Electronic Supplementary Information

Rapid synthesis of aminal-linked covalent organic frameworks for CO₂/CH₄ separation

Jianwei Yang, Xianghao Han* and Xiao Feng*

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China

E-mail: fengxiao86@bit.edu.cn (X. Feng), hanxh5@126.com (X. Han)

Table of Contents

1. Screening conditions and characterization for COF-TA-PA	2
2. Screening conditions and characterization for COF-BDA-PA	12
3. Characterization of gram-scale aminal-linked COFs	22
4. CO ₂ and CH ₄ adsorption isotherm	24
5. Fractional atomic coordinates	28

1. Screening conditions and characterization for COF-TA-PA

Entry	Solvent (1 mL)	Temperature	Time
1	Mesitylene (Mes)		
2	Toluene (Tol)		
3	Dioxane (Dio)		
4	o-dichlorobenzene (o-DCB)	120.00	70.1
5	Mes/Dio = 1/1	120 °C	/2 h
6	Dimethylacetamide (DMAc)/Mes = 1/1		
7	DMAc/Tol = 1/1		
8	Mes/ <i>n</i> -Butanol (<i>n</i> -BuOH) = $1/1$		

 Table S1. Synthesis of COF-TA-PA obtained under different solvents.

Table S2. Synthesis of COF-TA-PA obtained under different temperatures.

Fig. S1. PXRD patterns of COF-TA-PA prepared under different temperatures.

Entry	Weight (TA, mg)	Weight (PA, mg)	Temperature	Solvent (1 mL)
1	13.4	17.2		
2	26.8	34.4	120.00	
3	40.2	51.6	120 °C	0-DCB
4	67	86		

Table S3. Synthesis of COF-TA-PA obtained under different monomerconcentrations.

Fig. S2. PXRD patterns of COF-TA-PA obtained by using different monomer concentrations.

Entry	Weight (TA, mg)	Weight (PA, mg)	Temperature	Solvent (1 mL)
1	26.8	34.4		
2	26.8	68.8		
3	26.8	103.2	120 °C	o-DCB
4	26.8	137.6		

Table S4. Synthesis of COF-TA-PA under different equivalents of PA.

Fig. S3. PXRD patterns of COF-TA-PA obtained by using different equivalents of PA.

Fig. S4. PXRD patterns of COF-TA-PA after 12 and 72 hours.

Fig. S5. N₂ adsorption-desorption isotherms (77 K) of **COF-TA-PA** at different time intervals.

Fig. S6. BET surface area plots of COF-TA-PA at (a) 0.5 h, (b) 1 h, (c) 2 h, and (d) 6 h.

Fig. S7. FT-IR spectra of **COF-TA-PA** (black), piperazine (red), and terephthalaldehyde (TA, blue) at the wavenumber of (a) $4000-450 \text{ cm}^{-1}$ and (b) $1800-600 \text{ cm}^{-1}$.

Paek (cm ⁻¹)	Assignment and notes for COF-BDA-PA
3016	aromatic C–H stretch
2962 and 2929	aliphatic C–H stretch
2806 and 2756	C-H stretch from residual H-C=O in COF terminal group
1704	residual C=O stretch from COF terminal group
1504	phenyl ring C=C vibrational mode (v _a)
1456	phenyl ring C=C vibrational mode (v_b)
1332	phenyl ring C-C vibrational mode
1154	C–Ph stretching
1103	C(H)–N stretching
961	aromatic ring stretching
879	aromatic C-H out of plane wagging

 Table S5. Paek assignment and notes for COF-TA-PA.

Fig. S8. Solid-state ¹³C CP/MAS NMR spectrum of COF-TA-PA.

Fig. S9. (a) C 1s and (b) N 1s XPS spectra of COF-TA-PA.

2. Screening conditions and characterization for COF-BDA-PA

Table S6. Synthesis of COF-BDA-PA obtained under different solvents.

Entry	Solvent (1 mL)	Temperature	Time
1	o-DCB		
2	Tol		
3	Mes/Dio = 1/1	120 °C	72 h
4	DMAc/Mes = 1/1		
5	DMAc/Tol= 1/1		

Fig. S10. PXRD patterns of COF-BDA-PA obtained under different solvents.

Fig. S11. PXRD patterns of COF-BDA-PA obtained by using different reaction times.

Fig. S12. FT-IR spectra of COF-BDA-PA obtained by using different reaction times.

Fig. S13. FT-IR spectra of **COF-BDA-PA** (black), piperazine (red), and 4,4'-Biphenyldicarboxaldehyde (BDA, blue) at the wavenumber of (a) $4000-450 \text{ cm}^{-1}$ and (b) $1800-600 \text{ cm}^{-1}$.

