₂$ -supported PtSn bimetallic catalyst was prepared by the pore-filling coimpregnation method using $SiO₂$ as the support (PtSn/SiO₂, Pt: 1 wt%, Pt:Sn = 1:1). Mixed aqueous solution of Pt($NH₃$)₂(NO₂)₂ and SnCl₂ was added dropwise to ground dried $SiO₂$ (CARIACT G–6, Fuji Silysia) so that the solutions just filled the pores of the SiO2. The mixture was kept in a sealed round-bottom flask overnight at room temperature, followed by quick freezing with liquid nitrogen, freeze-drying in vacuum at −5 °C. The resulting powder was further dried in an oven at 90 °C overnight, calcined in dry air at 400 °C for 1 h, and finally reduced by H₂ (50 mL/min) at 700 °C for 1 h.^{S1}

 Al_2O_3 -supported PtSn-K catalyst was prepared according to the previous report.^{S2} Al_2O_3 (SASOL, PURALOX SBa 200) was added into the mixed aqueous solution containing Pt($NH₃)₂(NO₂)₂$, SnCl₂, and KNO₃. The water was removed by evaporation from the above mixture. The obtained solid was dried in an oven at 90 °C overnight, calcined in dry air at 750 °C for 2 h, and finally reduced by H_2 (50 mL/min) at 700 °C for 1 $h²$

Al₂O₃ supported Cr-oxide catalysts $(CrO_x/Al₂O₃, (Cr: 20 wt%))$ was prepared according to the previous papers. s_3 Al₂O₃ (purity: >99.99%, powder 2-3 µm, Kojundo Chemical Co., Ltd.), was used as support material, and $Cr(NO₃)₃·9H₂O$ (purity: >99.99%, powder, SIGMA-ALDRICH Co.,Ltd.) was used as a chromium source. $Cr(NO₃)₃·9H₂O$ aqueous solution and $Al₂O₃$ were mixed by a magnetic stirrer at room temperature for 3 h. The mixture was evaporated at 50 °C to remove water. The resulting solid was dried in the oven at 100 °C for 1 h and then calcined for 6 h at 600 °C. After grinding in a mortar, the powder can be used in the experiment.

Characterization

XRD measurements were conducted using a Rigaku MiniFlex II/AP diffractometer with Cu Kα radiation (Rigaku Corporation, Japan). The samples were transferred to the chamber without exposure to air. The detail analysis was performed using indexing program TREOR97⁴ and least-squares refinement of lattice constant program PIRUM⁵. N² adsorption measurements were conducted by using an AUTOSOBB 6AG (Yuasa Ionics Co.). The samples used in this measurement were 0.2 g. For H_2 TPD and isotope experiments, the generated gases a mass spectrometer (BELMass, MicrotracBEL Corp.) was utilized to monitor m/z = 2 (H₂), 3 (HD), 4 (D₂), 42 (C₃H₆), 43 (C₃H₇⁺), 44 (C_3H_8) , and 45 $(C_3H_9^+)$.

Figures

Fig. S1 Illustration of reactor systems for PDH reaction. Metal hydrides were loaded into a U-shaped quartz reactor connecting with 4-way valve in glove box, and then transfer to the reactor without exposure to air.

Fig. S2 H₂ TPD profile of the ScH₂ and ScH₂_BM under He flow (m/z = 2).

Fig. S3 Conversion and propylene selectivity of PDH reaction using LaH₃_BM at 450 $^{\circ}$ C.

Fig. S4 Comparison of conversion values of PDH reaction using different ball-illed metal hydrides at 450 °C.

Fig. S5 H₂ TPD profile of LaH₃ under He flow and successive H₂ TPR profile under $H₂/He$ flow (m/z = 2).

Fig. S6 XRD pattern of as-prepared LaH₃ and the LaH₃ after PDH reaction for 3 h. The sample was transfer to the XRD chamber without exposure to air.

Fig. S7 Temperature dependence of propylene formation rate in PDH using K- $PtSn/Al₂O₃$.

Fig. S8 Effects of the partial pressures of C_3H_8 and H_2 ($p(C_3H_8)$ and $p(H_2)$) on PDH using ZrH₂. (a) Effect of $p(C_3H_8)$ (C₃H₈ concentration: 2% – 8%, H₂ concentration: zero (without H₂ co-feeding)). (b) Effect of $p(H_2)$ (C₃H₈ concentration: 10% (fixed), H₂ concentration: $2\% - 8\%$). 100 mg of as-prepared ZrH₂ was utilized, and the total flow rate was fixed at 50 mL/min.

Fig. S9 The gas products in PDH using (a) LaH_3 and (b) LaD_3 including Ar pretreatment. The temperature was isothermal after being increased from 30 to 450 °C. After the signals for H_2 or D_2 were stabilized, propane was introduced at a concentration of 10%. The total flow rate was 10 mL/min, and the carrier gas was Ar. The mass numbers of the gases shown are m/z = 2 (H₂), 3 (HD), 4 (D₂), 42 (C₃H₆), 43 (C₃H₇+), 44 (C_3H_8) , and 45 $(C_3H_9^+)$.

Fig. S10 C_3H_6 yield in PDH reaction (10 mL/min of 10% C_3H_8/Ar) of 450 °C using 100 mg of LaH_3 or LaD_3 .

Fig. S11 The gas products in the reaction of $LaD₃$ with $H₂$. The temperature was isothermal after being increased from 30 to 450 °C. After the signals for D_2 were stabilized, H_2 was introduced at a concentration of 10%. The total flow rate was 10 mL/min, and the carrier gas was Ar. The mass numbers of the gases shown are m/z = 2 (H₂), 3 (HD), and 4 (D₂).

Calculation of normalized formation rate

The normalized formation rate was calculated using the following equation.

Normalized formation rate
$$
\left[\frac{\mu mol}{h \cdot m^2} \right]
$$

\n
$$
= \frac{Propane \, molar flow \, rate \left[\frac{\mu mol}{min} \right] \times 60 \left[\frac{min}{h} \right] \times Propylene \, yield}{Catalyst \, amount \, [g] \times Specific \, surface \, area \, [m^2/g]}
$$

Table S1. Detail results of PDH reaction using LaH₃ BM.

Reaction conditions: 100 mg of LaH₃ BM(1h), 100 mL/min of 10% C₃H₈/Ar flow, 450 °C. The conversion, yield and selectivity values were determined by FID GC.

Table S2. Detail results of regeneration test in PDH reaction using $LaH₃$ BM. The used LaH₃_BM for PDH was treated with H₂ (100 mL/min of 10% H₂/Ar) at 300 °C to investigate the regeneration.

Reaction conditions: 100 mg of the H_2 treated LaH₃ BM(1h) after PDH, 100 mL/min of 10% C_3H_8/Ar flow, 450 °C. The conversion, yield and selectivity values were determined by FID GC.

References

- S1 Y. Nakaya, J. Hirayama, S. Yamazoe, K. Shimizu and S. Furukawa, *Nat. Commun*, 2020, **11**, 2838.
- S2 J. Im and M. Choi, *ACS Catal.*, 2016, **6**, 2819.
- S3 A. D. Erdali, S. Cetinyokus and M. Dogan, *Chem. Eng. Process.*, 2022, **175**, 108904.
- S4 P. E. Werner, L. Eriksson and M. Westdahl, *J*. *Appl*. *Crystallogr*., 1985, **18**, 367-370.
- S5 P. E. Werner, *Ark. Kemi.*, 1969, **31**, 513.