Paek (cm ⁻¹)	Assignment and notes for COF-BDA-PA
3027	aromatic C-H stretch
2960 and 2931	aliphatic C-H stretch
2810 and 2753	C-H stretch from residual H-C=O in COF terminal group
1704	residual C=O stretch from COF terminal group
1495	phenyl ring C=C vibrational mode (va)
1455	phenyl ring C=C vibrational mode (vb)
1305	phenyl ring C-C vibrational mode
1153	C–Ph stretching
1109	C(H)–N stretching
962	aromatic ring stretching
873	aromatic C-H out of plane wagging

 Table S7. Paek assignment and notes for COF-BDA-PA.

Fig. S14. Solid-state ¹³C CP/MAS NMR spectrum of COF-BDA-PA.

Fig. S15. (a) C 1s and (b) N 1s XPS spectra of COF-BDA-PA.

Fig. S16. TGA profiles of (a) COF-TA-PA and (b) COF-BDA-PA.

Fig. S17. (a) Field-emission SEM and (b) TEM images of COF-TA-PA.

Fig. S18. (a) Field-emission SEM and (b) TEM images of COF-BDA-PA.

3. Characterization of gram-scale aminal-linked COFs

Fig. S19. BET surface area plots of (a, b) milligram-scale and (c, d) gram-scale synthesis of COF-TA-PA and COF-BDA-PA calculated from N₂ adsorption isotherms.

Fig. S20. Illustration of the theoretical pore sizes for (a) COF-TA-PA and (b) COF-BDA-PA with eclipsed AA stacking based on Zeo^{++} calculations.

Fig. S21. PXRD patterns of (a) **COF-TA-PA** and (b) **COF-BDA-PA** on a milligram scale (blue) and gram scale (black) synthesis.

4. CO₂ and CH₄ adsorption isotherm

Fig. S22. CO_2 and CH_4 sorption isotherm curves of (a) COF-TA-PA and (b) COF-BDA-PA at 273, 283, and 298 K, respectively.

Fig. S23. The adsorption enthalpy (Q_{st}) for CO₂ for (a) COF-TA-PA, and (b) COF-BDA-PA calculated at low coverage by the Clausius–Clapeyron equation.

	Parameters	qı	bı	n ₁	q 2	b 2	n ₂	R ²
	CO ₂ (273 K)	4.34109	0.00395		1.57687	0.03015		1
	CH ₄ (273 K)	1.6728	0.00411		1.6728	0.00411		0.99998
СОГ-ТА-РА	CO ₂ (298 K)	4.05398	0.00608	0.97898				0.99997
	CH4 (298K)	2.61698	0.00223	1.03198				0.99997
COF-BDA-PA	CO ₂ (273 K)	10.24658	0.00676	0.99071				0.99998
	CH4 (273 K)	12.58062	0.00181	0.92652				0.99993
	CO ₂ (298 K)	19.68224	0.00192	0.92291				0.99997
	CH4 (298K)	3.1178	0.00201	1.12576				0.99984

Table S8. Fitting parameters of the dual-site Langmuir and single siteLangmuir-Freundlich model.

Fig. S24. Experimental and fitted isotherms of CO₂ and CH₄ for (a) **COF-TA-PA** and (b) **COF-BDA-PA** measured at 273 (red) and 298 K (blue).

5. Fractional atomic coordinates

Table S9. The space groups and cell parameters of the possible structures for COF-TA-PA

Structure	Space Group	Cell Parameters
AA	P1	$a = 17.41$ Å, $b = 16.23$ Å, $c = 5.86$ Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$
AB	P1	$a = 17.41$ Å, $b = 16.23$ Å, $c = 14.00$ Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$

Table S10. The space groups and cell parameters of the possible structures for COF-BDA-PA

Structure	Space Group	Cell Parameters
AA	P1	$a = 9.79$ Å, $b = 13.96$ Å, $c = 6.45$ Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 114.6^{\circ}$
AB	P1	$a = 9.79$ Å, $b = 13.96$ Å, $c = 13.79$ Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 114.6^{\circ}$

P1 (C1-1)										
$a = 17.41$ Å, $b = 16.23$ Å, $c = 5.86$ Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$; $R_{\rm p} = 2.13$ %, $R_{\rm wp} = 2.70$ %.										
Element	Atom number	х	У	Z	Element	Atom number	x	у	Z	
Н	1	1.73077	-0.03399	-0.36366	Н	64	1.34393	-0.18061	0.35209	
Н	2	1.63521	-0.14702	-0.32488	Н	65	1.21274	-0.32566	0.25763	
Н	3	1.59232	-0.02848	-0.28034	Н	66	1.4915	-0.06757	0.28824	
Н	4	1.68226	0.04114	-0.09875	С	1	1.68278	-0.08164	-0.238	
Н	5	1.54869	-0.22119	0.07572	С	2	1.63321	-0.03197	-0.14326	
Н	6	1.56259	-0.16828	0.34752	С	3	1.58796	-0.1556	0.17298	
Н	7	1.68786	-0.19323	0.24602	С	4	1.68584	-0.13218	0.17491	
Н	8	1.72403	-0.07142	0.28636	С	5	1.81565	-0.09923	-0.10471	
Н	9	1.82637	-0.09013	-0.2896	С	6	1.81416	-0.19011	-0.04534	
Н	10	1.96195	0.12703	0.32657	С	7	1.96836	0.15302	0.15107	
Н	11	1.96257	0.21683	0.15778	С	8	1.89039	0.07699	0.00677	
Н	12	1.89383	0.10397	-0.16636	С	9	1.98123	0.00541	-0.09295	
Н	13	1.82887	0.06553	0.08407	С	10	2.05947	0.08306	0.04538	
Н	14	1.98811	0.02846	-0.27131	С	11	1.84157	-0.20386	0.17208	
Н	15	1.98695	-0.05868	-0.0885	С	12	1.84428	-0.2871	0.22327	
Н	16	2.11983	0.09349	-0.03796	С	13	1.81911	-0.36003	0.05888	
Н	17	2.05836	0.05729	0.21879	С	14	1.79081	-0.34675	-0.15774	
Н	18	1.86066	-0.15222	0.29431	С	15	1.78737	-0.26387	-0.20811	
Н	19	1.86556	-0.29382	0.3812	С	16	1.82218	-0.44923	0.11205	
Н	20	1.77213	-0.39833	-0.28005	С	17	1.64188	-0.69007	-0.15317	
Н	21	1.7654	-0.25742	-0.36535	С	18	1.72884	-0.62447	-0.02486	
Н	22	1.82507	-0.45424	0.29828	С	19	1.65498	-0.54812	0.17118	
Н	23	1.63969	-0.75741	-0.18762	С	20	1.56814	-0.61341	0.04017	
Н	24	1.64281	-0.65761	-0.31766	С	21	1.47703	-0.78591	-0.10841	
Н	25	1.78367	-0.61266	-0.13663	С	22	1.39389	-0.7861	-0.03862	
Н	26	1.73089	-0.66119	0.12947	С	23	1.55481	-0.95061	0.12239	
Н	27	1.6564	-0.4812	0.20636	С	24	1.50249	-0.8981	0.16629	
Н	28	1.65392	-0.58073	0.33545	С	25	1.44475	-0.95244	-0.23875	
Н	29	1.56542	-0.57776	-0.11576	С	26	1.42535	-1.05039	-0.14559	
Н	30	1.51315	-0.62423	0.14995	С	27	1.34811	-0.76006	-0.19634	
Н	31	1.48146	-0.77801	-0.29467	С	28	1.26874	-0.76259	-0.13654	
Н	32	1.5806	-0.95983	0.28475	С	29	1.23299	-0.78895	0.08555	
Н	33	1.61201	-0.90556	0.01537	С	30	1.27977	-0.81293	0.24501	
Н	34	1.54431	-0.83248	0.26042	С	31	1.35905	-0.81072	0.1848	
Н	35	1.44539	-0.94326	0.27347	С	32	1.14637	-0.79517	0.14976	

 Table S11. Fractional atomic coordinates for the unit cell of COF-TA-PA with AA stacking.

Н	36	1.5004	-0.92665	-0.35759	С	33	1.15845	-0.59427	-0.23092
Н	37	1.3866	-0.9611	-0.33121	С	34	1.10758	-0.69384	-0.11935
Н	38	1.41389	-1.0974	-0.29073	С	35	1.22382	-0.61369	0.19079
Н	39	1.36457	-1.08053	-0.04381	С	36	1.20946	-0.52699	0.17037
Н	40	1.37264	-0.73855	-0.35722	С	37	1.17126	-0.43225	-0.13035
Н	41	1.23709	-0.74502	-0.25692	С	38	1.25455	-0.3417	-0.07126
Н	42	1.25541	-0.8338	0.40626	С	39	0.94485	-0.50557	0.15362
Н	43	1.39116	-0.82768	0.30532	С	40	1.00997	-0.52433	0.01397
Н	44	1.13949	-0.80347	0.33553	С	41	1.06596	-0.36864	-0.17191
Н	45	1.11822	-0.59273	-0.37197	С	42	0.99361	-0.35595	-0.04948
Н	46	1.22128	-0.58299	-0.29916	С	43	1.32683	-0.29929	-0.22504
Н	47	1.10063	-0.74694	-0.24495	С	44	1.40442	-0.21374	-0.16933
Н	48	1.04095	-0.70733	-0.08159	С	45	1.41284	-0.168	0.04246
Н	49	1.28354	-0.59731	0.094	С	46	1.34085	-0.21126	0.19719
Н	50	1.23619	-0.62317	0.36855	С	47	1.26337	-0.29646	0.14145
Н	51	1.27211	-0.46328	0.21263	С	48	1.49448	-0.07556	0.1034
Н	52	1.16043	-0.53385	0.29557	Ν	1	1.72657	-0.10873	-0.05748
Н	53	1.16571	-0.4338	-0.31684	Ν	2	1.89373	-0.01343	0.00223
Н	54	0.97819	-0.46651	0.30896	Ν	3	2.05551	0.17352	0.05024
Н	55	0.89024	-0.5739	0.20866	Ν	4	1.73429	-0.53218	0.03472
Н	56	0.97811	-0.56307	-0.14273	Ν	5	1.56303	-0.70608	-0.01531
Н	57	1.02646	-0.56925	0.11702	Ν	6	1.46869	-0.8807	-0.05313
Н	58	1.04127	-0.39934	-0.34079	Ν	7	1.49978	-1.04308	-0.00115
Н	59	1.12399	-0.29802	-0.19669	Ν	8	1.14674	-0.70337	0.10064
Н	60	0.97506	-0.31661	-0.16708	Ν	9	1.17847	-0.51764	-0.06148
Н	61	1.0222	-0.31209	0.1031	Ν	10	1.09054	-0.43119	-0.03902
Н	62	1.32336	-0.33069	-0.3791	Ν	11	0.91394	-0.44981	0.01381
Н	63	1.45509	-0.18476	-0.28486	Ν	12	1.57962	-0.07663	0.0673

$a = 9.79 \text{ Å}, b = 13.96 \text{ Å}, c = 6.45 \text{ Å}, a = \beta = 90^{\circ} \text{ and } \gamma = 114.6^{\circ}; R_{p} = 3.73 \%, R_{wp} = 4.75 \%.$									
Element	Atom number	x	у	Z	Element	Atom number	x	у	Z
Н	1	1.08604	0.75821	0.7899	С	1	-1.87297	-3.21157	-0.07385
Н	2	1.09011	0.65876	0.94929	С	2	-1.93483	-3.16959	0.11
Н	3	1.10746	0.7642	1.26417	С	3	-1.71293	-3.00127	0.09582
Н	4	0.94862	0.74597	1.1184	С	4	-1.65069	-3.04176	-0.09001
Н	5	1.33714	0.93702	1.24818	С	5	-1.61867	-3.20331	0.04952
Н	6	1.33667	1.0402	1.09688	С	6	-1.66276	-3.31981	0.02769
Н	7	1.47755	0.95437	0.91913	С	7	-1.19713	-3.06619	0.18399
Н	8	1.31931	0.93707	0.77364	С	8	-1.3563	-3.15562	0.19623
Н	9	1.87714	0.87852	1.31576	С	9	-1.38552	-3.14311	-0.18288
Н	10	1.80009	0.96423	1.21798	С	10	-1.22333	-3.05566	-0.19595
Н	11	1.60222	0.80382	1.3559	С	11	-1.71165	-3.37328	-0.16288
Н	12	1.65724	0.72433	1.19166	С	12	-1.75921	-3.48314	-0.17707
Н	13	1.55235	0.82665	0.70528	С	13	-1.7536	-3.54412	-0.00372
Н	14	1.62246	0.73612	0.79525	С	14	-1.69665	-3.48865	0.18387
Н	15	1.77946	0.97747	0.82009	С	15	-1.65577	-3.37985	0.20061
Н	16	1.82992	0.89353	0.66306	С	16	-1.80373	-3.65554	-0.01544
Н	17	1.29045	0.62358	0.71609	С	17	-1.79294	-3.70701	-0.20055
Н	18	1.20584	0.4376	0.69193	С	18	-1.84642	-3.81743	-0.21175
Н	19	1.32226	0.42891	1.32089	С	19	-1.90911	-3.88158	-0.03617
Н	20	1.38632	0.61133	1.3495	С	20	-1.91425	-3.83043	0.15068
Н	21	1.26127	0.29121	0.67795	С	21	-1.86738	-3.72078	0.15923
Н	22	1.16819	0.10501	0.65887	С	22	-1.96334	-3.99944	-0.04595
Н	23	1.05386	0.08279	1.29201	Ν	1	-1.8816	-3.05203	0.10409
Н	24	1.12453	0.26623	1.30507	Ν	2	-1.70436	-3.15956	-0.08875
Н	25	1.06763	-0.06407	0.80775	Ν	3	-1.45116	-3.14263	0.02642
Н	26	0.35682	0.76599	1.21612	N	4	-1.12973	-3.06762	-0.02322

Table S12. Fractional atomic coordinates for the unit cell of COF-BDA-PA with AA stacking.

P1 (C1-1)